
FromWine to Water: Optimizing Description Logic Reasoning for Nominals

Evren Sirin
Maryland Information and Network

Dynamics Lab.
8400 Baltimore Av.

College Park, MD, 20740 USA
evren@cs.umd.edu

Bernardo Cuenca Grau ∗

Information Management Group
School of Computer Science
University of Manchester, UK

bcg@cs.man.ac.uk

Bijan Parsia
Maryland Information and Network

Dynamics Lab.
8400 Baltimore Av.

College Park, MD, 20740 USA
bparsia@isr.umd.edu

Abstract

OWL-DL is a World Wide Web Consortium standard for rep-
resenting ontologies on the Semantic Web. It can be seen as
a syntactic variant of the Description Logic SHOIN (D),
with an OWL-DL ontology corresponding to a SHOIN (D)
knowledge base. The very recent accomplishment of a deci-
sion procedure for SHOIN (D) poses the challenge of turn-
ing the decision procedure into a practical implementation. In
particular, we emphasize the need of new optimization tech-
niques for nominals, especially in the presence of large num-
ber of individuals in the KB.
In this paper, we present new techniques for optimizing DL
reasoning in the presence of nominals in the TBox and indi-
viduals in a large ABox. We have integrated our optimiza-
tions in the open-source Pellet reasoner, which is sound and
complete for SHOIN (D), and found that they suffice for
efficiently classifying the famous Wine Ontology. We also
show that these optimization techniques produce significant
performance improvements in other widely used ontologies
containing nominals, such as the OWL-S and AKT ontolo-
gies.

Introduction and Motivation
OWL-DL became a World Wide Web Consortium standard
for representing ontologies on the Semantic Web in Febu-
rary, 2004. As the W3C Web Ontology working group
approached completion, there were two deep controversies
with regard to the expressivity of the language: first, there
was, at that point, no decision procedure for OWL-DL, a
language many felt had decidabilty as its main justification,
and, secondly, the example ontology in the OWL specifica-
tions (Smith, Welty, & McGuiness 2004), the Wine Ontol-
ogy, which tried to exercise every feature of OWL-DL, was
not processable by any existing or anticipated reasoner. Of
particular concern were the presence of a large number of
nominals, that is, individuals appearing in concept defini-
tions. To the best of our knowledge, at the time, there were
no reasoners that could handle nominals at all, even for the
subsets OWL-DL where there were known decision proce-
dures covering nominals. In this paper, we present a suite of

∗This author is is supported by the EU Project TONES (Think-
ing ONtologiES) ref: IST-007603.
Copyright c� 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

optimizations implemented in our OWL-DL reasoner, Pellet
(Sirin et al. 2005), that suffice to render the Wine ontology
(and most current ontologies with nominals) a solved prob-
lem. Our experiments show that without such optimizations
reasoning with nominals is not practical at all.
OWL-DL can be seen as a syntactic variant of the De-

scription Logic SHOIN (D), with an OWL-DL ontology
corresponding to a SHOIN (D) knowledge base 1. The
logic SHOIN (D) is a decidable fragment of First Order
Logic (FOL) and extends the Description Logic S (the DL
providing transitive roles, all the boolean operators on con-
cepts as well as existential and universal restrictions) with
unqualified number restrictions (N), nominals (O), inverses
on roles (I), role hierarchies (H) and datatypes (D).
Although tableau-based decision procedures for promi-

nent fragments of SHOIN (D), such as SHIN (D) (Hor-
rocks & Sattler 1999) and SHON (D) (Horrocks & Sattler
2001) have been known for quite a long time, the design of a
decision procedure for SHOIN (D) has been accomplished
only very recently (Horrocks & Sattler 2005).
Expressive description logics, in particular the ones men-

tioned above, are known to have very high worst-case com-
plexity. As a consequence, there exists a significant gap be-
tween the design of a decision procedure and the achieve-
ment of a practical implementation. Naive implementations
are doomed to failure . In order to achieve acceptable perfor-
mance, modern DL reasoners, such as FaCT, RACER, DLP
and Pellet, implement a suite of optimization techniques
(Horrocks 2003). These optimizations lead to a significant
improvement in the empirical performance of the reasoner
and have proved effective in wide variety of realistic appli-
cations.
However, at the current stage of research and deployment,

existing optimizations have been implemented and proved
useful for the description logic SHIN (D). From an imple-
mentation point of view, the recent achievement of a deci-
sion procedure for SHOIN (D) poses new challenges:

1We refer the reader to (Horrocks & Sattler 2005) and (Patel-
Schneider, Hayes, & I.Horrocks 2004) for a detailed discussion of
SHOIN and OWL-DL respectively. We also recommend (Hor-
rocks, Patel-Schneider, & van Harmelen 2003) for a thorough dis-
cussion on the relationship between OWL and expressive Descrip-
tion Logics.

90

• While many optimization techniques are completely in-
dependent of the DL supported by the reasoner, others
are valid for certain logics only. In particular, some ma-
jor optimizations for reasoning with large ABoxes rely
on the absence of nominals in the definition of concepts.
Moreover, in the presence of nominals, ABox assertions
can affect concept satisfiability and TBox classification.
In other words, nominals break the “separation” between
TBox and ABox that traditionally existed in the imple-
mented DLs. As a consequence, ontologies with nom-
inals in the TBox and large number of instances in the
ABox are likely to compromise the performance of DL
reasoners.

• Nominals are not supported by the state of the art DL
reasoners, with the only exception of the Pellet system2.
Thus, there is very little experience in developing tech-
niques for dealing with nominals efficiently in practice.
In particular, to the best of our knowledge, no optimiza-
tions specific for nominals have been designed and tested
until now.
From a logical point of view, the nominal constructor

(Horrocks & Sattler 2001) (Schaerf 1994) transforms the
object name o into the concept description {o}, which is
evaluated, by every model-theoretic interpretation, to a sin-
gleton set with o as its only element. So far, nominals
have been partially approximated in DL reasoners by treat-
ing them as pair-wise disjoint atomic concepts, commonly
called pseudo-nominals. However, this technique is known
to lead to incorrect inferences in some cases.
From a modeling point of view, nominals are used in a

significant number of ontologies available on the Semantic
Web. The OWL-DL specification (Patel-Schneider, Hayes,
& I.Horrocks 2004) contains two modeling constructs spe-
cific for nominals, which illustrate their main uses in Ontol-
ogy Engineering.
• The OneOf construct allows to define a concept by finite
enumeration of its elements. For example, the atomic con-
ceptContinent can be defined, using nominals, as follows:

Continent ≡ {europe, asia, america, antartica,

africa, oceania}

where the elements of the enumeration are individuals in
the KB.

• The hasValue construct is used as a shorthand for an ex-
istential restriction on a nominal concept. This construct
can be used to describe catholics as persons who follow
the Pope, or Rock’n’Roll fans as the persons who venerate
Elvis:

Catholic � Person � ∃follows.{pope}
RockFan � Person � ∃hasIdol .{elvis}

One prominent example of the use of nominals for mod-
eling is the ontology used in the OWL documentation: the
Wine Ontology (Smith, Welty, & McGuiness 2004).

2Very recently a new version of FaCT++ reasoner that supports
nominals (but not ABoxes) was released.

This ontology extensively relies on the OneOf and has-
Value constructs for describing different kinds of wines ac-
cording to various criteria, like the area they are produced
in, the kinds of grapes they contain, their flavor and color,
etc. For example, a “Cabernet Franc Wine” is defined to be
a dry, red wine, with moderate flavor and medium body and
which is made with Cabernet Franc grapes

CabernetFranc ≡Wine � ≤ 1madeFrom �
∃madeFrom.{cabFrancGrape}

CabernetFranc � ∃hasColor .{red} �
∃hasFlavor .{moderate} �
∃hasBody .{medium}

Potential wine flavors, colors, etc are defined using an
enumeration. For example:

WineFlavor ≡ {delicate,moderate, strong}
The Wine ontology contains only 138 concepts and 206

individuals and hence it is a relatively small knowledge base.
However, its classification has remained, so far, an open
problem for DL reasoners.
What makes the Wine ontology hard for automated rea-

soning? First, nominals break the traditional TBox-ABox
separation. As a consequence, the computational cost of
every new individual in the ontology is very high: a rela-
tively small number of individuals (a couple of hundreds)
affects reasoning performance dramatically; second, the on-
tology contains a significant number of General Concept In-
clusion Axioms (GCIs) associated to nominals that cannot
be handled by current absorption techniques. As a result,
tableau expansions become very expensive computationally
and hence every additional satisfiability test performed dur-
ing classification is likely to be very expensive.
In this paper, we present new techniques for optimizing

DL reasoning. These techniques aim at alleviating the im-
pact of the sources of complexity mentioned above. We
have integrated our optimizations in the open-source Pel-
let reasoner, which implements the SHOIN (D) decision
procedure presented in (Horrocks & Sattler 2005) and found
that they suffice for efficiently classifying the Wine Ontol-
ogy. In this paper, we also show that these optimization
techniques produce significant performance improvements
in other widely used ontologies containing nominals, such
as the OWL-S and AKT ontologies.

Novel Optimizations
In this section, we present a novel suite of optimization tech-
niques:
• Nominal Absorption aims at localizing non-determinism
in the KB caused by General Concept Inclusion Axioms
involving nominals.

• Learning-based Disjunct Selection is a heuristic to guide
the search based on a simple learning algorithm.

• Nominal-based Pseudo-model Merging allows to reduce
the number of satisfiability tests performed during classi-
fication by taking advantage of the semantics of hasValue
restrictions.

91

• Completion Graph Caching stores the saturated tableaux
expansion constructed during the initial KB consistency
check and reuses it for subsequent concept satisfiability
and subsumption tests .

• Lazy Completion Graph Generation aims at sparing the
application of some expansion rules during the satisfiabil-
ity checking for an atomic concept by creating nominal
nodes only when needed in the tableaux expansion.
Learning-based disjunct selection is completely indepen-

dent of the DL under consideration and works for any KB
that has a large number of instances. The other techniques
are only effective in the presence of nominals in the KB. In
what follows, we describe these techniques in detail.

Nominal Absorption
General Concept Inclusion Axioms (GCIs) are hard to rea-
son with, given the the high degree of non-determinism they
introduce. For each GCI, one disjunction is added to the
label of each node in a tableaux expansion, which causes
an exponential blow-up in the search space. As a conse-
quence, even a reduced number of GCIs can degrade the
performance of a DL reasoner significantly.
Absorption (Horrocks 2003) is an optimization technique

that tries to eliminate GCIs as possible from a KB by replac-
ing them with primitive definitions. Absorption has revealed
a key technique in the past for processing DL ontologies,
such as the GALEN medical ontology.
As stated before, the two main uses of nominals for mod-

eling are the definition of concepts by finite enumeration of
its elements (the OWL OneOf construct) and the definition
of concepts in terms of existential restrictions on a nominal
(the OWL hasValue construct). For both cases, we provide
an extension of existing absorption techniques.

OneOf Absorption Let us start with enumerations. Con-
sider the conceptWineColor in the Wine Ontology, defined
as follows:

WineColor ≡ {red , rose,white}
WineColor � WineDescriptor

Both axioms involve a GCI that is not captured by cur-
rently available absorption techniques and hence, the dis-
junction:

¬WineColor � {red , rose,white}
would be added to every node in the tableau expansion. On
the other hand, an enumeration is equivalent to the disjunc-
tion of its elements, i.e.:

{rose, red ,white} = {rose} � {red} � {white}
This leads to an additional difficulty: enumerations are

likely to introduce a significant number of backtracking
points. These disjunctions, when added to every node of
the tableau expansion, cause the search space to grow expo-
nentially with the number of elements in the enumeration.
Thus, the presence of these non-absorbable GCIs is doomed
to significantly affect reasoning performance.

Nominal absorption is a novel optimization technique that
transforms these definitions into a primitive definition and a
set of ABox assertions. The technique relies on the follow-
ing equivalence:
Proposition 1 The inclusion axiom (1) is logically equiva-
lent to the set of TBox axioms and ABox assertions in (2)

C ≡ {a1, . . . , an} (1)
C � {a1, . . . , an} and C(a1) and . . . and C(an) (2)

This proposition lets us to replace a non-absorbable GCI into
one primitive definition and a set of ABox assertions. Note
that the set C(a1), ..., C(an) of ABox assertions is equiv-
alent to the GCI {a1, ..., an} � C. In our example, the
enumeration axiom would be absorbed as follows:

WineColor � {red , rose,white}
WineColor(red);WineColor(rose);WineColor(white)
Note that, we still have a disjunction due to the presence

of {red, rose, white}. however, this disjunction will only
affect the instances ofWineColor concept instead of all the
individuals. Thus, the effect of the disjunction is localized
to a much smaller number of individuals.

HasValue Absorption Let us now consider the case of
hasValue restrictions. Axioms in the following form are
commonly found in the Wine ontology:

Riesling ≡Wine � ≤ 1madeFrom �
∃madeFrom.{RieslingGrape}

Considering that there are other inclusion axioms in the
ontology with the concept Riesling in its left hand side,
we are again left with GCI’s. Standard absorption tech-
niques can take care of such cases by absorbing the ax-
iom into the definition of the Wine concept, i.e. the
concept (Riesling � ∀madeFrom.¬{RieslingGrape}� ≥
2madeFrom) is added to the definition ofWine. However,
this disjunctive definition to the Wine concept introduces a
backtracking point in the tableau expansion for every node
containingWine in its label. Absorption introduces around
30 of such disjunctions relative to theWine concept, which
significantly increases the search space.
However, the semantics of nominals allows a more effec-

tive absorption of the above axiom by taking profit of the
following equivalence:
Proposition 2 The following two inclusion axioms are log-
ically equivalent:

∃p.{o} � C (3)
{o} � ∀p−.C (4)

It is very straight-forward to show that the inclusion ax-
iom {o} � C is logically equivalent to the ABox assertion
C(o) (see the proof of Proposition 1 in the appendix). Using
these equivalences in the previous example would yield the
following ABox assertion:

(∀madeFrom−.(Riesling � ¬Wine� ≥
2madeFrom))(RieslingGrape)

92

The resulting axiom still contains the same number of dis-
juncts, but this time the effect is localized to the individuals
related to RieslingGrape via the role madeFrom, which
are significantly less than the number ofWine instances.
Figure 1 describes the standard absorption algorithm ex-

tended with nominal absorption.

(i) Initialize Create a set G = {C,¬D} for the inclusion
axiom C � D.

(ii) Concept absorption If A ∈ G where A is atomic,
replace (A � C) ∈ Tu with
A � �{C,¬(�(G \ {A}))} to Tu and exit.

(iii) OneOf absorption If C ∈ G where C is an
enumeration {o1, . . . , on}, add ¬(�G) to each
individual oi and exit.

(iv) HasValue absorption If C ∈ G where C is in the
form ∃p.{o1, . . . , on} then add ∀p−.¬(�G) to each
individual oi and exit.

(v) Simplification If A ∈ G (resp. ¬A ∈ G) where
(A ≡ D) ∈ Tu, then substitute A (resp. ¬A) withD
(resp. ¬D) and go to (ii).

(vi) Conjunction simplification If C ∈ G where C is in the
form (C1 � . . . � Cn), then set G to
G � {C1, . . . , Cn} and go to (ii).

(vii) Recursion If C ∈ G where C is in the form
(C1 � . . . � Cn), then for every Ci try recursively
absorbing ¬Ci ∪G \ {C}, else fail.

Figure 1: Standard absorption algorithm extended with
nominal absorption. Our extensions are highlighted in bold
font.

Learning-based Disjunct Selection
When a disjunction in the label of the node is being ex-
panded, the order in which disjuncts are selected can make a
drastic change in the performance of the tableau reasoner.
Many different heuristics have been developed for DPLL
SAT algorithms to minimize the size of the search tree.
However, it has been shown in the DL literature that such
heuristics generally counter-interact with other optimiza-
tions, such as dependency-directed backjumping (Horrocks
2003).
An investigation of real world ontologies reveals that, in

many cases, there are some disjunctions that inherently have
one possible expansion. However, this is detected by the rea-
soner only after numerous tableaux rule applications. More-
over, this expensive cycle is typically repeated for individ-
uals with similar characteristics. Let us illustrate this case
with an example from OWL-S ontologies. Given the fol-
lowing three axioms

Process ≡ AtomicProcess � CompositeProcess�
SimpleProcess

CompositeProcess ≡ ≤ 1.composedOf�
≥ 1.composedOf

� � ∀composedOf.ControlConstruct�
∀composedOf−.CompositeProcess

the standard preprocessing steps, e.g. normalization and ab-

sorption, produce the following axiom3:
Process � ≥ 2.composedOf � CompositeProcess�

≤ 0.composedOf

During tableaux expansion, for any AtomicProcess in-
stance we will face to expand this disjunction. Obviously,
there is only one right selection here (≤ 0.composedOf)
since the first disjunct is unsatisfiable by definition and the
second disjunct causes a clash, when combined with Atom-
icProcess. However, a DL reasoner will observe this fact
only after applying several other rules, in this case the ≥-
rule and unfolding-rule. When these rule applications are
interleaved with other rule applications, several other dis-
junctions might have been expanded for a different number
of individuals, which causes a significant amount of wasted
computation. Moreover, OWL-S knowledge bases would
typically have lots of AtomicProcess instances and, conse-
quently, these steps would be repeated for each of such in-
stances, which degrades performance significantly.
The learning-based disjunct selection technique aims to

minimize the wasted computation by avoiding inherently
clash-generating expansions. The idea is to reuse the clash-
free expansions for instances with similar characteristics.
The heuristic is to sort the disjuncts based on how many
clashes they caused during rule applications. Note that when
the dependency sets for concepts are being maintained it is
quite easy to detect if a certain disjunction expansion caused
the clash or not.

function expand-disjunction(x, D)

int[] stats = get-statistics(D)
if stats not found then
stats = new int[n]
∀i stats[i] = 0
save-statistics(D, stats)
Pick the next untried disjunct Dk such that
stats[k] is minimum
Add Dk to L(x) and continue tableau expansion
if there is a clash then increment stats[k]

Figure 2: Pseudo-code of learning-based disjunct selection

Note that our technique only learns from clashes, i.e. un-
successful selections, and it does not keep track of success-
ful expansions. It would be nearly impossible to keep track
of successful expansions during completion since it is not
clear when and how we can conclude a disjunction expan-
sion was successful. On the other hand, it is possible to do a
post-processing step after a clash-free completion where we
iterate through the nodes in the completion graph and update
the disjunction statistics for future use.

Nominal-based Pseudo-model Merging
Classification of named concepts in a KB is one of the most
important applications of DL reasoners. Optimization tech-

3There is a possibility that absorption algorithm yields different
results depending on the order axioms are processed, but the non-
determinism does not have any effect on this specific example

93

Figure 3: Completion graphs for concepts RedWine and ItalianWine

niques for classification aim at reducing as much as possible
the number of subsumption tests to be performed.
Nominal-based pseudo-model merging is a novel op-

timization technique for classification that exploits the
semantics of nominals for discovering “obvious” non-
subsumptions between concepts in the KB.
In particular, this technique is especially effective if there

are many concepts in the KB defined in terms of existential
restrictions on nominals (or hasValue restrictions in OWL
jargon). For example, the concept:

RedWine � Wine � ∃hasColor .{red}
is defined in terms of the nominal concept {red}.
The nominal-based pseudo-model merging technique

uses cached information relative to nominals from previous
satisfiability tests to prove non-subsumption without per-
forming a new satisfiability test.
The basic idea is to examine the edges from the blockable

root node to nominal nodes in the completed completion
graph generated to check the satisfiability of a concept. For
example, checking the satisfiability of concept RedWine

starts by creating a completion graph that contains a root
node r1 labeled with concept RedWine and one nominal
node for each nominal occurring in the ontology. The com-
pletion graph G1 for concept RedWine is schematically
shown in Figure 3. The root node r1 in G1 is connected
to the nominal node rred through a hasColor -labeled edge
showing that RedWine � ∃hasColor.{red}. Now let us
consider Italian wines, defined as follows:

ItalianWine � Wine � ∃producedIn.{italy}
In the completion graph of ItalianWine (shown as G2 in
Figure 3), the nominal node rred is not a neighbor of the
concept node r2. From this information, it is possible to
infer that O �|= ItalianWine � ∃hasColor.{red} and
thus O �|= ItalianWine � RedWine . Note that, for tran-
sitive roles, instead of testing for node neighborhood, we
would have considered paths connecting the root node and
the nominal node.
However, there is still one more important consideration

to make. Let us consider the following axioms:
DryWine ≡Wine � ∃hasSugar.{dry}

NonSweetWine ≡Wine � ∃hasSugar.{dry, offdry}
We want to test whether DryWine is subsumed by

NonSweetWine . The graphs G1 and G2 in Figure 4 are

valid completion graphs for DryWine and NonSweetWine
respectively. The root node r1 for the concept DryWine in
G1 is connected to the nominal node rdry by a hasSugar -
edge. On the other hand, in G2, the nominal node rdry

is not neighbor of the root node r2. A naive applica-
tion of nominal-based pseudo model merging would in-
correctly conclude that DryWine is not a subclass of
NonSweetWine.
In this case, the subsumption holds although the edges

to nominal nodes differ. The reason is that there is
another valid completion graph (G3 in Figure 4) for
NonSweetWine in which the root node r3 for concept
NonSweetWine does have a hasSugar -edge leading to the
nominal node rdry . Therefore, in order to infer the non-
subsumption, the edge to the nominal node should be present
in every possible completion graph for NonSweetWine

or, in other words, the presence of the edge should not de-
pend on a non-deterministic choice in the execution of the
tableau algorithm. For this reason, nominal-based pseudo-
model merging can be used only in conjunction when de-
pendency sets are stored for each node label and edge la-
bel. Since all the existing DL reasoners already make use
of the dependency-directed backjumping optimization, this
requirement does not cause an extra overhead.
Let us now describe formally how the nominal-based

pseudo-model merging technique works: Let G =
(V,E,L, �=) be a clash-free completion graph for conceptA
w.r.t. to an ontology O and rA ∈ V be the root node create
for concept A4 that was initialized with L(rA) = {A}. For
each nominal o in O we are guaranteed to have a nominal
node ro ∈ V such that {o} ∈ L(ro).
Suppose that we want to test whether an ontology O en-

tails the subsumption relationD � C. LetGC (respectively
GD) be a fully expanded and clash-free tableaux expansion
representing a common model of C and O (respectively a
common model ofD andO). Then we say thatO �|= D � C

if one of the following two conditions hold:
1. There is a simple role p such that:
(a) The nominal node ro is a p-neighbor of the root node

rC in GC and the presence of such an edge does not
depend on a non-deterministic choice, and

4Note that, there is a possibility that the root node rA will not
exist in the final completion graphGA because it was merged into
a nominal node and then pruned from the graph. In such cases we
cannot apply this technique.

94

Figure 4: Different completion graphs for concepts DryWine and NonSweetWine

(b) The nominal node ro is not a p-neighbor of rD inGD.
2. There is a non-simple role p such that:
(a) There is a path of nodes z0, . . . , zk in GC with k ≥

1, rC = z0, ro = zk and zi a q-neighbor of zi−1 for
0 ≤ i < k for some q a sub-role of p. Moreover,
the presence of such a path does not depend on a non-
deterministic choice, and

(b) There is no such path in GD (with or without depen-
dencies) from rD to the nominal node ro.

Intuitively, conditions (1a) and (2a) imply that the con-
cept C is subsumed by ∃p.{o} and conditions (1b) and (2b)
imply that that concept D is not subsumed by ∃p.{o}. The
correctness of this technique is proved in the appendix.

Completion Graph Caching
In the presence of nominals in the TBox, ABox assertions
can affect concept satisfiability and classification. Thus,
when checking the satisfiability of an atomic concept A af-
ter the initial KB consistency check, we need, in principle,
to include in the initial completion graph for A a root nom-
inal node xa for each individual a in the ABox. The pres-
ence of these nodes in the initial configuration of the graph
is likely to cause a large number of expansion rules to be
triggered and hence may involve a significant computational
overhead.
The main idea underlying the completion graph caching

technique is to store the state of the completion graph after
the initial KB consistency check and reuse it for subsequent
concept satisfiability and subsumption tests. Expanding the
nominal nodes from its initialization state may involve the
application of a large number of expansion rules. By using
cached graph we avoid repeating the process for different
concept satisfiability tests, which causes a significant com-
putational overhead.
For the initial KB consistency test, we create all the nom-

inal nodes and apply all the expansion rules. For any subse-
quent consistency check, we use the already expanded graph
as the initial graph so that already applied expansion rules
will not be repeated.
One needs to be careful when reusing an earlier comple-

tion graph because there might be some edges or node labels
dependent on a non-deterministic choice. If there is a clash

due to such an edge or a node label, the backtracking must be
done accordingly. In order to backtrack correctly, we need
to cache not only the nodes and edges, but also the informa-
tion about dependency sets for node and edge labels plus the
history of merge operations so that nodes can be restored af-
ter backjumping. Although caching this information affects
memory consumption, the overhead is not critical and pays
off in terms of significant speed-up in subsequent concept
satisfiability and subsumption tests, as will be discussed in
emprical results section.

Lazy Completion Graph Generation
Even in the presence of nominals in the TBox, there are typ-
ically many atomic concepts whose corresponding satisfia-
bility check does not involve the application of the nominal
rule and, therefore, the content of the ABox and the nomi-
nals do not influence their satisfiability. For these concepts,
generating the nominal nodes corresponding to the ABox
individuals results in an unnecessary overhead. Even if we
use the cached completion graph for these individuals, main-
taining extra nodes (copying, checking if a rule is applicable,
etc.) can be costly.
Since the KB is consistent, the rules triggered by the pres-

ence of the initial graph of nominal nodes will never yield to
a clash in the tableau expansion for A.
Lazy completion graph generation avoids such a compu-

tational burden by not including the nominal nodes in the
initial completion graph when checking concept satisfiabil-
ity. If the nominal rule is triggered during tableau expan-
sion, then all the nominal nodes are added to the completion
graph. This simple technique may yield a dramatic perfor-
mance improvement, as discussed later on in empirical re-
sults section.
It is important to realize that the combination of lazy com-

pletion graph generation and completion graph caching may
interact with dependency-directed backjumping and, in or-
der to ensure the correctness of the technique, we generate
the initial set of nominal nodes everytime backjumping is
applied, even if the nominal rule has not been triggered.
The reader may have noted that lazy completion graph

generation is very conservative in two different ways: first,
even if a merge is forced by the application of the nominal
rule, there are cases in which it suffices to generate only a
subset of the nominal nodes; second, the generation of the

95

completion graph may not always be required after back-
jumping. This provides room for further improvements in
the near future.

Empirical Results
We have integrated the optimization techniques presented in
this paper into the SHOIN (D) reasoner Pellet. In this sec-
tion, we evaluate the performance of the reasoner for the
tasks of consistency checking, classification and realization.
A time limit of 300 seconds were set for each task. All
the experiments have been performed on a Pentium Cen-
trino 1.6GHz computer with 1.5GB memory. The maximum
memory amount allowed to Java was set to 256MB for each
experiment.
We have run the experiments on four ontologies: theWine

ontology, presented in the OWL documentation (Smith,
Welty, & McGuiness 2004), the AKT Portal Ontology, used
in the AKT project for integrating information across uni-
versities, the OWL-S ontologies, for describing Web Ser-
vices, and the 3SAT ontology, included in the OWL test
suite, which is an encoding of the classical 3SAT problem
in OWL-DL.
In order to evaluate the impact of each optimization, we

have disabled the optimizations one by one when processing
each ontology. The results are shown in Figure 5. The first
column indicates the enabled optimizations; the remaining
columns show the times for the initial ontology consistency
check, classification (including satisfiability of atomic con-
cepts) and realization of individuals respectively.
The Wine Ontology is a medium-size ontology and it uses

all of the constructs provided in OWL-DL. It contains 137
atomic concepts, 17 roles and 206 individuals. The con-
cepts defined in the ontology are fairly complex and nomi-
nals are used profusely. With all the optimizations enabled,
consistency checking takes less than a second, whereas the
total processing time, including classification and realiza-
tion takes approximately 20 seconds. Nominal absorption
has the highest impact on performance: without any kind of
nominal absorption Pellet cannot classify the ontology in the
specified time limit and consistency time increases by three
orders of magnitude.
Learning-based disjunct selection is especially effective

for realization tests and nominal-based pseudo-model merg-
ing heavily influences classification, since it avoids a large
number of subsumption tests. Lazy completion graph gener-
ation and graph caching have a dramatic impact on concept
satisfiability and subsumption: if both optimizations are dis-
abled, Pellet times out after the initial KB consistency test.
The OWL-S ontology is a medium-sized KB developed

by the OWL-S coalition and widely used by the Seman-
tic Web Services community. It contains 97 concepts, 191
roles and 2320 individuals, with 5 nominals. The individuals
for our experiments represent Web services and have been
generated in a realistic Task Computing environment (Ma-
suoka, Parsia, & Labrou 2003) developed at Fujitsu Labs
of America. OWL-S does use nominals, but marginally.
The optimization with the most impact is disjunct selection,
which makes it possible to identify similarity patterns be-

Wine OWL-S
Options Consist. Classif. Real. Consist. Classif. Real.
OHDMLC 772.0 16911.4 2154.3 377.6 2422.5 1021.5
HDMLC 16608.9 N/A N/A 407.6 2634.7 1141.8
O DMLC 21748.2 64463.7 61412.4 387.4 2500.7 1062.5
DMLC 230463.5 N/A N/A 388.7 2488.4 1083.6

OH MLC 3184.3 27182.1 35246.7 18006.8 2052.0 1059.5
OHD LC 766.0 32294.3 9852.3 391.4 2461.7 1089.3
OHDM C 779.1 20973.1 2155.4 387.3 45669.9 1113.4
OHDM 793.2 N/A N/A 389.4 72805.7 1116.6

AKT Portal 3SAT
Options Consist. Classif. Real. Consist. Classif. Real.
OHDMLC 6.0 399.6 47.0 1651.5 3.0 1.0
HDMLC 7.0 2647.0 785.1 11478.5 3.0 6498.3
O DMLC 2.0 374.6 41.1 1542.1 2.0 2.1
DMLC 6.0 2606.7 786.3 8072.5 1.0 18493.7

OH MLC 1.0 1607.2 49.1 1471.1 3.0 1.0
OHD LC 3.0 382.6 43.2 920.5 1.0 0.0
OHDMB C 4.1 1030.4 44.1 1388.9 5.0 1.0
OHDMB 0.0 1503.3 42.0 1050.4 1362.0 0.0

Figure 5: Experimental Results. All times are in milliseconds.
The shorthands for the options are as follows: Nominal absoption
on OneOf (O) and hasValue (H), Learning-based Disjunct Selec-
tion (D), Nominal-based Pseudo-Model Merging (M), Lazy Com-
pletion Graph Generation (L), Completion Graph Caching (C). A
dash indicates that the optimization has been disabled. All times
have been computed as an average of 10 independent runs. Classi-
fication times include concept satisfiability and subsumption tests.
Realization time shows how long it took to find the most specific
type for each individual.

tween individuals and use them for making the right non-
deterministic choices during the tableaux expansion.
The AKT portal ontology is also medium-sized. It con-

tains 173 atomic concepts, 142 roles and 75 individuals, with
15 nominals (all in enumerations). The descriptions are not
as complex as those in Wine and nominals are used, though
not heavily. Due to the presence of enumerations, nominal
absorption reduces classification time. Lazy graph gener-
ation, graph caching and learning-based disjunct selection
also have an influence in the results.
The 3SAT ontology uses nominals for encoding the 3SAT

problem in OWL-DL. Due to the way the problem has been
encoded, the ontology contains just 1 atomic concept, no
roles and 20 nominals. For this case, nominal absorption
and graph caching are especially effective. Both techniques
speed up consistency checking time in three orders of mag-
nitude.
Finally, we have run an experiment with a modified ver-

sion of the Wine Ontology, containing pseudo-nominals.
Since traditionally DL reasoners do not support reason-
ing with nominals, the pseudo-nominal approach tries to
approximate the enumerated class definitions by replacing
each nominal {o}with a fresh atomic concept Po and adding
the assertion Po(o) to the ABox. Reasoners such as Racer
and KAON2 adopt this technique and are not complete w.r.t.
nominals.
We have run 10 independent experiments with all the opti-

mizations enabled to classify and realize the modified Wine

96

ontology containing pseudo-nominals. We have obtained the
following results: 541ms for consistency, 2423ms for clas-
sification and 158648ms for realization. Note that, since the
ABox does not influence reasoning in the TBox, due to the
absence of nominals, consistency and classification times
are faster; however, a high computational price is paid in
realization since nominal-based model merging cannot be
used any more. Overall, the total processing time is 1 order
of magnitude slower with pseudo-nominals. This result in-
dicates that faking nominals can be more costly, especially
when nominals are used heavily in the ontology.
Very recently a new version of FaCT++ reasoner support-

ing nominals was released. FaCT++ version 1.0.0 supports
the DL SHOIQ(D). However, this version of FaCT++ does
not support ordinary ABox assertions5 so it was not possi-
ble to run some of the above experiments or measure con-
sistency checking and realization times separately. For this
reason, we have only tried one experiment: classifying Wine
ontology using FaCT++ 1.0.0. We have used a timeout of 30
minutes and classification was not completed in any exper-
iment in the allowed time frame. This result also supports
our hypothesis that without specific optimizations, reason-
ing with nominals is not practical.
We can summarize our results as follows:

1. It is not practical to reason with nominals without having
special optimizations, especially when the ontology uses
nominals heavily.

2. Nominal absorption has proven the most useful tech-
nique and has a significant impact, even in presence of
a marginal number of nominals in the ontology.

3. Learning-based disjunct selection is particularly effective
in the presence of individuals with similar characteristics,
as shown in the OWL-S case.

4. Nominal-based pseudo-model merging is only useful on
ontologies with hasValue restrictions 6 and affects primar-
ily classification and realization times.

5. Lazy graph generation and graph caching can have a dra-
matic influence on concept satisfiability and subsumption
tests.

6. The pseudo-nominal approximation is not only unsound,
but may actually degrade the reasoner’s performance.

Conclusion
In this paper, we have presented a new suite of techniques
for optimizing DL reasoning in the presence of nominals in
the TBox and individuals in the ABox. We have shown that
these techniques dramatically improve consistency check-
ing, classification and realization times in real-world on-
tologies, including the famous Wine Ontology. Contrary to
the common belief of the DL community, we have proved
that reasoning with “real” nominals can be more efficient

5Theoretically, ABox individuals can be encoded as nominals
and ABox assertions can be turned into inclusion axioms but such
an automated transformation was not available

6Wine is the only ontology in our experiments that contains has-
Value restrictions

than using the pseudo-nominal approximation. Although
nominals introduce non-local effects in tableaux expansions,
their special semantics can be successfully exploited for op-
timizations.

Acknowledgments
This work, conducted at the Maryland Information and Net-
work Dynamics Laboratory Semantic Web Agents Project,
was funded in part by Fujitsu Laboratories of Amer-
ica – College Park, Lockheed Martin Advanced Tech-
nology Laboratory, NTT Corp., Kevric Corp., SAIC,
the National Science Foundation (NSF), the National
Geospatial-Intelligence Agency, Northrop Grumman Elec-
tronic Systems, Defense Advanced Research Projects
Agency (DARPA), US Army Research Laboratory, the Na-
tional Institute of Standards and Technology (NIST), and
other DoD sources.

References
Horrocks, I., and Sattler, U. 1999. A description logic with
transitive and inverse roles and role hierarchies. Journal of
Logic and Computation 9(3):385–410.
Horrocks, I., and Sattler, U. 2001. Ontology reasoning in
the SHOQ(D) description logic. In Nebel, B., ed., Proc.
of the 17th Int. Joint Conf. on Artificial Intelligence (IJ-
CAI 2001), 199–204. Morgan Kaufmann.
Horrocks, I., and Sattler, U. 2005. A tableaux decision
procedure for SHOIQ. In Proc. of the 19th Int. Joint Conf.
on Artificial Intelligence (IJCAI 2005). Morgan Kaufman.
Horrocks, I.; Patel-Schneider, P. F.; and van Harmelen, F.
2003. From SHIQ and RDF to OWL: The making of a
web ontology language. J. of Web Semantics 1(1):7–26.
Horrocks, I. 2003. Implementation and optimisation tech-
niques. In Baader, F.; Calvanese, D.; McGuinness, D.;
Nardi, D.; and Patel-Schneider, P. F., eds., The Description
Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press. 306–346.
Masuoka, R.; Parsia, B.; and Labrou, Y. 2003. Task com-
puting - the semantic web meets pervasive computing -.
In Proceedings of 2nd International Semantic Web Confer-
ence (ISWC2003).
Patel-Schneider, P.; Hayes, P.; and I.Horrocks. 2004. Web
ontology language OWL Abstract Syntax and Semantics.
W3C Recommendation.
Schaerf, A. 1994. Reasoning with individuals in concept
languages. Data and Knowledge Engineering 13(2):141–
176.
Sirin, E.; Parsia, B.; Grau, B. C.; Kalyanpur, A.; and Katz,
Y. 2005. Pellet: A practical owl-dl reasoner. Techni-
cal report, University of Maryland Institute for Advanced
Computes Studies (UMIACS), 2005-68. Available online
at http://www.mindswap.org/papers/PelletDemo.pdf.
Smith, M.; Welty, C.; and McGuiness, D. 2004. OWLWeb
Ontology Language Guide. W3C Recommendation.

97

Appendix: Proofs
Nominal Absorption
Proposition 1 The inclusion axiom (1) is logically equiva-
lent to the set of axiom and assertions in (2)

C ≡ {a1, . . . , an} (1)
C � {a1, . . . , an} and C(a1) and . . . and C(an) (2)

Proof The axiom (1) is equivalent to the combination of
following two axioms

C � {a1, . . . , an} (3)
{a1, . . . , an} � C (4)

By the definition of enumerations, axiom (4) is equivalent
to:

{a1} � . . . � {an} � C (5)
We can rewrite axiom (5) as the following n separate ax-
ioms:

{a1} � C and . . . and {an} � C (6)
which is obviously valid based on the semantics

({a1} � . . . � {an})I ⊆ C
I ⇐⇒

{a1}I ⊆ C
I and . . . and {an}I ⊆ C

I

Axiom (6) is equivalent to the following set of assertions:
C(a1) and . . . and C(an) (7)

because for each i we have
{ai}I ⊆ C

I ⇐⇒ (ai)I ∈ C
I

since {a}I = {aI}.
Thus, we have shown that axiom (1) is transformed into

the combination of (3) and (7) which is equivalent to (2). �
Proposition 2 The following two inclusion axioms are log-
ically equivalent:

∃p.{o} � C (8)
{o} � ∀p−.C (9)

Proof Let I = (∆I , ·I) be a model of (8) s.t. it does not
satisfy (9). Since I does not satisfy (9), then oI /∈ (∀p−.C)I
which implies that oI ∈ (∃p−.¬C)I . Thus, there exists an
object x ∈ ∆I s.t. (x, oI) ∈ pI and x ∈ (¬C)I . On
the other hand, since Isatisfies (8) and x ∈ (∃p.{o})I , then
x ∈ CI , which yields a contradiction.
LetJ = (∆J , ·J) be a model of (9) s.t. it does not satisfy

(8). Since J does not satisfy (8), there exists an x ∈ ∆J

s.t. (x, oJ) ∈ pJ and x /∈ CJ . On the other hand, since J
satisfies (9), oJ ∈ (∀p−.C)J and, since (oJ , x) ∈ (p−)J ,
then x ∈ CJ , which again yields a contradiction. �

Nominal-Based Pseudo-Model Merging
Theorem 1 Let G� = (V �, E�,L�, �=) be the initial com-
pletion graph for the concept C w.r.t the ontology O such
that V � = {rC , ro1 , . . . , rom} where rC is the root node
for concept C and roi is the nominal node corresponding to
nominal oi. L� is initialized such that L(rC) = {C} and
L(roi) = {oi} for 1 ≤ i ≤ m.
Let G be the set of all complete and clash free graphs

for C w.r.t. O that can be obtained from G� through the
application of the expansion rules. If there is a role p s.t. for
everyG = (V,E,L, �=) in G there exists an edge �rC , ro� ∈
E with p ∈ L(�rC , ro�), then, O |= C � ∃p.{o}.

Proof Let us assume that O �|= C � ∃p.{o}. This means
there should be an interpretation where there is an element
that belongs to both concept C and ∀p.¬{o} (which is the
negation normal form of ¬(∃p.{o}). Then we should be
able to build a clash free and complete completion graph
starting with the initial graphG�� = (V ��, E��,L��, �=) where
L(r��) = {C,∀p.¬{o}}. Since the graph G�� is same as
G� with one additional element in L(r), all the tableau
rules applicable to G� will still be applicable to G��. This
means, every possible application of tableau expansion rules
to G�� will yield a member of G (with the additional ele-
ment ∀p.¬{o} in L��(x)). Then, by the assumption of the
lemma, we know that p ∈ L��(�r, ro�) would hold. There-
fore, the application of the ∀-rule would create a clash in
G�� since it would add ¬{o} to the label of ro node. Hence
we conclude no such clash free completion graph exists and
O |= C � ∃p.{o}. �
Lemma 1 Let O |= C � ∃p.{o}. Let T = (S,L,E) be a
tableau for C w.r.t. O. Then:
1. If p is a simple role, then, for any s ∈ S with C ∈ L(s)

we have �s, o� ∈ E(p)
2. If p is not simple, there exists a role q �∗

R p, Trans(q) =
true and a path s0, . . . , sk s.t. k ≥ 1, s = s0, o = sk and
(si, si+1) ∈ E(q) for 0 ≤ i < k

Proof In (Horrocks & Sattler 2005) it is shown that the
interpretation I = (∆I , ·I) defined from T as follows:
• ∆I = S
• AI = {s | A ∈ L(s) for all atomic concepts A occurring
in C or O}

• pI =

�
E(p)+ if Trans(p) = true
E(p) ∪

�
∀q,q�∗

Rp
qI otherwise

is a model of O. Moreover, it is shown that:
1. If D ∈ L(s) then s ∈ DI

2. �s, t� ∈ E(p) iff �s, t� ∈ pI or there exists a role q �∗
R p

with Trans(q) = true and a path s0, . . . , sk with k ≥
1, s = s0, t = sk and �si, si+1� ∈ E(q) for 0 ≤ i < k.
Moreover, if p is simple, pI = E(p)
Now, suppose that p is simple, s ∈ S, C ∈ L(s) and

�s, o� /∈ E(p) Using (1) and (2) above, we have that s ∈
CI and �s, o� /∈ pI , which implies that s /∈ (∃p.{o})I .
Consequently, I is a model of O that does not satisfy the
axiom C � ∃p.{o}, and hence a contradiction.
Suppose that p is not simple and there is no path

s0, . . . , sk with k ≥ 1, s = s0, o = sk and �si, si+1� ∈ E(q)
for 0 ≤ i < k with q �∗

R p and Trans(q) = true. If
C ∈ L(s), then by (1) and (2), we have that s ∈ CI and
�s, o� /∈ pI , which again yields a contradiction. �
Lemma 2 Assume that there is a simple role p s.t. in every
tableau T = (S,L,E) for C w.r.t. O if C ∈ L(s) for s ∈ S
then �s, o� ∈ E(p) where o is a nominal occurring in O.
Let G = (V,E,L, �=) be a clash-free and complete com-

pletion graph for C w.r.t. O and let the node x ∈ V be s.t.
C ∈ L(x).
Then, the nominal node ro ∈ V is a p-neighbor of x inG.

98

Proof We will prove that fromG, which is clash free and
complete, it is possible to construct a tableau T for C w.r.t.
O. The way this is done is identical to the soundness proof
for SHOIN presented in (Horrocks & Sattler 2005).
More precisely, a path is a sequence of pairs of block-

able nodes of G of the form p̃ = (x0
x�
0
, . . . ,

xn
x�

n
). For such

a path we define Tail(p) = xn and Tail�(p̃) = x�n. With
(p̃|xn+1

x�
n+1

) we denote the path p̃ = (x0
x�
0
, ...,

xn
x�

n
,

xn+1
x�

n+1
). The

set Paths(G) is inductively defined as follows:
• For each blockable node x of G that is a successor of a
nominal node or a root node, (x

x) ∈ Paths(G), and
• For a path p̃ ∈ Paths(G) and a blockable node y inG:
– If y is a successor of Tail(p̃) and y is not blocked, then

(p|yy) ∈ Paths(G) and
– If y is a successor of Tail(p̃) and y is blocked by y�,
then (p|y

�

y) ∈ Paths(G)

Due to the construction of Paths(G), all nodes occur-
ring in a path are blockable and for p̃ ∈ Paths(G) with
p̃ = (p̃�| x

x�), x is not blocked, x� is blocked iff x �= x� and x�

is never indirectly blocked. Furthermore the blocking condi-
tion implies L(x) = L(x�). We denote by Nom(G) the set
of nominal nodes in G and define a tableau T = (S,L,E)
fromG as follows:
• S = Nom(G) ∪ Paths(G)

• L(p̃) =
�

L(Tail(p̃)) if p̃ ∈ Paths(G)
L(p̃) if p̃ ∈ Nom(G)

• E(R) = {�p̃, q̃� ∈ Paths(G×G) |
q̃ = (p| x

x�) and x� is an R-successor of Tail(p̃) or
p̃ = (q| x

x�) and x� is an inv(R)-successor of Tail(q̃)}∪
{�p̃, a� ∈ Paths(G) × Nom(G)| a is an R-neighbor of
Tail(p̃)} ∪
{�a, p̃� ∈ Nom(G)×Paths(G)| p̃ is an R-neighbor of
a} ∪
{�a, b� ∈ Nom(G)×Nom(G) | b is an R-neighbor of a}
In (Horrocks & Sattler 2005) it is proved that T con-

structed this way is a tableau for C w.r.t. O.
Now, assume that the nominal node ro ∈ V is not a p-

neighbor of x inG where C ∈ L(x). We show that we then
encounter a contradiction.
There are three possibilities:

1. x is not blocked and is not a nominal node inG
2. x is blocked and is not a nominal node inG
3. x is a nominal node inG
Suppose x is not a nominal node in G, it is not blocked

and C ∈ L(x). Since x is not a nominal node and it is
not blocked then there is a path p̃ in G s.t. Tail(p̃) =
Tail�(p̃) = x. By construction of T, p̃ ∈ S and C ∈ L(p̃).
By assumption of the Lemma, �p̃, o� ∈ E(p). However, we
also know that a is not a p-neighbor of x = Tail�(p̃) in
G and by construction of T, �p̃, o� /∈ E(p) and hence the
contradiction.
Suppose x is not a nominal node in G, it is blocked by

y and C ∈ L(x). Since x is not a nominal node and it is

blocked then there is a path p̃ in G s.t. Tail(p̃) = y and
Tail�(p̃) = x, with L(x) = L(y). By construction of T,
p̃ ∈ S andC ∈ L(p̃). By assumption of the Lemma, �p̃, o� ∈
E(p). However, we also know that x = Tail�(p̃) is not a p-
neighbor of a inG and by construction of T, �p̃, o� /∈ E(p)
and hence the contradiction again.
Finally, suppose that x is a nominal node in G and C ∈

L(x). Since x is a nominal node then x ∈ S and C ∈
L(x), by construction of T. By assumption of the Lemma,
�x, o� ∈ E(p). However, we also know that a is not a p-
neighbor of x inG and by construction of T, �p̃, o� /∈ E(p)
and hence the contradiction again. �
Lemma 3 Assume that there is a non-simple role p s.t. in
every tableau T = (S,L,E) for C w.r.t. O if C ∈ L(s),
then there exists a role q �∗

R p with Trans(q) = true

and a path s0, . . . , sk s.t. k ≥ 1, s = s0, t = sk and
(si, si+1) ∈ E(q) for 0 ≤ i < k.
Let G = (V,E,L, �=) be a clash-free and complete com-

pletion graph for C w.r.t. O and let the node x ∈ V be a
node with C ∈ L(x), then there exists a path z0, . . . , zk in
G with k ≥ 1, x = z0, o = zk and zi a q-neighbor of zi−1

for 0 ≤ i < k and q �R∗ p.
Proof Let x be a node with C ∈ L(x), and assume that
there is no path z0, . . . , zk inG with k ≥ 1, x = z0, o = zk

and zi a q-neighbor of zi−1 for 0 ≤ i < k and q �R∗ p.
Identically to the proof of Lemma 2, we can construct

a tableau T = (S,L,E) from G. By construction of T,
C ∈ L(p̃), where Tail(p̃) = x. We have two possibilities:
• x is not an ancestor of o inG.
• x is an ancestor of o, but there exists a pair of nodes y1, y2

s.t. x is an ancestor of y1, y2 is an ancestor of o and y2 is
a successor of y1, but y2 is not a q-neighbor of y1.
In the first case, we obviously encounter a contradiction,

because x and o are not even connected in G. The second
case reduces to the proof of Lemma 4. Let p̃, q̃ be paths inG
(according to the definition of the set Paths(G) in Lemma
4) with Tail�(p̃) = y1 and Tail�(p̃) = y2 then (p̃, q̃) /∈ E(q)
(note that by construction p̃, q̃ ∈ S) and hence we find a
contradiction. �
Theorem 2 Let O |= C � ∃p.{o} with C satisfiable w.r.t.
O, then in every clash-free and complete graph G for C

w.r.t. O there must exist a blockable node x with no prede-
cessors (i.e. a root) that verifies the following:
• If p is simple then the nominal node o must be a p-
neighbor of x in G

• If p is not simple, then there must exist a path z0, . . . , zk

in G with k ≥ 1, x = z0, o = zk and zi a q-neighbor of
zi−1 for 0 ≤ i < k and q �∗

R p.
Proof It is a straightforward consequence of the above
lemmas. �

99

