
Importing Ontologies with Hidden Content

Bernardo Cuenca Grau and Boris Motik

Computing Laboratory
University of Oxford, UK

1 Introduction

The Web Ontology Language (OWL) and its revision OWL 2 are widely used
ontology languages whose formal underpinnings are given by description logics
(DLs). OWL ontologies are used, for example, in several countries to describe
electronic patient records (EPR). Patients’ data typically involves descriptions
of human anatomy, medical conditions, drugs, and so on. These domains have
been described in well-established reference ontologies such SNOMED-CT and
GALEN. In order to save resources, increase interoperability between applica-
tions, and rely on experts’ knowledge, an EPR application should preferably
reuse these reference ontologies. For example, assume that a reference ontology
Kh describes concepts such as the “ventricular septum defect.” An EPR appli-
cation might reuse the concepts and roles from Kh to define its own ontology Kv

of concepts such as “patients having a ventricular septum defect.” It is gener-
ally accepted that ontology reuse should be modular—that is, the axioms of Kv

should not affect the meaning of the symbols reused from Kh [1, 2].
To enable reuse, OWL allows Kv to import Kh. OWL reasoners deal with

imports by merging the axioms of the two ontologies; thus, to process Kv ∪Kh,
an EPR application would require physical access to the axioms of Kh. The
vendor of Kh, however, might be reluctant to distribute the axioms of Kh, as
doing this might allow competitors to plagiarize Kh. Moreover, Kh might contain
information that is sensitive from a privacy point of view. Finally, the vendor of
Kh might impose different costs on parts of Kh. To reflect this situation, we call
the ontology Kh hidden and, by analogy, Kv visible.

To enable reuse without providing physical access to the axioms, Kh could be
made accessible via an oracle (i.e., a limited query interface), thus allowing Kv

to import Kh “by query.” In this paper, we study import-by-query algorithms,
which can solve certain reasoning tasks on Kv ∪Kh by accessing only Kv and the
oracle. We focus on schema reasoning problems, such as concept subsumption
and satisfiability; this is in contrast to the information integration [3] and peer-
to-peer [4] scenarios, which focus on the reuse of data.

In our recent work [5], we studied the import-by-query problem when the
oracle query language is concept satisfiability (or, equivalently, concept sub-
sumption). We showed that no import-by-query algorithm exists even if Kv and
Kh are expressed in the lightweight DL EL [6]. This negative result holds if
Kv reuses an atomic role from Kh, so we studied the case when Kv reuses only
atomic concepts from Kh in a modular way [2]. We presented an import-by-query

algorithm for the case when the aforementioned assumptions are satisfied and
Kv and Kh are expressed in SROIQ [7] and SRIQ [8], respectively. We also
proposed an algorithm that is better suited for practice for the case where Kh

is expressed in a Horn DL. Finally, we extended these results to the case when
Kv reuses atomic roles from Kh in a syntactically restricted way.

The conditions in [5] on the usage of imported roles, however, can be limiting
in practice, so in this paper we investigate ways of relaxing them. In particular,
we study a different oracle query language that is based on ABox query an-
swering, rather than concept subsumption or concept satisfiability checking. We
present an import-by-query algorithm that uses such a query language and that
is applicable if Kv and Kh are expressed in EL and the only restriction is that Kv

imports concepts and roles from Kh in a modular way. We also establish links
between this result and the negative result from [5]. In particular, we show that,
if the axioms of Kv involving the roles imported from Kh are weakly acyclic [9],
an import-by-query algorithm based on concept subsumption exists.

2 Preliminaries

In this section, we present an overview of the DL EL [6] and a suitable reason-
ing algorithm. For simplicity, we restrict ourselves to the basic version of EL;
however, our results can be easily extended to EL++. We also recapitulate the
notion of locality [2], which ensures modular ontology reuse. Finally, we define
a restricted form of EL axioms that guarantees locality.

2.1 The Description Logic EL
The syntax of EL is defined w.r.t. a signature, which is the union of disjoint
countable sets of atomic concepts, atomic roles, and individuals. The set of EL
concepts is the smallest set containing �, ⊥, A, C1 � C2, and ∃r.C, for A an
atomic concept, C, C1, and C2 EL concepts, and r an atomic role.

A concept inclusion (GCI) has the form C1 � C2 for C1 and C2 EL concepts,
and a concept equivalence C1 ≡ C2 is an abbreviation for C1 � C2 and C2 � C1.
A TBox T is a finite set of GCIs. An assertion has the form C(a) or r(a, b),
for C an EL concept, r an atomic role, and a and b individuals. An axiom is
either a GCI or an assertion. An ABox A is a finite set of assertions. An EL

knowledge base is a pair K = �T ,A� where T is a TBox and A is an ABox. For
α a concept, an axiom, or a set of axioms, sig(α) is the signature of α—that is,
the set of atomic concepts, roles, and individuals occurring in α.

The semantics of EL is given by means of interpretations. The definitions
of an EL interpretation I = (�I , ·I), satisfaction of an axiom, TBox, ABox, or
KB S in an interpretation I (written I |= S), entailment of an axiom α from S

(written S |= α), and concept subsumption (written K |= C � D), are standard
and can be found in [6]. Classification of K is the problem of determining whether
K |= C � D for each C,D ∈ sig(K) ∪ {�,⊥}. For each satisfiable EL knowledge
base K = �T ,A�, it is well known that �T ,A� |= C � D iff �T , ∅� |= C � D;
hence, classification is usually considered w.r.t. a TBox only.

Table 1. EL Rules

R1
If ∃r.C(x) ∈ Ai and r(x, xC) /∈ Ai

then Ai+1 := Ai ∪ {r(x, xC)}.

R2
If 1. A1 � . . . �Ak � ∃r1.B1 � . . . � ∃rm.Bm � C ∈ T with k ≥ 0 and n ≥ 0, and

2. Ai contains individuals x, y1, . . . , ym such that
2.1 {Aj(x) | 1 ≤ j ≤ k} ∪ {rj(x, yj), Bj(yj) | 1 ≤ j ≤ m} ⊆ Ai, and
2.2 C(x) /∈ Ai

then Ai+1 := Ai ∪ {C(x)}.

2.2 Reasoning with EL Knowledge Bases

We next present two algorithms for reasoning with EL KBs. First, we present
the algorithm sat(T ,A) that can be used to compute ABox assertions entailed
by T ∪ A. Then, we show how to use sat(T ,A) to obtain the EL classification
algorithm el(T). These algorithms are similar to the one in [10] and can be seen
as a minor variation of the algorithm in [6].

Let Γ be a signature. Then, BC(Γ) is the set of basic concepts for Γ , which
is the smallest set of EL concepts containing �, ⊥, all atomic concepts in Γ ,
and all concepts of the form ∃r.C such that r ∈ Γ and C ∈ Γ ∪ {�,⊥}.1 An EL

TBox T is in normal form if every GCI α ∈ T is of the form

C1 � . . . � Cn � D (1)

with n ≥ 1, and where Ci and D are basic concepts for sig(T). An EL ABox
A is in normal form if, in each assertion C(a) ∈ A, the concept C is basic for
sig(A). An EL KB K = �T ,A� is in normal form if both T and A are in normal
form. Given an ABox A in normal form and Γ ⊆ sig(A), we denote with A|Γ

the set of assertions C(a) and r(a, b) in A such that C ∈ BC(Γ) and r ∈ Γ .
For each concept C ∈ sig(T), let xC be an individual uniquely associated with

C. The algorithm sat(T ,A) accepts an EL TBox T and ABox A and produces
a sequence A0, . . .An of ABoxes, called a run, s.t. the following conditions hold:

1. A0 := A ∪ {C(xC) | C ∈ sig(T)}.
2. Ai is obtained from Ai−1 by applying a rule from Table 1 for each 1 ≤ i ≤ n.
3. No rule from Table 1 is applicable to An.

For each T and A, the ABox An is unique across all runs of sat(T ,A), so we
often write sat(T ,A) = An. Furthermore, by modifying slightly the proofs from
[6] and [10], it is straightforward to show that the following properties hold:

– P1: For each TBox T , ABox A, basic concept C for sig(T), and each indi-
vidual x in A, we have C(x) ∈ sat(T ,A) if and only if T ∪A |= C(x).

– P2: For all TBoxes T and T �, and all ABoxes A and A�,
• A ⊆ sat(T ∪ T �, ∅) implies sat(T ,A) ⊆ sat(T ∪ T �, ∅), and
• A� ⊆ sat(T ,A) implies sat(T ,A ∪A�) ⊆ sat(T ,A).

1 Note that this notion of basic concept differs from the one introduced in [6].

The algorithm el(T) accepts a TBox T and returns C � D for each pair of
concepts C and D from sig(T)∪{�,⊥} such that D(xC) ∈ sat(T , ∅). Properties
P1 and P2 straightforwardly imply that C � D ∈ el(T) iff T |= C � D.

2.3 Locality

When a TBox Tv reuses a TBox Th, it is commonly accepted [1, 2] that Tv should
not affect the meaning of the symbols reused from Th—that is, Tv ∪ Th |= α
should imply Th |= α for each axiom α containing only the reused symbols. This
is guaranteed if Tv is local w.r.t. the set of concepts and roles Γ imported from
Th [2]. More precisely, for Γ a signature such that {�,⊥} ⊆ Γ , a TBox T is local
w.r.t. Γ if, for each interpretation I such that XI = ∅ for each atomic concept
and each atomic role X /∈ Γ , we have I |= T .

An EL TBox T in normal form is safe for Γ if sig(C1 � . . . � Cn) �⊆ Γ for
each axiom of the form (1) in T . It is easy to see that T is then local for Γ .

3 Importing Ontologies by Query

To illustrate the notion of import-by-query, Table 2 shows a TBox Th whose
axioms are to be kept hidden, but that is reused in a visible TBox Tv. The TBox
Th provides concepts describing the structure of organs such as Heart, and
medical conditions associated to them such as CHD (congenital heart defect),
VSD (ventricular septum defect), and AS (aortic stenosis). Furthermore, the
role part relates organs with their parts, and cond relates organs with medical
conditions. The former role is used to define concepts such as Heart (an organ
one of whose parts is the tricuspid valve); the latter is used to define concepts
such as CHD Heart (a heart with a congenital heart disorder) and VSD Heart

(a heart with a ventricular septal defect). The shared symbols of Th are written
in bold font. The TBox Th might also contain nonshared symbols; however, for
simplicity, we do not show any axioms involving such symbols. The TBox Tv

provides the concept Pat representing patients, and it defines types of patients
by relating the organs from Th with the patients using the hasOrgan role. In
addition, Tv extends the list of defects in Th by EA (Ebstein’s anomaly), which
is a congenital heart defect in which the opening of the tricuspid valve is displaced
(axioms δ7 and δ8), and defines a patient with tricuspid valve disease (TVD Pat)
as a patient with a heart that has a congenital heart defect and an abnormal
tricuspid valve (δ9). The symbols private to Tv are written in italic font.

As already mentioned, we assume that Tv is local w.r.t. the imported sym-
bols. For example, δ1 is local w.r.t. {CHD Heart} because δ1 is satisfied in
any interpretation that interprets the nonshared symbols as ∅. Note also that,
according to the definition in Section 2, Tv is safe for the imported signature.

We next introduce two types of oracles, which are responsible for advertising
the shared signature Γ of Th and answering queries w.r.t. Th.

Table 2. Example Knowledge Bases

Hidden Knowledge Base Th

γ1 CHD Heart ≡ Heart � ∃cond.CHD
γ2 VSD Heart ≡ Heart � ∃cond.VSD
γ3 VSD � CHD
γ4 AS � CHD
γ5 Heart � Organ � ∃part.Tric Valve
Visible Knowledge Base Tv

δ1 CHD Pat ≡ Pat � ∃hasOrgan.CHD Heart
δ2 VSD Pat ≡ Pat � ∃hasOrgan.VSD Heart
δ3 AS Pat ≡ Pat � ∃hasOrgan.(Heart � ∃cond.AS)
δ4 EA Pat ≡ Pat � ∃hasOrgan.EA Heart
δ5 EA � CHD
δ6 EA Heart ≡ Heart � ∃cond.EA
δ7 Heart � ∃cond.EA � ∃part.Ab Tric Valve
δ8 Ab Tric Valve ≡ Tric Valve � ∃part.Displ Opening
δ9 TVD Pat ≡ Pat � ∃hasOrgan.(CHD Heart � part.Ab Tric Valve)

Definition 1. Let T be an EL TBox and Γ be s.t. {�,⊥} ⊆ Γ ⊆ sig(T). A
subsumption oracle Ωs

T ,Γ is a function that, for each pair of EL concepts C and
D with sig(C) ⊆ Γ and sig(D) ⊆ Γ , returns a Boolean value as follows:

Ωs
T ,Γ (C,D) =

�
t if T |= C � D
f otherwise

An ABox query oracle Ωa
T ,Γ is a function that, for each normalized EL ABox

A with sig(A) ⊆ Γ , a concept C ∈ BC(Γ), and an individual x occurring in A,
returns a Boolean value as follows:

Ωa
T ,Γ (A, C, x) =

�
t if �T ,A� |= C(x)
f otherwise

Without any further qualification, the generic term oracle refers either to the
subsumption of the ABox query oracle.

A subsumption oracle is able to answer subsumption queries between (possi-
bly complex) EL concepts, and it is analogous to the concept satisfiability oracle
we considered in [5]. Concept subsumption is available as a reasoning service
in all DL reasoners known to us, so it provides us with a natural oracle query
language. Our results from [5], however, suggest that the way in which the roles
from Th are used in Tv must be restricted in import-by-query algorithms based
on subsumption oracles; we summarize these results in Section 4.

As we show in Section 5, the use of ABox query oracles allows us to overcome
these limitations. Intuitively, an ABox query accepts an ABox A containing
only symbols in Γ and “completes it” with the (basic) concepts over Γ that are
entailed by A∪Th. Roughly speaking, the ABox represents the information that
has already been deduced; when “handed over” to the oracle, the oracle then
completes the ABox with the relevant information entailed by Th.

An import-by-query (classification) algorithm checks the subsumption rela-
tions between the atomic concepts in sig(Tv) w.r.t. Tv ∪ Th by using an oracle.

Definition 2. An import-by-query algorithm takes as input an EL TBox Tv

and an oracle ΩTh,Γ with sig(Tv) ∩ sig(Th) ⊆ Γ , and it returns C � D for each
C and D such that {C,D} ⊆ sig(Tv) ∪ {�,⊥} and Tv ∪ Th |= C � D.

4 Import-by-Query and Subsumption Oracles

We next summarize our results from [5]. We first show that no general import-
by-query algorithm based on subsumption oracles exists.

Theorem 3. No import-by-query algorithm based on subsumption oracles exists,
if Tv and Th are in EL, Γ contains only one atomic role, and Tv is local in Γ .

Proof. Assume that an import-by-query algorithm exists that terminates on all
inputs, and consider Tv as in (2) with Γ = {r}. Clearly, Tv is local w.r.t. Γ . Since
the algorithm terminates, the number of questions posed to any subsumption
oracle is bounded by some integer m, and the quantifier depth of each concept
C passed to the oracle is bounded by an integer n, where both m and n depend
only on Γ and Tv. Let T 1

h and T 2
h be as in (3) and (4), respectively.

Tv = {A � ∃r.A} (2)

T
1

h = ∅ (3)
T 2

h = { ∃r. . . .∃r� �� � .� � ⊥ }

n + 1 times
(4)

For each C with sig(C) ⊆ Γ and quantifier depth at most n , T 1
h |= C � ⊥ iff

T 2
h |= C � ⊥, so Ωs

T 1
h ,Γ (C,⊥) = Ωs

T 2
h ,Γ (C,⊥). When applied to Tv and Ωs

T 1
h ,Γ ,

the algorithm returns the same value as when applied to Tv and Ωs
T 2

h ,Γ . Since
Tv ∪ T

1
h �|= A � ⊥ but Tv ∪ T

2
h |= A � ⊥, it does not satisfy Definition 2. ��

This negative result relies on the presence of an atomic role r in the reused
signature Γ and the fact that r is used in Tv in a “cyclic” axiom A � ∃r.A.
To circumvent this problem, we studied in [5] the case where Γ contains only
atomic concepts and proposed an import-by-query algorithm that applies even
when Tv and Th are given in a very expressive DL.

In [5] we also studied the case where both concepts and roles are imported,
but with the condition that sig(C) ⊆ Γ for each concept C appearing in Tv in
the scope of a quantifier over r from Γ . For example, if r ∈ Γ , then Tv is allowed
contain the concept ∃r.A only if A ∈ Γ . The algorithm in [5] for this case applies
to very expressive DLs. In our example, the conditions in [5] allow us to write
axioms δ1–δ5, which together with Th allow us to conclude VSD Pat � CHD Pat
(using δ1, δ2 and δ5) and AS Pat � CHD Pat (using δ1 and δ3).

In order to express axioms such as δ5–δ9, we next investigate ways of relaxing
the conditions from [5]. In Section 5, we study the design of import-by-query

Table 3. Additional EL Rule for an ABox Query Oracle

R3
If for some individual xC in Ai and concept D ∈ BC(Γ),

Ωa
Th,Γ (Ai|Γ , D, xC) = t and D(xC) /∈ Ai

then Ai+1 := Ai ∪ {D(xC)}.

algorithms based on ABox query oracles. We show that, if Tv and Th are in EL,
no restrictions other than locality are needed to ensure existence of an import-
by-query algorithm. This investigation will also provide us with insight on how
to relax the syntactic restrictions from [5] when using subsumption oracles.

5 Import-by-Query with ABox Query Oracles

We next present the import-by-query algorithm ibqa(Tv,Ωa
Th,Γ), which accepts

a normalized EL TBox Tv and an ABox query oracle Ωa
Th,Γ s.t. Tv is safe for Γ .

Let sata(Tv,A,Ωa
Th,Γ) be the same as sat(Tv,A) (see Section 2), with the

difference that rule R3 shown Table 3 is applied alongside rules R1 and R2 from
Table 1. We next prove certain properties of this algorithm.

Lemma 4. Let Aa = sata(Tv, ∅,Ωa
Th,Γ) and Ael = sat(Tv ∪ T

�
h, ∅), where T �

h is
the result of transforming Th into normal form. The following properties hold:

– Soundness: Aa ⊆ Ael;
– Completeness: For each C ∈ sig(Tv) and D ∈ BC(sig(Tv)), we have that

D(xC) ∈ Ael implies D(xC) ∈ Aa.

Proof (Soundness). Let A0, . . . ,An with An = Aa be a run of sata(Tv, ∅,Ωa
Th,Γ).

We show by induction on the rule applications that Ai ⊆ Ael for each 0 ≤ i ≤ n.
The induction base (i = 0) follows from the initialization conditions of both algo-
rithms. Assume now that Ai−1 ⊆ Ael and let Ai be obtained from Ai−1 by a rule
application. If either R1 or R2 is applied, property P2 from Section 2 implies that
Ai ⊆ Ael. Assume that R3 extends Ai−1 with D(xC). Then, C ∈ Γ ; D ∈ BC(Γ);
and, by the induction hypothesis, Ai−1|Γ ⊆ Ael. Also, Ωa

Th,Γ (Ai−1|Γ , D, xC) = t,
which implies T �

h ∪Ai−1|Γ |= D(xC). But then, property P1 from Section 2 im-
plies that D(xC) ∈ sat(T �

h,Ai−1|Γ). Since Ai−1|Γ ⊆ Ael, by P2 we have that
sat(T �

h,Ai−1|Γ) ⊆ Ael, which implies our claim. ��

Proof (Completeness). Let A0, . . . ,An with An = Ael be a run of sat(Tv ∪ T
�

h, ∅).
For Aj occurring in the run and Σ a signature, let

Aj�Σ = {D(xC) ∈ Aj | {C,D} ⊆ BC(Σ)} ∪ {r(xC , xD) ∈ Aj | {r, C, D} ⊆ Σ}.

Completeness follows immediately from statement 2 of the following claim.
CLAIM: The following conditions hold for each Aj with 1 ≤ j ≤ n:

1. Aj ⊆ Aa ∪ sat(T �
h,Aa|Γ).

2. Aj�sig(Tv) ⊆ Aa.
3. If D(xC) ∈ Aj , then

(a) C ∈ sig(T �
h) implies D ∈ BC(sig(T �

h)), and
(b) C ∈ sig(Tv) \ Γ implies D ∈ sig(Tv).

4. If r(xC , xD) ∈ Aj , then
(a) r ∈ sig(Tv) \ Γ implies C ∈ sig(Tv) \ Γ ,
(b) r ∈ Γ and D ∈ sig(Tv) \ Γ imply C ∈ sig(Tv) \ Γ , and
(c) r ∈ sig(Tv) and C ∈ sig(Tv) \ Γ imply D ∈ sig(Tv).

The proof is by induction on the rule applications. For the induction base
(j = 0), we haveA0 = {C(xC) | C ∈ sig(Tv ∪ T

�
h)}. Statements 1–3 hold straight-

forwardly, and statement 4 is vacuously true. Assume now that statements 1–4
hold for Aj−1 and consider an application of a rule that derives Aj .

Assume that R1 is applied to ∃r.D(xC) ∈ Aj−1 and that it derives r(xC , xD).
By the induction hypothesis, ∃r.D(xC) ∈ Aa or ∃r.D(xC) ∈ sat(T �

h,Aa|Γ). If
∃r.D(xC) ∈ Aa, then r(xC , xD) ∈ Aa because R1 is not applicable to Aa, so
statement 1 holds. If ∃r.D(xC) ∈ sat(T �

h,Aa|Γ), then r(xC , xD) ∈ sat(T �
h,Aa|Γ)

because R1 is not applicable to sat(T �
h,Aa|Γ), so statement 1 also holds. If C, D,

and r are all in sig(Tv), by the induction hypothesis ∃r.D(xC) ∈ Aa; since R1 is
not applicable to Aa, we have r(xC , xD) ∈ Aa, so statement 2 holds. Statement
3 holds vacuously. Note that the contrapositive of statement 3a is as follows (*):
r ∈ sig(Tv) \ Γ or D ∈ sig(Tv) \ Γ imply C ∈ sig(Tv) \ Γ . Now (*) immediately
implies statements 4a and 4b. Finally, statement 3b implies statement 4c.

Assume now that R2 is applied to an axiom α ∈ Tv ∪ T �
h of the form

A1 � . . . �Ak � ∃r1.B1 � . . . � ∃rm.Bm � D and that it derives D(xC). Then, in-
dividuals yE1 , . . . , yEm inAj−1 exist such that Ai(xC) ∈ Aj−1 for each 1 ≤ i ≤ k,
and {r�(xC , yE�), B�(yE�)} ⊆ Aj−1 for each 1 ≤ � ≤ m. Statement 4 holds vac-
uously, so we next prove 1–3, depending on whether α belongs to T �

h or Tv.

– α ∈ T �
h. Statement 3 holds trivially. Consider each assertion Ai(xC) with

1 ≤ i ≤ n. By the induction hypothesis, we have Ai(xC) ∈ Aa∪sat(T �
h,Aa|Γ).

If Ai(xC) ∈ Aa, since α ∈ T �
h, we have Ai ∈ Γ , so Ai(xC) ∈ Aa|Γ . Thus, we

have Ai(xC) ∈ sat(T �
h,Aa|Γ). By a completely analogous argument, we have

{r�(xC , yE�), B�(yE�)} ⊆ sat(T �
h,Aa|Γ) for each 1 ≤ � ≤ m as well. But then,

since R2 is not applicable to sat(T �
h,Aa|Γ), we have D(xC) ∈ sat(T �

h,Aa|Γ),
so statement 1 holds. Statement 2 is vacuously true if C �∈ Γ or D �∈ BC(Γ).
Otherwise, by statement 1 and property P1, we have T �

h ∪ A
a|Γ |= D(xC);

since R3 is not applicable to Aa, we have D(xC) ∈ Aa, so statement 2 holds.
– α ∈ Tv. Note that Tv is safe for Γ , so we have these possibilities:

• Ai /∈ Γ for some 1 ≤ i ≤ k. By the contrapositive of statement 3a, we
have C ∈ sig(Tv) \ Γ .

• r� �∈ Γ for some 1 ≤ � ≤ m. By statement 4a, we have C ∈ sig(Tv) \ Γ .
• B� /∈ Γ and r� ∈ Γ for some 1 ≤ � ≤ m. By the contrapositive of

statement 3a, yE� ∈ sig(Tv)\Γ ; however, by statement 4b, C ∈ sig(Tv)\Γ .
Since C ∈ sig(Tv) \ Γ , statement 4c implies E� ∈ sig(Tv). But then, by
statement 2, all Ai(xC), r�(xC , yE�), and B�(yE�) are in Aa. Since R2 is not
applicable to Aa, D(xC) ∈ Aa, which implies statements 1 and 2. Statements
3a and 3b respectively hold since C �∈ sig(T �

h) and D ∈ BC(sig(Tv)). ��

The algorithm ibqa(Tv,Ωa
Th,Γ) returns C � D for each pair of concepts C

and D from sig(T) ∪ {�,⊥} such that D(xC) ∈ sata(T , ∅,Ωa
Th,Γ).

Theorem 5. The algorithm ibqa(Tv,Ωa
Th,Γ) is an import-by-query algorithm,

and it can be implemented such that it runs in time polynomial in the size of Tv

with a polynomial number of calls to Ωa
Th,Γ .

Proof. The size of BC(sig(Tv)) is quadratic in the size of Tv. Each application of
R1, R2, or R3 adds an assertion of the form C(a) or r(a, b) for C ∈ BC(sig(Tv)).
Since no rule removes assertions from A, the total number of rule applications
is polynomial. Thus, the algorithm can be implemented such that it runs in
polynomial time with a polynomial number of calls to the oracle. Since T �

h is
obtained from Th through normalization, for all concepts C and D with {C,D} ⊆
sig(Th)∪ sig(Tv)∪{�,⊥} we have Tv ∪Th |= C � D iff Tv ∪T

�
h |= C � D. Let Aa

and Ael be as in Lemma 4. If ibqa(Tv,Ωa
Th,Γ) returns C � D, then D(xC) ∈ Aa;

the soundness property of Lemma 4 implies D(xC) ∈ Ael; thus, el(Tv ∪ T �
h)

returns C � D; hence, Tv ∪ T
�

h |= C � D; finally, Tv ∪ Th |= C � D. The converse
direction holds analogously by the completeness property of Lemma 4. ��

6 Weakly Acyclic Knowledge Bases

We next present an import-by-query algorithm based on subsumption oracles
where Tv needs to satisfy weaker conditions than those in [5]. Our results rely
on the notion of weak acyclicity borrowed from database dependency theory [9].
This condition prohibits cyclic existential quantification over the roles imported
from Th, which invalidates the proof of Theorem 3. In our example, weak acyclic-
ity allow us to represent all axioms δ1–δ9 and hence to entail EA Pat � CHD Pat
(using δ4–δ6) and EA Pat � TVD Pat (using δ4–δ7 and δ9).

6.1 Weak Acyclicity

Let [A] = A for A an atomic concept, and let [∃r.D] = r.

Definition 6. Let Γ be a signature such that {�,⊥} ⊆ Γ , and let T be an EL

TBox in normal form. The dependency graph for T w.r.t. Γ is the smallest
graph that contains a node wX for each symbol X ∈ sig(T) and the following
edges for each axiom C1 � . . . � Cn � D in T and each 1 ≤ i ≤ n:

– an unlabeled edge �w[Ci], w[D]�, and
– another edge �w[Ci], w[E]� labeled with � if D of the form ∃r.E with r ∈ Γ .

T is weakly acyclic w.r.t. Γ if, in each cycle in the dependency graph for T

w.r.t. Γ , all edges are unlabeled.

It can be readily checked using Definition 6 that our example TBox Tv in
Table 2 is weakly acyclic w.r.t. the imported signature.

Table 4. Additional EL Rule for oracle Ωs

R3’
If for some individual xC in Ai and concept D ∈ BC(Γ),

Ωs
Th,Γ (con(xC ,Ai, Γ), D) = t and D(xC) /∈ Ai

then Ai+1 := Ai ∪D(xC).

Let Γ be a signature and A an ABox occurring in a run of sata(Tv, ∅,Ωa
Th,Γ).

Then A contains a harmful cycle for Γ if assertions ri(xCi−1 , xCi) ∈ A with
1 ≤ i ≤ n exist such that xCn = xC0 , Ci ∈ sig(Tv) for each 0 ≤ i ≤ n, and ri ∈ Γ
for each 1 ≤ i ≤ n. As we show next, if Tv is weakly acyclic w.r.t. Γ , then no
ABox occurring in a run of sat(Tv, ∅,Ωa

Th,Γ) contains a cycle harmful for Γ .

Lemma 7. Let Tv be weakly acyclic w.r.t. Γ , and let Aa = sata(Tv, ∅,Ωa
Th,Γ).

Then, Aa does not contain a cycle that is harmful for Γ .

Proof (Sketch). Let G be the dependency graph for Tv w.r.t. Γ , and A0, . . . ,An a
run of sata(Tv, ∅,Ωa

Th,Γ) such that An = Aa. The following claim can be straight-
forwardly shown by induction on the number of rule applications:
CLAIM: The following properties hold for each Ai with 1 ≤ i ≤ n:

1. if D(xC) ∈ Ai and {C,D} ⊆ BC(sig(Tv) \ Γ), then w[D] is reachable in G

from w[C]; in addition, if D is of the form ∃r.E, then w[E] is reachable in G

from w[C] via a path containing a labeled edge;
2. if r(xC , xD) ∈ Ai, {C,D} ⊆ sig(Tv) \ Γ , and r ∈ Γ , then w[D] is reachable

from w[C] via a path containing a labeled edge.

The lemma follows from statement 2 and the fact that Tv is weakly acyclic. ��

6.2 An Import-by-Query Algorithm

The algorithm ibqs(Tv,Ωs
Th,Γ) accepts a normalized EL TBox Tv that is safe and

weakly acyclic for Γ , and an oracle Ωs
Th,Γ . Let sats(Tv,A,Ωa

Th,Γ) be the same as
sat(Tv,A) with the difference that rule R3’ in Table 4 is applied alongside rules
R1 and R2. For Σ a signature and A an ABox not containing cycles harmful for
Σ, the concept con(xC ,A,Σ) used in rule R3’ is inductively defined as follows:

con(xC ,A,Σ) =

�
D(xC)∈A|Σ

D if C ∈ Σ

�
D(xC)∈A|Σ

D �
�

r(xC ,yE)∈A|Σ
∃r.con(yE ,A,Σ) otherwise

Since A does not contain cycles harmful for Σ, induction is well-founded. Intu-
itively, con(xC ,A,Σ) represents the “rolled-up” part of A|Σ reachable from xC .
The algorithm ibqs(Tv,Ωs

Th,Γ) then returns C � D for each pair of concepts C
and D such that {C,D} ⊆ sig(T) ∪ {�,⊥} and D(xC) ∈ sats(T , ∅,Ωs

Th,Γ).

Lemma 8. For each signature Γ , each EL TBox Tv that is safe and weakly
acyclic for Γ , and each EL TBox Th such that sig(Tv) ∩ sig(Th) ⊆ Γ , we have
sats(Tv, ∅,Ωs

Th,Γ) = sata(Tv, ∅,Ωa
Th,Γ).

Proof (Sketch). The lemma is a consequence of the following claim together with
the fact that both algorithms are identical except for the rule R3’.
CLAIM: For each signature Γ , ABox A not containing cycles harmful for Γ ,
individual x in A, and concept D ∈ BC(Γ), we have

Th ∪A|Γ |= D(x) if and only if Th |= con(x,A,Γ) � D.

To prove this claim, let Qx be a fresh concept uniquely associated with each
individual x in A|Γ . Let T � be a TBox containing the axiom QxC � D for each
D(xC) ∈ A|Γ , and QxD � ∃r.QyE for each r(xD, yE) ∈ A|Γ with D /∈ Γ . It is
easy to show that Th ∪A|Γ |= D(x) iff D(x) ∈ el(T �

h ∪T
�), for T �

h the normalized
version of Th. Since A|Γ does not contain cycles harmful for Γ , by induction on
the structure of con(x,A,Γ), we have that con(x,A,Γ) is obtained from Qx by
unfolding the relevant concepts Qy with their definitions in T �. ��

Theorem 9. The algorithm ibqs(Tv,Ωs
Th,Γ) is an import-by-query algorithm and

it can be implemented such that it runs in time exponential in the size of Tv with
a polynomial number of calls to Ωs

Th,Γ .

Proof. The algorithm is an import-by-query algorithm by Lemma 8 and Theorem
5. Finally, just like in the proof of Theorem 5, rules R1, R2, and R3’ can only be
applied a polynomial number of times. The inductive definition of con(x,A,Γ),
however, involves constructing a tree of polynomial depth and branching factor,
the size of which can be at most exponential in the size of A|Γ . ��

7 Related and Future Work

In a P2P setting, [4] consider the problem of answering a query q over KBs Kv

and Kh and mappings M by reformulating q as queries that can be evaluated
over Kv and Kh in isolation. The query reformulation algorithm accesses only Kv

and M; thus, q can be answered using an oracle for Kh. In this setting, however,
a satisfiable Kh cannot affect the subsumption of concepts in Kv (see [5] for an
example); thus, the results in [4] are not applicable to schema reasoning.

Another possibility for the owner of Th to restrict access only to symbols
in Γ is to publish a uniform interpolant T Γ

h of Th w.r.t. Γ [11]—an ontology
T Γ

h such that sig(T Γ
h) ⊆ Γ , Th |= T Γ

h and T Γ
h |= C � D iff Th |= C � D for

all concepts C and D with sig(C) ∪ sig(D) ⊆ Γ . Publishing T Γ
h , however, may

reveal more information about Th than what is strictly needed. For example, for
Γ = {r, B}, Tv = {A � ∃r.B} and Th = {∃r.∃r.B � B}, the interpolant T Γ

h is
equal to Th; thus, publishing T Γ

h reveals entire contents of the hidden ontology
Th. In contrast, an import-by-query algorithm reveals only that Th �|= ∃r.B � ⊥

and Th �|= ∃r.B � B; hence it does not reveal the actual syntactic structure of
Th. Thus, enabling the reuse of Th through import-by-query preserves the hidden
content of Th to a higher degree than if reuse were enabled by publishing T Γ

h .
We are currently working on extending the results presented in this paper to

DLs more expressive than EL.

References

[1] Lutz, C., Walther, D., Wolter, F.: Conservative Extensions in Expressive Descrip-
tion Logics. In: Proc. IJCAI. (2007) 453–458

[2] Cuenca Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: Modular Reuse of Ontolo-
gies: Theory and Practice. Journal of Artificial Intelligence Research 31 (2008)
273–318

[3] Lenzerini, M.: Data Integration: A Theoretical Perspective. In: Proc. PODS.
(2002) 233–246

[4] Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: What
to Ask to a Peer: Ontolgoy-based Query Reformulation. In: Proc. KR. (2004)
469–478

[5] Cuenca Grau, B., Motik, B., Kazakov, Y.: Import-by-Query: Ontology Reasoning
under Access Limitations. In: Proc. IJCAI, AAAI Press (2009) To Appear.

[6] Baader, F., Brandt, S., Lutz, C.: Pushing the EL Envelope. In: Proc. IJCAI,.
(2005) 364–369

[7] Kutz, O., Horrocks, I., Sattler, U.: The Even More Irresistible SROIQ. In: Proc.
KR. (2006) 68–78

[8] Horrocks, I., Kutz, O., Sattler, U.: The irresistible SRIQ. In: Proc. of OWLED.
(2005)

[9] Kolaitis, P.G., Panttaja, J., Tan, W.C.: The complexity of data exchange. In:
PODS. (2006) 30–39

[10] Motik, B., Horrocks, I.: Individual Reuse in Description Logic Reasoning. In:
Proc. of IJCAR 2008. Volume 5195 of LNAI., Springer (2008) 242–258

[11] Konev, B., Walter, D., Wolter, F.: Forgetting and uniform interpolation in large-
scale description logic terminologies. In: Proc. IJCAI, AAAI Press (2009) To
Appear.

