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Abstract. In this paper, we investigate the problem of repairing unsat-
isfiable concepts in an OWL ontology in detail, keeping in mind the user
perspective as much as possible. We focus on various aspects of the repair
process – improving the explanation support to help the user understand
the cause of error better, exploring various strategies to rank erroneous
axioms (with motivating use cases for each strategy), automatically gen-
erating repair plans that can be customized easily, and suggesting appro-
priate axiom edits where possible to the user. Based on the techniques
described, we present a preliminary version of an interactive ontology
repair tool and demonstrate its applicability in practice.

1 Introduction

Now that OWL is a W3C Recommendation, one can expect that a much wider
community of users and developers will be exposed to the expressive description
logic SHOIN (D) which is the basis of OWL-DL. As semantic descriptions in
OWL ontologies become more complicated, ontology debugging becomes an ex-
tremely hard task for users, especially for those with little or no experience in
description-logic-based knowledge representation. In such cases, ontology debug-
ging tools are needed to explain and pinpoint defects in ontological definitions.

A common defect found in OWL Ontologies is unsatisfiable concepts, i.e.,
concepts which cannot have any individuals. Unsatisfiable concepts are usually
a fundamental modeling error, and are also quite easy for a reasoner to detect
and for a tool to display. However, determining why a concept in an ontology is
unsatisfiable can be a considerable challenge even for experts in the formalism
and in the domain, even for modestly sized ontologies. The problem worsens
significantly as the number and complexity of axioms of the ontology grows.
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In our previous work, we have developed a suite of techniques for debugging
unsatisfiable concepts in OWL Ontologies [6]. Our work focused on two key
aspects: given a large number of unsatisfiable concepts in an ontology, identi-
fying the root and derived unsatisfiable concepts from among them; and given
a particular unsatisfiable concept in an ontology, extracting and presenting to
the user the minimal set of axioms from the ontology responsible for making
it unsatisfiable. We have provided an optimized implementation in the reasoner
Pellet [14], a UI in the ontology editor Swoop [5], and proposed various enhance-
ments in the display to improve the explanation of the cause of error. We have
shown through a user study that these techniques are effective for debugging
inconsistency errors in OWL ontologies.

However, while the emphasis was on pinpointing and explaining the errors in
OWL ontologies, there was a lack of support for (semi-)automatically repairing
or fixing them. Though in most cases, repairing errors is left to the ontology mod-
eler’s (/author’s) discretion, and understanding the cause of the error certainly
helps make resolving it much easier, bug resolution can still be a non-trivial
task, requiring an exploration of remedies with a cost/benefit analysis, and tool
support here can be quite useful.

In this paper, we present the following main contributions:

– We enhance the information that drives the repair process by modifying
our algorithm to capture the part(s) of axiom(s) responsible for an error
(section 3.2)

– We propose a technique to generate repair solutions automatically based on
strategies used to rank erroneous axioms and a modified Reiter’s Hitting Set
algorithm (sections 3.3, 3.4). In addition, we consider strategies for rewriting
axioms (section 3.5).

– We describe a preliminary implementation of an interactive ontology repair
tool and discuss results of a conducted pilot study (section 3.6).

Note that while we focus on repairing unsatisfiable concepts in a consistent
OWL Ontology, the underlying problem involves dealing with and rectifying a set
of erroneous axioms, and thus the same principles for generating repair solutions
are applicable when debugging an inconsistent OWL ontology.

2 Related Work

To our knowledge, the most relevant work is described in [13], where the authors
identify minimal conflicting axiom sets responsible for unsatisfiable concepts in
an ALC knowledge base, and then in [11], [12] use Reiter’s Hitting Set algorithm
to compute repair solutions from the conflict sets.

However, we differ from the work above in two key respects: our axiom-based
solution works for a much more expressive description logic SHOIN , and hence
OWL-DL, with a finer granularity (identifying erroneous parts of axioms); and
we consider ranking axioms for our repair solution and accordingly modify the
Reiter’s HS algorithm to generate repair plans.
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3 Ontology Repair

3.1 Preliminaries

Before proceeding further, we revisit the notion of a MUPS (Minimal Unsatisfi-
ability Preserving Sub-TBoxes), which was formally introduced in [13]. Roughly,
a MUPS for an atomic concept A is a minimal fragment of the KB in which A
is unsatisfiable. Obviously, a concept may have several different MUPS within
an ontology. Finding all the MUPS of an unsatisfiable concept is a critical task
from a debugging point of view, since one needs to remove at least one axiom
from each set in its MUPS in order to make the concept satisfiable.

3.2 Continuing Where We Left Off

Improving Axiom-Based Explanation. A key component of our earlier de-
bugging solution was the Axiom Pinpointing service which was used to extract
the MUPS of a concept that is unsatisfiable w.r.t. a SHOIN knowledge base
[4]. We have since extended this service to identify specific parts of axioms that
are responsible for the inconsistency, and we refer to the resultant axiom set as
the precise MUPS.

We briefly describe the idea behind this extension here (for details of our im-
plementation, see [4]). Since we aim at identifying relevant parts of axioms, we
define a function that splits the axioms in a KB K into “smaller” axioms to obtain
an equivalent KB Ks that contains as many axioms as possible. This function
rewrites the axioms in K in a convenient normal form and split across conjunc-
tions in the normalized version, e.g., rewriting A � C � D as A � C, A � D. In
some cases, we are forced to introduce new concept names, only for the purpose
of splitting axioms into smaller sizes (which prevents any arbitrary introduction
of new concepts); for example, since the axiom A � ∃R.(C �D) is not equivalent
to A � ∃R.C, A � ∃R.D, we introduce a new concept name, say E, and trans-
form the original axiom into the following set of “smaller” axioms: A � ∃R.E,
E � C, E � D, C � D � E. Finally, the problem of finding the precise MUPS
of an unsatisfiable concept in K reduces to the problem of finding its MUPS in
the split version of the KB Ks. Note that to prevent an exponential blowup, we
do not split the entire KB beforehand, instead perform a lazy splitting of certain
specific axioms on the fly (as described in [4]).

Fig. 1. Displaying the minimal set of axioms from the ontology (with key entities
highlighted and irrelevant parts struck out) responsible for making the concept AI Dept
in the University ontology unsatisfiable
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Given the precise MUPS, any tool used to display it for the purpose of de-
bugging the error can choose a suitable presentation format to highlight the
relevant parts. For our debugging tool UI, we chose to strike out irrelevant parts
of axioms that do not contribute to the contradiction (see Figure 1). So far, our
tests have shown that this form of highlighting makes a significant difference in
the presentation and greatly aids repair, since it makes it explicit to the user,
the part of the axiom(s) that needs to be altered in order to resolve the bug.

3.3 Strategies for Ranking Axioms

We now discuss a key piece of the repair process: selecting which erroneous
axiom(s) to remove from the MUPS in order to fix the unsatisfiable concepts.

For this purpose, an interesting factor to consider is whether the axioms in
the MUPS can be ranked in order of importance. Repair is then reduced to an
optimization problem whose primary goal is to get rid all of the inconsistency
errors in the ontology, while ensuring that the highest rank axioms are preserved
and the lowest rank axioms removed from the ontology.

A simple criterion to rank axioms is to count the number of times it appears
in the MUPS of the various unsatisfiable concepts in an ontology. This idea is
similar to the notion of arity of the axiom as discussed in [13]. If an axiom
appears in n different MUPS (in each set of the MUPS), removing the axiom
from the ontology ensures that n concepts turn satisfiable. Thus, higher the
frequency, lower the rank assigned to the axiom.

Besides the axiom frequency in the MUPS, we consider the following strategies
to rank ontology axioms:

– Impact on ontology when the axiom is removed or altered (need to identify
minimal impact causing changes)

– Test cases specified manually by the user to rank axioms
– Provenance information about the axiom (author, source reliability, time-

stamp etc.)
– Relevance to the ontology in terms of its usage

Impact Analysis. The basic notion of revising a knowledge base while pre-
serving as much information as possible has been discussed extensively in belief
revision literature [1]. We now apply the same principle to repairing unsatisfi-
able concepts in an OWL ontology, i.e., we determine the impact of the changes
made to the ontology in order to get rid of unsatisfiable concepts, and identify
minimal-impact causing changes. Since repairing an unsatisfiable concept in-
volves removing axioms in its MUPS, we consider the impact of axiom removal
on the OWL ontology.

A fundamental property of axiom removal based on the monotonicity of OWL-
DL is the following: removing an axiom from the ontology cannot add a new
entailment. Hence, we only need to consider entailments (subsumption, instan-
tiation etc.) that are lost upon axiom removal, and need not consider whether
other concepts in the ontology turn unsatisfiable.
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For now, we shall only consider subsumption/disjointness (between atomic
concepts) and instantiation (of atomic concepts) as the only interesting entail-
ments to check for when an axiom is removed. In the next subsection, we discuss
how the user can provide a set of test cases as additional interesting entailments
to check for.

As mentioned earlier, our Axiom Pinpointing service computes the minimal
set of axioms (justification) responsible for any arbitrary entailment of an OWL-
DL ontology . Thus, we can use this service to compute the justification sets
for the significant subsumption and instantiation relationships in the ontology.
When removing an axiom, we can check if it falls into a particular justification
set, and accordingly determine which subsumption and/or instantiation rela-
tion(s) would break directly. Axioms to be removed can then be ranked based
on the number of entailments they break (higher the rank, lesser the entailments
broken).

An important distinction is the entailments resulting from the unsatisfiable
concepts in the ontology. Note that when a concept is unsatisfiable, it is equiv-
alent to the bottom concept (or in OWL lingo, owl:Nothing), and hence is
trivially equivalent to all other unsatisfiable concepts, and is a subclass of all
satisfiable concepts in the ontology. In this case, we need to differentiate be-
tween the stated or explicit entailments related to unsatisfiable concepts and
the trivial ones. Thus, we apply the following strategy: if a given entailment
related to an unsatisfiable concept holds in a fragment of the ontology in which
the concept is satisfiable, we consider the entailment to be explicit.

There are two techniques to obtain such explicit entailments: the first is a brute-
force approach that involves considering all possible (minimal) solutions to fix the
unsatisfiable concept in the ontology, and verifying if the entailment still holds in
the modified ontology. In order to obtain minimal repair solutions, we can use
Reiter’s algorithm as seen in the next section. On the other hand, the second ap-
proach is much faster (though incomplete) and is based on using the structural
analysis techniques seen in [6] to detect the explicit relationships involving unsat-
isfiable concepts without performing large scale ontology changes. For example,
we can use the Ontology Approximation heuristic to get rid of the contradictions
in the ontology while revealing the hidden subsumption entailments.

Having obtained the explicit entailments related to unsatisfiable concepts, we
can present them to the user to learn which, if any, of the relationships are
(un)desired. This information would then be used in the plan generation phase.

We consider a few examples that highlight the significance of this strategy.

Example 1. In the Tambis OWL ontology1, the three critical unsatisfiable con-
cepts are: metal, non-metal, metalloid. The unsatisfiability arises because
each concept is defined to be equivalent to the same complex concept: chemical
� (=1)atomic-number � ∃atomic-number.integer, and also defined to be dis-
joint from each other.

1 Note: All ontologies mentioned in this paper are available online at
http://www.mindswap.org/ontologies/debugging/
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In this case, though the disjoint axioms appear in each of the three unsatisfiable
concepts MUPS, removing them is not the correct solution, since eliminating the
disjointness makes all three concepts metal, non-metal, metalloid equivalent
which is probably undesired.

In fact, a better solution is to weaken the equivalence to a subclass relation-
ship in each concept definition, thereby getting rid of the subclasses: chemical
� (=1)atomic-number � ∃atomic-number.integer � metal / non-metal /
metalloid; and we find that removing these relationships has no impact on
other entailments in the ontology.

Example 2. Consider the following MUPS of an unsatisfiable concept Ocean-
CrustLayer w.r.t. the Sweet-JPL ontology O: { (1) OceanCrustLayer �
CrustLayer, (2) CrustLayer � Layer, (3) Layer � Geometric 3D Object,
(4) Geometric 3D Object � ∃ hasDimension. {3D}, (5) OceanCrustLayer �
OceanRegion, (6) OceanRegion � Region, (7) Region � Geometric 2D Object,
(8) Geometric 2D Object � ∃ hasDimension. {2D}, (9) hasDimension is Func-
tional }.

Note that in O, each of the concepts CrustLayer, OceanRegion, Layer, Region,
Geometric 3D Object, Geometric 2D Object, has numerous individual sub-
classes.

In this case, removing the functional property assertion on hasDimension from
O eliminates the disjoint relation between concepts Geometric 2D Object and
Geometric 3D Object, and between all its respective subclasses. Also, removing
any of the following axioms 2, 3, 4, 6, 7, 8 eliminates numerous subsumptions from
the original ontology. Thus, using the minimal impact strategy, the only option
for repair is removing either 1 or 5, which turns out to be the correct solution,
based on the feedback given by the original ontology authors.

User Test Cases. In addition to the standard entailments considered in the
previous subsection, the user can specify a set of test cases describing desired
entailments. Axioms to be removed can be directly ranked based on the desired
entailments they break.

Also, in some cases, the user can specify undesired entailments to aid the re-
pair process. For example, a common modeling mistake is when an atomic con-
cept C inadvertently becomes equivalent to the top concept, owl:Thing. Now,
any atomic concept disjoint from C becomes unsatisfiable. This phenomenon oc-
curred in the CHEM-A ontology, where the following two axioms caused concept
A (anonymized) to become equivalent to owl:Thing: {A ≡ ∀R.C, domain(R, A)
}. Here, specifying the undesired entailment prevented our ontology-effect strat-
egy from considering the impact of removal of the erroneous axiom (in this case,
the equivalence, which needed to be changed to a subclass) on this entailment.

Provenance Information Regarding Change. Provenance information
about an axiom can act as a useful pointer for determining its importance/rank,
i.e., based on factors such as:
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– reliability of the source (author, document etc.)
– context/reason for which the axiom was added (specified as an annotation

or otherwise)
– time the axiom was specified

OWL has support for adding human-readable annotations to entities in an
ontology using owl:AnnotationProperties such as rdfs:label, rdfs:comment.
However, there is no direct provision to annotate assertions or axioms in the
ontology, unless one resorts to reification. In general, manually providing prove-
nance information about axioms can be a tedious task, and thus tool support
is critical. To address this issue, ontology editors such as Protege [7], KAON
[8] and Swoop have the option to maintain an elaborate change log to record
provenance information.

In Swoop, we automatically keep track of all changes made to an OWL on-
tology, storing information such as authorship, date etc of each change. Addi-
tionally, we use a change-ontology that represents various atomic and complex
change operations to serialize the change-log to RDF/XML, which can then be
shared among users.

Such information is extremely useful for ranking axioms in a collaborative
ontology building context, i.e., if a group of authors are collectively building an
ontology, and there exists a precedence level among the authors, i.e., ontology
changes made by the supervisor are given higher priority than those made by a
subordinate. In this case, for each change made, one can derive the corresponding
axioms added to the ontology, and automatically determine the rank of each
axiom based on the person making the change.

Syntactic Relevance. There has been research done in the area of ontology
ranking [2], where for example, terms in ontologies are ranked based on their
structural connectedness in the graph model of the ontology, or their popularity
in other ontologies, and the total rank for the ontology is assigned in terms
of the individual entity ranks. Since an ontology is a collection of axioms, we
can, in theory, explore similar techniques to rank individual axioms. The main
difference, of course, lies in the fact that ontologies as a whole can be seen as
documents which link to (or import) other ontology documents, whereas the
notion of linkage is less strong for individual axioms.

Here, we present a simple strategy that ranks an axiom based on the usage
of elements in its signature, i.e., for each OWL entity (atomic class, property or
individual) in the signature of the axiom, we determine how often the entity has
been referenced in other axioms in the ontology, and sum the reference counts
for all the entities in the axiom signature to obtain a measure of its syntactic
(or structural) relevance.

The significance of this strategy is based on the following intuition: if the
entities in the axiom are used (or are referred to) often in the remaining axioms
or assertions of the ontology, then the entities are in some sense, core or central
to the overall theme of the ontology, and hence changing or removing axioms
related to these entities may be undesired. For example, if a certain concept is
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heavily instantiated, or if a certain property is heavily used in the instance data,
then altering the axiom definitions of that concept or property is a change that
the user needs to be aware of. Similarly, in large ontologies where certain entities
are accidentally underspecified or unused, axioms related to these entities may
be given less importance.

The simple strategy presented above can be altered in various ways such as by
restricting usage counts to certain axiom types, and/or weighing certain kinds
of axioms differently than others (e.g., weighing property attribute assertions
such as InverseFunctional higher). This would be motivated by user prefer-
ences depending on the ontology modeling philosophy and purpose (e.g., see
OntoClean [3]).

3.4 Generating Repair Solutions

So far, we have devised a procedure to find tagged MUPS for an unsatisfiable
concept in an OWL-DL ontology and proposed various strategies to rank axioms
in the MUPS. The next step is to generate a repair plan (i.e., a set of ontology
changes) to resolve the errors in a given set of unsatisfiable concepts, taking into
account their respective MUPS and axiom ranks.

Modifying Reiter’s Algorithm. For this purpose, we use the Reiter’s Hitting
Set algorithm [10], which given a diagnosis problem and a collection of conflict
sets for that problem, generates minimal hitting sets from the conflict sets. A
hitting set for a collection of sets C is a set that touches (or intersects) each set
in C. A hitting set is minimal for C, if no proper subset of it is a hitting set for
C. This approach was suggested in [12], which generates hitting sets from the
MUPS – the idea here is that removing all the axioms in the minimal hitting
set removes one axiom from each of the MUPS and thus renders all concepts
satisfiable. The same principle applies to our repair solution except that we need
to modify the HS algorithm to take into account the axiom ranks.

Given a collection C of conflict sets, Reiter’s algorithm introduces the notion
of a hitting set tree (HST), which is the smallest edge-labeled and node-labeled
tree such that a node n in HST is labeled by a tickmark if C is empty, otherwise
its labeled with any set s ∈ C. For each node n, let H(n) be the set of edge labels
on the path in HST from the root to n; then the label for n is any set s ∈ C, that
satisfies the property s ∩ H(n) ← ∅, if such a set exists. If n is labeled by a set
s, then for each σ ∈ s, n has a successor nσ joined to n by an edge labeled by σ.
For any node labeled by a tickmark, the labels of its path from the root (H(n))
is a hitting set for C. Also, while generating the HST, if the search along a path
exceeds the current optimal solution, the search is terminated earlier, marked
by a cross in the label of a node.

Now for our problem, the MUPS of the unsatisfiable concepts correspond to
the conflict sets. However, while the normal HST algorithm has the optimality
criteria as the minimal path length, we set it as the minimal path rank instead,
i.e., the sum of the ranks of the axioms in the path H(n) should be minimal.
Also, in the standard algorithm, there is no basis for selecting an axiom over
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another while building the edges of the HST, whereas we can use the ranks of
the axioms when making a selection to prune down the search space, i.e., at each
stage, we select the lowest ranked axiom while creating a new edge.

Figure 2 shows a HST for a collection C = {{2, 5}, {3, 4, 7}, {1, 6}, {4, 5, 7},
{1, 2, 3}} with the axioms 1 − 7 ranked as follows: r(1) = 0.1, r(2) = 0.2, r(3) =
0.3, r(4) = 0.4, r(5) = 0.3, r(6) = 0.3, r(7) = 0.5, where r(x) is the rank of
axiom x. The ranks are computed based on the factors mentioned earlier, such
as arity, impact analysis etc. each weighed separately if needed using appropriate
weight constants. The superscript for each axiom-number denotes the rank of
the axiom, and Pr is the path rank computed as the sum of the ranks of axioms
in the path from the root to the node. For example, for the leftmost path shown:
Pr = 0.2 + 0.3 + 0.1 + 0.3 = 0.9.

Fig. 2. Modified Reiter’s Hitting Set Algorithm: Generating a repair plan based
on ranks of axioms in the MUPS of unsatisfiable concepts

As shown in the figure, by choosing the lowest rank axiom in each set while
constructing the edges of the HST, the algorithm only generates 3 hitting sets,
two of which are minimal, while avoiding numerous path checks (indicated by
the crosses). The repair solution found with the minimal path rank is either
{2,4,1} or {5,3,1}.

However, there is a drawback of using the above procedure to generate repair
plans, i.e., impact analysis is only done at a single axiom level, whereas the
cumulative impact of the axioms in the repair solution is not considered. This
can lead to non-optimal solutions. For example, in the Tambis ontology, where
the three root classes are asserted to be mutually disjoint, removing any one
of the disjoint axioms does not cause as large an impact as removing all the
disjoints together.



Repairing Unsatisfiable Concepts in OWL Ontologies 179

In order to resolve this issue, we propose another modification to the algorithm
above: each time a hitting-set HS is found, we compute a new path-rank for HS
based on the cumulative impact of the axioms in the hitting-set. The algorithm
now finds repair plans that minimize these new path-ranks. Note that the early
termination condition for paths remains the same since the path rank represents
a lower bound, as cumulative impact is always greater than or equal to the sum
of individual unique impacts.

Improving and Customizing Repair. The algorithm described above can be
used in general to fix any arbitrary set of unsatisfiable concepts, once the MUPS
of the concepts and the ranks for axioms in the MUPS is known. Thus, a brute
force solution for resolving all the errors in an ontology involves determining the
MUPS (and ranking axioms in the MUPS) for each of the unsatisfiable concepts.
This is computationally expensive and moreover, unnecessary, given that strong
dependencies between unsatisfiable concepts may exist. Thus, we need to focus
on the MUPS of the critical or root contradictions in the ontology.

To achieve this, we make use of a debugging service we have devised in [6]
that identifies the root unsatisfiable concepts in an ontology, which propagate and
cause errors elsewhere in the ontology, leading to derived unsatisfiable concepts.
Intuitively, a root unsatisfiable concept is one in which a clash or contradiction
found in the concept definition does not depend on the unsatisfiability of another
concept in the ontology; whereas, a derived unsatisfiable concept acquires a con-
tradiction due to its dependence on another unsatisfiable concept. For example,
if A is an unsatisfiable concept, then a concept B (B � A) or C (C � ∃R.A)
also becomes unsatisfiable due to its dependence on A, and is thus considered
as derived.

We have experimented with the root/derived debugging service on numerous
OWL ontologies that have a large number of unsatisfiable concepts and found
it to be useful in narrowing down the error space quickly, e.g, for the Tambis
OWL Ontology, only 3 out of 144 unsatisfiable concepts were discovered as roots
in under 5 seconds. From a repair point of view, the key advantage here is that
one needs to focus on the MUPS of the root unsatisfiable concepts alone since
fixing the roots effectively fixes a large set of directly derived concept bugs.

Also, the service guides the repair process which can be carried out by the
user at three different granularity levels:

– Level 1: Reparing a single unsatisfiable concept at a time: In this case, it
makes sense to deal with the root unsatisfiable concepts first, before resolv-
ing errors in any of the derived concepts. This technique allows the user to
monitor the entire debugging process closely, exploring different repair al-
ternatives for each concept before fully fixing the ontology. However, since
at every step in the repair process, the user is working in a localized con-
text (looking at a single concept only), the debugging of the entire ontology
could be prolonged due to new bugs introduced later based on changes made
earlier. Thus, the repair process may not be optimal.
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– Level 2: Repairing all root unsatisfiable concepts together : The user could
batch repair all the root unsatisfiable concepts in a single debugging iter-
ation before proceeding to uncover a new set of root/derived unsatisfiable
concepts. This technique provides a cross between the tool-automation (done
in level 3) and finer manual inspection (allowed in level 1) with respect to
bug correction.

– Level 3: Repairing all unsatisfiable concepts : The user could directly focus on
removing all the unsatisfiable concepts in the ontology in one go. This tech-
nique imposes an overhead on the debugging tool which needs to present a
plan that accounts for the removal of all the bugs in an optimal manner. The
strategy works in a global context, considering bugs and bug-dependencies
in the ontology as a whole, and thus may take time for the tool to compute,
especially if there are a large number of unsatisfiable concepts in the ontol-
ogy (e.g. Tambis). However, the repair process is likely to be more efficient
compared to level 1 repair.

The number of steps in the repair process depends on the granularity level
chosen by the user: for example, using Level 1 above, the no. of steps is atleast
the no. of unsatisfiable concepts the user begins with; whereas using Level 3
granularity, the repair reduces to a single big step. To make the process more
flexible, the user should be allowed to change the granularity level, as and when
desired, during a particular repair session.

3.5 Suggesting Axiom Rewrites

Now, to make our repair solution more flexible, we consider strategies to rewrite
erroneous axioms instead of strictly removing them from the ontology2.

Using Erroneous Axiom Parts. As shown in section 3.2 (see Figure 1), our
Axiom Pinpointing service has been extended to identify parts of axioms in
the MUPS responsible for making a concept unsatisfiable. Having determined
the erroneous part(s) of axioms, we can suggest a suitable rewrite of the axiom
that preserves as much as information as possible while eliminating unsatisfia-
bility.

Identifying Common Pitfalls. Common pitfalls in OWL ontology model-
ing have been enumerated in literature [9]. We have summarized some com-
monly occurring errors that we have observed (in addition to those mentioned
in [9]), highlighting the meant axiom and the reason for the mistake in each
case.
2 Note that rewriting an axiom involves an axiom removal followed by an addition.

Thus, similar to the impact analysis performed for axiom removal, we also need to
consider entailments that are introduced when an axiom is added. Currently, we only
check if unsatisfiable concepts arise upon axiom addition, and we are working on iter-
ative reasoning techniques (see http://www.mindswap.org/papers/TR-incclass.pdf)
to optimally compute other entailments added.
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Asserted Meant Reason for Misunderstanding
A ≡ C A � C Difference between

Defined and Primitive concepts
A � C A � C � D Multiple subclass
A � D has intersection semantics

domain(P,A) A � ∀P.B Global vs. Local
range(P,B) property restrictions
domain(P,A) domain(P, A � B) Unclear about multiple domain
domain(P,B) semantics

A library of error patterns can be easily maintained, extended and shared be-
tween ontology authors using appropriate tool support. Once we have identified
the axioms in the ontology responsible for an unsatisfiable concept, we can check
if any of the axioms has a pattern corresponding to one in the library, and if so,
suggest the meant axiom to the user as a replacement. We note that in a lot of
cases that we have observed, the most common reason for unsatisfiability is the
accidental use of equivalence instead of subsumption.

In some cases, an additional heuristic to consider is the label (or ID) of the
concept or role, which acts as a pointer to its intended meaning and can be
used to detect mismatches in modeling. For example, the unsatisfiable concept
OceanCrustLayer seen earlier in the Sweet-JPL OWL ontology was accidentally
defined to be a subclass of CrustRegion, instead of CrustLayer.

A combination of the heuristics was used to debug an error in the University
ontology. The concept ProfessorInHCIorAI was responsible for the unsatisfi-
able concepts AI Student and HCI Student because there were two separate
subclass axioms for ProfessorInHCIorAI, associating it with the student con-
cepts separately, whereas the ‘or’ in the concept name implied that a disjunction
was intended.

3.6 Interactive Repair Tool (Preliminary Evaluation)

We are currently working on an ontology repair plug-in for Swoop. The key design
goal is to provide a flexible, interactive framework for repairing unsatisfiable
concepts in an ontology by allowing the user to analyze erroneous axioms, weigh
axiom ranks as desired, explore different repair solutions by generating plans on
the fly, preview change effects before executing the plan and compare different
repair alternatives. Moreover, the tool also suggests axiom edits where possible.

Figure 3 is a screenshot of the Swoop repair plugin when used to debug the
University OWL ontology. As can be seen, the top segment of the repair frame
displays a list of unsatisfiable concepts in the ontology, with the root classes
marked. The adjacent pane renders the axioms responsible for making the con-
cepts selected in the list unsatisfiable. There are two view modes for this pane –
the one shown in Figure 3 displays the erroneous axioms for each unsatisfiable
class in separate tables with axioms indented (as described in [6]), and common
axioms responsible for causing multiple errors highlighted as shown. The other
view (not shown) displays all erroneous axioms globally in a single list.
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Fig. 3. Interactive Repair in Swoop: Generating a repair plan to remove all root
unsatisfiable concepts in the University OWL Ontology. The popup in the lower right
corner displays a preview of the current repair plan including unsatisfiable concepts
that would get fixed and key entailments that would be lost or retained.

The tables display for each axiom, its arity, impact and usage, computed as
described earlier. The values for these parameters are hyperlinked, clicking on
which pops up a pane which displays more details about the parameter (not
shown in the figure). Also, clicking on the table headers re-sorts the results
based on the parameter selected. The total rank for each axiom, displayed in the
last column of the table, is the weighted sum of the parameter values, with the
weights (and thus ranks) being easily reconfigurable by the user. For example,
users interested in generating minimal impact plans can assign a higher weight
to the impact parameter, while users interested in smaller sized plans can weigh
arity higher. The range of the weights is from -1.0 to 1.0.

As discussed earlier, we provide three different granularities for the repair
process, i.e., the ability to fix a particular set of unsatisfiable concepts; all the
roots only; or all the unsatisfiable classes directly in one go. For example, in
Figure 3, the user has asked the tool to generate a plan to repair all the roots.

For a repair tool to be effective, it should support the easy customization of
the plan to suit the user’s needs. In the simple case, the user can either choose
to keep a particular axiom in the ontology, or forcibly remove a particular one.
These user-enforced changes are automatically reflected in the plans. In Figure
3, the user has chosen to keep the disjoint axioms AIStudent � ¬HCIStudent,
and Lecturer � ¬AssistantProfessor in the ontology (highlighted in green in the
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Table). In the advanced case, the user can choose to keep or remove a particular
entailment of the ontology, e.g., a particular subclass relation. The tool then
takes these desired and undesired entailments into account when generating a
plan.

Finally, axiom rewrites suggested by the tool can be (optionally) included
in the plan as well. In the figure, the tool has suggested weakening the two
equivalence axioms to subclass relations, which removes the contradictions in the
unsatisfiable classes, but preserves the semantics as much as possible. Obviously,
the user can directly edit erroneous axioms if desired.

The repair plan can be saved, compared with other plans and executed, after
which the ontology changes (which are part of the plan) are logged in Swoop.
These changes can be serialized and shared among ontology users (as shown
in [5]).

Pilot Study. We conducted a small pilot study involving twelve subjects, who
had at least one year’s experience with OWL and an understanding of descrip-
tion-logic reasoning that varied greatly (novices to experts). Each subject re-
ceived a 30 minute orientation including an overview of the semantic errors
found in OWL ontologies (using examples of unsatisfiable classes); a brief tuto-
rial of Swoop, demonstrating its key browsing, editing and search features; and
a detailed walkthrough of the debugging and repair support in Swoop using a
set of toy ontologies.

We selected two OWL Ontologies – University.owl and miniTambis.owl and
asked each subject to fix all the unsatisfiable classes in a particular ontology
using the debugging techniques seen in [6] (case 1), and in the other ontology
using the repair techniques described in this paper (case 2). The subjects were
randomly assigned to the two cases, but the overall distribution was equally
proportional in that given a particular ontology, an equal number of subjects
(six) debugged it with and without using the repair facilities. At the end of the
study, our goal was to compare the performance improvement, if any, of using
the repair services over the previous debugging services, which were shown to be
useful in an earlier study [6].

The results of the study were encouraging. We found that while the quality
of the repair solutions in both cases were comparable, the time taken to arrive
at a solution in the second case was between 2-8 times less than in first case.
More importantly, the subjects felt that in the second case, they understood the
different alternatives for repair, and decided on one knowing its overall impact.
Three key features appreciated by the subjects were the impact analysis to see
lost/retained entailments, the suggested axiom rewrites and the option to modify
the plan on the fly by keeping or forcibly removing axioms.

4 Conclusion

In this paper, we have discussed the problem of repairing unsatisfiable concepts in
OWL Ontologies, and provided solutions that tie in nicely with (and extend) our
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earlier work on explanation and debugging [6]. Thus, we are now in a position
to construct an end-to-end framework for interactive debugging and repair of
OWL Ontologies, though more extensive testing and evaluation is necessary.
Given the nature of the problem, our focus right from the start, has been on
the user-experience and in aiding the overall understanding and analysis of the
ontology, and the results so far have been in correspondence with our goal.
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