i
i

THE TexT oF 0SPyp

by
Christopher Strachey
and

Joseph Stoy

Oxford University

(CoMMENTARY)

Technical Monograph PRG-9(c)
July 1972

Oxford University Computing Laboratory,
Programming Research Group, '
45, Banbury Road,

Oxford.

© ig72 Christopher Strachey and Joseph Stoy.

oxford University Computing Laboxatory,
Programming Research Group,

45, Banbury Road,

oxford, ODX2 6PE,

ABSTRACT

The two volumes of this monograph comprise the complete text
of an experimental operating system, and a commentary on it, It
is published fto illustrate the authors® papers describing the
system [1, 2], to give an example of an operating system written
in a high level language, and to provide material for discussion
about matters of style in programming,

FOREWORD

These bhooks are a -supplement to the
authors® two papers [1, 2] on 0s6, Though
the general design of the system is the work
of the authors, other people have, of course,
assisted with its implementation, The
authors wish to make grateful acknowledgement
to

Julia Rayman, Bijit Biswas, Malcolm
Harper, Clifford Hones, Peter McCregor
and Peter Mosses,
who have all (o a greater or lesser extent)
helped with the writing of this system,
Julia Baymen and Malcolm Harper have given
particularly valuable assistance in preparing

the gysten and these documents for
publication, Nevertheless, the design
errors which remain are the sole

rogponsibility of the authors,

‘ CONTENT S
(Note: items enclosed in square brackets appear only in the
commentary; round brackets denote either a2 further level of
subheading, or that the item also appears again, and. is described,
olsewhere,) 'f :

Text Comm

Foreword
{I. Introduction 1

Aims of publication, Differences from ‘DS6Y

bapers, 5tyle, Guide to these hooks,]

IT. The text of the system 1 8

1, The lomd-go loop, Run. and Load. 1 8

- 1,3 1GLOOP 1 &
loadGoLoep, ILGLoop, [Prog,] DefaultProg,

1.2 RUN Z 9

Run, PrepareforRun, TerminateRun, Clearlip,
[CleaxUpChain,] Login, Finish,

1.3 LOAD . 5 41
INote on binary format, Format of compiled
ECPL segment;] Load, [Sectid, IBlock, Format
of loaded section, CPtw, CFirst,]
LoadSection, Unload,

1,4 SETLAR : ' * g9 15
SetLabels, SetGlobals, ﬁ

%e Post-mortem arrengements and interrupts ' 11 18

2.1 GIVEUP iz 18
[GiveUp, GiveUpStacksSize, GiveUpStack,]
ForcedGivelUp, InStack, StandardGiveUp, Dump,
FetchExecWord, SetUpDummyExecStructure,
bumpSegment, EndGivelUp, ForcedFinish,

2.2 PM 15 22
StandardpM, ReportCallTrace,
ReporiFreeStoresState, ReportBlocks,
ReportWords,

2.3 MPM 17 23
ManualPM, Exchange, Return, JumpTo,
AnythingTyped, MPMNextN, MPMNext0,

204 INTERRUPT 21 26
[PPtr, Privatestack,] Interrupt,

3. Storage allocation and PutBack

3.1 FREESTORE
[F8;] NewVec, ReturnVec, RVGiveUp, NewWord,
ReturnWord, MaxVecSize, NewFreeStors,
RestoreFreosStore,

3.2 PUTBACK
[PBChain,] PutBack, NextPB, FNoxtPB, CloscPB,
¥ClosePB, ResotPB, FResetPB, EndofPEB,

4. Stream primitives and I/D routines
401 STRPRIMITIVES
Close, Reset, Source, State, ResetState,
StyearErroxr,
4.2 OUTS
outs, WriteS, ReportsS, DutString, GetC,
DutJustify, Sizme, OBReport, OSReportl,
4+3 OPRTS _
OutP, OutN, Outg, Outd, OutByte, OutAddr,
Write, WritelN, Write0, WriteByte, WriteAddr,
4of NEXTN o
NextN, XNextD, NextCh,

5. Pormanent input/output streams

5.1 TELETYPE
[Teletypo,] NextTT, OutNewLine, OutTT,
ResetTT, EndofTT, stateTT, ResetStateTT,

5¢2 INTTT :
[ExocConsole,] Intcodetoandiromle lotype,
NexiTele, EvenParity, DutTele, DutCRLF,
OutNewliines, CloseTele, ResetTele, EndofTele,
(source),

5«3 XFER
InitiateTransfex,

5.4 READER .
[BytesfrorPT, ReaderDev,] Readbuiz,
FiratNextBFPT, NextFillBFPT, RosetBIPT,
NextWaitBFPT, $tateBFPT, ReadorDffLine,
EndofBFPT; TryAgain,

5.5 DIADS
[Note on diad format, DiadRead,]
Wordsfromdiads, NextBlock, NextByte, NextCh,
EndofW, ResotW, CloseW, TryDiadAgain,
ReadBackwards,

23
23

28

30
30

31

30

37
37

40

43

47

29
29

35
38
38

40

45
45

48

51
53

59

6, Miscellaneous facilitios
6.1 CLOCK
" _ putDateandfime, OutDate, OutTime, TimeofDay,
RestartClock, AskTime,
6.2 MISC
: AddressZero, Copy, E(S, NullProgram, Wait,

4, Disc routines (1)

%.1 DISCXFER
IDiscPage,] CoretoDisc, DisctoCore,
biscTransfer, Mossage,

742 DISCES

’ [¥5F,] NewDiscBlock,; ReturnDiscBlook,

7.3 DISCIN .
CheckType, InfromFile, NextBuffIF, EndoflF,
CloseIF, ResetiF, EntriesfromFile, NeXtEF,
EndofgF, CloseEF, RosoiEF, .

74 DISCOUT L
Returnchain, CheckPerm, DoleteBody,
OuttoFile, OutBuffOF, TurnPage; CloseOF,
ResetOF,; FailClose, .

8, Dise routines (2)
8.1 CHARGE
Charge,
8.2 UPDATE
Updeate,
8.3 UPDATEHEAD
) Updatelload,
8.4 PINDHEADING
LookUpinMFL, FindHeading,
8,5 LOOKUP
LookUp,
8.6 LOADFILE
° loadFile, LoadSystemFile,

9. Special functions in WIC
FotchCode, StoreCods, Bxec L(TRANSFER (the
executive teletype, the paper tape reader,
the paper tape punch, the line printer, the
dise, tho clock, remote consoles}, CANCEL,
LOOKATRDR, READABS)], sumcheck, Next, Out,
Endof, Transferin, TransferinC, Transfextut,

51
51

53

34

50
58

61

65
63

66
67
68
70
71

72

65

67

70
74

77

8
82
83

83
88

89

s At e e e R et S i P b

TS WP

111, Set=up programs 73 97
1, System set—up 75 97
1,1 SYSSETUP 75 9y
[FSLim, CPages, DPages,] Plnterrupt, SotUpFS,
SetUpDiscPage, SotUpPMStacks
SetUpsSundryltems, SetUpT;meofDayclock,
SotUpRunBlock, SetStackBase, CheockDiacOn,
RoleaseXNonSystemGlobals, FSFtoCore, Logln,

1,2 SETDANDT 81 103
SetbateandTime, Date, Wrong, Leap, NextLetter. .

1,3 QUICKVAL 83 103
QuickValFsF, ReportMessage, . .

%, Set up streams 85 106

2.1 SETUPSTR 85 106
SetUpStreams, [Perity,} SetupParityTshie, }
[Output, Reportstream, Console, In],

2.2 SETUPTT _ 8¢ 1oy
SetUpExecConsole, TT, . .

2,3 SETUPRDR 88 108

SetUpReader, BFPT,

IV, Declarations 90 109

1. DECLARATIONS 90 109

1,1 GLOBALS 91 109

1,2 PRIVATE GLOBALS 93 109

1,3 CONSTANTSE 94 110
General, Machine constants; EXec commands, .
Exec block for TRANSFER command, Standard
contents of TRANSFER block elements, Device
numhers, Code segment addresses
{ INTERRUPTINHIBITED, REASONFORINTERRUPT;

MAXD, MAXC, SUMCHINHIBITED,
DISCWRITEPERMITTED, MFLFIRSTPAGE; DATE,
RBIOCK, TIMEOFDAYCIOCK), Reasons for
interrupt, Clock, Run bloeck, Information
block, Free store, ClearUpChain, Stream
vector, Stream elements used by
InitiateTransfer; Fast stream block, Teletype
stream, Reador stream, PutBack vector,
Internal character code, Teletype character
code, Stack element, Filing system, Headings,
Index entries, Some file types, File.
permissions, Master file list, Free store
file, InfromFile, OuttoFile,

Ve Segmentation of the system for compilation
08/1 - 08/8, 08/ 5U, 08/5US,

[VI. List of failuro roports]

[VII.The system index
Systemindex, Files with second name 'IC!,
Files with second name *Indox?, Othor files.]

Viil.Some Library files

i, LoglIn _)
[User; Currentindex,] Prog, LookUpUser,
String,

2, MakeNewFile
MakeNswFile, LoadDiscRtsifNoc, NewMFLEntry,
NowMFLPago, CroateNewlead, UpdatePormission,
DoleteFils, CheckLegality. '

3, Index Ops
Enter, AddEntry, Link,; CheckLinkDoesntLoop,
Check, AddLinkedEntry, {LoadDiscRtsifNec,)
CheckPermission, Size, DeleteEntry,

4. File Vectors .
VoctortoFile, VectorfromFile,
AddMoreVeotoFile, (LoadbDiscRtsifNec,)
CheckPerm,

5. DiscRts
NewLocation, MakeOnePageBody, AddVectoFile,
TurnPage,

6. LincPrinter
Line Printer, GenerallinePrinter, BytestolP,
OutBLP, CloseBLP, ClearUplP, Cancel,
GeneralintcodetolP, OutlP, OutputUnderiines,
TrapPagoeThrow, CloselP, ResotlP,
StandardErrorFn, PrinterReport, (Source),

[Referonces]
[Appendix$ BCPL]
Index

103

107

107

109

i1z

116

118

128

115

116

119

125

125

127

129

133

134

135

152

s,

e e A oo g g i

I INTRODUCT IO0N

The text of this operating system is published as =
supplement to the authora® two papers [1,2] on 086 = an
oxperimental oporating system for a small computer, We had
originally hoped to publish the text of 056 as it stood; however,
when the staff working on the system began preparing it for
publication they decided that it could not possibly be published
until some of the more horrible parts had Leen revised and the
whole system generally +tidied up, The result of this tidying
{which involved the production of 0§7 as an intermediaste stage) is
the presert system, ealled GsPub, : :

However, although 08Pub was produced expressly for
publication, it is not an untested system, It has; in fact, for
somo months been the standard syster in general use on our Modular
One computer, The sams files on the disc have heoon used both as
a source for the printed text of the Bystem and as input for the
compiler to produce the system in the machine,

Aimg of Publication

t

We have three reasons for publishing the complete text of
this system, In the first place, of course, we wish to
illustrate in detail the principles outlined in the description of
the asystem in [1] and [z2],

In the second place, we wish actually to publish an example
of a complete operating system written in a high level language,
The only wey a mnathematical theorem hecomes accepted is by
publishing the proof, so that other workexs in the fieold either
pull it to pieces and expose the flaws in its argument, or
convince themselves of its validity, We believe that in the long
run the same sort of criteria must be applied to programs, and we
hope that this publication is at least a stop towards this goal,
It has lkeen ssid bhefoxe (by Dijkstra [31; for exemple) that the
fact that a program has been successfully tested proves only that
it procossea its test data correctly; the validity of a program
in genexral can only be really accepted by someone who has
convinced himself by examining the program®s structure in detail,
If this is to bs possible with sufficiont mathematical precision,
the program text must be made available in & high level

2 I

programming language; noither an informal description in English
on the one hand nor a machine code listing on the other is
satisfactory,

We are not pretending that BCPL, or indeed any present day
programming langusge, is a perfect vehicle of expression, A
language ought fo have the property that every important
relationship within a program is oither stated explicitly in the
notation or taken for granted by the Yeducated reader?, Current
languages, with hidden side effeots and similar features, come
nowhere near fulfilling this condition, But we should not worry
too much about this inadequacy. Our thecretical understanding of
system programming techniques, end our experience of. expressing
them in snything more disciplined than machine cods, are both so
limited that an attempt to refine our languages now might well
make matters worse, Weo would probably cut out the wrong things,
and introducs Zfresh complications as we tried to bresk out of the
straitjacket into which we ‘would have tied ourselves, What we
should do now, instead, is learn to express ourselves as clearly
end naturally as possible with the tools available, eschowing
tolever tricks® and taking care, as a matter of programming style,
that the important points affecting the validity of the program
are made obvious in fthe program text, Then, when sufficient
experience and understanding have been gained, we shall he sble to
add mathomatical rigour to our intuitive arguments, by adapting
the semantics of our languages to capture exactly what we will
heve discoversd we want to say, and to leave the rest not morely
unsaid, but absent even by implication,

S0 & third aim of this publication is to present an extended
and practical piece of programming ®s &n example for discussion of
programming style, Again, we by no means pretend that it is
flawless: indeed, for any work of this size, composed hy several
people, perfection or even uniformity of style would be impossible
(ef,, for example, [41), We hope that the reader will identify
for himself some of the worst passages {and perhaps think of
improvements), and also, more importantly, that he will consider
whother any more general defects, in the language itgelf or in our
use of it, are impairing the clarity of expression,

Differences from 086’ papors

Regrettably, there still remain several discrepancies between
the system published here end the description in f1]1 and [2], Ve

s e et o s

o b N
- e e et e e pmorim i o et e e A b P e e

s L i w—— —

[,

1

3

list them all together here, with explanations, As might be
expected, most of them CONCorn 0,

[1] $0.0

[1] §o.2

[1] §i.2.1

[1] §3.1
2] §a.1
(2] §2.4.4
[21 §2.3:3

[2] §3.1.2

2] 3.2
2] §3.4

iz] §3.4.1

Qur configuration now includes 50K of core, Most of
this has a oycle time of 1.5 microseconds, Howevex,
since the interpreter is still stored in fast core, the
slower core has very little effect on the speed of the
aystem,

The size of the interpreter is now ahout 400
instructions, The increase is due mainly to the extra
instructions described in {2] §.6.

The stenderd version of GiveUp has changed (as forecast
in [1]1 §3.1), It now offers the choice either of the

standard diagnostic information as before or of
dumping & core image onto the disc for subsequent
analysis,

Sleuth has not kept up with the changes to the virtual
machine code and is now obsolete,

Note that in fact BytestoPT is a stream function, not a
stream,

State and Resetstate are now deflned on BytesfromPT as
well as on the bilateral stroams,

PutBack nesded enhancement to deal with fest streams
(ses [2]1 §.0), It now requires mn oxtra olement of
the PutBack voctor to store the current value of a fast
atroam’s input buffer pointer,

The objocts called disc vectors have not earned
themselves a place in the aystem, though they are
privately available,

EntriesFrom is now called EntriesfromfFile,

The contents of the first two words of the houaekeoping
information at the start of a page of file body have
been interchanged, This is hecause the first word is
overwritten when the page is roturned to free store,
1f this happens by accident it is more helpful when
salveging the situation to know the file to whioch the
pago used to helong than what serial number it had' 80
the serial now comes first,

The misteke concoerning the address of the first page
of the MFL body has now been rectified; this value is
now kept in a reserved word of the code segment,

The page of the free store file in core is not kept in
the program segment: this was pure wishful thinking on
the part of the authors, We have not yet put our
wishes into effect ms we are conrsidering further

4 1

rodesign of the Zfree slorage system (see DiscFS§,
I137.2).

The pago in core is written back to the disc at the
start of each Run, not the' end, It is more likely to
be correct when the system is prepsaring to start a user
program than when it is clearing up the remains,

[2] 8342 A user may legitimately wreplace the main index in which
he is working by another, UsexIndex is therefore more
properly named Currentindex,

The accounting system is not implemented - soe
Charge, 11:8.1,

Style

Having now discussed the content of the system, we return
briefly to the guestion of style. Weo hope that BCPL is such that
the program text may be understood even by someone having no
formal acquaintance with the language; nevertheless, some of its
details which might othexrwise cause confusion are listed in the
appendix, and the roader is roferred to the reference manual [51
for further information, Here we draw attention to one oxr two
matters concerning our overall treatment of the system,

It is perhaps worth noting that the word 'goto®, though
available in the language, is not used at all, and the only lahels

in the system axe those required by the sgpecification of the”

pseudo~hardware Exec routine (I1:g), 8o we avoid altogether what
is beogoming recognised (see, for example, Wulf, Russell and
Habermann [6]) as one of the features most likely to introduce
error and confusion; wo make do instead with conditional. commands
and expressions, subroutines, switches, and the wide zrange of loop
cormands, all of which are semantieslly much more regular
constructions, Weo do not feel that this exclusion of Ygoto® has
resulted in any unnaturalness; nor that its inclusion could
improve the clarity of any particular case,

We bhave not hesitated, when it appeoared convenient, to use
recursion, Indoed, as wo romark in IIi4.3, our recursive routine
OutPy; for the oubtput of positive integers, occupies fewer words of
core, and takes fewer oycles of machine time (on cur machine},
than any other routine of equivalent specification, '

It should bhe unnecessary to remark that attentior to layout
can greatly improve the »readability of a program, But a

e e e e e o e e e e bt e P i, i e g gt A e e 41 P Pt

e e o o it o e e e o 7

I 5
goneration of starting in column 8 has left its effect, s0 we draw

attention to our use of indentation, blank lines, and the grouping
of material generally, to bring out the structure of the routines,

A related question is the amount of comment and ancillary
documentation that is desirable, On the whole, & program in a
high~level language should be its own documsntation, Even soy
sorme additional remarks (f) are sometimes helpful, just as a
mathematical proof often gains in clarity when the formal steps
are tompered with informal connecting explanation, In
mathematics, the formal and the informal statemonts are often
interspersed, and it is indeed possible to treat a program in the
samo way (for an example of this approach, see [2] §2.5.2), But
the structure of a program is usually moxe complex than that of a
proof (which is usually practically linear, with the occasional
splitting into cases, but with hoavy use of ‘*subroutine calls’ to
previously proved results), and the program®s structure may be
ohscured by a continuing flow of comnment, We have thorefore
included wxather few comments with the program, and have separated
out most of the description into the conmentary, As a 1rough
guide (though we are not at all consistent), the comments in the
text are about things which might otherwise escape the notice or
the memory of someone who knows the system fairly woll, while the
commentary is meant to guide the reador coming. to the system for
the first time, Some parts of the system nood more deseription
then others, in particular those which contrcl the peripherals and
humour the operator, in general, however, we have tried to keep
the amount of extra description to the minimum,

Another matter to which we have given considerable attention
is the choice of namos, We have tried to rejoct outright the
convention that all names should contain some characters. to
indicate in what section of the operating system they axe defined,
This convention may be very desirable in assembly code, but it is
unnecessary in & more sophisticated languagoe, Names with puroly
Iocal significance should be prevented from misuse elsewhere by
the scope rules of the language; namos with wider application
should bo chosen so that they clearly and concisely ovoke the
objoct®s significance (as, for example, do GiveUp, MakeNewFile, ox
OutN), On the whole we try to keop names, particularly local
nanes, as short as possible -~ asg indeed they are in mathematics,
It is easier to appreciate the structure of a construction if the
recognition and correlation of its components is a straightforward
and simple process,

6 I

It is our convention that names in block capitals are
resorved for manifest constants,

One class of objocts for which we have been unable to avoid
names with extra characters to indicate their field of use is
oloments of data structures, For example, many of the structures
used in the system contain pointers to their predecessors (e.g, FS8
blocks, Run-blocks, eolements of ClearUpChain, ete,), The
position in the vector occupled by this pointer is not the same
for all the structures, The struectures are used throughout the
system, and tho names of their elements must therefore be glehbal
in scope. So we are forced to use different nemes Ifor the
various kinds of predecessor (FPRE, RPRE, CPRE otc.), In a
language with types we could avoid this difficuliy by careful
design of the data structure facilities (see; for example, PASCAL
73, hut we cannot do any better with BCPL,

Guide to these books

part II of this book contains the text of tho operating
system itself, i1t is divided into nine chapters, each of which
covers soms broad aspect of tho system's activity, Each chapter
is subdivided into sections (which are stored as separate files on
the dise), and at the finest level of subdivision come the
individual definitions themselves,

Part III contains the toxt of the programs used to initialise
the system when it is read into the core, Like the previous
part, it is subdivided into chaptexs and soctions,

Part 1V contains the declarations of global variables and
manifost constants, which provide the environment for the programs
in Parts II and III, Part V shows how the sections of text are
grouped together for compilationsi in fact, each chapter of Parts
11 and IXI, with the declarations, forms =a separate segment,
Part VI is a list of the failure reporis which can be generated by
the system,

The vemaining two parts are concerned with fthe system
library., Part VII lists and briefly deseribes the entries in the
system index, and in Part VIII & dfew selected library files are
printed in full and described,

e e o2 e e ™ e i e o B e P s+ o o Pt e L A e e VI o e i SN N vt B P o, NN i b oty T e

1 7

We recommend that the reader should first orient himself by
studying papers [1] amd [2], Then he will bo ready to delve into
Part II, aided porhaps by the Appendix on BCPL, Parts IV, V and
VI are mainly for reference,

Cross referencesg in the commentary have heon made not by page
number but by section number, as these are the same in both text
and commentary, FPhrases like %sse above' refer within the same
section,

1313 THE TEXT OF THE SYSTEM

ricd, The load-go loop, Run and Load

IIti,1 IGIOOP

LoadGoLoop {giobal 370)

This is the heart of the operating system, and is what the
system actually does, 1t is described in [1] §1.2.3.

- LGloop (global 64)

This routine, which is Run by LoadGoloop above, is given in a
simplified form in [1] §1.2.3,

Lines 12, 20, 21 Since each activation of LGLoop is in principle
independent, it is appropriate to reset the standard input
stream before starting, and the standard output streams at the
end,

133 To avoid catastrophe in case the loaded program neglects to
set the global varisble Prog, it is preset to a default value,

{global 1)

Exrog

This global variable is reserved to hold the steoring program
of a user’'s job (and also sometimes of a system file: seo Logln,
VIII:i), A Job is executed by celling this routine, It is
gometimes also called Start,

Defaultprog {global 398)

This failure routine is the default value of Prog. It is
global, so that it may be used in other load—-ge sefquences,

—

B S T Sy

i s e e e o i, . » - -, - ~ “
—— ——. —_ e i e T T it b TN gy i -

I1:81,2 9

I1:1,2 RUN

Run (global 399)

seo [11 §1.2, Run applies its parsmeter as s parsmetorless
routine, after taking precautions to enable the status quo to be
rastored,

Lino 123 The possible repetition of TerminateRun is in case the
system is interrupted while +this wroutine is in progress
(perhaps because one of the youtines in the ClegyUpChain is
faulty),

PrepareforRun
See Run,

line 35% A correct copy of the ocurront state of disec space
allocation (which is normally kept in core) is written back %o
the disc,

377408 8ince the old ClearUpChain is chained in both directions
(Fig, 1), it must be altored, unless it is null, in ordor to
move its handle from the global ClearUpChain to +the new
Run~block,

42% The new Run-block is made the current one,

TerminateRun (global 302)
See Run,

Line 70: If the unloading operation (line 60) did not restore
IBlock and CPtr to exactly their previous values, then the
exror is reported,

Z7% When the system is interrupted in order that another user mey
log in, - the routine Interrupt (11:2.4) sots the global
variable User to NULL, so that TerminateRun will subsedquently
Run the logging-~in program, This seems a rather stupid
complication? it is a velic from the time when we were very
short of core, and it was usually necessary to unload soms
cede (d.0, ond & Run) in order for the LogIn program to fit
in,

10 I1:1.2

CleaxUp
CleaxUpChain (global 332)

soo [1] §1.2.2, The structure of the ClearUpChain is shown
in Fig 1, The ROUTINE woxrd in oach entry is & voutine which is
intended to be applied to the entry itself, Each enﬁry ig
romoved from the ohain before its routine is applied, so that if
the routine fails the entry will not be dealt with again,

ClearUpChorin 7

["’ - > . l%:D ENDCLCHN | esue

I 6ﬂl"'—___‘ ———* CPRE

ROUTINE

Fig. ! Shuctwre af ChavMPCLm'n

Logln

Seo TerminateRun, The system Llibrary program 'Login' is
described below (VIIISl),

Finish {global 395)

This routine, deseribed in [1l §1.2.,1, forces exit from &
program boing Run, Fig.2 shows the structure of the BCPL stack,
Uging information in the Run block, Finish alters the procedure
pointer to point to the activation lovel of Programi] (called in
Run, line 11), Then, whon retuxn is oboyed (written explicitly,
for stylistic reasons, line 102) the effect is as if the
activation of Programl] had terminated normally,

s

e T i i e s bt . s,

e,

O U S VL S PO N o PP

I1:1,3 1
II31,3 LOAD

Note on binary format

R [S— A binary word stream,
unl] Link B whether from %aps, file ox
b anywhere elso, comes in blocks,

{Pveq) each containing at least two

words, The Zfirst word is a
warning character, and specifies
the ¢ype of information in the
block, The second word is a
count of the number of words in

nk
?-pﬁnhv : the block over and ahove the
nks

'Pw,l:‘.’l
ti

choved in first two, The remaining woxds
Run- bhek Li are information woxds,

The warning characters
recognisaed by the loadex routines
are

TITIE NEWSECTION CODE

INTERIUDE DATA BINARY

ENDLOAD,

1= 0Of these, NEWSECTION and ENDLDAD
Link introduce marker blocks, which
aro procisoly two words long, so
that the value of the second word
is always O, The significance
of information din a BINARY block
doponds on context,

Fh. 2 Shuetuve o}

Other warning characters
BCPL stack occur in binary information for
other purposes {e.g, archiving

files),

Format of compiled BCPL segment

A compiled BCPL segment consists of blocks in the following
orderi

TITLE tho information words contain a packed BCPL
string;

NEWSECTION

CODE these may vary in length and number, depending

on the compiler;

12 11:1,3

DATA one of these at mosat}
INTERLUDE contains relocating code, describod bolow;
BINARY contains label-setting direectives, described
bhelow
(ENDLOAD after the final section),’

The INTERLUDE block is, of course, generated hy the compiler,
and its offect is the same as the following!
§ SetLabelsi]

crirsti]

roturn §
SetLabels is described in II131.4; CFirst 4is the first word of
the program®s code area, which usually contains a Jjump to
SetGlobals, also described in IIil.4.

The format of the BINARY block is deseribed in IIfi.4, undex
SetLabels,

Load (global 397)
This routine is for loading binary programs, in is assumed

to bo a binary word input stream, in the format described above,
and the routine loads program until it has encountered the number
of ENDIOAD hlocks specified as the paramefer,

Sectld
The routine LoadSection eoxpects as parameter a word fo

identify the section loaded; while it is in the machine, load
and Unload together maintain the variable Sectld, which Load uses

{and increments) whenever it requires a parameter for LoadSection, .

1Block (global 23)
Format of Loaded Section

With each section of loaded program is associated an
information block, This specifies the areas in the code and data
sogments of store occupied by the program, The first word of
each aroa points bhack to the information block, The information
blocks are chained, and the end of the chain is kept in the global
IBlock, Since the information blocks arve used for diagnostic
purposes, it is convenient to chain them in both directions,

e e e e e el et P 5} e " A e e ¥ ot A P bt kTN e e e e e R o i S e A A P o e e e Pt e it

I1:1,3 13

Although there may be several CODE blocks in & binavy
program, they are concatenated into one area when loaded, This
is not easily possible for DATA blocks, as the free store is not
managed as a stack]; so only one DATA block is allowed per
section, The foxmat of a loaded soction is therefore as. shown in

Fig.3.
Dara SEGMENT

DBl
I8k chings
cP ¢ E: and
el lerath of code sy stodie vorahls
P b of gecon
Lergth o dodon sea
TPRE
Jsoc
D | Tdent
CODE SEGMENT
S — . -
cede
of sechon

ﬁj\:ﬁ' Stache ‘} o lmded sedion

i4 1151.3
P

tx (global 9)

This variable holds a pointer to the firat free word in the
code segment which, as stated in [1] §i.1, is managed as 4
last=in=first-out stack, CPtr dis global so that programs may
note its current state in order to give it later as a paramoter
for Unload {see below),

CFirst {(global 8)

This points to the first woxd of code of the latest segment
to be loaded, it is set by LoadSection and used by interludes,

LoadSection

This routine is called by Ioad when & NEWSECTION block is
detected,

Line 77: The Unload routine tests this flag to ensure that it does
not attempt to de-nest globals {sse [i] §1.i) which may not
have boen set, as this could cause system corruption,

0% The loop to road code into the code aves is given extra
hardware assistance,

94-07: After the iBlock 4information is brought up to dafte,
interiudes are entered immediately, Since interludes lead to
the setting up of the globhals, it is afterwards felt safe to
make GlobalsUnset false, However, this is perhaps not the
most logical place to do so,

1115 Hardware assistance is aleo used to load the data block,

1158 The occuxrenco of any unrecognised block indicates the end of
the section,

Unload (global 306)

This routine unloads sections of program in the reverse oxder
to that in which they were loaded, until the code pointer has been
moved back at least to the value spocified by the parameter c,
Only the code loaded during the current Run may be unloaded,

115103 15

Line 140-180:% Each cycle vound the loop §w unloads one section of
code, .

142% SetGlobals (JYI31.4) is not called to de=nest the globals if
the code was geonevated before ‘'nested globals? wore

introduced,
11,4 SETLAB
SetLabels) (global 11)

This paramoterless routine is called by the INTERIUDE block
of a compiled program, and is used to relocate addresses in both
the code and the data areas, 1t obtains information from the
BINARY block, which follows the INIERIUDE block in the binary
stream,

The BINARY block, of Iength n (excluding the first two
words), contains n/Z entries, of the foxmat shown in Fig.4.

3

EWDLABCHN |&——

| luBcl-se@Hwa { mir| Value
ek Uit

)

F{g-"f' Setlabels ihfarmatéom

16

II31.4

Lines 24, 253 A s8pecifies the required contents of some word

containing an address; R specifies the address of this word,

20, 27% ASeg and RSog, the most significant bits of the two words

28:
29

O
40%

 qlbal-abbing 11 Condends
bk

in the entry, specify whether the addresses (contained in the
remaining bits) refer to the code srea or the data area; in
both cases the address is relative to the start of the area
oceupied by the soction of program being relocated,

The actual value to bo substituted (Val) is computed from A by
adding tho appropriate starting address, after masking out the
segment bit,

Ref points to a chain of words (in the segmont specified by
RSeg), each of which i8 required to contain val,

83 The routine scans the chain, updating oach oloment,

In the case of & chain in the dats area, it is necessary to
check that such an area {which is optional) dis in fact
prosent, '

3lehﬂ vehor

3 «.E"J\\ 'Jo{(ode

Ma2n

Addvese *

"> No. i 3m~§:».‘.~,
Stk of
hegk tehen's wde

Ej- S Setlrlebals ihfww«a'kcu

e e o s o o e e e e e b e e e e e 5 A e i e e 7 P i et g e e et vt e e o Py ot

I131.4 17
SotGlobals (globsl 21)

This parameterless routine 3is used to nest the globals
declared in a section of program, as deseribed in [1] §1.1, A
Jump to this routine is compiled into the first words of the code
area of a program, so that it may be entered by the routine call

CFirstl]
contained in the Interlude (described above, II31,3), which is
activated during the loading of a program, SetGlobhals is also

called by Unload (1131,3) in order to de-nest the globais,

The information required by this routine is stored at the end
of the code ares of the loadod progrem, and is in the form shown
in Fig.,5, Each entry consists of a pair of woxds, containing the
address of a global variable and its new contents, The final
word confaina the numbor of entries,

Lino 38: Sotirlobals obteins the addross (p) of this final word
from the information block,
02-07: It then scans tho ontries (backwards), exchanging the
- progent contents of the global with its new value, Thus when
Unload calls it for the second time it will restore the
pravious contents,

Note that SotGlobals must be called after SetLabols, as the
contents of words in the entries are likely to require relocation,

T182, Pogt=moxrtem arrs

II32.1 GIVEUP

GiveUp (global 29)

GivelUp is ~a varviable routine with one arvgument {see [1]
§1,2.1), It is intended for use in programs al points where an
error_has boon detected and thexe is no obvious way of continuing;
a call of Givelp may also be forced by the operator, GiveUp is
initially set to StandardGiveUp (ses below), It may be changed
by the program when a private GiveUp routine would provide more
appropriate post-mortem information or hetter facilities for
continuation,

A program may use the argument of Givelp as @ means of
identification of which error has occurred, More usuzlly,
however, & messege indicating the nature of the fault is output
bofors GiveUp is called; in this ecase, the parsmetor of GiveUp
may be used to provide more diagnostic information, Givelp
normally ends with a call of EndGiveUp (see below),

GiveUpStackSize (global 353)

A programmer who xeplaces GiveUp with a private routine
should set in this global variable an estimate of the amount of
stack vryequired, This enables the systom to set up some private
stack in the free store for a call of ForcediiveUp fto wuse, in
order that it will work whatever the astate of the machine,
GiveUpStackSizme, like GiveUp itself, is proserved in the
Run~blocks and restored on exit from a Run,

GiveUpstack (global 303)

This is a global vector Ifrom the free store area, usod as
private stack when ForcedGiveUp calls Givelp, It is set up whon
the system is loaded; but if a program indicates, by altering
GiveUpStackSize, that it has changed GiveUp to a version needing
more stack, then ForcedGiveUp will claim a largexr vector for
GiveUpStack,

e i e e e i e e e o e i et b A e i i o e e

B e LN W

I1:2,1 19

The format of
GivetUpStack, and
PrivateStack (II:2.4), is
shown in Fig.,6, Word o —TE
is & P=pointexr hack to the "
previous stack and word 1]
contains the length of the
vector,

Pm‘nkv into
wnin simile

Note that GiveUpStack
is used only by
ForcedGiveUps: calls of
Givelp from within a
program use the normal
stack,

A

7ﬁpﬁwhv sy ¢
FoxcedGiveUp (global 32) :

This routine is
called when the opsrator
indicates that he wishes
to foxce a call of Givellp
{seo Interrupt, II2.4). [ija & Shuchee of o
It sots up GiveUpStack and 3 .
ealls the routine GiveUp, privade sk in use

Line i4=-10% If PrivateStack points back into GiveUpStack, a
previous ForcedGiveUp has heen interrupted (this is quite a
COMMON OCCUTYONCo)}, These lines ensure that whether this has
happened or not, both PrivateStack and leeUpStack point back
to the normal stack,

18-22% 1t is posmsible, though unusual, that GiveUp may itself have

_ Run further programs,

30% GiveUpStack is already certainly big encugh to accommodate
StandayrdGivoUp,

32y 2343 Tho extra words leave room foxr the housekeeping
information in GiveUpStack,

InStack

This routine is wused internally by ForcedGiveUp and
Interrupt,

20 I132.1

standardGiveUp (global 394)

StandardGiveUp is the dinitial value of the variable routine
Givelp, In this wversion, the user is given a choice either of
dumping @& core image onto fthe disc or of outputting some standard
post-mortem information,

Dump (glebal 06)

This routine dumps an image of both the code and the data
segmonts onto & reserved area of the disc, so that they can be
subsequently examined by & suite of post-mortem progrems, This
suite must also deal with dumps produced by & sscond methed which
igs sometimos usod when tho aystem has collapsed completely. This
second method, by means of & tiny program in Modular One machine
code read in like the initial hootstrap, dumps an image of the
entire Modular One core onte the dise by a single transfer, in
this second case, the post-mortem suite has to uso information in
the dump of the Computer Techmnology Executive program to defermine
whore in the core image the code and data segments are; so the
Dump routine also dumps this information, in -the same format,
Because of hardware restrictions, this routine cannot dump <the
whole core, but must dump the code sogments and the data segments
one at a time in the appropriste places,

Lines ©3-06: The routine interrogates the data structures in the
Executive progran to determine the absolute address in core of
the code and data segments,

633 63: These variables are the upper and lowor bounds of the two
sogments, oxpressed as page addresses in core,

743 A simplified form of Executivels data structures ia
constyucted and dumped, so that the post=mortem programs will
o able to work out the disc addresses of the two segments,

Note that this routine, which is very implementation—
dopendent, does not use the disc filing systom, but a specially
rosorved area of the disc, (There was mnot enough disc space for
our original intention, which was to allow users to keep core
dumpg in the filing system,) s

e e e et e e P, o e i e e e A A e o e e P e e B T i i o e e e s o e b R e b i i i e e R P i o R o o i oo

IIiz,1 21
FetdhExecWord
This function obtains the contents of any word in coxe, given

its absoluto Modular Ono address (see Exec, 1ItQ),

SetUpDunmyExecStructure

This routine constructs in DiscPage enough of a data
structure for the post-mortem programs which analyse =a core image
dumped on the disc to determine the addrossos of tho code and data
sogments,

Lines g7-100: Although the dump is outside the filing aystem, it
is convenient to use the filing system primitive CoretoDisc to
write the information onto the dise; one must, however,
onsure that the transfer is effective eoven if writing to the
filing system is inhibited,

DumpSegment

This routine uses the Exec TRANSFER command (II:Q) to dump a
conplete segment onto the disc,

Line 103: A safety check is made that the transfer is to be in the
Line 1033 ¥ _
coro image area, which is at the high-address end of the disc,

EndGivelp (glohal 373)
A call of this routine may conveniently be made at the end of
a GivelUp routine, It outputs & message on Console (the

diagnostie information fLfrom GiveUp will, naturally, have bhoen
output to ReportStream), and waits to allow the operator to take
any further action, such as manual post-mortem,

ForcedFinish

This routine is used when the operator has forced a Finish by
interrupting the system, oir at the end of a GiveUp, It calls the
oxdinaxy routine Finish ([1] §i.,2.1, and IIsi.2), but it has also
proved convenient in practice to reset the constant streams,

%% I1:2.2

11:2,2 PM

standardpM : (global 393)
This routine may he used to output some standard disgnostic

infoxmation, It 4is one of +the alternative actions of the
standard GiveUp (1Ii2.1).

RoportCallTrace {global 375)

This routine outputs the stack housckeoping infoxmation,
which helps in sorting out the current state of the hierarchy of
routine activations, The stack pointers and links are output as
far back as the last ¢all of Run, ox until Max have been output,

Line 183 The first n links are ignored, to aveid the output of
information about the diagnostic procedures themselves,

20% 1f ReportCallTrace is called while the system is in & private
‘part of stack (e.g., during o ForcedGiveUp), then it is assumed
that information about the main stack is wedquired; the
routine will not output any links in the private stack, unless
indeed the whole of the current Run has used it,

RepoxiFre eStoresState {global 374)

This routine outputs post-mortem information about the state
of the free store,

ReportBlocks

This xoutine -is used by ReportFresStoresState to output
information about the freoc block chain and the pending block
chain, It outputs the number of blocks, the total number of
words in the whole chain, and the size of the largest block,

Line 40: If the chain is NULL, nothing is output,

e

o et o e e A B o e e e e P i s o b e i P S i e o o, A o i e e P e P s

11322 23

Repoxtiords

ReportFreeStoreState uses this routine to output information
about the free woxrd chain and the pending word chain, Unless the
chain is null, its length is output,

11:2.3 MPM

Manua LPh

An entry to this routine is one of the possible courses of
action when the system has been interrupted (ses Intexrupt,
113247, In response to commandg input on tho console stream
(Con, set up by Interrupt), this routine allows any word in the
code or data sogment to bo examined or changed,

The simplest command is merely a decimal number, which causes
the output of the addresses mnd contents of guccessive words in
the data segment, bheginning at +the specified address, This
continues until something is typed on the console, Each word is
output on a new line, but & single blank line is output in place
of any block consisting of one or more adjacent words whose
contents are Zero,

The command may contain one or more letters before the
number, The effect of these letiters is as follows:

B {('Both' forxmats) The content of each word is output in
address format (that is, as two 8-bit bytes in ooctasl) as
well as in decimal,

C VWorxds are output starting at the specified address in the
Code segment, In this case output is automatically in both
formats,

E ('Exchange®) This mode is used to alter the contents of
words in either segment, After the output of each word,
the system pauses for the operator to type one of the
following:

(i) A newline! the word is left unchanged and the routine
continues with the next word,

(ii) A decimal number followed by newline: this specifies
the new contents of the word, and the system continues
with the next woxrd,

24 11:2.3

(iii)B, followed by one or two octal numbers, followed by =
newline (B stands, porhaps, =£or "both', or Yhinary®):
this also specifies the now contents, If there is one
number it is simply interproted ms an octal numbex; if
there arve two they are interpreted as two 8-bit bytes,

(iv) N:! +the exchanging loop is broken and the routine waits
for another command,

There are two other single~letter commandss
N {('No more!) The routine ecalls ForcedFinish,

R This provides facilities fox Returning to a specified point

in the program, After checking that the *R' was not typed
by mistake, the system asks what values it should set for
the pP-pointer,
the link (that is, the instruetion address),
tho result (that is, the contents of the wresult
register, as this facility is often used to simulate
the return from a function eall),
The system chocks that the value proposed <for the P-pointer

in fact points to the stack for some routine activation in

the current Run,

Lines 261 47% Foxr historical reasons concerning the Modular Ore
hardwarae, the code gogment was originally called the
Y- segment, -

A4 Cand also lines 81, 85, 102-104): since +this is a post-mortem
routine it must work. even if the Z£free store has been
oxhausted, The normal Ifunctions NextN and Nextd are
therefore unavaileble, as thoy use PutBack, which needs froe
store, Special versions are therefore provided,

Exchange

This yroutine deals with the reosponse to oach woxrd when
ManualPM is operating in exchange mode, except for case *N'®, which
is dealt with by ManualpPM itself,

Return

This routine asks the necessary questions for the return mode
of ManualPM,

i ok P e A o At A P o P el it At P e o e e Pt b et 4 o i, s, lan e 1 i e e ki = i e

11:2,3 _ 25
Jum“ 0

Whon, in the return wmode of ManualPK, Return has obtained
satisfactory new values for the P-pointer, the return link end the
rosult, this function actuaslly makes the jump,

Linog 110, 1203 It alters its own wreturn 1link on the stack, so
that when it wreturns (line 121) it ends up at the specified
place,

AnythingTyped

This boolean function examines the state of its parameter
stream, to dotermine whether anything has been typed on the
dovice,

Line 3283 The mnewline key on the 0Olivetti xremote terminals
gonerates thiee characters (CR, LF, CR), and the final
carriage ryeturn can be a nuisanee uniess, as here, it is
ignored, '

MPMNextN

This routine is the ManualPM version of NextN, which must not
use PutBeck (see comment on line 44, shove), Since the number
may have been xeached hefore the wroutine is called, the <first
character to be scanned, though not necessarily significant, is
handed over as the extra parameter, FirstCh,

Lino 138: Minus signs are significent only if nothing, except
possibly spaces, separates them fxom the number,

1481 since PutBack is impossible the terminating character is

- lost,

MPMNextO

This is the ManualPM version of NextO, which is necessary for
the same reasons as MNPMNexiN, Unlike +the standard function
NextQ, it mlso accepts two octal numbers on the same line as
specifying one woxd in two 8-bit bytes,

26 1124

I132,4 INTERRUPT

When the operating system is interrupted for any reason, the
hardware forces e jump to word 2 of the code section, words O and
1 being resorved to trap erroncous jumps fo 0 (ses [1] §1.3).
Words 2 and 3 of the code segmont, initialised during system
setup,. contain a jump to the routine Interrupt, The hardware
also places a value, specifying the reason for the interruption,
in REASONFOR INTERRUPT, a reserved word in the code segment,

PPEX (global =3)

As it Happens, in our implementation this register, which
points to the base of the portion of stack belonging to the
current routine activation, is accessible as a global, in real
haxdware this would probably be a processor register, in which
case more spocinl machine-code instructions (seo 1Iig) would he
required to manipulate it,

Privatestack (global 356)

Since it is necessary that Interrupt should work whatever the
state of the machine, and in particular if the stack has hocome
corruptod or exhausted, Interrupt uses this vector as its stack,
PrivatesStack is set up during system setup, Its foxmat, shown in
Fig,b (11:32,1), is the same as that of GiveUpStack, PrivateStack
is also used_ by ManualpPM,.

Intexrupt {global 351)

This routine is automatically invoked whonever the operating
system is intexrrupted; it is normally never called explicitly by
pPrograms,

The action taken dopends on the xeason for the interruption,
If the machine has just been switchod on (case POWERUN) a call of
Finish is forced, so that the system automatically leaves the
interrupted Run and continues with the outer program which called
ite In all other ocases ({storage bound violations, or an
interrupt forced by the operator®s prossing ~the X=-ON key on a

e et e e e 5t S e e A s i o et Ao = 2

e i e i e et i et i e

I132 .4 27

console) the routine outputs an appropriate message on the
appropriate stream and waits for the operator to tell it what
aoction to take by typing one of four letters:
¢ {Go) The roufine forces a call of Finish in oxder to abandon
the interrupted Run, and othexwise continues,
F {(ForcedGiveUp) A ecall is forced of the programmer®s
diagnostie routine GiveUp (see IIiZ2.1),
M (ManualPM) The routine ManualPM is_éentered (II2.3),
L {IogIn) This indicates that a new user wishes to begin to
use the systenm, Apart from giving him an opportunity to
log in, the action is the same as G,

Lines 14-1iQ: The wroutine changes the P-pointer to use
Privatestack; and word O of PrivateStack ({which should
contain =a pointer back to the previous stack) is correctly
sot, unless theo systom was in PrivateStack alroady, In such
a cese, the system would have been interrupted while dealing
with a previous interruption, and word 0 of PrivateStack would
already contain & pointer back to the normal program stack,
This method, using the static variable TempP, ensures that the
process works even if a furfher interruption occurs while it
is taking place,

23% Con is the styoam usod for all the dimlogue of Interxrupt and

. ManualPM,

30: case NOREASON: this implies that the hardware has detected
that the system has stopped, and has restarted it, The most
probable cause is violation of storage bounds,

35¢ This allows the system to be rosoued from ExetConsole even if,
for eoxample, Console is some remote console stream which has
become corrupted,

52: This prompts TerminateRun to call the LogIn program (see

. TorminateRun, ILi2.1),
65, 083 This is netessary because the clock routines may ask
for the initial time on Console,

28 113301
VA IIIVY,.
Sivg "
Fs wre -
FS bl
FIC 7| Fae bhek chadn + n -
P | Free wod chadn l_> ///////
Pt | Rrding bink choin '.——3_,
mtw»,b::f- I////////I
8 cu‘:v"uak oo 1 END A
ve [Sgpeiretol, — (/L7
\[:m Ruceding FShirle ¢ SIzE hoe <
| NITB END
Sis {4 € - "
N¥TR END .
: L N
B
END e)
| v] Assignd sk
OUTSIDE -

CoareEnT 5 ARem

GURRENT £S5 ARER

Rg.7 Stwchwe o Fee St

e o b i o S ot

e b B e e e s o e o e 5. S o e T ke o i, e e

1133, Stoxa

I11:3,1 FREESTORE
This section of tho operating system deals with the provision
of ofi-stack core storage (soe [11 §2.2.1).

Tho froo store area employed for g Run is the largest free
vector in the storage which helongs to the program invoking the
Run, (The first Run is allooated & fixed amount of free store
whon the system is set up.) At the end of the Run all its free
store area is foreibly reclaimed,

The free vectors in & free store area are chained together in
order of loecation, Tho free single words are kept in & separate
chain, also in order of location,

Is (global 24)

The ‘state of a froe stove area is kept in a %-woxrd vectér,
The global F5 points to the current one, The format of the whole
structure is shown in Fig,7.

NewvVec . (global 60)

This function is used to claim a block of specified size from _
the current free.store ares, The parameoter n gives the size of
the block {i.,e, the block v is to have olements vio to win, and
will therefore be of Iength n+l),

Line 8: A validity check on the paramoter,
i2-16% 1f a single woxd is required and the free word chain is not
_ _empty, one of its elements is used,

1§:28= The free block chain is scannsd until a big onough block is

_ .. _found, B is the block being considered, BP is the v of the
pointer to it, usually from the previous block, See Fig,8,

30i, Unless the block is exactly the right size, NewYec needs to
return the surplus, This could he done by calling ReturnVec,
but (unloss the surplus is a .single word) all the reguixed
information is known already, A lot of unnecessary work can

30 11:3.1

therefore be avoided by
movely xesetting the pointers
instead,

e
R 423 If the block is the wright
. wsize or if there is only one

surplus word the block is

HH - i —

romoved from the block chain,
$t A Bingle surplus word is
returned,

30423 The chain is adjusted to
contain the surplus block
(Note that B{NXTB and SB{SIZE
are the sgame loceation if
n = 0, hence the comment),

lJ |

SitE 3§ e——]
NXT® ——r]

ReturnVec {global 61)

ReturnVec is a routine to
j return a specified block of store

to the free store, It takes two
parameters, Vv (a vector}) =and n
{its size), and it returns tho
area V{0 to Vvi{n incluasive,

%-8 New\Vee - The block is merged with any

block (ox word) already free with

which it is contiguous, If the block is outside the current free

store area it is placed on a fpending chain', to be returned when

the system reverts to the earlier (larger) area from wkich the
block was obtained,

Lines 52-71% These are obeyed if the block is outside the current
froe store area, or if the parameter n is invalid,

535 A validity check for n,

54% A check that the vector does not straddle a boundary of the
current area,

52—61: A check that the vector ig inside the primaeval free store
area,

63—29: The vector is a valid pending word or block; it is added
to the appropriate chain, ; :

233 The normal case bogins here; the vector is inside the current
fres store area,

23-28: The free word chain is searched to see if any £ree word
occurs immediately before or after V, Two pointers are used,

e bt i O i ki P e e P 7 e, bt 2

S e N A I NP

II55.1 3

pW (the ‘previous' word) end W (zv PW¥, the word boing
considered), The search continues until W reaches or passes
the word kefore V, oxr reachos the end of the chain,

81-89: Here there is a free word immediately before V (Fig.9(a)),
The word is removed from the free word chain and added onto V
(Fig,9(b)),

twe Fwce

Wo— '——-—E< W-—-,_f’

Voe— Ve

[I

(@) before (1) afte-
Fig. q RetumVee

32 I1i3.1

863 A safety check that the vector V does not contain sny word on
the free word chain,

88=9i: if a free word immediatoly follows V, it is romoved from

. the free word chain and added onto Vv,

943 The routine now attempts to concatenate the (possibly
enlarged) vector V with blocks on the free block chain, The
mothod is similar to that for the free words, except that it
is the free block which iz augmented rather than the vector
(this avoids removing bhlocks from the free block chain, only
to return them to the same place later),

~100; The search uses the pointers B and BP described in NewVec
. _(so0 Fig,8), _

102, 103% 1f the block B immediately procedes V, it is enlarged fo
_ inelude V.

104-107: If the enlarged block B is now contiguous with the next
block on the free block chain they are amslgamated,

110—11%: 1f B immodiately follows V then it is enlarged to include

.. V{if n = 0 then V{NXTB and B{SIZE arc the seme location),

1183 A validity check that Vv does not overlap a free block (we
already know that the upper bound of B is greater than or
equal to the lower bound of V),

121~127¢ ¥ is not contiguous with anything, so it is insoxted as a
new link in the fxee word chain or the free block chain as
appropriate, Note that we already have pointers to the
correot positions,

R¥GiveUp

This is & private error routine used by ReturnVec,

Newitord (global ©62)
This is a function to obhtain a single word fLrom the free

store aree,

ReturnWord ' (global 63)

Thias is a routine to retuxn a single word to the free atore,

T e ™ e e b o P e e T 0 i At e e e i o, ot e A i . et

e A e e e s i T e e L e e .

II33,1 33
MexVeoSize (global 37)

This is a parameterless function to £find the size of the
biggest unallocated bleock in the current free store, If both the
free block chain and the free word chain are empty, the result is
the constant NOSTORE, Note that in order to interpret the result
it is necessary that NOSTORE < 0, and the function itself uses
this assumption,

Line 150: If the free word chein is not empty there is at least a
vactor of size 0O,

151—156: A search down the froe block chain, comparing the size of

. .each block with the maximum already found,

NewFreoStore {global 390)

This parameterless routine is normally cslled only by
ProparefoxRun (I11:1,2), It constructs a new FS block to describe
a new free store sarea formed from the largest avallable block in
the existing freo store, The global FS is altered to point to
the new FS block,

Lines 1068, 16G: The entire area is the only free block; the fice
word chain and the pending block and word chains are all
ompty,

1713 The new FS block is chained fo the provious one,

RostoroFroeStore {global 389)

Thig routine is normally used only by TerminateRun (II31,2),
its parameter is an F§& block, and the routine reastores the freoe
store to the state described by this hlock. It has to deal with
the pending chains and also with the 'PutBack® problem (see [2]

§2.5:3)%

Lines 178-1823 A check that the parameter hlock is a valid FS
block zi.e. in tho chain of F§ blocks),

183-218% For sach cycle xound thism loop (§U), FS takes one step

_ back along the FS bklock chain,

184: 1f any ecloments of PBChain are in the curvent free store

. area, weo know that they will be the latest elements to have
beon added to the chain, If such an elemont oxisks, this
activation of the routine does nothing more, in this cycle of

34 ‘ ' 11:3,1

loop §U, than deal with one element of PBChain; any remaining
elements and the actual step back along the FS block chain are
dealt with by a recursive call of RestoreFreeStore,

187% s may be either a fast stream or a slow stream,
¥
1563 In sither case, V is the core vector to which § refers,
1008 1f the ~ stream is in the current free store area (which we

know hy line 183 is not the area we axe trying to reach) then
the stream is akout to he abolished anyway; g0 the PEChain
element can safely be ignored,

191t We recurse to complete the action necessary in this cycle of
loop §U, ©Note that since this is a call of RestoreFreestore
itself there will be some eoxtra unnecessary validity checking
of the paramestey, This could be avoided at the cost of a
little extra complexity, but this routine dis wused
comparatively rarely and the time wasted is unimportant,
Actually, for this c¢all, but not for the other recursive oall
(line 105), it would be possible, and a little more efficient,
to give FStore as the parameter, But it is more important to
preserve symmetry, in oxder to keep the structure of this
routine as gsimple as possible, as it is alveady rather
complicated,

194-19@3 1f the stream will survive this cycle wound the loop then
the objeet in the PutBack block must also be presexrved, Ve
therefore retrieve it (line 1g4), recurse in order to complete
the revexsion fto the previous eloment of the FS bloek chain
{line 195), and put the object back again, the necessary
vector being claimed now <£rom the earlier free stowve (line
1g6), Hote that the recursive call camnot revert all the way
to FStore, as § might be abolished at some intermediate stage,

1 There are now no PutBack blocks fo be considered,

200: FS is stepped back to the previous elemsnt in the chain,

201 The complete area of the fLfree store Just abolished is

. returned to the previous free store,

203-214% ALl the elements on the pending chains are returned, I£

. _they do not belong to the free store which is now current,
they will merely go onto its pending chains,

210t The FS block of the free store just abolished is returned,

iy

2

et o e e i e s e e e N A A . ot e A e o P Al e i o o B A i

o ity e e S S e, i e e P R e o e o S T e

113342 35

11:3,2 PUTBACK

PBChain (global 337)

This holds the chain of PutBack vectors, See holow,

PutBack (global 301)

PutBack is deseribed in [2] §2.4.5, and an outline of its
implementation is given in [2] §2.5.3. The version given here,
howover, differs slightly from that deseribed in the paper, in
order that it may deal with fast stroama, An extra element is
required in the PutBack vector in addition to {hose shown in [2]
Fige2, and the structure of a fast stream with one object put hack
is "now as shown in Fig,10, Note that the pointer from the slow
block to the PutBack bloek is in the position STR, normally
reserved for the paramefer stream, This iz satisfactory fox. pure
input streems, but it causes difficulty with bilateral streams,
where the output part must woxk noxmally even when an object is
put back to the input part, The parameter stream Ifor bilateral
streoamg must therefore be placed elsewhere in the vector, o0,
for example, IntcodetoandfromTeletype (I1Ii5.2),

Line 8: If str > 0 then Str is not & fast stream,

17-20¢ If Str is a fast stream (see [21 §2.0) then its input
“buffer pointer is stored in the extra elefient of the PutBack
vector, and the bhuffer pointer is then overwritten to peint
heyond tho end of the buffer, This ensures that when Next is
next applied the function FNextPB, stored in the slow block,
will be called,

2245 2332 The vector is addod to PBChain,

2 § The functions which replace the NEXT, CIOSE and RESET
_elements of the stream vector differ according to whether the
gtream is a fast streanm,

36 11:3.2
NextPB
The action of this function is described in [2] §2.5.3.
Lines 44-53! The PutBack vector is removed Irom PBChain; &
failure ocours if it was not there,
FNoxXtPB
The fast-streoam version of NextPB,
ClogePB
FClogoPB
ResotPB

FReoseiPB
EndofPB

These youtines are described in [21 §2.5.3, though except for
the last they must bo given in two versiohs, for slow and fast
strenms,

e e 1 P P e e e P P e e, e P e Pt % i S a2

e e A e e,

Fast bk, Sl blonk
SLONBLOK ‘ [N1] FiNextPB
INBFFPTR * ™ Ut
NBFFEND o | CLOSE FClote PB
INESC LIS e—
CITBFFETR ENDOF Endof PE
OUTRFFEND RESET FRed PR
OUTESC
@ PutBodde blodke
[TBNEXT
PRCLOSE r »
PRSTR
PR ENDOF
PR RESET
OB
STREAM — ﬁ'——-’ ’
PTR P N}
PBPRE 1
S

Fg.lo Stmchave. o[o 'ﬁu{' iwrw{' sheam
with one o.l,‘w{: ?M' bacle

134, Stream primitives and I/0 routines

I184,1 STRPRIMITIVES

This section containe the definitions of some of the
primitive routines and functions operating on atroaws, They are
introduced in [2] $2.1 and §2.4; their implementation is outlined
in {2] ®.5. Next, Out and Endof are given hardware assistance
(for.reasons given in 2] §.0); and so their definitions appear
elsewhore (IX3Q), . .

These primitives have fo doal with both fast streams and slow
streams, If the numerical value of the stream is positive it is
a slow stream and its value is the address of the atream vector;
if the valuc is negative the stream is
a fast stream and the value is the
logical complerent {~v) of the Zfast
stream vector (v}, The formats of
both kinds of stream are shown in Figs,

ii and 12, The functions and routines NEYT

of a slow stream take the stream vector

itself as their first paramstexr; those wr

of a fast stream take the address of CLOSE

the fast stream vector (that is, the ()

logical complement of the stream

itself), ENPOF
AESET

close (global 18) SOURCE

Reset (global 068> (S‘I’ATE)

(REsETSTANE)

See [2] &0403 and &_04-.929

Souxrce

If 8 stream function is applied to
a stream, the actions of Next oxr Out on
the argument stream and on the result
streoam will wusually bhe different;
howaver, the actions of State and Hﬂ'ﬁ Shuchare 9; a
ResetState will probably be the same, slew a‘vea.w\

e et et i e g o i b e e Pt e et e, A e e e o — S C e e .

I134,1 39

S0 in the implementation of state and ReseiState wo refer divectly
to the 'source stream?, which is usually the streem handling the
actual device, Every stream voctor contains & pointer to its
source gtresm (in the cage of a source stream itself it will point
to its own vector), ‘the function Source obtains this element for
eithor a slow or & fast stream,

Fost bk Shw blak

SLOWRLOOK D NEYT
INBFF PTR — T
INBFFEND - : Close
INESE (<)
GUTBFFPTR ENPOF
6V BFFEND RESET
QUTESL 0w
(eTHTE).

(REsETSTATE)

(=ap)

-

L

L2 Shachwe e’a{e@l ih?u.}{' shream

State {global 350)
ResetStato (global 3497

Seeo [‘21 §2"4 04-’9

Source streems have iwo extra reserved elements (STATE and
RESETSTATE) for the implementation of these primitives,

40 1141
StresnExrrox (global 69)

This system exrror routine is available for general use, 1t
is intended for positions in a stresm vector corresponding to
primitives which would othorwise be undefined (such as Out for an
input stream),

I1id 02 QUTS
Quts (global 381)

In principle, this routine outputs the BCPL string String to
the cheracter output stream S. The character **' is treated
specially, however, and it and the character after it axe
interproted, whenever it occurs, as specifying some special
action, This action will usually involve the next in the list of
extra paramsters a to %, The repertoire of special asctions is as
follows: ’ :

¥A The noxt parameter is output in the foxmat of DutAddr,

#B The noxt parameoter is output as an 8-bit byte in octal,

*C The next parameter is output as a single character,

*] The character following the *I? must be a single digit, n,
The next parameter is output as & decimal integer,
right=justified in a field of Ilength n characters, or
however many more axe refuired to accommodate it,

*N The next paramster ia output 8s & decimal integer with no

8pacos,

The neXxt parameter is output as an unsigned octal integer,

The next parameter is output as a string (the action is

undefined if this second string contains the 'ff

character),

¥ A single ¥ is output,

*0
Eg

Lines 6! 7% BCPL does not xequire a routine definition and a call
of the same routine to have the same number of parameters; so
wo allow for an excess of them here, in order that the action
of the routine itself might not overwrite any,

Tho extra parameters & fo z are handed over as a vector, as
the third parameter of OutString, %

53

T e TS PP U A S S S U ST P

—

113442 41

Virites (global 44)
Reports (global 30)
) These routines have the sume action as OutS, except that they
output to stroams Output and ReportStream respectively, It has
also been found convenient that ReportsS should finally output an
extra newline, Note that t{hese routines do not e¢all Outs

explicitly, as the Iong parameter Llist of DutS would use an
excessive amount of stack, which would be embarrassing
particularly if a private stack were in uss,

Qutstring

This is & private routine used by Outs, WriteS and Reporis,
and also by OutN {(I134.3). It outputs the string String to the
cutput stream $, using extra paramoters from the vector ParamList
when it encounters +the escape character 'x!', Thoso are treated
as gpeocified in tho description of Quts above,

Lino 28% Ptr is a character pointer into the string,
20% i_is used to index the Paramiist vector,
273 Tho length of the string in characters,
34¢ The normal case,
393, Ch is the character after a T,
%3:61: The apprepriate routine is chesen,
: and applied,

05=74: This doals with the caso of *XI.
i Ch is the character after the I, which ought to be a digit,
GotC

A private routine wused by OutString to fetch the nth
character of a string,

OutJustify

A private routine used by OutString when dealing with *1a
It outputs the integer n to the stream §, right-justified in &
fiold of which the third paramester specifies tho length,

42 1342

A private funetion used by OutJustify to detexmine the length
in digits of the docimal reoprosentation of an integer,

OSReport (global 33)

This routine - is used by the system to output mossages about
errors detected bhy system routines, The first parameter is a
failure number; the second is an explenatory string to be output
by Report§, and it may be followed by up to four extra parameters
to bo used if the string contains any "' characlors.

OSRepoxtN (global 34)

Thig routine is used for the less common system failures and
morely outputs a failure numbox, 1t will be necessary for the
user to rvefer to the list of failures (Part VI) to find out what
has happensd, Whother this routine ox the previous one is used
in any particular case can, of course, be altered in the light of
experience,

II: OPR'ES

Outp

This is & private routine used by OutN, it outpuis a
positive integer mn along the character output stream 8, as a
docinal integer with insignificant zeros suppressed, Note that
on our machine this recursive routine is both faster and shorter
than any other,

Lino ! This assumes that the decimal digits have consscutive
soquential values in internal cods, Then, if 0 £ X £ 9, the
digit which repxesents x is given, in internal code, by
'Q? + Xe

e e i S amia e e oo e e et e 5t o P P e e e e e N AN o i ot s e b

- e, - -
et o, S N T

113443 43
OutN (glohal 379)

This routine outputs the integer n, as a decimal number, to
the character stream 8.

Ling i7: In a 16-bit 2's complement machine the range of a single
word is ~32708 to +327067. So tho sign of -32768 cannot be
reversed, and this number has to be deslt with separately,

Qutg

This private routine is used by OutD and OutByte, It
outpute the least significant nine bits of =x in oetal %o the
stroam S, (Soe the note referring to line 9 above,)

utn ~ (global 380)

This routine outputs an integer n in octal to the character
stream 5,

OutByte ' (global 346)

This routine outputs the eight loast significant bits of b in
octal (three digits) to the character stream §,

QutAddy (global 347)

This routine outputs the integer a in octal to the character
output stream 8, as two 8-bit bytes separated by & colon, It i=s
so called bocause this format corresponds slightly to the address
format of Modular One (pageiword),

¥rite {global 343)
VriteN) (global 45)
WriteO {global 38)
Wm..tethe (glob_al 344)
VWritoAddx : (global 345)

Those routines are analogous to Out, OutN, OutD, OutByte and
OutAddr respectively, but they all wuso the global output stream
Output, See [2} ¥.7 and §2.8,

4“4 115444
1134..4 NEXTN ’

NexiN {global 358)

NextN is & function to read the next signed docimal integer
from a character input stroam §. Characters in the stream are
ignored until an integer is reachsed, The character after the end
of the integer is left PutBack on the stream,

Lines i1, 123 A minus sign is significant only if nothing {oxcept
possibly spaces) sepavates it from the number.

HoxtO (global 357)

This function reads the next octal integer from the character
input streoam S, Characters are ignored until such an integer is
reached, The character after the integer is left..PutBack on the

stream,

NextcCh

This private function used by NextN and NextQ obtains the
noxt character from the input stream 8, but fails (that is, calls
GivelUp) if it detocts the end of the stream, B

et P b e e e e o i et S e o e e e b P AT e -
— At R et e ot o s P o e e et o o o S P P

1135.,1 TELETYPE

Teletypo {global 376)

This is & constant stream, of bytes to and from the executive
toletype. It is wvexy rarely used explicitly by programs,
however,” as they usually access the teletype Yia the internsl code
stroam ExocConsole (IIi5.2), Telotype is set up when the system
is initialised (IIIi2.2), ~This section contains the definitions
of the intornal functions and routines used by the stream, They
are given temporary global numbers whore necessary, as afler the
syafen is initialised they are all in the stream vector, and their
global place is no longer required, The format of the vector is
shown in Fig,13, Note that the input part of this stroam could
be & £ast stream, but since walting for the oporator is an
inefiicient operation anyway we did not bother to optimise it,

‘NoxtTT {tomporarily global 403)
This is the 'Next® function for the teletype stroam,

Lineg 7-03 If there is & charactor in the line buffer it is uged,

12—55: Dtherwise & complete line is read from the teletype to

.. yofill the bhuilfer, During the wreading of this line some
charactors have specinl effects, as described bslow,

10 A ping to energise the operator,

19¢ Wait for a character to come in,

20! set the device to resd the next character,

22% The normal case, The character is echoed and placed in the

B buffer,

26-209: 1f the buffer is full (which is unlikely) a newline is
-output, and the buffer (without a newline) is imnput, Note
that in all this loop {§r) the command bresk terminates tho
£illing of the bhuffer,

3%, 334 Both those characters have the sams offect, A nowline is
input, and the filling of the buffer terminates,

39, This escape character allows the input of a buffer fto bhe
terminated without a newline, The character itself is
neither input nor ochosd, ’

46

—,

NEXY
AT
ClosE
STR
ENDF
RESET
SOVRCE
STATE
RESETSTATE
SRk
BUFFER
BUFFSILE
3TOPCH

Seq

EnbMODE
COMPLETED

SELFPTIR
(mTREASENY

Fig. 13 Tek(rjpe

NedTT) (wragason)
ol || mse
ResetTT BUFFGR
Nutl. BUERS{2E
BndofTT CToRcY
RetetyT SEG
ChadeTT ENDHOW
ResatShadeTYT CotpLETED
TTREAD |o, SELFPIR,
\ (mmt:_sﬁ) _
a iINBVEF
NOTBYTE
DATASEG CVTBUFE
LMEBRFPTR
QUIETEND LINEBEFLALT
) LINEBUFFER
[W——
N e N N

A AN

TTWRITE

1

NOTBYTE

DATASEG

QUIETEND

II:5.1

e e P e e o e e

1185,1 47

423 This is tho trailing erase character.

43: It is ignored if the huffor is empty already,

44 The last character input is removed,

! The erase character is echoed as a fuery,

49% This character (CTRL S) cancels the line so far, It is echoed
as & sharp followed by a newline, and the buffer pointer is
reset to the beginning,

54% This character (CTRL X} is for use when an excossive numbor of
trailing eorases have made the line longer on paper than it is
in fact, A newline is oufput hut there is no effect on the
buffer,

60, 623 The pointers are set to refer to the new bufferful,

E&i A_recursion to obtain the first character,

|2

OQutNowlLine
A private routine to output a newline on the teletype, HNote
that +this routine is only used by the input part of the teletype
stream, If it were to bo used at computer~limited speeds it would
he necessary to include an extre carriage-return charactexr, to
give the teletype carriage time to complete its movement,
OutTT (temporarily global 404)
The *Out! routine for the teletype stream,

Line 77% The routine loops at this command until it is accopted,

RosotTT {temporarily global 4035)
The °‘*Reset® routine for the teletype stream, Thexe is

nothing to do for the output half, bhut the input pointers are
altered to onsure that the next call of NoextTT reads a fresh line
from the device,

EndofTT {temporarily global 402)

One can always ask the operator for more,

48 113541
statelT (temporarily global 400)

The teletype stream is & source stream, in the sense of the
desoription of State and ResetState (II!4.1). The state of the
stroam is definod to he the contents of the dinput buffer,

ResotStateTT {temporarily global 407)

Line Q4% The input huffer is initialised,
: An input transfexr is started to the input bufferx,
$ If tho transfer command is rejected it is assumed that one is
in progress already, so there is nothing more to do,

I1:97.2 INTTT

ExocConsole : (global 383)

This is e constant stream, of internal code characters fo and
from the executive teletypo. It is the normal means for programs
to commnicate with the machine room operator, It is created
during system set~up (IL1:2,2), by
the application of the Zfunction
IntcodetoandfronTeletyps (soe below)
to the stream Teletype (IIi5.1),

NEET NextTele
ouT OutTele
CrosE CloseTa be

IntcodetoandfromFeletype (global 79)

This is an example of a stream ENBYE Ende|Tale
function for code conversion, and it
converts a stream of bytes in Resev RexetTele
teletype code to an internal code SouneE | Souwee [Sér]

character stresam, It is bilateral? TTSTR Siv
that is, it is defined on both input
and output stroams, It is used Flay

during system setup for the
definition of ExecConsole (III132,2), -
but it is also available for general Fig. Iy Inhedefpand-

use (e,z, with the reader or punch, mTe e[St
to deal with paper tape in teletype)Cm lc{jf C]

e e e e it At e e e, e o e i g P o e e e g S o e e 0 P e o e e o e o P ey ke

11352 . 49

code); In the latter case it is recommended that the moxe
appropriate of the alternative names for this Ffunction be used -
IntcodoefromTeletype or IntcodetoTeletype.

The format of tho stream voector is shown in Fig,14. Note
that the parameter stresm is not stored in the - usual position, so
that the output part might still work when something is put back
to the input part, See PutBack (I1:3.2),

NextTele
This is the "Next?' funetion,

Line 20! Parity orrors are tolerated only if the stream is the
on~lino executive console stream ExecConsole,

27: Othorwise the function insists on & character of correct

parity, Note that the parity teating function EvenParity can

call TryAgain as & side~effect,

The perity bit is removed,

This is the normal caso,

Invalid and unprintable characters are igmored,

R

EverParity

This private Zfunction, wused by NoxtTele, tests whether x
contains an even number of bits, It uses the vector Parity
(111:2,.1),

Liﬁe 41: If the test is unsuccessful the function as & side-effect
epplies TryAgain to the stroam function's parameter stream,

OQutTele
This is the 'Out® routine for the stream function,

Line 483 Whenever output ocecurs to the executive console the
stream is reset, thus losing any unread input, This is to
ensuxre that when the system asks a question it does not accept
earlier input as the answer,

49-51% Normally, as defined bolow (lines 53=50, eote,}, if several
newlines are output the final one is preceded by four inches

50 . 11852

of runout, These lines avoid this eoffect occurring on the
or~line teletype,
24t Tho output routine itself is roplaced by a sgpecial version to

deal with newlines, SYFLAG is set false to indicate that

only one newline has so far been output to the stream,

04=78: See lines 30-34 for another way of doing the same sort of
thing,

79, 80: The parity bit is inserted if necessary,

OutCRLE

A private routine for outputting newlines,

DutNewlLines

This is the special version of the output routine for the
stroam function, used for +the output of newlines, It is placed
in the vector when one newline has already been output to the
atream but has not yet been passed on to the parameter stream,

Line 3% SYFLAG is set ftruo to indicate that more than one newline
has been output,

4% A nowline is output. Kote that we still have one newline in
hand,

g7: We reach here when a character other than newline is detected,
1f more than one newline has been output this line outpuis
four inches of runout,

98¢ The final newline is output (leaving one newline until aftex
the runout ensures that if tho paper tape is spliced at this
gap the print-out will still bo satisfactory).

: The normal output routine is restored,
100: The character after the final newline is output,

CloseTele

The "Close? routins of the stream function,
Line 105% If thore is a newline in hand it is output,

ResotTele

This is the 'Reset' routine of the stream funection,

e e U S S e

e e e e P b e e s et s e i i s P v, e

1125.2 81
Lines 112-110: If the apecial output routine is in use it is sot
back to normal and the newline in hand is output, In this
cage there is no runout as it is quite likely that the program
will be generating some itself,
EndofTele
This is tho *Endof® function for the stream function, Its
rosult depends on the parameter stream,

Souxrce

A copy of the function in IIif.1,

113523 XFER
InitiateTransfer {global 10)

This routine is used internally by the paper tape reader
stroam BytesfrompT, and the other double-buffered library stream
functions BytestoPT (for the paper tape punch), and LinePrinter,
It has three parameteors, The first parameter is a astream vector
8; the routine mekes somo assumptions about the contents of 8,
which should be as shown in Fig,15,

As the matters requiring deoseription in this routine axe
rather complicated and also rather mixed-up, we give a ‘guided
tour® hexe, in place of the usual line-by-line commentary,

B (line 15) is a parameter block suitable fox a TRANSFER call
of Exeo (II:g). The routine samends this block (line 17} to
specify a transfer of n characters (n is the socond parameter) and
attempts to start the transfer (Iine 19), If the attompt 1is
unsuccessful, the routine loops (8R, lines 10-35}, continually
incrementing a count i (line 33), FEach time i becomes =zero
(about every .three minutes), a sories of pings is output on
ExecConsole (lines 22, 23). Tho interval between pings is PAUSE1
inexements of i {(line 23), Theo number of pings in the series (3
for the reader, 5§ for the printer and % for the punch) is
specified in SIPINGS, which is used (lime 13) to compute the

52 11353

interval of i (0 £ 1 < Last, 1line
22) during which pings are emitted,
Sinoe {in order to avoid bullying
tho operator) soveral minutes elapse ?h&ﬁ
between each series of pings, the
operator may find out what is
holding up the machine by typing a
character on ExecConsoles if the
routine detects such a charactor
(line 28), it outputs the string EXEcBlock (
Message_ (the third paramster) on BUFFER. —y
ExecConsole (line 30),
' Rammel»w biale

(The)cycle bogins with i preset ‘kv Exec <
line 12) to a small negative value

(~PAUSEQ), This causes the routine ToaNsFER
to wait for a short while, so that
any transfer already in progress on \
the deviee has ¢ime +to finish,

before it bhegins to complain hy . v
pinging, At the end of the first . i
gories of pings, the poolean HeldUp -
is 8ot (lino 25), HeldUp is wused)
(line 28) to ensure that the state L
of ExecConsole is neither tested nor

resoet unless a hold-up actually

occcura: this is to avoid, normally, Bt &m*w
affecting similaxr uase of ExecConsole

for some other ovurpose (e,g. %o

break out of a tape-copying loop, as

sugeested in [2] §2.4.4). . :

The loop is bhroken whoen Exec
accepts the TRANSFER roquost (line
20), and the routine finelly amends e
the parameter block, exchanging the
huffers paxticipating in the
double~buffering arrangements (line
377, (It is assumed that the word Swoed L“ﬂ*
before each buffer is a pointer to
the other buffer,)

: Shenchnre shonrn
Fy. 3 soomd by ;:‘m-aak Teors}or

S

et et o e o bty P - et e e ok e e e T i e £ ot e, A e o e e e e e e e e A e P it

1135.4 53

EXs : READER
BytesiromPT {global 387)

BytesfromPT is & constant input stresm, of 8-bit bytes from
tie papexr tape reader, All input from the tape reader uses this
stream, It is set up when the system is initialised (III:2.3).
It is because the setting=up code 1is elsewhere that some of the
component routines of BytesfromPT are tompoxarily glohbal,

BytesfronPT is a fast streasm, in the sense of [2] §.06. 1t
is double-buffered, and its structure is shown in Fig 10, Note
that since this stream is permanent, the Close routine is set
equal to the Reset routine,

ReadoxrDov {glohal 382)

The paper tape reader can read tape in either direction,
EXEC allows this to be specified by using two different device
numbors for the reader (see II1:Q), Since it is oceasionally
useful to be able to change the normal direction of reading, the
dovice number is held in a global, rather than being specified as
a manifest consiant,

ReagdBuff

Using InitiateTransfer (I1Ii5.3), this routine initiates the
input of a buffer, In order to read n characters, Exec requires
a huffer of length nt+l; bocause it uses the last word to indicate
whethexr +the transfor. eonded bheocause the buffer was £illed o
bocause a spocified terminstion character was read (see Ilig, and
the description of TryDiadAgain (I1:5.5) which wuses this
faeility), In +this section; READBFFSIZE specifies the number of
characters transferred, so 1 must be added to it for fthe second
parvanetor of InitiateTransfer,

SLOWBLOCK
{NBEFPIR
INBEREND

1NESL

OUTRFFPTR

OUTBFFEND

VTES

Fy. 16

U PR

NEXT

NOTUSED

RHPTY

EMITH

NoTUSED

™~y ouT
CLosE
PiNGS
ENROY
RESET
Sovace
STATE
RESETSTATE

EVECBUXK
DEVICE

BVFFER
BYFFSILE

STOPCH,
g

Pravhiog
(OMH.ETED
SELPPTIR

BUFF2

GUFRZEND

NextRUBFPT |y
Shesrnbrver
Recst BFPT
RPINGS
Endof BPPT
ResatBFPT
—
Stale BFPTY
NultPragram
RevderDev [6—
—_
NOTBYTE
DATASEY
QUIETEND
£
P
P

11i5.4

e e et e e =t et e e e P P e A Py e ot e P e = i A i P 1 A g e o S e

B N U N

B P A

IIt5.4 35
EirstNextRFPT

This function is called the first time Next is applied to
BytesfromPT after setting wup, or after the stream has boen resect,
A cnll is forced by preselting suitable values in the fast block
{see Fig,16),

Line 17: Tho parameter FB is the fast block,

16: 8_is the other, 'slow?! vector,

03 The routine places the device number of the reader (obtained
from ReaderDev) in the appropriate word of the Exec parametor
block,

This is needed if ever TryDiadAgain (II35,.5) is interrupted,
It then initiates the reading of the first hufferful,

It overwrites the entry of itself {(in the NEXT element of §)
with Next{FillB¥PT, which will normally be used to refill the
huffers,

it sets the eolements of FB so that an entry to NexiFillprpy
will be forced the next time Next is applied to the strear,
This gets the double-buffering under way, by ersuring that the
transfer of the second buffer will have beon started, and
therefore that reading the first buffer will have been
completed, beiore any charsoters are removed from the <£irst
buffer,

Thore thenr follows an extra call of Next, In the version of
Exec whick wo use, the reader is noimally sltopped by
preventing the interrupts which input each character, This
does not have any effect until the next cheracter comes plong,
and the method avoids applying the brakes if another iransfon
is initiated soon enough, If not, the reader stops with this
extra charscter in the xeader's elootronies trying to get inte
the processor (the roador repeats the attempt to interrupt
until the han is lifted, wher the character is input, the
brake relaxed and reading resumed), Though this is normally
satisfactory, 1t means that when a new tape is loadod the
first character input is usually the charactor after the last
one read from the previous tape, which might well be invalid,
Since a new tape is usually vread by a reset strean, we can
overcowe ikis problem satisfactorily by ignorirg one charecter
in FirstNextBFPT. This is done by the exbtra Next call,

26% The function Zinelly recurses, to roturn a character,

l

N

m‘!
o

B EE

L]

86 118504

NextFillBFPT

This function is normally c¢alled when & huffor has been
emptied,

Line 32: It calls ReadBuff to refill the emptied buffer and also

seo InitiateTransfer, 1I1$5.3) to swap tho buffers,

33-35: It sets the fast block elements to point to the other
buffer, end roturns & character as s result, Notice that by
starting the refilling of one buffer before beginning the
processing of the other we ensure that & buffer is not
processed until it is completely wread,

‘

ResetBFPT (temporarily glohal 405)

This routine is called when BytesfrosPT is reset, or whor an
attempt is mads to close it,

When the stream is reset, the reader may require operator
attention, usuzlly to load the next tape, & we arrange not to
continue reading until the reador has been switched off-1ine (and,
of course, on-line egain),

Line 41! RosotBFPT sots the elements of the fast block FB to force
an_entry to a buffer-filling routine.

423 It then tesis whether the reader is currently off-linme, If

so, there is mo problem, and the NEXT element of the slow

vector 8 is merely overwritten with FirstNextBFPT {sce above).

Otherwise, it is ovexwritten with NextWaitBFPT, which will

wait for the reader to o off-line and on=-line again,

NoxtWaitBFPT

This is the routine which waits until the wreader is switched
off-line and on~line again, Like InitiateTransfer, it also
provides series of pings to energise the operator, and a means for
the operator to eonquire what is holding up tho system. In
addition, for cases where the operator knows the tape to be
correctly positioned, there is provision for continuing without
touching the reader (by typing a newline on the ExecConsole),

e e Rt _ P e g e e et ek e e i s L o PRD B NA, -
ot P S e o R S P S P N S P

e

1It5.4 57

 The structure of NextWaitBFPT ig very gimilar to that of
InitiateTransier, There is & 1oop (3R, 1ines 51-63) during which
i is incromented, and the roadey tostod. The loop is broken when
the roadexr becomes on~line afier having heen off~line (line 53y
or when @& RETURN or LINEFEED character ig detected on the
gxocConsole {(line 55), . The pinging 38 meneged 88 in
Initiatdrransfer and the operator enguiry very pimilaxrlys though
there is no neod for the msoasage to the operator to b B
parameter.

Line DZi 6ince this Jloop teked a longer bime then

InitiateTransfer's, it is allowed to cycle only halfway round
the full rango.

653 When the looping finally onds, FirstHextBFPT ig called to
bogin roading. :

stateBFPT { tomporarily glohal 4183

BytesfrompT ig .o Eource giream, in the gongo of the
description of state and Resetstate (1I%4.1), HOTO, the state of
the readexr i8 defined to be whother it 48 on=line ox off=line,

. readoxQifline

This is & boolean function to test whether the peper tape
roader is off-iine. 1t uses & special Exoc command (se® 1130),
which gsends a status reguest to the ToadeY, The veader is
congidexred to be off~line if oither the roquest 18 ro jected or the
gtatus turns out to be snything other than operable,

EndofBIPT (temporarily global 4o1)

The ‘Endof' sunction for the atream BytesfromPT. 1ts result
je nlways falsel #9° [21 $2o4ele

TryAgain | (giokal 355)

TryAgain is 8 youtine to he used when

Naxt[ByteafromPT]
has produced an invalid character. It moves the tape pack to the
offending character, 50 that & fukther call of Next will result in

58 x 11504
anothex attempt to raad 1t°.

Lines 85-88: The routine: flrst checks that its paremeter is
BytesfromPT, and otherwise gives up,

9%: It also checks thaf no characters are PutBack (see II} 342) to

- the stream, since then the offending character would have coms
from program, rathor than from tape,

9538 It then announces itself on ExecConsole, This gives tlme_for
the xeading of the next buffer, which will alread' Y.
started, to finish, and for the tape to stop. :

g7-099¢ Aftor the current state of the buffer pointors are “noted

(line g7), tho stream is effoctively rveset (but:

cousing the reader to wait), so that if TryAgain

interrupted BytesfromPT will recover satisfactorily, :

100: The Exec parameter block (see 1I1I:g) is then amended to

_ reverse tho direction of the tape movement,

102-110% Tho routine now prints out (in octal) five characters

- from the buffer, including the offending one, which is marked
twrong?, (The routine attempts to have the offending
character as the middle of the group, but if this is
impossible because of the buffer boundary it does the best it
can, This is the complication in the definition of First

(lines 103, 104),)

112~121: It is now necessary to read (hackwards):

1) The ‘'extra® ocharacter in the roader eloctronica (sece
RosotBFPT above) (line 1143 remember that the buffer
gize must be augmented by one word for InitiateTransfer -
see ReadBuff, ahove),

(2) The bhuffer read aftex the offending one (line 1135),

(3) The offending buffer up to and including the incorrect
character (line 1203 the second parsmeter is ki2 because
k=0 would imply that the last character in the original
buffer was wrong, and hence that one character must now he
read), Before doing this, the address Ly where the
offending charactexr iz to go in the buffer is computed,
and the routine then walts (line 121) until the charactor
arrzves there,

12312 After printing its value {which may or may not be the

. _same as before) the routine calls Wait (II36,3) to allow the

" operator, if he wishes, to examine the physical tape,

Note that neither din this routine nor in the similar ons
TryDiadagain (II:5,5) do we re-read automatically without operator
intervention, If"we did, there would be no incontive to summon
the maintenance engineer until the reader became gquite unusable,

1135,5 59

113 DIABS

Note on diad format

Diad format is a way in which 16-bit words may be punched on
8-bit paper tape, Sumcheck information is included so that
nispunches or misreads may be detected,

Information on a diad tape is arranged in blocks, Blank
tape is ignoved bhetween hlocks, ERASE characters {8377) are
always ignored, betwsen blocks and within them, since the punch
hardware can generate them automatically fox overpunching an
arroxy,

The STOPCODE character (§po4) is also allowed hotween hlocks,
It causes BytesfrorPT to be reset and the reader to wait until the
operater intervenes: it may therefore he used to prevent the
reader from running off the end of a tape, It is otherwise
ignored,

Each block begins with the warning character §125. The next
hyte is intexprotod as an integer n (n < 30), which indicates the
number of 16-bit words to be constructed from the block, To this
byte and to all succeeding bytes in the block an escape rule
appliest if tho value of any byto is §p33, it is itself ignorved,
but it indicates that 1 is to he added to the following hyte, The
escape rule must be used tfo specify 8377, as ERASEs are ignored
everywhere, and also to specify the escape character (8033)
itself,

The next n pairs of hytes (after application of the escape
rule, if appropriate) form words (more significant half, followed
by less significant), Each hyte, including the count n, is added
to & checksum (after the escape rule is applied)! the sum is
output as the final two bhytes in the block {again applying the
escape rule if necessary), ’

DisdRead ' (global 338)

Sinco reading paper tape punched in diad format was a very
' common operation, especially before woe had & disc, this constant
input stream was provided for tho purpose, It is created during
system set-up (II1:2.3), by applying Wordsfrombiamds (see below) to
BytesfrompT (IXi5.4),

60 I135.5
WordsfromDiads _ {global 340}

This is & sgtream function which takes a byte input stream
{usually BytesfromPT) as an argument; the result is a fast word
input stream, The layout of the stream vectors is as sghown in
Fig-17n :

—_,
SRR TN | NedBlotk
INEFFPTR e ooT Stcarrnbrvoy
INRFFEND aé-————j " CALSE ChiteW
INESE NotusEe Ly She
OUTEFRTITR EMr1y =10 g W
OUTBFFEND EMPTY RELET RewtW
GUTEEC NbTUSER DIEYBFF
—_—
N

ﬁa A7 Wwdsfrmblads[st

NextBlock

This is called to read & diad block into the buffer, 6 is
the slow vector and I the input stream {(that is, the paramster
gtroam of the original stresm function csll),

Lines 54-0it Loop §l2 searches for & warning character WCH, using
TryAgain (I1:5,4) if it encounters anything invalid,

63=-4'7¢ The block is then read according to the rules,

zg-ggz 1f the sumcheck fails TryDiadAgain (see bolow) is called,

e A e oy Tt e o a2 0 e e e P e A o o e o A A e o e e £

A

113545 61

82-84% Finally the fast block pointers are set, and the first woxd
.. returned as the result,

NextByte

This is used by NoxtBlock above to obtain bytes, It applies
the escape rule, -

NoxtCh

This is used by NoxtByte to obtain paper tape characters,
It applies the 'ignorec ERASE! rule, ’

Note that by using these functions we have involved ourselves
in two oxtra function ocalls for each tape row read: this is,

perhaps, a little profligato in its uss of machine time, and may
be worth optimising,

Endoi¥
The primitive Endof function (II3Q) retuxrns false if the fast

buffers are not empiy, If thoy are empty, this function tests
the paramster stream,

Resgoty

The fast block pointers are set to force a call of NextBlock
when Next is applied, and the parsmoter stream is roset,

ClosgoW

The parameter stream is oclosed and the working space
returned,

TryDiadAgain (global 336)
This routine is used when & WordsfromDiads stream detects a
sumcheck failure in a diad block, Its purpose is to move the

tape to the beginning of the block which <failed, so that the

62 113505

stroam con have another attempi to read it;

Lines 135-150% Its first part is very like TryAgain (II35.4)
excopt that hexe there _is no printing of characters in
octal); it brings the tape back to Just bofore the last
character processed (which would be the final characier of the
sumcheck word),

148t In fact the Ffirst backwards rend funreadst 3 characters,
rather than TryAgain®s 1, This ceuses the tape to move a
1ittle furthexr, so that even if the error occurred because the
reader omitted a character the tape will still be moved back
to a position within the offending block,

152-146% The next section moves the tape back to the first warning

_ _ character WCH detected, As we montionsd in the description
of ReadBuff, the Exec TRANSFER conmend uses the final woxd of
an input buffer to indicate how the titransfex terminates, If
the transfer ends because the huffer is full, the last word is
sot to true, Otherwise (if it terminates because a specifiod
terminating charyacter is read) the £Linal word is untouched,
So we alter the Exec parameter block to specifly WCH as the
terminating charactor, and then enter Loop K. In this loop
we set the final words of both buffers false, and start a
transfor, When the transfer has finished we test to see
whether eithor of the buffers was filled, and repeat until
thie is not so,

1575 We suspend the terminating character facility.

159% Weo now output details of the sumcheck fmilure (we defer it
until this stage so that it provides time for the tape to come
to a firm stop),

160% Finally Wait is called, to allow the operator the poasibility

of examining the tape,

ReadBackwanrds

This 4is =& private routine, applied to BytesfronPT by
TryDiadAgain, to perform a backwards transfexr of length n
characters (or until a terminating character is reached),

Line 169: The reader's divection is set to read backwards,

170¢ The flag which indicates the end of a transfer is reset,

1738 This null loop continuos until the transfer initiated in the
previous line is completed,

N SV VO S SO S S S e e, i i, :
o . " - -
e o —— Semanin = e e i e o e P e g e . e e -
-

11355 03

Note that this routine works only if the readsr is not busy
vwhen the routine is entewred, 1f it is, then ER{COMPLETED will ke
sot when the pyevious transfer ends, and the transfer initiated by
this routine will only just have started, TryDiadAgain tries to
onsure that this condition is satisfied, by fyping a message on
ExecConsole at a suitable moment (line 142), in ordor to allow the
reader timo to come to & halt, Matters would, of course, be far
cleaner if we wore able to f£ind out whether a transfer was in
progress by asking the reader directly! hut, because of a
hardware design peccadillo, this information is not part of the
reader's Tstatus' (see ReaderOffLine, IIi5.4).

I1:6,1 CLOCK

OuiDateandTime (glohal 348}

This routine outputs the date and the time to the character
output stream S, preceded by seven asterisks and followed hy a
newline,

CutDate

This routine outputs the date d to the output streem 5 in the
format day/month/yesr,
QutTime

This routine outputs the current time to the character output
stream 8,

Line 26% If ClockRestarted is tyue it indicates that the call of
TimeofDay in the previocus line will have started the clock and
asked for the current time on the Console streanm, 8o there
is no point in immediately re=outputting the time on the

Console,
TimoofDay (global 364)

This function gives the current time in minutes from the
proceding midnight,

Line 34% Clock is a vectox; its format is .given in the
doscription of the Exec commands (11:g),

303 If the clock is already going this call will have no effect.

32% The word (Clock{BUFFERMTIME contains the number of minutes
loft in the day,

e e e e A e e i et e e o s P oo S, o oo = P A i i e S i o S oAt

U P U S S S S

11:6.1 ' 65
Restaﬁtclock

This routine uses Exec (II!Q) to sttempt to restart the
time=of~day clock, Its parameter is the Exec parameter block for
the elock device, the format of which is deseribed in Ilig,

Lines 49, 503 If the atitempt is successiul, the 1flag
ClockRestarted di8 sget to +true and the buffer word
(BLBUFFER){TIME (which the clock will periodically decrement)
is initinlised,

Ali If the Exec command is rejected it is assumed that the clock

_ is already going, so no further action need be taken,

AskTimo

A function which obtains the time of day by asking the
opexratox,

11:6,2 MISC

AddressZero (global 371)

When the system is constructed words 0 and 1 of the cods
segment are set to a Jjump to this failure routine,

Copy {global 307

This routine copies n words {v{0 to v{{n~1)) from vector Vi
to vector VZ, It uses the special hardware assistance provided
for fast streams and for the' funetion Transforin (see II9),

Lines 12~14% The veotor FB is set wp to look 1like a fast input

stream referring to Vi as its buifer, .
182 TransferIn (IX:Q) places n words from this stream into V3,

66 11:6,2
(global 352)

E

This function tests two strings for equality,

Line 208 A given pair of strings will probably have either
different lengths or different initial characters, This line
therofore irmedistely disposes of most cases without the
paraphernalia of setting up a loop,

213 (pd0 xshift 9) would be slightly more efficient, but loss

perspicacious, than (pl0 rshift 8)/2, The shift extracts the

first byte (the length of the string in charactors), and the
division converts it to the length in woxrds,

2! Tho loop is broken ag scon as two words £ail to mateh,

NullProgram {global 35%)

A routine which does nothing is sometimes useful,

Wait (global 372)

A routine to wait until the operator types a newline on the
console,

NN e etk A o e P oo e et et e i PRSP -
St e i e i e e b o e ey o e A P e e oo, — - —— o

IIt%7, Disc routines (1)

I137,1 DISCAFER

DigcPage {global 335)

The longth of a transfer to or from the disc is an integrsal
number of pages, a page heing 256 words, For reasons of hardware
econony Modulax One insists that the absoluts core address of the
start of a transfor area should bo o multiple of 250, Yo
consider such a restriction intolerasble, s0 we arrange to set up
one page, DiscPage, to £fulfil +the condition (see III%1,1); all
the system®s disc transfors are then to or from this phge, the
information being copied to or I£rom the required place in core
with no restriction on iis address, To save space, some system
routines use DiscPage explicitly themselves for accessing the
disgcy; but since all disc transfers arve via DiscPage it is
necessary to make quite certain that information is used before it
is overwritten,

CorotoDisc) (global 334)

This routine transfers the contents of the véctor v (length
256 words) to page p on the dise,

Line G: If v is DiscPage itself it is unnecessary to copy the
infoxrmation, We assume that the time wasted by the
unnecessary test when v is not DiscPage is less than the time
that would be wasted by unnecessarily copying the information

if it is, Whother this is {rue dopends on the relative
frequency of the two situstions,
10: A sumcheck is written to the last word of DiscPage, The

calculation of this sumcheck 418 performed by a special
hardware function (see II:g),
A2t DISCWRITEPERMITTED, in the code segmont, is a switch which may
. bo used to prevent writing to the disc in dangerous
situations,

I137.1
Redy of §
MFL fle Heodirg file i
| e) [s e N f’
g f B
F —_
fﬂ Suwehask
o S IR L
¥
ENDRODY
An indax file "‘Aﬁfi‘l&d -~
i spaw/j
h il
__ j Surchack
Navsal 2 ‘?i‘gml.
Nana2 $ THitFuE
N I NEYRgE
Suweheck
Fy. 18 Shucvwo of Yo dic filig sychmm

S e S P S U S S P MY T NPT P T S P U R L S U T S S N

191 69
DisctoCoro {global 333)

This routine trensfers the contents of page p on the dise o
the vector v in core,

Ling 20% The routine breaks out of loop §r if either the sumchsck
test is satisfied or the codo segment word SUMCHINHIBITED is
set, SUMCHINHIBITED may thereforo bo used as & switch to
ignore the sumcheck test if tho information on the disc is
non=standaxd,

By .typing '1', the sumcheck test may be manually overriddon
from the console,

Soee the remark on line g above,

BE

DiscTransfer

This routine t{ransfers informetion between the core vector
DiscPage and page p on the disc, The parsmeter Dov is the device
number for the Exec TRANSFER command (IX39), and it indicates
whether the information is to be transforrod to or from the dise,

Lino 383 The routine nttempts to start the transfer by an Exec
TRANSFER command, Thia command may be rejected; 4if so, Excc
places & value giving the reason for the failure in the word
whose address is given by the third paramotor, and as usual
Jjumps to the label RJ, It is also possible that the
transfor, though successfully initiated, may terminate
unsuccessfully, for example bocause of a parity failure in the
dise hardware, If° this happens, Exec nputomstically
overwrites the woxd of the parameter block containing the diso
page address (B{PAGENUMB), Since in our version of Exec the
two kinds of Zfallure indicator can be distinguished (the
second kind are negative), wo find it conveniont to direct the
firet kind of indicator to E{PAGENUMB as woll; so its address
is given as the third paramster of the Exec call, .

398 If the transfer is succossfully initisted, the roubine waits
until it is completed, Since our dise is very fast and our
interpreter comparatively slow, this wastes & negligible
amount of time,

41t If E{PAGENUMB has not beoon overwritten, the transfor has

- tormineted successfully,

4603 The hardware may boe expected occasionally to perform
unsuccessful transfers (the manufacturers suggest that one a
day is tolerable), so when this occurs we automatioally repeat

70 . 11:7.1

the attempted transfer once (§£), as next time it will
probably be successful,

475 483 Before repeating, the failure is woported on the executive
console, to keop the 'system management informed about the
current reliability of the dise,

0% If the transfer cannot be initiated, or if it repestedly fails
to terminate successfully, the operator is informed via
Console,

2% The operator nms threo optionst by typing a new line ho can
cause the routine to have another attempt at the transfex
(Ioop §r), possibly having removed the cause of the failure
(o.2, he may have noticed that the disc was not switched
on); he oan interrupt the system; or by typing *I® he can
cause the system to continue as if the transfor had boen
successful, Notice that since the fI' option can be
dangerous if not used circumspectly an unusual letter is
employed, so that it should not happen by mistaeke.

Message

A private routine for outputting disc failure megsages,

1337.2 DISCFS ' .

The routines in this and the noxt few secctions are concerned
with the dise filing system, which is described in [2] §3. The
general structure of the system is shown in Fig,iS, which is very
similar to [2] Fig.4 (see the introduction, Part I, for a list of
the differences between papers [1] and [2] and this published
text), A file heading is shown in Fig.24 (II:8,3).

This section deals with disc storage alloecation, The
addresses of all the free pages on the disc are kept in a £file,
the Zfree store file, The body pages of this file have an extra
word of housekeeping information: when storage is allocated
alterations are made to the last page of the file, and in case the
page rune out it is convenient to have a pointer from each page of
the file back to its predecessor, The structure of the file is
therefore as shown in Fig.l19,

e i i A e e At b e P e o e e i P s e e e P o e e o e e e A oo . e e e A

1137,.2

SERIAL
THISEILE
NLTPRGE
BACKLINK

kwdihg
I SERInL] (——\
————— THISFILE
NYTPRSE R
——, BACKLIKK| ENDEODY
Lit o}
e pogus
JUHCH
3 1= [-—> 2 ¢
ENDBROYY e
: J]
CLMNHED
: List o}
CLAIHED fo pags
Ltk o{-
fro pogs

suHcy

E-g. 19

Shuchare e)l FreeShveFile

71

2 11872

Note , that this is not the best structure of the £ree store
file, A botter one would use a bit map, which for our disc could
be accommodated on ons page, This msthod would avoid the
possibility, which oxists at prosent, of multiple entries of the
gane froe page,

The firet word of every f£ree page is set to zero,
NewDiscBlock can therefore check that a page 1t is about to
allocate is indecd free, and can hence guard against the effects
of multiple entries. But, as is explained below, this check is
not infallible.

sermL | Curverd verlad
THREILG 4FL o,

FSE (zlobal 324) NETPAGE | ErebBODY

For efficienoy's sake the last BACKUNK | Pravious pose
page of the free store file is kept CLAIMBD
and manipulated in core, in the
vector FSF, The first 250 words of m'_MED
FSF contain the free storve file i
pago, and a further two words are CLAIMED
used to koop housekeeping
information, as shown in Fig,20. H “
These words include a pointer to the P2
firat entry in the page, Note that b3
this pointer is not kept on the -
disc; instead, empty words in the H
page contain the constant CLAIMED, LASTENTR P
The pointer in core can thorefore be : n
initially sot to the start of the PGEEND | Susduck
page. . SERN [hgvg 283, O —

The page in core is written WEE | Guvewt pose

hack to the dise at Iroquent

intervals (at the beginning of each

Run (by PrepareforRun, II:1,2), and ﬁj-&o Shaachare
whenever the page kept in coxe FSE vedder in cove
changes to another page).

F S S S O S o S Y A P W S S R

115%7.2 73
NewDiscBlock (global 330)

This paramcterless function is used by filing systom routines
to elaim a page from the disc free storage,

Lino 103 This is the pointer into the core copy of the last page
of the disc free store file,

11-29: 1f the £free store file page in core is empty, it is
necessary to change to its predecessox,

13-16: If thexre is no predecessor, the filing system is full,

17-26% Otherwise, the predecossor is established in core as the
new last page of the file, and the old last page is handed out
ag the result,

17t This is to be the result,
21: The housekeeoping in the new core- page is altored to make it

|

the last page of the file,

22% It is updated on the dise,

2 ! The heading of the file is also updated to keop step with

- the change,

30—363 This is tho more usual case, when the pasge in core is not
ompty,

3i: This if valid will be tho result,

33: By this test the funotion ignores empty woxds in the page,

352 362 The page about to be allocated is examined to check that
it is in fact free, This is, however,; not an infallible
cheock against page=sharing? if the page has already been
allocated (hecause of & multiple entry), it need not
necesgarily yet have been overwritten,

37% The whole process is repeated until a result is obtained,

ReturnDisoBlock (global 331)

This routine is used to return pages to the disc fres stoxe,
Lines &8~62% If the free store file page in core is already full,
the page being returnod hocomes +he new (empty) last page for
the file,
51: The page in core, now no longer the last page, is written back
. to the disec,
5%1 All the words in the new last page are set empty,
! The new last page is written to the disc,
0i: and the heading is updated,
: If the pege in core is not full, then the page being
returned is entered in it,)
60, 67: The page being returned ie itself marked free,

74 ‘ 113743

i DISCIN

ChockType

This is a private routine used by Infromfile and OuttoFile,
It takes two parameters, a file and its heading, and checks that
the file is a valid parameter for the stream function,

Lipe 15% One bit in the type of a file (STREAMABLE) is used to
indicate whethor the file is such that its information may be
meaningfully accessed by a stream,

Infromfile (global 321)
This function takes a file as parameter; the result is a

word input stream from the file, This is a fast streoam and its
structure is shown in Fig,21,

SLOWBLOLK, e RENT | NeEBufiIF
INBRFPTR —T ooy | Sheombror
INRFFEND —1 cLosk ChoselF
INESC NoTused FRENWiR $
FUTRFFMR EMPTY ENDEF EvdofIF
OVTBFFEND EMPTY ey | RetetlF
TESC NeTused IESUFTER.
THISFILE
NYTPAGE
ARSTHATA
>
ENHATAINTL
LasTonTA
>

5. 21 TnfromFile T£)

e A

e Ao o e s, e A i A e e o e e o e e s P o o i P e

et e e

11:7.3 75

Line 25: A validity check on the file,

27% The vector containing the heading is discarded,

25% The file's 'date last read® is updated,

33=303% The fast block is initialised, hoth buffers being sot

. empty,

38—448 The slow block is initialised,

443 Tho stream is set up so that it appesrs to be at the end of a
page hefore the first page in the file's body: that is to
say, the Ynoxt page® element points fo tho first page of the
file, This is to force the first oall of Next (that ism, of
NextBuifiF and EndofIF) to read the first page into the
buffer,

408 The value of a fast stream is the logical complement of the

fast block vector,
/

NoxtBuffifp

The fast stxeam hardware c¢alls this function to refill the
streamfs buffer, if possible, The result is the first character
of the new buffor ox, if the stream has now finished, the constant
ENDOFSTREAMCH,

Lino 51% Most of the work of this routine is done as & side-offeot
by EndofIF,

3% The fast stroam hardware is activated {recursively) to produce
the first character,

EndofIF

The fast stream hardware automatically produces the result
false for the Endof function if the bhuffer is not empty (sese
11:9). If it is empty, this funetion is caslled (it is also
called explicitly by NextBuffIF ahove), As Fig,18 (iIiy.2)
shows, the final page of & normal file has a pointer indicating
how mueh of the final page contains information, It is possible
that the final page might be completely empty (this is a
consequence of the fact that a word is rosorved for the pointer
only on the f£inal page), It is therefore necessary for EndoflPF
{which only deals with the caso of an empty buffer) to look at tho
next page of the file, in case it turns out to be an empty last

pageo,

Line 573 FB is the fast block vector,

26 1137.3

58: s is the slow block vector,
ggi B is the buffer itself,
¢ If BYNXTPAGE = NULLBODY the file has no body, and this value
will have been aet (line 44 above) when the stream was
oreated, If B{NXTPAGE = ENDBODY then the buffer just emptied
contained the last page of the file,
62: The next page is read,
EE:BE! The fast block pointers are set,

4, 653 If the page is the last page, the end of the information
in the buffer is determined by the pointer word
B{ENDUFDATAPTR; otherwise it is the end of the buffer,

&7: This result is true only for an emply last page.

Clogo Il

The "Close' routine for the astream: storage is returned,

ResetlF

This is +the 'Reset' routine for the stream, Yarious
quantities are sot back to their initial condition, using
information from the file heading, so that subsegquent calls of
Next will recommsnce the reading of the file from the heginning,

Line 80: Sos comment on line 44.

—p

EntriesfromFile (giobal 320) NeXT Next EF
TTTTE—— ouT Sdrgarabrvev

This streem Zfunction may be CLOSE CloseEF
applied only to an index file; as
desoribed in [2) §3.25 each time STR | TnfemRik[f1
Next is applied to the result stream EMNVOF EndefEF
it produces a vector containing an
entry in the index, RESET ResettF

Lines QLGS A ohosk NS O B 20 ChviefomFilels]

paraneteor file £ is an index,
102t SYSTR is =set to an ordinary
word input stream from the file,

A B e P it

e A e e oo e o e oo A e o e e 2 P ot e e P 2 P P oo e A o S o Ao o i

113743 77
NextHl

The *Next! function for the stream,
Line 110%: Unleas the stream has ended, n will be the length of the

next entry (see Fig.25, 1I!8.5),
111 If, however, n = ENDUFSTREAMCH, it is handed straight out,

1]l4% Hardware assistance to £ill the veector,
EndofEF
ClosoRR
ResetEF
The *Bndof®, *Close’ and ’Reset® routines for the stream,
113 DISCOUT
ReturnChain

This private routine is used to refurn a chain of file body
pages to free storage, The paramoter Page is the first page of
the chain; £, the other parameter, is the file to which the body
chain belongs, and is used in a validity check,

Lino i4: This is the check that each page returned helonga to file
£3 if it were not done, an invalid link could cause
decimation of the filing asystenm,

20 The loop continues until the end of the chain is reached,

ChockPorm
This private routine is used by DeleteBody énd OuttoFile,

Its parameters are a file and its heading, and it checks that the
current user of the system is allowed to overwrite the file,

DeletoBody (global 326)

A routine to remove the body of a file,

78

—

SLOWBLOCK,
INRFFPTR
INBFFEND

INESE
CUTAFFFTR
OUTRFFEND

TESS

Ry, 23

11374
"""‘“‘"‘“‘*‘——/—W SheamBrveor
EMPTY oot | OwiBufjioF
EMPTY LUt Clote OF
NOTUSED FILENUHB $
— ENBOE ShaaraEvver
— RESET Reset OF
NoTVSED Pl AT Sy B
¢ CRAE —t— cpﬁ"i& ‘t‘ﬁ‘
ROTINE | Fagleiose
TiEnER | User nuwber
oweey | Myrepct
oLpsize | No. of peges in
ormge | “ant BT
nawtoy | PR, P, ¢
THREILE
NATFASE
RIRSTDRATA
B —
LASTRITA
—— s
Outtufile C41

e e e e e M = i e e oo e Ao e e e e P P . s e A M_A \ o o o 3 o e e e

e At e s

I137.4 79

Line 35: A check that the file eoxists,

378 Deleting the body is a spocial case of overwriting the file,

i The main part of the routine (lines 40-44 are omitted if
the file already has no body),

40y 415 The body is detached from the heading, and the *date last
written' is updated,

423 The hody chain is returned, Kote that this is done after
the bhody is detached from the heading, to mvoid catastrophe in
case of interruption,

43% The owner of the file is credited with the number of pagos
returned, Remember that h contains the heading as it used to
be, bofore the call of UpdateHead (line 40).

OuttoFile (global 322)

This stream function produces a word output sitream fo the
file £, The streem is a fast stream, and its structure is shown
in Fig,23.

Line #2: FB is a vector for tho fast block,

53% 8 is for the slow block,

543 B is the part of S reserved for the huffer,

5§i A check that a stream may validly be created to the file,

g_i A check that the user is allowed to overwrite the file,

0-04: The fast block is initialised,
77%: The slow block is initialised,

Z0: This woxd is to contain the address of the page for which the
current buffer is destined,

27% SIOFPAGE ut present contains the first page of the new body,
Note that the old body of the file is not abandoned until the
stroam is explicitly closed, As remarked in [2] §3.1.1, this
is designed to minimise accidents in the event of error,

81~83: The buffer is initialised with the housekeeping information
foxr the first page,

84: For safety's sake this page is written hack to the dise, to
ensure that it is no longer marked free, which would keop it
liable to bo re-allocated somewhere elss, If we did not do
this, the page would bo at risk until the buffer had been
filled, when it would ef course be overwritten, Only the
first page of the file has this extra overwriting? efficiency
forbids it fox the other pages, which are therefors loft at
risk for a while, But it is the atart of a program which
tends to be the moBt precarious part, In any case, the disc
free store ayatom should not meake this kind of mistake at all

8o 11:7.4

(soe II:7.2),

863 As wes mentiomed in [1] §1.2.2, these stresms are one of the
places where the ClearUpChain must be wused, 80 thai final
housekeeping action may be taken if the stream is premeturoly
abandoned, C is the part of the slow block reserved for the
entry in ClearUpChain,

87-91: ¢ is initialisod, and ontoered in the chain,

093¢ Tho value of o fast stream is +the logical copplement of the
fast bloeck vector,

OutBuffOF

The fast stream hardware calls this routine te output a full
buffer, for which it uses the private routine TurnPage.

Line 101! The second paremoter of TurnPage will be the next pago
of the file,
102¢ The fast buffer pointer is reset.

TurnPage

This is & private routine used by OutBuiflOF,

Line 108: The housskeeping informetion in the buffer is set to
point to the next page.

109: Tho ocurrent buffer is written to the disc,

110% The next page becomes the current page,

111¢ The buffer's housekeoping is updated,

Close(F
This routine is called when the stroam is closed,

Lines 1ig-i21i Since the stroam is being closed properly, no
clearing up action will be required later; so the entry is
removed from ClearUpChain,

123% This call will attach to the heading the body created by the
stroam as the new body of the £file, and will return the old
body chain, Since it is the P'Reset® routine, it will also
sot the stream up for further output, by providing a new first
page for a new body,

124% This new first page is returned.

PR

e e e st e o e g e e o P i Ao P Pt o A AP 1

113704 81

125, 126: The free storage used by the stream is returned,

ResetOF

This 'Reset' routine attaches to the file heading the body
chein so fer created by the stream, thus making it the body of the
file, and it returns the old body to free storage, It then
prepares the stream for fuxrther output,

lines 135-142% If nothing has been output since the stream was
croated, the new file is to be null, The simpleat procodure
is morely to delete the =file*s old body and to alter the
places in the stream®s structure where the old body is
described,

145% The owner is charged for the amount by which the size of the

. new body exceeds the old size,
¢ Tho pointer in the last page of the file is set up,

146, 149: The new file hody is completed,

171, 152% The new hody is attached to the heading, and the date
last written is updated,

194, 125 Unless the old body was null it is returned,
157=1 Various gquantities in the streem®s structure ave

. re~initialised,

FailCloso

This routine is for the stream's entry in CleartpChain (sece
[1} §1.2.2 and 1I33,3), It is called at the premature ond of the
‘Run in which the stream is set up; it returns to free storage the
incomplete new body under construction, leaving the file itsolf
unchanged,

Line 168: The value of the slow block is ecalculated from the
parametor C, which is the ClearUpChain entry itself,

170, 171: The last page of the chain so far exists only in the
buffer, and it is necogsary to write it to the disc before the
chain is returned,

11:8. Disc routines {2)

1138,1 CHARGE

This section manages the accounting system for spaceo on the
disc,

Charge (global 300)

This routine should charge the user specified as the first
perameter for the number of pages specified by the second, A
more elaborate algorithm than the one incorporated here was in
fact devised, but was rejected because we were stort of ocore
8pace, In &ny case, we Iind that a bit of personal moral
prossure applied by the system management is sufficiently
offective at keoping wusers® disc space within reasconable limits,
and a good doal more civilised,

1138,2 UPDATE

Update (global 312)

This routine dis used by the system for altering a single
field in & file heading, The £ile iz specified Ly the first
parameter, Tho word specified by the second parameter may eithor
be altered to the value specified by the third, or be incremernted
by thatl value, The format of a heading is shown in Fig.24.

Line 3% The sign of the second parameter specifies which of the
two actions is required,
${ Elemont is the word in the heading which is to ke changed,
3 validity chocks on the parameters,
Q¢ A check that the file exists,
ig-13% A check that the required Elemernt exista; that is, that it
is within the bounds of the heading,
16t HdAddr is a vector containing the disc address of the heading,
173 DiscWord is the address in its page of the element under
gonsideration,
The page containing the heading is transferred to DiscPsge

1

: §

e o P e e g oee e e e e e, A~ e e e, i e e e e e e o e e o e et e o et e o e Pt e e e o e e e e e s P o P i

11:8,2

{see IIi7,1),

83

10-27% 1f the woxrd required is past the erd of this page, soc that

it is on the next page of

the file, then the next page is

brought into DiscPage and the addresses in HdAddr and DiscWord

relocated,
21-232% A systen failure if there

is no next page of the file,

295 303 The required word is altered,
31t The page is written back to the disec,

11:8,3 UPDATEHEAD

Of—om | n—
FIRSTPAGE Fh‘kkﬁﬁ?‘
NUMBPAGE! ”Wﬂhiwﬁ payes
LasTPage || Logt, poae

THPE i ownﬂkhn
CWHNER Ouyner
€REATED Dafe cveated
DLW || Dade hast wovillen
PLR [Dade lost vead
P&RM Pevneission
MELNUNB Eile valus
b TiHe
(in BCPL
RESEEN

Fig. 24 Shuchare o} o

F le kmd&wa

UpdateHoad {global 311)

This routine is used by the
systom for changing several
fields of a file heading at once,
The new values are specified by
the 1last six perameters; but for
any field which is to remain
unchanged the corregponding
parameter may take the value
SAME .

Line Qi The parameter list is
troated as a vector, This
is gpecifically allowed in
the BCPL langusge ¢{see the
Appendix),

10: The pPage containing the
heading is brought into core,

12t Toop §F is not ocbeyed for
fields which are to remain
unchanged,

14~22% The appropriate word in
the heading is selected,

23% its address in DiscPage is
calculgted,

Z4=34% If the address is beyond

the end of the page, the next
page is brought into core,

84 1138.3

26-283 A failure occurs if the next page does not exist,
203 The pege already in core, which may have been altered, 1is
writton back to the disc,

i, 32% The heading address is relocated so as to refer to the new
_ page in core,

33: The address of the word under consideration is relocated,

3gi The content of the reguired word is changed,

38¢ Tho heading page is written back to the disc,

1I1:8,4 FINDHEADING

LookUpinMFL (global 319)

This function scans the Master File List (MFL) to find the
entry corresponding to the parameter file, Each entry consists
of two words giving the disc address (page and word) of the start
of the file®s hoeding, The MFL is scanned page by page (by the
until loop, lines 13-17), This admittedly involves more disc
transfers than sre ahsolutely necessary; however, the MFL is only
used when an access route to the file (e.g, & stream) is set up,
and not during the normal course of its use, This dinefficiency
therefore happens relatively infrequently, and there are other
more importanf things to optimise, '

If no entry is found for the file the result is NULL, It
might be thought that such an outcome would he grounds Zfor
failure, and in normal use this is so, But it is convenient for
some administrative programs (e.g, the disc housekescper) to use
this function when scanning through all the files on the disc, so
the decision on whether to fail or not is left fo an outer level,

Line 9t If the file value is negative the file does not exist,

148 If tho ond of the MFL is reached before the file is found, the
file does not exist,

19% w is the address in DiscPage of the entxy required,

20% If the first word of the spaco rosorved for the entry contains
tho constant NOTENTRY; the file does not exist,

22, 23% The ontry is copied into & new vector, Note that it is
assumed that an entry can never overilow onto tho noxt page of
the MFL,

24% The new vector is the result,

e et e e b b e el o, P o S
P NP VA T e o e e i P = o £ P, o, S A ey e e et e 3 o o o o

11:8.4 85
FindHeading (global 318)

As deseribed in [2] §3.1, this function produces a vector in
core containing the heading of a given file,

Linos 34~36% A failure if the file does not exist,

304 The page containing the heading is brought into core,

The vector h is to contain the heading,

This tosts whethor all the heading is in the page in corxe,

47% I so, it is copied into h,

&9:52. Otherwise, & check is made on the existence of the noxt

page of the heading file, which contains the remainder of the
heading,

53 Tho part of the heading in the current page is copied into h,

3 The next page of the heading is brought into core.

594 26: The remeindoer of the heading is copied into h,

50-02: Whon a file is deleted, the TYPE field in the heading is
overwritten with the value DEIETED; the hoading and tho MFL
entry are finally removed when the heading file is compacted
by the disc housekeeper, So, if the file 1is found to have
beon deleted, & null result is returned for the heading,

11=8_,5 LOGKUP

LookUp : (global 317)

As deoseribed in [2] §3.2, the result of this function is the
file associated with the names Namel and Name2 in the index file
i, The index is scamned untii an entry with the specified names
is found (loop §u, lines 19-38)

The <first version of this function used the stroam
EntriesfronFileli] (see II}%.3), It was found, however, that
this was rather slow; in particular, the provision of little
vectora for esach item of the stream of entries made heavy use of
the core storage allocation system (XI:3,1). As stated in [1]
§2,2.1, our storage allocation system is designed to ho efficient
in its use of available storage, but.it is Zfairly expensive in
oxecution time, ¥o therefore decided thet there was a cmze for
streamlining this function, and the version given here uses an
ordinary word stream rather than a stream of entries,

86 - 11:8.5 |

Thexe axe two forms of index entries, which are described in
[2] §3.2.1s There is also a form for an entry which has hkeen
deleted but not yet removed from the index (this third form is not
generated by the current system, but sarlier vexsions which do so
are still extant), All three formats arxe shown in Fig.25. Note
that for no logical reason, but merely .to economise orn space,
several items of information may share the same field in an entry.
Thus the status of an entry (i.,e, whkether it is deleted) shares
with the first name; the file number of a normal entry shares
with the third name of a linked entry, and the sign of this word
is used as 8 <£lag, accessed using the name LINKING, to indicate
which of the two forms of entry is being used,

Lineg 7¢ An attempt to look up an entry in a null index might be
expected to lead to failure (as in the two following tests,
lines 9 and 12), However, the treatment given here implies
that a soarch for a file will produce an overall result
instead of failing catastrophicelly, even if the search is in
several stages and proves unsuccessful in an early stage when
searching for a particular index,

1§i This is a vector probably large enough to accommodate any
entry which may occur,

13:383 Each cycle round this loop examines ore entry,

21: The first word of an entry is its length,

22~20% If v is too small for the entry, it is replaced by another
vector large erough,

gg_ Hardware assistance to read the entry info v,

263 The entry is not exaemined if it has been deleted,

Note that BCPL is such that if ore name does not match the

othex name will not be tested (let those who invoke important

side-offectes in innocont-looking hoolean functions beware),

32% NotLinked indicates whether the normal form of entry is in
use,

$ In the normal case the required file is specified explicitly
in the entry,

3 In the case of a linking entry it is necessary to look up
the further names, The minus sign in line 45 is noodod
because reversal of the sign of v{LINKING, which is also v{N3,
is used to indicate a linked entry,

41: If no entry is found with the rogquired names the result is

. NULL, See {2] §3.2.

sajes

2

fl

et o et

e e e e o e P et A e P e o o e e e s o P . R b o e o e oo A A

[S

11:8.5

ENTS12¢
$TATUS NS
N2
Likking/ N3
N4

N5

NG

o

87

ENTSI2E n N
A a— STATYS NI i -l
a & “\ N2]
be FlLE }
-‘ ” : {
d Nawel
e
f et A J Named
Nacwe]l :
A &
Wored N
(=) Novmwal emlw,
Noveed ¢
ENTSI2E W e
Nanel N ITATVS | DELeTen
N2 "o
L L nLe f
) Nosvel
Nemeb ¢
& n Nowe2
n i
(,:;) Ll'hlh'ns ehlvsj (_J
(¢) Deleleet ewhnﬂ

K. 25

TIndex enhies

88 . 1138,6

I1:8,6 LOADFILE

LoadFile {global 378)

This routine is for loading a program contained in an IC
file £,

Lines i1, 12, i5: These three lines are a irick to prevent
fragmentation of the cors free store, 1f they wore omitted,
tho storage required for the input stream (set up in line 14)
would probably come from the start of the availablo space, and
the storage required for the Iloading of +the program {the
I~blocks and possibly D-blocks) would occupy the adjacent
ares, Then, when the input stroam was closed (line 18), the
space veturned would be isolated from the rest of the
available space, By oclaiming a large vector v before setting
up the stream, the stream vector is foreced fo the other end of
the available space, By returning v before loading the
program, the program ig able to occupy the start of the
original space, so thet when the stream is closed the largest
possible contiguous space remains,

LoadSystemFile . (global 363)

This routine is used to load library programs entered in the
SystemIndex, :

Lines 20~31: A check that the spocified file does in fact exist,

- - e o A A o e A e et g e e P e it - . - -
A e . - . - e e e i e T e o ot o e e o e s o e R P b e o e o P it

Special functions in WIC

05/ 8F

This section defines the seventeen woxds of machine code in
the operating system, Though the fassombly code?! text is given,
we do not propose to describe the assembly code in any detail,
It has none of the sophisticated facilities of modern assembly
codes: there is in fact no point in making it emsy to read or
write, as it is used very rarely,

Line 1¢ This spocifies a NEWSECTION block (see the noto on blnary
format, IIi1,3),
¢ This introduces & block of code seventoen words long,
—16 This defines the seventeen words of code,
4= -0% These are the threo ‘ossontial youtines® dosoribed in [1]
2.1, They therofore cannot bo expressed in BCPL, but their
action is described bolow, (The mnemonics LDPRG and STPRG
arise besauso FPetchCode used to be oalled LoadProg, and
StoreCodo StoreProg, But with a name like 'LoadProg® one was
nover quite sure whether the prog was going to the store or
from it,) .
8—16‘ These lines describe seven routines which use hardware
T assistance merely to make them run faster, Equivalent toxts
of these routines are given in BCPL after the assembly code
paxt, and they are described below,
18-29! This is an interlude (see I1:1,3) intended to initialise
.-the globail variables &allocated to the routines defined above,
when this soction is loaded, In fact this interlude is never
oboyed: instead, it is analysed by the .program {the system
dumper)} which constructs the operating aystem as & coro image
on tho disc (see IXI$1.,1), and it is the dumper program which
sots up the globals appropriately, This is the reason for
the comment Elinea 35, 367,

¥o now describe the individusl routines,

FotchCodo ’ (global 2)

¥ = PetchCode[x]
The result of this function ¢all is the content of the word at

Q0 1139

address x in the code segment,

StoreCode (glohal 3)

StoreCode[x, ¥yl
This routine updates the content of the word at address X in the
code segment; the new value is y,

Exec {global 4)

ExeclCommand, RejLab, lv Result, a, bl

This routino invokes a command to the Computer Technology Limited

Executive progrvam E2, The significance of the five parameters is

as follows! .

command This specifies which particular FExecutive command is
being given {each of the possible commands is desoribed
individually below),

RejLsh if a command is accépted by Executive, the routine Exec
ends in the normal way, If the command is wxejected,
the routine ends with a jump to RejLab (Bxec takes care
of the problem of the value of the P-pointer, which is
what normally prevents labels from hoing passed as
paramcters) , However, the Modular One machine code
conventions are such +that if an Exec command must be
always accopted, so that no special exit is required,
the exit path is the one which in the more genexal case
is reserved for the special exit, This means that if a
command can never be rejoected, it always ends with a
Jump to RejLab, This is the sort of thing that happons
if you trxy to bo logical sbout machine code,

1v Rosult The xosult of & successful EXec command, or the reason
for rejection if unsuccessful, is placed in the address
given by this parameter,

ay b These are used to contain parameters of the Exec command
itself, The values required for each particular
command are given bolow,

Weo now give the descriptions of the individual Exec commands
used by the system, Readors who are conversant with the Modular
One software will notice that the system uses only two of the
thirty=-two commands provided by tho E2 Executive: TRANSFER (which
Computer Technology ealls READI or WRITEI) and CANCEL, In the
caso of TRANSFER the specification is affected somewhat by the

e e e A e e e o e M n t mem mpn

11:9 g1

interpreter, The intexpreter also makes internal use of one or
two further standard commands, The other two commands (LOOKATRDR
and READABS) provide 'hardware® facilities requirved by the
operating systom, They were not available in the standawd E2, 80
we amended it to provide them,

TRANSFER .

This account of the TRANSFER command is intended merely to
give enough information for the reader to understand the text of
the systom, Many details arve therefore omitted, The cormand is
used to initiate transfers to and from every poripheral device in
the system, b is a vector containing the parameters of the
transfor, and is described in the next paragraph, If the command
is rejected, the reason for the rojection is placed in Result:
the possible xreasons are tabulated helow, If the command is
accepted, Result contains the value of a, which is not otherwiso
used,

The format of the paramster vector (conventionally reforred
to in the text as E) is shown in Fig,.26,

E{DEVICE specifies which device is fto bo accessed (a list of
devices together with special comments appertaining to esch is
given below),

E{BUFFER and E{BUFFSIZE specify the buffer which is to be used for

. the transfer,

For transfers involving the dise, E{PAGENUMB gives the number of
tho page on the disc at which the transfer is %o start, For
othior devices, the element is known as EYSTOPCH! the transfex
will bo terminated if a character equal to this element is
transforxred, In ordex that a program controlling an input
transfor may know why the transfer terminated; the final word
of the buffer is resorved for this purpose: if the transfer
erds bocause the buffer is full, the last word is set to true;
othorwise (if the chavacter specified by E{STOPCH is
detected), the final word is untouched (TryDiadAgain, II:5,5,
uses this facility),

EVSEG specifies whether the buffer is in the code or the data
segment and also, if the transfer is of characters, whother
they are to be packed two to a woxd, (We do not use the
charactor-packing facility, and the only time we trxansfer from
the code segment is when the. entire segmeont is dumped for
post-mortem purposes - seco DumpSogment, IFiZ2.1,) Noto that
when specifying & transfer involving +the code segment,
E{BUFFER must contain the absolute hardware address of the

oz 119

buffor within the segment:
our origin of co=-ordinates

foxr addreasing this DEVICE N
segment is offset by a .
small value (OFFSETC) from BuFFeER ’
the beginning of the BUFFSIZE
sogment,

E{ENIMODE specifies the action PAGENUMB/STERM

that is to be +taken when SEG
the transfer finishes,
It it has the value
QUIETEND, all that happens ENpMODE
is that . the value of coMBLETED
E{COMPIETED is replaced by
its logical complement, SELFPTR PR
1£ +the value of E{ENDMODE INTREASON
isg INTERRUPT, howover,
when the transfor ends the
system is interrupted (seo

Interrupt, 11:2.4).

E{COMPLETED is unse:df:iL only to \qaz" Povawetes bleee. f"'
indicate the completion of Cuee TRANSFEI corarard
the transfexr whoen
E{ENDMODE etquals QUIETEND, : ’

BYSELFPTR always containg E itselfs this pointer is refuired by
the interpreter,

EVINTREASON contains the value which will be given as the reason
for interrupt if E{ENIMODE specifies that the system should be
interrupted at the end of the transifer,

The following devices may he accessed by the TRANSFER
commands$

YRS

The Executive also provideas for a third dovice, for reading
with automatic echoing, but we do mnot use this facility, as
our cchoing is organised by NextTT (IIig.1),
The paper tape roador o T
This is also regarded as two devices, The choice between
thom depends on the direction in which the tape is required to
move, Wo normally use READERLEFTTORIGHT.
he paper tape punch . . '

he lineprintexr

el el

This is rogardod as two separate dovices, TTWRITE and TTREAD,

e e b o i ot . P P i e e o Pt e s ™ e o, oo s .

1139 93

The disc
This again is regarded as two devices, DISCREAPD and DISCWRITE,
The least significant eight bits of E{RUFFER and E{BUFFSIZE
are ignored, so that the buffer begins at & page boundary and
occupies an integral numbexr of pages, With this device it is
- possible that though a transfer may be initiated successfully,
a hardware failure (such as a parity £failure) may occur while
it is taking place, If this ocours, the Executive overwrites
E{PAGENUMB with a value giving the cause of the failure, and
procoeds as though the transfer had terminated successiully,
The clock]
Four deovices arxe available as independent clocks, though we
use only one, ocalled CLOCK, The Executive’s internal clock
ticks with a fixed period, half a second in our system, The
buffer for commands involving the clock is always two words,
The contents of both words sre preset by the program, The
first word is decremented at regular intervals; the period is
spocified by the second word; in units of the peoriod of the
Executive's internal clock, The transfer terminates when the
firat word becomes zero,
Remote consoles
Four devices are aasociated with each remote console; three
of them are like the three devices belonging to the executive
teletype (READ, WRITE and READECHU); tho fourth, called the
XON device, has a rather different purposs, A transfor from
this device terminates when an XON character is typed at the
remote console, vreogardless of whatever other tranafers
involving that console may bo in progress at the time, The
buffer is not wused (so any valid buffer may bo specified),
We wuse these devices, with E{ENDMODE taking the valueo
INTERRUPT, to enahle users to interrupt the system from =
remote console,

CANCEL

This command may be used to stop any transfer in progress on
apy particular device, specified by paramster b, The command is
rejocted if the device doos not exist; otherwise it is accopted,
whother or not any transfer was in progress on the device,

LOOKATRDR

This commands Executive to ask the paper fape reader its
curront status, The command is rejected if the reader itself

9 I1:g

rejocts the request (e,z, becuse it is switched off or off-line).
If the command is accepted, the value of Result gives the readerfs
status (e,g, whether it is Joaded with & paper tape), This
cormand is used by ReaderOffLine (IIt5.4).

READABS

This command may be used to obtain the content of any word in
the Modular One core; given its absolute address, This is one of
the commands, mentioned above, which can never be rejecied, so
that it always ends with a jump to RejLab, The address is given
as tThe parameter and the command places the contents in Result,
This command is used by the function FetchExecWoxrd (IIi2,.1),

We now come to the seven functions and routines which are
implemented in 'hardwave® merely for efficiency®s sake,

Sumcheck {globai 15)

This function computes the sumcheck value for the information
in the vector DiscPage (IIiv,1), In the equivalent BCPL text
(lines 41~45), +the function ~AddwithBAC performs addition with
Yend-around-~carry®; In faect this operation, which ensures that
each bit in a word is checked equally effectively, is implemented
using the hardware overflow register; however, & possible BCPL
definition (assuming 2's complement arithmetie) is also given

(line 47),

Noxt (glohal 17)

This is the principal primitive function operating on input
streams, It is described in [2} §2.1, §2.5.1 and §2.0. This
commentary refers to the equivalent BCPL text,

Line 533 For a slow stream the eoffect is exactly as described in
[2] §2.501.

h4: 5. now points to the Lasi block,

58% If the buffer is empty, the NEXT element of the slow block is
invoked to refill it, and inecidentally to provide the resuli
of Next,

56l 578 If the next character in the buffer is the escape
character, the function in the TRAP eélement of the slow block

e et et o S st e T e e e o S P o % e e o et e et o i e e P P et e e o P e i am e

IIig 95

is invoked to deal with the situation, This teat may be
inhibited by setting the INESC olement of the fast block to
equal NOTUSED,

50-61% Utherwise, the next character is obtained from the bhuffor
and the pointer is incremented,

At present, NOTUSED has tho value 0; s0 this instruction
cahnot be used, for oxample, to detect blank tape as the escape
condition, This is a mistake, but we have not yot corwvected it,
as we have further plans for the escape facility {see the 1last
paragraph of Iz21 &.6),

Out (global 10)

This, the prinecipal primitive routine operating on output
stroams, is also described in [2] §2.1, §.5.1 and 8.6,

Line 69 The standard definition fox slow stroams,

Z1i 5 is now the fast block,

238 I the buffer is alrveady full it is output, wusing the
appropriate routine in the slow block, This c¢ase should
never arise,

752.76% The objoct being output is placed in the buffer and the
pointer incremsnted,

783 If the buffer is now full it is output,

23:81: If the ocharacter, just output is the oscape character the
buifor is output. As in the case of *Noxt?, this facility
can be inhibited,

Endof (glopbal 20)

This boolean function tests for the end of the information in
an input stream, See [2] §2.4.1 and §2.6,

Line Oz The standard definition for a slow stream,

93: S is now the fast block,

by 95: If the buffer is empty the corresponding function in the
slow block is invoked to test for further information,

96-98: The funotion in the slow block is also invoked if the next

. ¢character is the escape character, provided that the oscape

facility is not inhibited,

99: Othexwise, thexe is more information in the buffer and the
reosult is false,

g6 11i9
Transferin _ (glohal 13)

This is a rvoutine for filling a vector from an input stream,

TransferinC {global 14)

Thig is & similar routine for filling a veetor in the code
segmont from an input streanm, It 4is used principally by the
loadex, i

(Noto that both these routines need two IC instructions, This is
because the call Next[s] requires the execution of BCPL program,
and this cennot be invoked halfway through a machine instruction,
When the stack is set up for the call of Next, the link is set so
that control each time subsequently re~enters the second
instruction of the paix.)

TransferOut (global 7)

A routine to output the conltents of a vector to an output
stream,

(This routine does not wequire two IC instructions, as the
excursion into BCPL program occurs at the end of each cycle round
the loop, The link on the stack is set so that the instruction
ig re-entered each time,)

e e o o e e e P e s e e e e e 7 e e i 0 | e e e o e e ., et e 8 - P e T e

113: _SET-UP_PROGRAMS

ITIs1, System set—up

11121,1 SYSSETUP

This part contains the programs which initialise the syatem
whon it is first read into the core,

The sogments of the operating system, made up as shown in
Part V, are compiled in the normal way into IC files, The system
is constructed by & special version of the loader, which loads the
gegments into & core imege on the disec, The six setting—up
segments in this Part are also loaded, but only temporarily: that
is, the various pointers (such as CPtr, II:1,3) are not adjusted
to take account of the presence of thoso tomporary segments, and
they will bho eventuslly overwritten by programs loaded by the
system, Global variables required by these temporary segments
ere placed in the part of the global vector normally available to
user programs, and they are cleared when the saystem has been
initialised,

The core image may or may not be {(hbut usually is) converted
into a more compact form on the disc, Bootstrap programs (about
a foot of paper tape, wread . directly into the core by
special=purpose hardwaro) cause these cors images to be road into
the core, The socond pair of worde in the code segment (which
normally contein & jump to Interrupt, II82.4) are set up in the
core image to contmin & jump to the routine PInterrupt, which is
therefore obeyed as soon as the machine is switched on after
reading the system into core,

FSLim (temporarily globsl 412)

This variable is initialised in the core image to contain the
upper bound of the £ree store area in the data segment, This of
course implies that the size of the free store is specified when
the system is constructed in the core image,

98 1T131.1

CPages) {temporarily global 416)
DPagos {temporarily global 417)

These two variables are idnitialised in the core image to
contain the size (in pages) of the two segments, /

PInterrupt (temporarily glohal 411)

As stated above, thias routine is the first to be cheyed after
tho system is read into core, It performs all the initialisation
required for the system, beforxe finally entering the load-go loop,

Line 27: The software lock preventing writing to the disc is set,
80 that if this initialigpation process is interrupted no
ovorwriting of +the <filing system i1is permitted unless the
filing system routines in core have been properly initialised,

30*385 The action of these routines will be described.under their '

separate headings, but the order in which they are called is
importanti

30: many of this sequence of routines olaim free storage, so the
free store system must be set up first)’

31, 32% at one stage in the system®s history the disc occasionally
used to evince & hardware failure causing it to overwrite the
page in core after DiscPage; so it is arranged that DiacPage
is followed by the private stacks, the overwriting of which is
least likely to prove catastrophic (see the descriptions of
these two routines, below, for further frickery connected with
this positioning);

6% the clock must be set up before the time is obtained;

3% this must be tho last of the routines to olaim froe store; as
it computes the amount of store to be made availaebleo for the
Running of lLoadGoloop;

38s This routine sets a link to LoadGoloop, so it is not called
until an activation of LoadGoLoop would be meaningful,

40¢ Though when modifying the syatom this is oasy to forget, it
must remain possible to initialise the system oven if the
filing system on fthe disc is unusable; otherwise a hardware
disc crash would kill the system for ever, The core image of
this sytem is archived {on paper tape) and special bootstrap
arrangements, not using this system, onable the core image to
be established onto an otherwise empty dise and thence to be
read into core as usual, It would be possible to archive a
special version of the system, designed to deal with the
special circumstance of the non~availsbility of the filing
system, However, whon the normal system was modified, this

U VU VP S S U U U O T P U U P SR S S S,

IIId1,1 g0

special system would be liskle to bo forgotten, and so rapidly
to become incompatible, Wo therofore make provision for the
spocial case whon setting up the normal system, (Note that
since the setting-up code is only temporary, concern for the
specisl case doos not waste permanent core space,)

The operator specifies that the ZLiling system is not
available simply by switching the disc controller off after
the system has heen read into core, The system tests for
this condition, using the result to set the fliag DiscUsabls,
Note that since special action has to be taken by the operator
in the special case, in normal cirvcumstsnces he does not have
oven to consider the matter,

428 If the disc is available a quick validity check is pexrformed

- or the free store file, Since & pago of this file is written
back from the core fairly frequently, it is possiblo that it
may have become garbled after an erroneous program had
corrupted the corxe. If this is detected the function
QuickValPSF says so, and the f£lag DiscUsable is unset,

43% If the disc is off the system says so,

45% The REASONFORINTERRUPT word is eclesred (its previous value
will of course have boon POWERON), '

4&1 The second pair of words in the codo segment is converted to a
Jump to the normal Interrupt routine (II:2,3),

48% The temporary globals are cleared, which mesasns that the
romainder of this routine (lines 50-60) must not use any
temporary globals. ’

hl-34% If the f£iling system is available it is initialised, the

.. user is asked to log in, and the software lock on writing to
the disc is removed,

54=88t 1f the filing system is nok available, the address (held in
core) of the last page of the free store file is sot to an
invalid value, so that any attempt to write the free store
file page back to the disc will lead to failure (note that
this will only arise if the opeorator has exXplicitly
overwritten the software loek DISCWRITEPERMITTED), Thon the
uger 'System? is forecibly logged in and the opexator is warned
of the sbnormal conditions,

Using the 1link set by SotStackBase this command enters the

load-go loop, and the system begins its normal activity,

o
[=]
e

SetUpFs

When the system is loaded into the core image, the free
storage required is allocated consecutively in the data segment

100 IIfsi. 1

(after the global vector), The global FS is initialised in the
core image to point to the fixst word -of the apace whieh is left,
This routine sets up this space, of which the beginning is
spocified by F5 and the ond by FSLim (see above), as & proper free
store as described in II33,.1,

Line 0603 £ will be the start of the new area: space is reserved
for the FS8 block itself,
68-71% The F§ block is initialised,
$ The remaining space is initialised as the only element of
a free block chain, NewVec, ReturnVec etec, (1133.1) are now
availeble for normal use,

SetUpDiscPage

As discussed above (II1:7.1), the hardware reguired foxr the
vecioxr DiscPage begins on a hardware page boundary; that is, the
address of its first word is a multiple of 2506, This routine
ohtains a vector fulfilling thie condition; .it also sets up a
perameter block for the Exec commands which perform disc
transfors,

Linos 80, 8it v and Endv are the two bhounds of a vector which
cortainly contains a complete hardware page.

§3i D points to the stert of the first hardware page beginning in
the vectox v, '

§Zi The parsneter block is in a fixed position relative to the
start of DiscPage, =0 that DiscTransfer (II:7.1) can find out
where it is, At presont it immediately precedes biscPage, so
it is neceasary to onsure that there is room for it,

Q- Qg These lines deal with the remaining parts of the vector v
after the part required for DiscPage and the parameter block
has heen reserved, The part after DiscPage can be returned
immediately (line ¢O) and will be concatonated with the rest
of the available space, However, since we wish to ensure
thet the PM stacks come immediately after DiscPage (see
PInterrupt, ahove); we do not return the free space hefore
DiscPage yet, but leave its parameters in the siatic variables
DeadArea and DAlength, SetUpPMStacks will veturn this area
after it has claimed its own space,

9§"106= The parameter block is initialised (see the description of
_the Exec TRANSFER commend, II}Q),

o o, o et e e ek e P e e e P e e ok i o e N it P e e e oo o e s ot et o e e A e e i P e P Ao iy P, g teps By i

ITIsi, 101

SetUpPMStacks

This routine sets up PrivateStack and the first GiveUpStack
(see IIi2.4 and IIi2.1), As GiveUpStack is more likely to
overflow because of programmer error it is placed first, since
overwriting PrivateStack will not cause much trouble,

Lino 118: When the private stacks have been claimed, immediately
after DiscpPage, the free space before DiscPage (Boe
SetUpDiscPage, above) can be returned to the free store
systom,

SetUpSund ryitoms

This routine initimlises various things that are not dealt
with elsewhere,

Lines 125, 1203 The two chains are set empty,

1z6: This is the vector for the free store file page kept in core,

129, 130% These msre the two "handlea® to the disc filing system,

134¢ This onsures that the temporary setting-up code is cast
completely into limbo,))

130-140: The two code megmont words containing the meximum
addressges in the two segments are initislised,

1363 OFFSETC ie a consoquonce of the fact that the code segment
word with address O is not the first word of the segment (see
the code segment address constants in 1IV:i1.3). The =1
indicates that thore is one page of the segment beyond the
maximum address, This page is used as private working space
by Computer Technology®s communicetions multiplexer hardware,
It is occasionally ueeful to be able to access this space,
which is why it dis not outside the segment altogether, But
enguring that it is above the maximum address prevents the
loader from overwriting it with code,

SotUpTimeofbDayClock

This routine sets up the data structure (parameter block and
buffer) required for the clock which keeps the +time of day., The
format of a clock is given in the deseription of the Exec routine
(rrsg), .

102 IITsd.1

Line 1623 1t is for historical reasons that the pointer to the
perameter block is kept in the ecode segment while the block
itself is in the data segment,

SetUpRunBlock

PThis routine initialises the first of the cheain of Run-blocks
{see Run I1:1,2 and [1] §i.2)..

Line 172% A now froo store is set up,

1738 The FS block’s predecessor is itself, S0 this is the
‘primaeval? free store (see ReturnVec, II:3,1), AIl this
ensuyes that there is no possibility of returning this
Run~block or the other permanent system vectors to the free
store,

17438 This is the loop at the end of the Run-block chain (see [1]
§1,2,.3, footnote),

SetStackBasge

This routine ssts the Llink at the start of the stack, which
is immediately after the fred store,

Line 1g6: A loop is crested at the base of the stack,

1978 The link is set to the start of LoadGoLoop, This link is
used at the completion of the initiation of the system, and
also if over by chance an interruption ococurs during tho very
brief periods when the system is at the outer lesvel of Run,

ChockDigcOn

This boolean function determines whether or not the disc is
on-line, which is the test <for whether the <filing system is
available, The function attompts to sisrt a transfer from a
non~existent page on fthe disc, If the dise is on~line the
attompt will be rojected hecause of the invalid page address;
otherwise it will be rejected because the disc is off-line,

Line 210% The result of the test depends on the roason for the
rejoction,

e e e et e o e e e e e e e el e s e et e e e e ot e et P e et A e e g e et o et e e e =S et S = . e o e e i P e i s e

i

11184,1 103

ReleasoNonsSystemilobals

This routine c¢lears the part of the global vector which is
available for use by user programs, but which also contains the
temporary globals used in the setting—up of the system, Leaving
thew in a standard state may simplify the analysis of failing user
Programs,

FSFtoCore

This routine initialises the core copy of the last page of
the fres store file,

Line 223% The last page is read into corve,
2245 225% The extra words in FSF are initialised,

Login

This routine asks the first user to log in to the system,
It uses the system file described in VIII:1,

I1I:1,2 SETDANDT
SoiDateandlime (tomporarily global 413)

Thig youtine initialises the code segment word containing the
date, and the time-of=day clock,

Line 14% This call of TimeofDay will cause the clock to be started
and dinitialised, i

A7 This gebs rid of any oxtra characters which may have boen
input in answer to Date's questions,

104 111:1,2

Date

This function asks the date from the console, to which the
answer is given as three numbers {day, month, year), Since
operators scmetimos, make mistakes asbout this, the funection
confirms the date by asking for the day of the week and checking
that the replies agree,

Line 20: The year may be spocified either in full or by the last
two digits,

28-31: The year and the month are checked for validity, If they

~ are wrong a rocursive call of Datel] is used to try sgain,

51, 523 Tho day is checked for validity,

5@& The day of the woek is calculated,

8% The day of the weok is obtained from the consolo,

59s 60% In the case of Sunday or Saturday and Tuesday or Thursday
the day is not uniquely specified by the first letier,

61t but in the case of Tueaday or Sunday it is not uniquely
specifiod by the second letterx,

64673 A check that the calculated day of the week agrees with

~ that given,
£9: The date is packed into a aingle word,

e e i o P e e P i, oo st o .

¥Wrong

A private routine used by Date to output a failure measage,

LeaE

Leap[Year] tests whether Year is a leap-year,

Nextlottox

The result of this function, for which the parameter is a
character input stream, is the next letter to come on the stresm,

Line 83: If the letter is in lower-case the result is the
corresponding capital,

e e e o e o e P e o o e P e b ot

II1%1,3 105

11131.3 QUICKVAL

QuickValFSF (temporarily global 414)

This function performs a ¢uick validity chock on the freeo
store file, It does not check whether every entry in the file is
in fact free, though this is regularly done by the sepavate Disc
Validate program,

Lines 10-~12! Failuxe if there is no free store file,
17=42% Each cycle of this loop (§R) checks one page of the free
store file,
17-20% The specified page is not within the filing system,
Z23 The specified page is .brought into core,
§~28o The housekeeping words sre checked,
31-33% A check that each entry in the page is either the constant
- CLAIMED ox peints to a page inside the filing systenm,
35=37% A report if any invalid entries were found,
éof 41: The test moves onte the next page,
40-49% A check that the housekeoping information in the heading
agrees with that obtained by scanning the file,
5 The wresult is the value of the static variable Result, which
- is preset to true (line 4) and set false by any call of
ReportMessage,

ReportMossaso

A private routine called by QuickValF8F to output failure
messages and to set the result of the whole test false,

TI1s2, Sot up stroams

111:2,1 SETUPSTR

SetUpStreans {temporaxily global 415)

This routine sets up the pormanent streams of the systoem and
the dinitial values of the variable streoams, The component
functions and routines of these streams were defined elsewhere, in
the permanent cods of the system (IIt3), but some of them were
assigned termporary global numbers. The values of these latter
funetions and routines are copied into the stream vectors when the
streams are initialised, and they are not afterwards accessed
through the global variables,

13-14% The variable output streams are initially set to

_ ExecConsole,

173 The variable iInput stream is initially set to DiadRead {for
reading programs from paper tape),

parity {global 67}

This is a vectoxr used in the dotermination of the parity of
papexr tape codes, If © < i £ VECSIZE, thon Parityld is the
parity (1 for odd, ¢ for even) of the number of bits in the binary
representation of i, At .present VECSIZE is 15, so that i can be
any foux—bit integer, Thus the parity of an eight=hit charactex
can be obtained by testing each half separately and combining the
rosults,

SetUpParityTable

Thia routine sets up the vector Pavity.

Line 23: Since the number of elements in the vector is the same as
the number of bhits in a word, the contonts of the vector can
be conveniently specified by the constant PARBITS.

o e e st o o et e P e e A e e e o e o e P e e P oAk g =P e o P e e S e oy P e A o o o s e o o e P P m = n o

I1132,1 107

Dutput (global 26)
Reportstream (global 28)
Console {global 27)

These variables are intended to hold sireams to bheo used,
respectively, for a program's normal output, for reports of errors
and similar messages, and for dialogue with an operator,: See [2]

%47

In {global 25)

This variable is intended to hold the nérmal input stresm for
a program, The loader (II:1,3) takes its input <from hore, See
f2] §2.7.

I1132.2 SETUPTT

SotUpExecConsole (temporarily global 4007

This routine sots up the atreams which use the executive
consolei the raw byte stream Teletype, and the internal cods
stroam ExecConsole, i

Line 4% ExecConsole is to he a permanent stream, so its *Close?
Line 45 ’
routine is replaced by the *Reset’ routine,

IT

The result of this stream function is the stroam of raw bytes
to and from the executive teletype,

Lines 16-24: The conventional locations in the stream vector are
initialised,
gﬁi This is a permanent stream, so the °®Closs® routine is tho same
- as the 'Resot' routine,
22% This is a source stream, sc¢ this element points to the stream
- itself,
! These routines must be provided for source stroams,
2%53%: The parametor block is set up for read transfers from the-
teletypo,

108 II1Ii2.2

40-50% The parametor block for write transfers tfo the teletype
(soe the description of Exec routine, II3Q),

5%% The pointers for the input buffer are initialised,

The working of this stream is deseribed in IIi5,1,

111:2.3 SETUPRDR

SetUéReader (temporarily global 410)

This routine sets up the stroam of bytes from the paper tape
reador, BytesfromPT, and also DiadRead, the perxmanent stream of
words from paper tape punched in diad format,

Line 7% ReaderDsv 1s initialised, to gpecify the paper tape reader
roading in the normal direction,

10, il: Bince DiadRead is to ho a permanent stroam the "Close'

voutine in its slow hlock is set to the 'Reset® routine,

PT

ey

This funotion sets up the reader stream BytesfromPT,.
Lines 23-20: The fast hlock is initialised,
28¢ BytesfromPT is an input atream; but the element NEXT will be
initialised by the call of ResetB¥PT (line 55), as that
) routine has access to other non-global functions,
29=30t The conventional Iocations din the slow block are
. . initialised,
30: This is a permanent stream, so the TClose® routine is set to
the "Reset® routine,
$ This is a source sbream, so this pointer points to the atream
itself,
! These two routines are refuired by source streams, though
for ResetState there is nothing to be done,
3%1 This element is used hy InitiateTransfor (II:5.3).
Ri12

The buffer pointers are initialised,
30, 40% As required by InitiateTransfer (1I:5.,3), the word before
oach huffer points to the other bhuffer,
~823 The parameter block for the transfer is initialised (se0
the deseription of Exec, I1IiQ),
J5% This oall completes the setting up of the initial conditions,
t The value of a fast stream is the logical complement of +the
fast block vector,

- s NP - . e - .
S S P et e e e PP e P e o e, S e e o e o e o e e e ey o oo o o et s e P oo o,

IV: __ DECLARATIONS

1Vii DRECLARATIONS

This f£ile is inserted {(hy a get directive - soo the Appendix)
et the hoad of every separate segment for compilation ({see Part
V), in order to insert the declarations of all the global
varisbles and menifest constants which are of more than merely
local relevance, It uses got directives itself, in oxder to
split the complete list into three sublists,

Ivii,i1 GILOBALS

The globals declared in this section are those the users of
the system are encouraged to use, Each of the globals declared
in this section is individually described: the reador is referved
to the index,

1Vi1,2 PRIVATE GLOBALS

This section contains the declarations of all the globals
used by the system which are not defined in 'GLDBALS® (IVii.1).
Tho first part contains those permanent globals which are intendsd
for use only by other system routines, though of course thore is
nothing to prevent anyone from using them if he so wishes, The
second part declares tempoxrary globals which are used only when
the system is being set up and are thon cleared, Soma of the
values in theso globals, however, have permanent significance, as
they are copied into stream vosotors when the permanent streams are
initialised, :

Each of the globals declared in this section is individually
desoribed: the reader is referred to the index,

110 IVi1,3

Ivii,3 CONSTANTS

This section contains the definitions of all the manifest
constants which are of relevance to more than one local parxt of
the system,

Line 23 This constant is used in many contexts throughout the
system,

3%, This is conventionally used, e.g.

let x = UNDEFINED
when it is necessary to declare a variable before its initial
value is known,

6~10¢ Thoso constants depend on the particular machine,

Ei The amount by which the oxigin of co~ordinates for addressing
the cods segment 1is displaced <from the beginning of the
segment,

9: A mask to obtain the less significant half of a word,

12-17% See Exec (IIQ),

19=-33% The olements of the pavameter block for the Exec TRANSFER
command (II:g).

~41: See the deseription of the Exec TRANSFER command (XI3g),

30: E{STOPCH ¢akes this value if the terminating character
facility is not yequired,

44-52% These are the devices controlled by routines in the system
itsolf (sco Exec, II:Q),

483 This is the sum of the values of the two devices referring to
the papex tape reader, so that if one is known the other may
be obtained by subtraction,

5&~65= These are the addresses of the reserved woxrds in the code
segment, which occur between the beginning of the segment and
the origin for addressing, Of the unlisted addrosses, some
aro resorved for constants and working variables required by
the interpreter, and the remainder are spare,

The first twe of theso resexrved words {lines 55, 56) are
accessed directly by the hardware; the rest are kept in the
code segment for safety's sake, These roserved words are in
offect global variablos, and so we now procoed to describe
them separately,

INTERRUPT INHIBITED

This is a boolean, normally false, which may be altered by
software, When it is seot true, any attempt to interrupt the

S S S PO L S VU ST A U S D S O S0 O SN N S U U YU P O D U VI S S V0 VS N U S S S S Y

V31,3 111

syatom will be held up until it ig reset to falsgo, This allows
the system to contain *non~interruptable? codg, Interrupts due
to storage bound violations or switching the system off cannot of
course be inhibited: when such an intorrupt oeccurs this flag is
resot to falseo, (We have never in fact used this interrupt
inhibition facility,)

REASONFOR INTERRUPT

Whenever the system is interrupted, the value of this word is
roplaced by tho hardware with one specifying the reason for the
interruption (this is a dosign errvor: it would be botter to Yor!
the new value with +the previous contents), See Interrupt
(II:2.4)9 If the interruption is for reasons like storage bound
violations, this word is Lleft unchanged, Possible values for
this word are given below (lines 71-75); other values may
possibly occur whon the system is interrupted at the end of =
peripheral transfer, as specified by E¥INIREASON in the Exec
TRANSFER command (IX:Q),)

MAXD
MAXC

These' words contain the maximum addresses of woxds in the
data and code segments, See SetUpSundryItems (IIIti.1), where
they ave initialised,

SUMCHINHIBITED

This dis a poolean, normally false, If it ig true, the
sumcheck for information read from the disc is ignored; it is
thorefore a f£lag which may he spocifically set by software when
-coping with a corrupt disc,

DISCWR ITEPERM ITTED
This is a hoolean, normally true, When it is false, the

system ignores any request to write information to the dise, It
is somstimos useful to use this flag whoen running untested
programs, and also when dealing with a corrupt filing system, as
otherwise the system's automatic updating of the housekeeping

112 ‘ Ivil,3

information might make matters worse,

MFLFIRSTPAGE

This contains the handle to +the disc filing system; it is
used whenever a file is accessed, Seo [2] §3.4 = note that by
using this reserved word we have corrected the mistake mentioned
in that section,

DATE

‘This word contains the date, It ris initialised by
SetDateandTime (III$1.2)}, Ite format is given in Date (II1:1,2),
line 69, . :

RBLOCK

This peints to the Run-block helonging to the current Run,
S¢e Run (113192) and [1] §10201o

T IMEOFDAYCLOCK

This points to the parameter block (auitable for Exec
TRANSFER commands, II$Q) describing the clock which tells the time
of day, See TimeofDay (1I136.1),

We now continue with notes on the constant declarations,

Line QZ: When the system is interrupted & Jump occurs to the
gsocond pair of words in the cods segment, whioh initiaily
contains a jump to PInterxupt {1118d.1), The yvord
INTERRUPTADDRESS is updated during system sotup (PInterrupt,
1I¥:1,1), =8so that the words become a Jjump to Interrupt
(1132.4),

Z3=75% Velues pleced by the hardware in the REASONFORINTERRUPT
word (line 50),

§8-86= Constants concerning the clock,

1 i The elements of the clock buifer,

E&L in units of the period of the Executive®s internel clock (half

geconds),

T T e o At o, |

e PP e e e e et i b e e e o et e e e T e ot o o e o o . Pt o1 e i e e

V31,3 113

89-1051 The size of the Run—block and the names of its elemonts,
10G-117: The size of the information block and the names of its
olements,
119¢ The values of the code and data pointers when no code or data
block exists,
120% The value of the ISUC element for the last information block,
129-133¢ The size of the Iree store block and the names of its
elemonts,
139 136: The housepkeeping woxds in a £rooc block of free store
({soo *FREESTORE', 1I:i3.1),
140¢ The value of the NXTB word &t the end of the free block
chain, stc,
141: The result of MaxVecSize when there is no free store,
s ! The components of an olement of the ClearUpChain,
151t The value of CSUC at the end of the chain,
15251652 The elemonts reserved for standard items in stream
vectora,
160¢ This olement is resexved for the paraneter stream of a stream
function call, except for source streams (which have none) and
bilateral streams (in which cmre must be taken to ensure that
output to the stream still works when elemonts are PutBack to
the input part; as the PutBack block is also held in this
element),
1623 The value returned as the state of & consele stream when
. nothing haes beoen typed since the last ResetState call,
1%1w1% : InitiateTransfer expects these elemonts to be ussd, -
160~100% The size of a fast stroasm block and the names of its
. elements, '
191t This value, when assigned to both a buffer pointer and tho
pointer to the corresponding buffer end, indicates that the
buffer is empty,
igz: The value for FBLINESC or FB{OUTESC which indieates that the
. test is not to he epplied (see Next and Out, IIig),
1G0~206% The size of the telotype siresm vector and the names of
.goms of the elements, See SetUpExecConsole (IIIiZ,2) and
TELETYPE (11:5.1), A .]
209220t Constants for the reader strosm BytesfrompT, Note that
_...the sizé of the stream vector depends on the size of the
buffers,. See SotUpReader (I11$2.3) and READER (II!5.4),
225-237% Tho size of & PutBeck block and the names of itse

. _.eloments, 'See PutBack (II33.2),
240: A mask to remove the underline bit from an internal code
.. character,
Z41: A mask to convert an internal code letter to a non—underlined
_ upper case lottor,

114 IVil.3

243-250% Various internal code characters which cannot e
expressed as quoted characters on this output device.
248: This character could be quoted, but it is given explicitly as
otherwise it is easy to confuse it with ACUTE.
244, 245% Constants to wremove and insert the parity bit for
teletype code characters,
297-272% Characters in teletype code,
2§z=_The word which containsg the length of a private stack,
2~288% Particular words in a file body page.
232°_Thia only applies to the last page of ¥streamable® files,
The number of words occupied by data,
The value of the firat word of a free page.
The value of the NXTPAGE element of the last page of a file,
g% 302: The fields of a heading,
The parameter value for UpdateHead (II:8,3) for those fields
which axe not to be changed,
330: Tho default initial value of a date field,
311: Tho valuo of thoe FIRSTPAGE and LASTPAGE fields fox a file
_. with no body,
317-329% The fields of index entries,
334% This value in the type field of a file heading indicates that
the file has been deleted,
336: This bit in the value of a file type indicates that streams
may validly be foxmed to or from the file,
3303438 valuos for the permission field in a file heading,
- ¢ These are all concerned with entries in the MFL,
1: The size of each entry and the names of its elements,
3533 This value in the first word of an entry indicates that the
ontry is vacant,
$ The number of entries in each page of the MFL,
- : These constants are all concerned with the disc storage
allocation system, '
63: The size of the vector in core,
305% The extra word of housekeeping information in this file (see
II3%.2).
36Qa 3703 Tho oxtra elements in the FreeStoreFile vector, apart
from the copy of the file page,
%% The value placed in empty words of the FreeStoreFile,
376=379% The size of the InfromFile stream vector and the names of
some of the elements,
331t The end of stream character for this stream,
362%% The total amount of free storage wrequired by this stream
. (this constant is used by LeoadFile, 1138,6),
385—39§= The size of the OuttoFile stream vector and the names of
_sonme of its olements,

e

oe] 1 feofee

o]

e o e A e ot e e e e e e e e e P e e e e P o Mot 6 e i Pt s o, . A et R e e e

¥ SEGMENTATION OF THE SYSTEM FOR COMPILATION

Each of the 1little blocks in this part is a complete segment
for compilation., The individual files are concateonated using get
directives, Each sogment contains the files from one chaptor of
Part II oxr Part III, together with the declarations in Part Iv,

0§/ to og/8

" These correspend to IIii to IIiB,

05/8U_end 0§ SUS

These correspond to IIIS1 and IIIiZ,

VI LIST OF FAILURE REPORTS

These f£ailure reporis are numbered accoxding to where they
occur in the system, The more significant two digite of the
report number give the section of Part IX in which the ecalling
codo occurs, and the least significant digit gives the place in
that seotion, For oxample, OSReport 312 is ealled by HNewVec
(when the free store runs out); NewVec is defined in IIi3,1, in
TFREESTORE', snd this report is the socond ocourring in that
soction,

OsReport
111 globsl 1 not set

iél Terminate Run wrong {probably RunBlock overwritten);
- GiveUp[address of RunBlock]

131 In Load, no Zexo aftor NEWSECTION

132 no Zero after ENDLDAD

‘133 Yarning Character not TITLE, NEWSECTION ox
ENDIDAD, GiveUp shows valuo

134 In loadSection, too much code lomded;

. GivoUp[InformationBlook]

135 more than one DATA hlock in section

136 In Unlead, request to unload code loaded outside

- cuprrent ares

141 In Sotlambels, BINARY warning character oxpected
142 label setting instructions foxr Data,
but no DBlock

311 In NewVec, parameter is megative

31z insufficient free atore

313 In ReoturnVec, second parameter is negative

34 vector to be roturned overlaps current
- froe store area

315 chain of FS blocks wrong

316 vector outside free store

317 froo word inside vector

318 vector overlaps froe block

319 In RestoreFreeStore, parameter not valid FSBlock

e e e o e T s e

e P e e P ot et i b e g oy g P g P e R e e e e A e i g 2o e e g e e P =

YI
321
411
421
. 422
423
425
441
521
541
542
551
552

533
554

721
731
732
733

744
742

743

11y
In NextPB,; PutBackBlock not found on PBChsain

StreanError: usually outputiing to input stream ox
inputting from output stream

In OutString, string ends with ¥%? :
too meny parameters fox Outs, etc,
invalid chearacter following ‘i‘
string ends with *%I!
character following ’fI' not digit

In NextN or NextO, end of stream encountersed
In NextTele, odd parity found

In TryAgain, parameter stream not BytesirompT
paranctor stream has something PutBack

In NextBlock, Diad WCH expected
Diad block too big (>30)
Diad sumcheck failed
In TryDiadAgain, paramoter stream not BytesfrompT

AddressZero: probably global routine oxr function not set
In NewDiscBlock, no free pages left on FSF

In Infromfile or OuttoFile, file deleted
file type wrong for streaming
In EntriesfromFile, file not index

In ReturncChain, page chain wrong

In QuttoFile oxr DeleteBody, User does not have permission
to write to this file

In DeleteBody, heading found deleted

118

821
822
823
831
84i
831
852
861

VI

In Update, heading of file deleted
element to be updated not inside heading
end of heading file ryeached

In Updatelead, end of heading file reached

In FindHeading, no entry in MFL
end of heading file reached

In Lookip, index deleted

file not index

In LoadSystemrfile, file not in SystemIndex

T S e N A Y

e e e e A oA e A o A o e P PPt el e e e e o e e s 8, o e kP e e e S e o S 80 e i ot = Pt B, o=

VIIS THE SYSTEM INDEX

SystemIndex {global 303

This global variable holds the aystem index for the current
system, It may be umed hoth by system routines (such as LookUp,
11:8,5, and LoadSystemiile, 1138,6) and also by user programs,

In the remaindor of this- part we list the entries in the

system index, with brief descriptions of the purpose of the
various files,

Fileg with second name *ICY

Almost all these files contain library programs oz routines,
It is not the complete available repertoire, as other programs
which are mainly the concern of one usexr; hut are nevertheless
avallable for more general use, appear in their authoxs? porsonal
indexes, An asterisk attached to a name indicates that the file
will bo described in detail in Part VIII,

fLogInt*
This program is used to set the system varisbles User and
CurrontIndex to indicate which user iz using the system,
This program is wused by Logln {II$1,2, and also III%1,1),
Seeo VIIIii, S

MakoNowFilet

! Index Ops®%*

'File Vectors'™
These three files contain various filing system routines which
are not used ofton enmough to earn them a place in the system
itself, Sse VIILi2 to VIIIi4,

'DiscRtgt* .
A file of private routines used by the previous three files,
See VIIISS, '

funchecked Disc?
This file contains versions of CorotoDise and DisctoCore which
differ from the noxmal versions (II:%7.,1) in that no mention is
made of sumchecks! all the words in the page avre troated as
information words, These versions are primarily used for
dealing with core images,

*DISC VALIDATE?
This program, loaded and driven by s small steering Program on

120 VII

paper tape, is tho program which thoroughly checks all the
housekeeping information in the disc filing system.

IDAISYF
This program, also driven by a paper tepe steering program, is
the disc housckeoper eand garbage collection program (it is
called DAISY hecause that seemed an appropriate neme for a
housekeepor) .

YRCPLCOmp*

This contains the ateering routine which drives the BCPL
compiler, The other bricks of the compiler are to be found
in the compiler's own index,

'2dit Routines®
A simple line-~numbered editor,

'ECit

'EC2°
('Edit and Compile?) These files contain various routines of a
system which edits text files stored on the disc, and compiles
the eodited versions, storing the hinnry on the dise, The
system is driven by 2 steering program on paper tape, and the
name of the text and binary files, and the editing commands,
are also supplied on paper taepe. The program uses ‘Rdit
Routines® and the BCPL compiler steering program °BCPLComp?®,

*BytestoPT?

BytestoPT[} is a stream of 8-bit bytes to the paper {ape
punch, and is analogous to BytesfromPT (II:5.4). (Note the
asymmetryt BytesirorPT is a permanent stream, BytestoPT is a
library stream function,)

LinePrinter®

LinePrinter[] is an output stream of internal code characters
to the line printer,

TTERMINALSY .
Terminallnl is a bilatexral internal code console stream to the
remote console numbered n in our configuration,

tintcodefromSeven?

?IntcodefromTerminal?

These define input stream functions to prcduce internal code
streams Ifrom streams of hytes from the flexowriteor or & remote
terminal respectively. Most frequently they are applied to
BytesfromPT to read tape prepered oif-line on cne of these
devices, but the stream Terminal mentioned ahove, for example,
also uses IntcodeiromTerminal,

*Intcodefromdliivetti®
This i8 a similar input stream function to convert a byte
stream from tape punched on some Olivetti terminals with
chaxacter sets which differ Z£rom our normsl set, (The

N P S N DN R Ve S o M nmt et e P et
e e S e o o e g oot o e e P o o P e P o s S o A L o i e .

.

VIiI 1z1

machines have since beon converted, hut some old tapes are
s8till in exigtence,)

"Find Input?
The result of the parameterless function defined in this file
is an internal cods character input stream from the paper tape
reader., The function examines the first byte of information
on the paper tape and tries to decide on which device the tapo
was punched; if it gets stuck it asks the oporator on
Console, It then loads the appropriate stveam funckion file
and creates the stream,

* IntecodetoSevent

' IntecodetoTorminal?
These define output stream functions which produce internal
code output streams from streams of bytes, usually to the
paper tape punch, Thoy are analogous to IntcodefromSeven and
IntcodofromTerminal respectively,

"HaptoSeveonhole®

*MaptoTerminal?
These both define output stream functions; their arguments
and results are hoth internal cods output streams, They are

used specifically whon BCPL text is fo be output to a
perticular device, and their Jjob is to replace the
non-printable characters for that device with others which are
synonymous in BCPL, For oxample, MaptoSevenhole would
replace a question-mark, which cannot be printed on the
flexowriter, by *q, The object im to ensure that programs
can bo output and ro-input satisfactorily, so thal they then
compile to the same code, ’
"ordstoDiads?
This defines the output stream function analogous to
WordafromDiads (IX:5.5) on input, The argument sfream is an
output stream of bytes, usually BytestoPT{]l, and the result is
a word ocutput stream, (Diad format is deseribed in 11:5.57,
tLegible! ‘
This defines the output stream function Intcodetolegible which
converts a byte stream, destined for the paper tape punch, to
an internal code stream, The internal code characters are
output in legible form on the paper tape, This stream may be
used for labelling paper tape output, (When the stream is
set up it reads the byte patterns for the various cheracters
from the file ‘LegibleCodes® *Binary?, mentioned helow,)
?LinoNumbering?
This contains the definitions of several internal codo stream
functions,
AddbineNumbers is &n output stream function which causes the

iz22 VI

stream to count the lines being output and prefix each line

with a line number,

Paginate, also an cutput stream function, splits up text being

output into pages of convenient length,

RomoveLineNumbers is an input stream function, which causes

the stream to ignore the Line number at the beginning of sach

line,

" "LinePrinter Line Numbexring?
This contains a different version of the AddLineNumbers
interded for output to the line printer, where the possibility
of re-input need not be considered, so that a more elegant
appearance of the line numbering can be contrived, For
example, only every fifth line is line numbered: the program
text in this publication was numbered wusing this routine,
Also, the pagination of the text is performed autometically by
the printer hardware,

*Noxts®
This contasins the definitorn of s function, analogous to NextN
and NextD (1I34.4), which roads fthe next quoted string from
ite parameter input stream,

tLayout?-
This defines = set of routines which provide <£finer control
over the layout of material within a line being output,
Particular items may be left- or right-justified or centred in
specifiod fields on the line,

"BCPLSATY
This file containe a few library routines, used by the BPCL
compiler, but also available for general use,

t1,ine Shortener?
This file contains s program now little used, which splits up
lines of BCPL text originally punched on & device with =«
rather wide carriage (e.g, the floxowriter) so that it may be

output on smaller devices, The program attempts to choose
the best position to breek the line,
'BCPIPTOgG*

This is a work file intc whkich the BCPL compiler outputs its
compiled programs,

LN PN - - -
A e e e ot e e i o o o,

b e e e P e e e e e e P P e ., -
" - o e P oot b e e o P Py P

e Lt

VII : 123

Files with second name !Index?

¥System?

"OsPubSystem®

'0878ysten®
More than one version of the cperating system are usually in
existence at any one time, Since these may require different
vorsions of some of the library files, each version has its
own system index, Each system index is entered in itself as
tsystem® ¥Index®, but in addition each system index is entered
in all of them under a more specific name,

*Compilex?
Thig index cortains the bricks of the BCPL compiler.

Constructort
This contains a set of programs for menipulating the text anrd
binaxy £iles of the operating system itself, and fox
constructing opeorating systems as core images on the disc (see
System set-up, III1),

'POST MORTEM®
This containg a set of programs for analysing a core image
dumped on the disc by StandardGiveUp (ILs2.1), Various
useful items of information may be output to the line printer,

TESTAB®
This contains the File Establisher; a program which transiors
information (supplied on paper tape) to £iles on the dise,
it also has many other facilities,

tConsole?
This contains an experimental single-usexr console system, with
& contoxt editor and facilities for compiling and executing
plrograms, The congole command language is BCPL,

*Dffline®
This contains an expeorimental vexsion of the operating system,
in whkich the LoadGoLoop takes programs from a gueue on the
disc, It is intended to function in the ecomplete abksence of
any operator,

'DSF
This is the root of an over—complicated hierarchy of indexes
which contain the text and binary of all the versions of the
operating system,

The remainder of the files with second name %Index® are those
belonging to the users of the system (e,g, *CS' TIndex?, ‘Julia!
*Index®), There 15 also one index (%457 ?Index') for use by
people who have not yet hecome official users of the system; the
body of this index is lisblo to bho deloted from time to time,

124 VII
Other files

*Heandings® YSyst
This is the file containing the headings of all the files in
the system,

MFL® *5YS!
This £ile contains the master file list,

*FSF' tsyst
This is the free store file and contains g list of the free
pages on the disc,

‘UsorCodes? *5YS*
This file contains details for each user of the system, such
as the names of his index, It is wused by the LoglIn program
{VIIIsL), '

'BCPL Textfile! 'Text?

*BCPLYork! !'Gen'®

fBCPLNares? *Work!
These are work files used by the BCPI. compiler,

*LegibleCodes® 'Binary' '
This contains the private information used by the stream
function defined in YLegible® *iCY above,

JGLOBALS1Y ¥Text®

1GLOBALSZ® YToxt®
These files contain selections of global declarations which
programmers may cause to be inserted at the top of their
programs to declare the more important system routines,

e e A = P et e o b g e o Py 7 P o i g e e P T T P o e o ot P e e e o e

P e et

“YIII: SOME LIBRARY FILES

YIiiii login

This prograem sets the system variables User and CurrentIndex
to indicate which user is using the system, It is called by
Iogin (IX31,2, and also IIIi1,1), It asks the user for his name
on the console, and finds his entry in the file *UserCodes? 'svs®,
The format of the eniries of this file is shown in Fig.27 and the
names of its elemonts are defined in Llines 3~9,

Usox (global 310)
ENTS) B
When someone is logged in %®)
to the system, this variable VSERNANC L B
contains the unique value, NRAMEY jo
agsociated with him in th
ciate i i =} NAHEL " 1 .

UserCodes file, by which he is
known to the system, It is USERNVMB \gar number
used, for example, in chocking N
whether the user is allowed to ' User nawe
overwrite a particular £file
(see CheckPerm, I1I:7.4).

UsarIndaw ¢
Nonal
CurrentIndex {glohal 300) & WA sar Inday
MN‘Q. &

—

~A
-

This variable holds the "
index file in which the usex
is currently working, It is
set, when a user logs in; to
his own index as specified in [a. 27 Enhy in Wserlodes f\:‘z
the UsexCodes file, but he may I K,
subsoquently change it, for oxample to a sub-index, Certain
facilities (for example, the get direotive in the BCPL compiler:
see the Appendix) involve searches for files in this index, unlesa
they are instructed otherwise,

126 VIIIt1

Prog (global 1}
This is the steering program,

Line i18: Name is & vector (size MAXSTRINGSIZE) containing as a
BCPL. string the reply typed on the console,

198 v i1s tho entry in the UserCodes file corresponding to Name,

22~25: If no entry was found the program rocurses to have another

.. try,

26, 27¢ The variables are set,

2018 The entry vector is returned,

IookUpUseor

This function has one parameter, a string, which is the name
of & user, its result is a vector containing the corresponding
entxy in the file *UsexCodes® 's5YSH,

Line 34% The ontries are obtainod one by one using the stream

function EntriesfromFile, At present +this means that the
type of the UserCodes file has to be INDEX, which is not
ideal, :

String

Thigs function reads & string from the parameter input stream
8. The string is assumed not to he quoted, and is terminated by
a new line (not part of the string): it therefore differs Ifrom
the library zfunction NextS, which searches for a quoted string,
The result is a vector, always of length MAXSTRINGSIZE, containing
the string,

Line 50% The vector ig initialised to contain a string of zero
length,

53—56: This part of the program assumes that the characters are
packed two to & word: d.e, it is implementation—dependent,
54% A character is inserted in the less significant half of a

woxrd,
5§i A character is placed in the more significant half of s worxd,
59¢ The final length of the string is placed at the top.

4 A e s

.

P e e e A o S e e e e e e e o e 1 Ao e P e P e AP e i o N b e Ve o e P e e

VIIIi2 12y

VII1i2 MakeNewFile

This program contains the filing gystem routines for croating
and deleting files, and for altering the ‘*permission® of a fils
which specifies who is allowed to write to it,

Lines 10-13% These two routines, also used by other library files,
are defined in the file YDiscRts?, This file is loaded by
MakeNewFile if necessary,

17-19: The size of the vector returned as result by Newlocation
ard the names of its eleoments,

20: The value left by the system constructor in unused global
variables,

213 The olement of a file heading where a title begins, The
title is usually accessed indirectly via the first woxd of the
heading (see FPig.24, I1:8,2), but its position must of course
be spocified explicitly when the heading is created,

25 The maximunm size of & heading, assuming the title is of
maximum length,

MakoNewFile * (global 328)

oo 2] §3.1.3. The result of this function is a newly
oreated empty file with title and type as spocified by the two
parameters,

Lines 36—40: The three static variables are initialised if this
has not already been done,

41: The file "DiscRts® is loaded if not already present,

42% A dise address is obtained for the new heading,

43 The heading address is entered in the MFL, File is the
position of this new entry, : .]

442 A new heading, with no body attached, is constructed at the
specified disc address, Rote that the owner of the file is
the current user of the system,

46: The value of a file iz its position in the MFL,

loadDiscRtsifNec

This private routine loads the system file *DiscRts® if it is
not already presert, To determino this, it tests the global
variable corresponding to ons of the routines defined in the file,

128 VIIitZ

to =seo whother 4t is loaded, Note that ‘nestod globals® ([1]
§1,1) means that this global will xevert to its previous value
UNLOADED when *DiscRts' is unloaded,

NewFLENtyy

This function searches the MFL for a vacant entry and
initialises it to the values given by the parameters. The result
ig the entry®s position in the MFL,

Line 54%: StartMFLScan specifies the first page in the MIL which

-~ might contain a vacant entry, It is initialised (line 39) to
the first page of the MFL,

-00t Each entry in the page is scanned, i is the position of
the entry in the page; f is the entry’s overall posifion in
the MFL,

ggl 60: If & vacant entry is found it is initialised,
it The page with the new entry is written back to the dise,
32:213 I1f no vacant entry is found, the function moves onto the
next page,
67-70% 1f no next page exists, it must be created and Linked onto

. the current page,

Z23, The whole process is repeated until a vacant entry is found,

NewMFIPage

Thig function is called when a new page muat be attached to
the MFL, It claims & page and initialises its contents; it thon
updates tho heading of the MFL to refer to it as the last page,
The parameter is the serial numher of the new page; the result is
the page address, it is left to the calling routine
{NewMFLEntry) to link the page to the previous page in the body,

CroatoNewHoad

This routine iz used by MakeNewFile to construot a new
heading at the address specified by the last parameter,

Line 88: The heading will first be constructed in this vector
before heing writtem to the dise,

89¢ The length of the title in words,

91~102% The fields of the hoading are initialised,

e e P A i L e et " _ e e it

o e et e P T et e o e e e e e e e g™ . Y PP S oA A T oo P ™

VIIISZ 129

TITLE4TitleLength is the overall length of the heading,
10%: The title dis copied into the heading vector at the
. appropriate place using hardware assistance (soe Copy,
11:6.2),
1043 This private routine, defined in *DiscRts®, writes the vector
to the disec,

UpdatePermigsion {global 3i3)

This routine may be used by the owner of a file to update
the permission field of its heading, which specifies who is
allowed to write to the file,

Line 100:% A check that the usor is allowed to alter the field,

Doloterile (glohal 32%)

This routine may be used by the owner of & file to delete it
from the system,

Line 11%: A check that the user is entitled to delete the file,
118, 116: The hody if any is deleted, and the hoading is updated
ta dindicate that the file itself has beon deleted, Headings
of deleted files sare oventually removed by the Disc
Housekeseper,

Checklepality

This routine checka that tho file exists and that the current
usexr of the system is ite owner, I not it gives up,

VIIIi3 IndeXx Qps

This file contains the routines <for making and deleting
entries in indexes, The format of entries in an index was shown
in Fig,25 (11:8.5), :

Lines 10-13% These two routines are defined in the file DiscRis?,
which_is loadod if necessary by AddEntry and AddLinkedEntry,

130 VITI:3

17% The size of the vector returned as result by NewLocation,

158 Tho value left by the system constructor in unused glokal
variables,

Entexr (global 316)

This routine enters the <file £ in the index Ind under the
nemes Namel, Namez, See [2] §3.2.

Lines 20-31% A validity check on f.
3% A check that the user is allowed to overwrite the index,

3 If the two names are already entered in the dindex that
entry is deleted,
374 The new entry is constructed,

AddEntry

It is this private routine, used hy Enter, that actually
enters the file in the index, after Enter has preparxed the way.

Line 468 The file *Discits® is loaded if not already pxesont,

48% n is the length of the new entry.

&3:56: The new entry is constructed in core,

58, 59 The disc address where the new entry will go is oalculated
and the entry is written there,

Link : (global 315)

This routine makes a special entry in the index Ind under the
names Nemel, Nemo2 such that it refers to the entry under names
Na, Nb in & second index, which is entered in SystemIndex under
the names Nc, Nd, See [2] §3.2.1,

Line 67: A check that the user is allowed to overwrite the index,

083 A check that the proposed entry would not result in a loop of
circular references,

70, 71% I an entry already exists under names Namel, Name2, then
it is deleted, .

Z3% Tho new entry is made,

e o

T e e

S P

o i o e

e e e P e M e e e e oA et P v e Pt e D o o o i e i i i oo

LN S

VIIIi3 i31

CheckLinkDoesntloop

This routine is used whon setting up & linked entry, fo
ensure that the chain of links doss not lead to a loop of
roferences to each other, The parameters of tho proposed entry
are placed in static variables, and then the entry to which the
new entry is to refer is looked up using Check, a special version
of LookUp,.

Check

This dis a version of LooklUp (II1:8.5) called by
CheckLinkDoosntloop,

Lines 84~86: Before performing the look-up, tho parametors are
checked against the paramoters for the proposed Llinked entry,
previously stored in the static variables p, ¢ and i, If all
thros match, then the entry would lead to a locp of
roferenceos,

105 Excopt that the recursive calls (lines 94, 03) are to
. .Check, this might be the definition of LookUp itself, in
faot the version of LookUp in the system (II:8,5) is a
somewhat optimised version of this, in oxdeoxr to reduce the
‘time spent in the storage alloecation system, Check, however,
is not used sufficiently Zfrequently to warrant such
optimisation herxe,

AddLinkedEntry

This private routine used by Link actually mskes the new
entry in the index, It is vexy similar to AddEntry above.

Line 130: This sign reversal indicates that the entry is linked,

Note that the element LINKING shares the same location as the
oloment N3,

loadbiscRisifNoc

See VIIIiZ,

132 VIII:3

CheckPermission

This routine checks whether the usor is allowed to write to
the parametor file.

Size

A private function to ealculate the size in words of a BCPL
string,

DelatoEntyy (giohal 314)
This routine xemoves & specified entry from an index. In

the past this was achieved mevely by overwriting one of the fields
in the entry with the value DELETED, leaving the disc housekeeper
eventually to remove the entry completely, Howevery; it has
proved preferable in practice to remove the enftry at once, hy
copying the rest of the index back onto itself: this process can
now be given hardware assistance by using fast stroams and
Transferout ([2] §.6), Since earlier versions of the systom
might still be in use, the woutines which scan indexes (Lookup
(11:8.8) and EntriesfromFile (I1I:%7.3)) must still allow for the
posgibility of the older form of deleted entry (Fig,25, II:S.S).

Lines 160, 101} An outpui stream to a file does mot overwrite the
fite until the stream is closed, so bhoth input and output
streams may be used together,

162—120: Each entry in the index is scanned,

i00: If the entry dis tho older form of "deleted eontry it i=s

~ ignored, This check is necessary because the eloments STATUS
and Ni share the same field of an entry, so that if this field
had been overwritten by DEIETED one of the parameters for EqS
(line 167) would be undefined,

167, 168: The entry is copied back to the index, unless it is the

.. one which is to he deleted, .

17i, 172% The output stream is closed first bocause it is the more

. _ important,

e e o o g A e b s e o gt LT P o e e e e e g

A T T S T PR)

VIIiig 133

ViiIi4 File Vectors

This file defines threo routines for transferring information
betwoen files and vectors in core. Two of these, VectorfromFile
end VectortoFile, are described in [2] §3.1.2; the othor,
AddMoreVectoFile, appends the contents of a vector to a Z£ile,
All these xoutinos assume the convention, for a core vector v,
that v{0 contains n, the length of the vector, and thai the
information itsolf is in vil to win,

VectortoFile (global 324)

This routine outputs the contents of the vector v to the
file £, :

Line 21: The transfer is given hardware assistance,

YoctorfronFile (global 323)

This function reads a file into a vector of the appropriﬁte
size obtained from free storage, The vector is returned as the
result, .

Lines 27-303 A check that the file exists,

31-33% _The size of the required vector is calculated,

32: Unused is the size of the unused portion of the last page of
. the file,

303 The vector is claimed,

37-40% Its contents are initialised,

AddiloreVectoFile (global 325)

This' routine appends to the file £ the information in the
vactor v,

Linos 47-49% A ocheck that the usor is allowed to write to the
file, .

0: *DigeRts?, the file of private routines, is loaded if not
elready present,

A1: Addr is the dist address where the new information is to go,

134 VIIis4

52t This private routine, defined in *DiscRts®, copies the new
information to the disc starting at the specified addross,

LoadDiscRtsifNec

See VIIIiZ,
CheckPexm

This is practieally a copy of the private wroutine in
'DISCOUT® (II7.47.

VIIItH DiscRts

This f£ile contains private routines used by the three files
YakeNowFile?, 'File Vectors® and fIndex Ops®, It is loaded by
routines in those files whenever NeCeYBATY,

Note that these routines are intended only as private
routines: they therefore make no checks on the validity of the
parameteors, nor do they check before writing to a file that such
an action is pormitted,

NewLocation (global 308)

This function is used when extra information is te be added
onto the ond of & f£ile body; it caleulates the disc address forx
the start of the new information,

Line 22% The page address will be the last page of the file body,

26-28% _If no body exists one is created,

20931 Othorwise, the address of +the Tirst free word is obtained
from the pointer which is stored in the last page of the file
body {at least for all the files to which this function may be

applied),

T N S T R T

e P s e,

e e T e e e P e e e T o i ot P et

L T N

VIIISS) 135

MakeOnePageBody

This is a private function which constructs & new one page
body for a file; its result is the address of the page used for
this purpose,

AddVectoFile ‘ (global 307)

This routine appends the information in v{0 to vin onto the
ond of the <file £, beginning at the addross specified by the
vector Addr,

Line 51% Vec is a one page huffer, It is kept in a static
variable {(line 10) in order that it may alsc bhe used by
TurnPage, Note. that DigcPage cannot be used instead of Vec,
in particular bscause TurnPage calls NewDiscBlock, which could

~ causo DiecPage to be ovexwritten,
~57% If the end of the pageo is reached, a new page nust be added
to the file,

Z2% The ownor is .charged foxr any new pages, Note that

- h{NUMBPAGES refers to the heading before the updating in lines

704 71,

TurnPage

This function constructs a new last page for a file and links
it onto the previous last page, The result is the address of the
new page, Note that +the hoading of the file is not changed:
this must be done by the calling routine,

VIiIZs6 LinePrinter

This file dofines the global functions LinePrinter and
Generall.inePrintexr, Their definitions wuse the non-global stream
functions BytestolP and Generalintcodetolr, This is an example
of the method of dealing with errors outlined in [2] §2.3.

Lines 11~18: These are constonts usged in the function BytestoLP,
12-14% The .size of the vecotor and the names of some of the
_. _elerents,

136 VIIiih

i5% The values of S{PINGS, used by InitimteTransfer (1135.3).

10: The dovice number of the LinePrinter, Sco tho Exec TRANSFER

_ command (110},

20-29i Constants used by the function GenerallntcodetolP,

21-25% The size of the vector and the names of some of the

_elements,

¢t The length of the vector required to hold a line buffer,

20! The name of a special olenent of this vector,

32-42% Characters in line printer code,

43-52¢ Internal code characters which' cannot be printed on the
dovices used for manipulating program texts, {DIGITO and
LETTERO can of course be printed but arxe given éxplicitly here
to avoid possible confusion,)

-
.
.
°

2

LinePrinter (global 98)

This iz the function normally used to obtain access to the
line printer, The result is an internal code output stream, It
uses the more general function GenerallinePrinter; the parameter
DEFAULY specifies that the system's default error function is
required,

GenerallinePrinter (global 80)

The result of this function is also an internal code oubput
stream to the 1line printer, but the action required in the event
of orror may be specified by the parameter Ifunction, Soe the
system's default function StandardBrrorFn below for dotnsils of the
conventions which these orrox functions must satisly,

BytestolP

This is a paramcterless atream function, The result is an
output stream to the line printer of bytes in printexr code, The
stream uses InitisteTransfer (II!5.3) in order that appropriate
action may be taken if the printer is held up, However, it was
writton to bo as simple as possible and has only a single one=word
buffer, unlike the other streams (e,g. BytesfromPT, II!5.4) which
uge InitiateTransfer, Although the efficiency of this stream
would undoubtedly be improved by using double buffers of greatex
length with the fast stream mechanism tfo £ill them, we have not
yot folt the need to optiimise here,

e e P o o % i Bt o e e

R T SV S S N

e P e e e P e T e T et e

e e A e

SRS

VIiiis6

Lineg 76-863 A voctor is

claimed and +the standard
olements initialised,
83% Note that no action is
‘ required for Reset,
88-06¢ Initialisation of the

part of the veoctor
roserved for the Exec
parameter block (ses
i1:q9),
9§-101: Initialisation of the
_-part of the vector
reseoxved foxr the
ClearUpChain entry (soe
11:1,1),
102, 1037 The entyy is
~.. attached to ClearUpChain,
1053 When double~buffering,
. InitiateTransfer requires
the woxd before each
buffer to point to the
othexr huffer, Yhon as
here both buffers are the
sane, the word befoxe
points to the buffer
itself,
CutBLP
The *Out® routine to

output each byte,

ClosoBLP

The *Close? routine,
Lines 110-121: The ontry is

romoved_from ClearUpChain,
I23% A pause to allow time for
conpletion of any transfer
currently in progress,

NEWT Shembree
our OwtBLP
cLoss Clos BLP
PINgS LPRINGS
ENpoF Sheerabvver
REsSET Nuu'hv,mm
SOURCE .
sTATE Shream Evvor
REsersTATE Stvedrs Erver
P PAINTER
BUFFER v
BUFESIRE 1
SToPcH NOTEVTE
SEG baThRses
ENDHOE CUUIETEND
SCLFPTR L —
CLEFRUP ™ [Thradiptratn
csve SLwtepier
o« CPRE ,——s %ﬁ?& ttor
RovTing FoulClessBLP
BUFF

Fq.28 ByksholmeRinkrL]

137

v

138 Viiiib

The problem is as followsi if the printer is still
on=line when the stream is closed it is convenient to ond with
a page throw, so that the output may bhe easily removed from
the device; but frequently by this time tho printer will have
hoen set off-line and the paper already removed by the
inpatient programmexr, in this case to force a page throw out
would be not only ~superfluous but also sannoying, as the
operator would have to switch the printer on again in oxder to
allow it to happen, and to leave the transfer ponding might
cause ocatastrophe if the space occupied by the stream is
overwritten hefove the transfer ends (seo ClearUplP, bolow),
However, the interface designed to connect the printer to the
main computer does not let the computer know whether the
printer is on-line or not, This is the mort of nonsense that
software desighers are always having to cope with, So the
character conversion stream function GenerallIntcodetolP (see
below) -outputs a page throw anyway, and the TRANSFER command
which this generates (in InitiateTransfer, I1:5,3) is accepted
by Bxec, which doesn®t know any better, CloseBLP waits a
moment to allow the page throw to happen if it can, and then
(line 124) cancels it, Note that weo have to ensure that
there is no 7risk of our cancelling the usex's own output,
which we would have mo right +to do: but since we output to
the printer one character at a time, no special action need be
taken - this would need considoration if we were using more
sophisticated buffering.,

CloaxUpLp

This is the value of tho ROUTINE field of the ClearUpChain
entry, and it is called if the stroam 1s prematurely abandoned,
It is necessary to cancel any fransfor in progress, to aveid
possible catastyophe in c¢ase the space ocoupied by the Exeoc
parameter block (see I1:Q) is re-allocated and overwritten before
the transfer ends, as Exec refers to it in oxder to decide what
action to take on completion {II:9), See also [1l §1.2.2.

Cancel

This routine uses the Exec CANCEL command {II1:9) to abandon
any transfer currently in progress to the line printexr,

B L T)

e o e,

e e T e L et

VIIX:O 139

GonerallIntcodotolP

This is a character conversion ocutput stream function, Its
first parametor is a hyte output stream destined for the line
printer, The result is an intexrnal code output stream, The

action required on detection of an error condition is spocified by
the second parameter, This may be a function which will be
callod in case of erxror, or it may take the value DEFAUIT to
indicate that the standard error action is required, deflined with
the stream function itself,

Underlining is achieved on our line printer by overprinting,
so any underlines refuired are stored in & spscial buffer and
output at the end of the line,

Az line printer papor is not cheap, a group of two or more
page throws output consecutively is treated as an exror, This is
achioved by setting the OUT elemeont of the stream to a special
routine whenever & page throw is output,

—

NEXT SheanEver g

ovt OutlP
CLesE Clogal.P

STR 56
ENKOF StrassmBEvreir h
RESET ResetlLP
Soorce Soante (547
OLBYFY e J
ULPTR he
Efpon Bre

POLETHESWS
LPLINELENGTH

Fy. 29. Genersd IwkodetoLPL St Ew]

140 VIIIh

Lines 140-147: A vector is claimed and the standard elements
initialised,
t It is sassumed that when the stream is set up the printer is
~ _ at the top of the page, This depends on the establighment's
oporating techniques and is usually true,
150% StandardExrrorFn i8 the defeult error function supplied by the
_ system (see below),
132~155% The buffer for storing underlines is claimed and the
. _.pointers initialised, BYFLACG is used to indicate whethex the
buffer contains any underlines,

OutlP

This is the normal f0ut’ routine for the stream,

Line 1§_4: B is the underline buffex,
105: A boolean stating whether or not the charmctor is underxlined,

16063 The character without the underline bit,

162: The value of Ch is either the line printer ocode for the
character or the special constant COMPIETE, which indicates
that any required action has been performed as a gide=offoct
in the valof block on the right hand side of the definition,

16g:1zg3 This is the usual case, The internal code table is

. split into two at *(%, In bne part most of the characters
have the samo value in line printer code, in the other most of
thom are unprintable,

174~177% Recursion to output the four—spaco ocharacter as four

... .soparate spaces, ’ . .

12&:133: The newliho oharacter causes the underline buffer fo be

. output, and then the newline character in printer code.

184-18gt This deals similarly with the carriage return character,

_(which, together with the back space character may be used for
more elaborate overprinting),

191~1097¢ The page throw character is dealt with in a sgimilar

_ . fashion, but in addition the page throw count is started and
the tOut! routine altered, to trap any furthexr page throws,

199-207: If already at the beginning of a line the backapace

“character has no effect, Otherwise, the effect is the samo

as a carriage return followsd by sufficient spaces to bring

the pointer to cne place before its original position,

210-229: These are the printable characters which camnot be

__._coverced by the default case above,

2193 An exclamation mark is constructed by overprinting a prime on

a fullstop, The fullstop and the backspace are output hy

recursive oalls,

L i

A LD P R S S

e

i PRI UL PR BRSSP

P e e e T P 2™ oo s Ot S o

VIII:E 141

222-23h% 8imilarly, the dollax is constructed by overprinting an §

... with a bar,

226g 227% The other digits and letters are dealt with by the

. default case, However, the hardware ocharacter set of the
printer has & narrow O for the letter and a fatter one for the
digit, whereas our convention is the reverse, 80 we put it
right explicitly hers,

2303 We reach this point only with unprintable characters, so the

- eryor function is called to deal with thom, The vesult of
this e¢all may be another internal code character to be output
instead,

241, 242% At this stago Ch has beon satisfagtorily defined, We

- - now check that the line is not alweady full, If it is, the
orror function is called to cope with the problem,

g&%i In this case no furthexr work is required°

2468 Otherwise the charactexr is output,

247% The appropriate character, an underline or a space, is placed

. in the undsrline huffex,

248 The flag indicates whether anything has yet been underlined,

Qutputinderlines

This routine is called at the end of each line (and when
processing certain other characters, such ds backspace) to
ovorprint underlines on any characters that require them,

Line 2587: If nothing has been underlined there 1is mnothing to be
dane,
200% Otherwise a carriage veturn is outpuby; followed by the
contents of the underxline buffer,

IrapPageThrows

This is the special "Out' routine which is placed in the
stream vector whenever a page throw is output, Its purpose is to
trap itwo or more consecutive page throws and to treat such a
condition as an errox,

142 VIII:6

Line 262: If more page throws are output the routine keeps a
count,

209, 2703 The count is reset and the noxmal *Out® roubine
replaced,

271 1f more than one page throw has been output, +the orror

. function is called, Note that this must happen after the

normal *Out? routine has hoon rostored in case an error report
is required, as ReportStream might be to the printer,

168: The character after the page throw or page throws ~is output

_ as usual,

ClogolP

The 'Close' routine for the stream,
Lines 2479, 280: The underline buffexr is output (if necessary) and
returned,
2813 The errbr function is called if there have just been several
_ _ consecutive page throws,
282: A page throw is output unless the printer is at the top of a
. .- page already, Seo the commentary on CloseBLP line 123 above,

ResotlP

The -'Reset? xoutine for the stream,
Line 2892 A new line is output unless the printer is alweady at
the boginning of a line,
291-204% The erroxr functioh is called if there have just boen
_ ..Boveral consecutive page fthrows, so that the stream continues
with & clean slate,

T S

T e e e e e L et T e e i+ e e ™ e ™ et

LR

e e e e e o o o ™ i e e i S

VIII: 6 143

StandardgrroxFn

This is the standayd error Zfunction called whon the
IntcodetolP stream detects an error condition, unless the user has
specified an error function of his own. The three parametors ave
the stroam, the reason for the error condition, and any further
information (dspending on the condition) which might be helpful,

Lines 301-312: This part deals with unprintable characters,

J0Z3 y is. the non-underlined version of the charactey, ’

303, .304% These are treated as valid characters, ACUTE 1is
printed as PRIME, and RUNOUT and STOPCODE characters (meant
for paper tape atroams) are ignored, However, sincd thoso
characters are not strictly applivable to the printer, it is
up to the orror function to decide how to deal with them,

308: A space is left for valid cheracters which are unprintable
morely because they are not in the printer's repertoire,
They can thorefore he insorted later by hand if required,

31iit iInvalid characters are reported; but othorwise ignored,

3233 This case could only arise after a wild jump,

PrinterReport

‘A private routine for ocutputting error reports about the line
printer stream,

Source
st

See IIif.le

References

{1} J.E. 5TOY and C. STRACHEY
056 - an experimental operating system for a small computer
Paxt 1i: general principles and structure
Computer Journal 13, pp 117=-124 (1972).

[2] ibid,
Part 2% input/output and filing system
" Computer Joupnal 15, No,3 (1072),

[3) B.W, DIJKSTRA
Structured Programming
Software Enginecoring Techniques
(od, J.N. Buxton and B, Randell)
pp 84-88: Nato Seience Committee (1970),

[4]1 THE NEW ENGLISH BIBIE

Oxford University Press and Cambridge University Press (19?0).

[5]1 M. RICHARDS
The BCPL Reference Manual
Technical Memorandum 0¢/ 1
University of Cambridge Computer Laboratory (196Q),

I61 N, WIRTH .
The Programming Language Pascal
Acte Informatica i, pp 35-63 (1971),

[7] %.8, WUL¥, D,B, RUSSELL and A,N, HABERMANN
BLISS: A Langusge for Systems Programming
Comm,A,C.M, 14, pp 780-700 (1g971),

e =,

(RPN IEE SR S, W SSRGS S NP ST S SR

e L e

43

Appendix? BCPL

This has no pretence to be a conplete description of BCPL, or
oeven one adequate for the intending Programme, For both of
these the reader is reforred to the reforence manual I5]. our
purpese here is mwerely to mention points which might otherwise
prevent understanding of the text of USPub,

In this description we sometimes use ¢ to stand for any
expregsion, ¢ for a command, b for a block, x for a name, and k
for a constant expression {(one that the compiler is able to
ovaluate at compile~tims),

Roprosentation and syntax

ot, followed by one or more quoted charactor strings, indicates
that the text in the file specified (in soms
implomentation~dependent way) by the strings is to be inserted
at this point,

Comments arxe introduced by || and extend to the end of the line,

Commands are, in’principle, separated by semicolons, However,
the compiler will insert one automatically at the end of a
line in suitable contexts,

Similarly, & then (or do, which 1is regarded as synonymous) is
properly required in if commands and similer constructions;
but the compiler will sometimes insert one automatically if
need ba,

Expressions and operators

8 indicates that the number following is in octal,

The value of a quoted atring containing just one character (74%)
is the internal code for that character, (The internal codo
is given in Fig,30,)

The value of & longer string is a vector containing the characters
packed into words, The number of bytes per word is
implementation-dependent (2 for us); the first byte contains
the length of the string in characters,

Some non-printable characters mey be represonted in strings as
followsi

*n stands for newline
*8 stands for space (or a space itself may bo used)
*4 stands for the 4~spaces charactor

146

00
01
02
03
04
05
06
07
10
1
12
13
14
15
16
17

Appendix

0 1 2 3 4 5 6 7
Rusents | H Bell
k| Tob | e b, Sl lspeces
a { ! + 10
+ £ v ® A * t ¥
Space | 1 u # $ 4 % ‘
(* + , - . /
0 1 2 3 4 5 6 7
8 9 H H < = > '
C A B C D E F G
H I J K L M N 0
P] R S T i v (l
X Y Z [\] A +
N a b c d e f g
. h i J k 1 m n 0
p q r 3 t u v W
x |y z § I 4 v ekl

Tho most significant bit (§200) indicates that the
character given by the other seven bits is underlined,

Fig. 30

. Internal Character Code

" Appondix 147

*q atands for a question mark
*b stands for backspace
*p stands for pagethrow
** gtands for ¥
¥' gtands for ¢
N

dv and xv: In general, an expresgsion may be evaluated in one of

two modes, called Lmods and Remode, For oxample, in the
asgighment command
X = y

the left-hand side is evaluated in Imode to give the address
of somo storage cell, and the right=hand side is evaluated in
Rmode, to give the new value for the contents of that cell,
The results of these ovaluations are called the Lvalue of x
and the Rvalue of y, (DL courso, somo oXprossions cannoct be
evaluated in Lmode, as they cannot specify the address of a

. coll,)

The

The operator 1lv allows an address to bo treated as a

value, An expression
ivoe
eauses e to be evaluated in Lmode; the Lvalue of o is then
the Rvaluo of the overall expreasion, So
X = Hy

will assign the addrese of y as the new contents of x, {The
left~hand sides of =ssignment statoments and the operands of
v are, in faect, the only contexts where expressions are
oevaluated in Lmode,)

Xy provides the converse operation, In an expression
I'v 6
the Rvalue of o ig taken as the Lvalue of the overall
exprossion; if the Rvalue of the completo expreasion is
wanted, the contents are obtained of the cell specified by the
Lvalue, So if, as sbove, x = lv y, then the command
v x H=1"
will alter the contents of y, The command
W'o'_]‘?__x
will assign the contents of y to w, So rvi{lv x) is identical
to x,

<

n

olements of a vector v, written v{o, vil, ..oy vin, have
consecutive storage cells, The Rvalue of v itself is the
Lvalue of v{o, S0

vii is the same as rviv+i),

148 7 Appendix

The parameter list of a function or routine may, according to
BCPL, be treated as a vector, S0, within the definition of
£{x,y,2}y one may let v = ly x, and then refer to the
parameters as vio, vil and viz,

El # E2, E3 moans the same as Algol (0's
Aif E1 then E2Z else E3 .

Ei xem BZ means the remainder when E1 is divided by E2, / and
rem are mutually consistent; in our implementation the
remainder has the same sign as the denominator,

The operators » (and), v (or), ~ (not), = {equivalent) and ¥ {(not
equivalent) perform logical operations on bhit patterns,
However, the representations of true and falge are such that
these operators may alsc correctly be applied to buvoleans,

Extended relations (such as 1< x< n) have their normal
mathematical meanings,

Evaluation of an expreossion of the form

valof b
where b is a block, causss exXecution of b to commence, and to
go on until a commend of the form rosultis o, Execution of b
thereupon ceases; and the Rvalue of e is returned as the
Rvalue of the valof expression,

The parameter 1list of a ZFunction call is enclosed in square
brackets, These brackets must appear, even if the function
takes no parameters, in order t{o distinguish the value
obtained by applying the function from the value of the
function itself, Parameters of functions {and routines) are
always by Rvalue; if the Lvelues are to be handed over, the
copexators lv and rv must be employed,

Commands

The symbols § and § may be used to bracket commands, and are
equivalent to Algol 00%s bogin and end, They may be tagged
to indicate matching: when a particular block is closed, it
implies the closing of any blocks inside it, even if they are
not closed explicitly,

The multiple assignment, for example

X, ¥y i= E1, E2
indicates that the separate assignments

X ¢Z Bl; y &= E2
will be performed sequentially (net simultancously), The
order of performing the assignments is undefined,

T 5 i e b R a8 kb ST et T b e b P Y "t bt s

et bl P e

Appondix 49

tost o then Ci oxr €2 is equivalent to Algol 60%g
Af o then C1 glse C2;
In BCPL, if is used only when thers is no olse part,
The loop command
¢ ropeat
indicates that ¢ is to be repeated indefinitely,
The loop commands
while e do ¢
and -
¢ reopeatwhile o
diffor in that the body of a while loop is not obeyed at all
if the condition is not initially satisfied; the body of a
repeatwhile loop is always oheyed at least once,
In for commands, which are loop commands of the form
for i = EI to E2 do o
where ¢ is a command 8 new. varlable i is defined, its scope
boing e, The increments in the value of i are always unity;
the limits El and E2 are evaluated once only, at the start of
the command,
In switch cormands, of the form
switchon e into b
the block b contains case—labels, of the form
~ case ki
Control passes to the case—lakel for which the value of k
equels the value of e, If there is no match, control passes
to the default labsl

'defaults
if there is one, othorwise b is not entered and control passes
to the point after the switch command,

break causes execution of the innermost loop command to cense]
control passss to the point after the loop,

refurn causes execution of the innermost routine activation to
cease; control passes to tho point after the routine call,

endcase causes eoXxecution of the innermost switch command to
cease; control passes o the point after the switch command,

rosultizs e causes evaluation of the innermost valof expression to

coase, and indicates that the Rvalue of e is to be the Rvalue
of the valof expresasion,

The parameters of a routine call must be enclosed in square
brackets, even if the parameter list is null,

150 Appendix
Definitions

In BCPL, variables are of two kinds: static and dynemic, A
dynemic variable has storage allocated and its valueo initialised
when its definition is obeyed during the execution of the program,
Like Algol GO varisbles, they last only until the end of the block
in which they are declarsd, and recursive activations of the same
block give rise to seoparate dynamic variables, Static variables
are given storage and initialised when the program ia loaded, and
last until it is unloaded; so recursion does not give rise fo new
static variables,

Dynami¢ variables are oreated by definitions of the foxm
Lot x = o
Vector definitions of the form
let x = yeo k
oroate & vector with elements x{0 to xik, Both vector and
elemonts are dynamic,
Static variables are created by labels, by function definitions of
the form
let fIx,y,2] = e
by routine definitions of the form
let rix,y,z) he ¢ ,
by global definitions {see balow), or explieitly hy
definitions of the form
static §xz=2k §
A manifest definition, of the form B
monifest § x =k §
indicates that the Rvalue to be associated with x is to be k.
X is @ constant, not a variable, and cennot be evaluated in
Limode; but it can be a component of constant expressions,
{The compiler will replaco cccurrences of x by its value,)
A global definition, of the form
global § xt k §
indicatos that x is the kth element of the global vector, X
is a static variable, though its Rvalue is not initialised
(but see *Important exception?, bolow). The glohal veotor is
the mechanism for communication botween separately compiled
. sogmentsa,

—rm - . P :
SR — - e e e e T i . e P e e o e e s e At o e e - R
e e, I e . g et . -

Appendix i51

Definitions introduced by let may be joined by using and in place
of the second let, They are then mytually recursive,

Scope rules: all names, however they are defined, are governed hy
conventional scope rules: that is to say, objects (variables
or conatants) may bo defined within the acope of other objects
of the same name, ” -

Tmportant exceptioni a definition of a static variablé (function,
routine, ete,) within the scope of a global variable of the
8ame name is treated not as defining a now varieble, but
merely as specifying the initial Rvalue of the global, (This
applies to tho ‘*definitions® of all the syatem wroutines
dofined in 08Pub, for example,)

Accounting
Activation pointer
AddEntry
AddLinkedintry
Ad®doroVectoFile
AddreesZoro
Addvectorile

Aics of publicstion
Altocation - core
Allocation — disc
APERSANDE
Anythingtyped
Appendix! BCPL
AskTire

Assonbly code
BACRLIKK

BCPL

BEIL

BELLt

BFF 1BKD

BFFZERD

BEPT

BFFTSIZE

Binary fermat
Bootatraps

Bricks for cozpilation

BUFF1

. BUFFZ
BUFFER
BUFFSIZE
BytesfrorPT
Bytestolr
CAXCEE
Cancol
CASBMASK
Centyal loop of systen
C(First A
Cheractor codes

(soe also Fig,30)

Charge
Check
Chackpiscin
Cheoklegality
ChecklinkDoe sntLocp
ChockPorn
ChookPoraisaion
ChockType
(48

CLAIKED

Clearing up

Clearyp

ClerrUpChain constents
CloarUplP

CLCK

Clook

Clook conatants
CiDCKBUFF812E

CrLoss

Class

ClossBLP

ClogeEF

CloselIF

ClosolP

Closell

ClosePB

ClosoTele

CloseW

Code Esegront addressssz

IxE Con
65 &

26
113 330
114 131

108
1t

97
115

[NDEX

CODESEG

1%t Com

. 94
Compilation of the sysiem 103 1135

Corphled sogront - foreat

COMPLETED
s 15
Lonsola
{s¢0 slso ExocConsole)
Constants
Copy
Core atorage
CoroteDiso
ce
ragas
LPRE
TPTR
crte
CREATED
croateNewhuad
Crottion of files
CEx
cue
CUCHAIN
Currentlndex
DATASEG
DATASIZE
DATE
Date
Ditlock
Dobugaing facilities
Declarations
Defaultprog
[E1ETE
DPeleteRody
DRLETED
DoloteEntry
Deleterile
PEYVICE
Povice numbers
Diad format
DiadRoad
Diada
DHapnostios
Diiferencos
fron '0sH' papers
piso (see aleo 11:17-8,
Yi11iz-4)
plsc accounting
Diso input/output
Dlec routines
pisc storago
Disc sireans
Diso validation

biso vestors
DigcPedo

- DISCREAD

DiscRta
Disatofore
DigcTransfer

' DisoYectorBlezant

biacVectorfrorFike
DISCWRITE)
DISC¥RITEFERMITTED
b1v

DL

DLR

DLW

e

1L

gé&'?f

100
111 128
109 127

-

DPagas

Durp
DurpSegrent
EMPTY
EMD
EMEODY
EMICUCEN
EndGiveUp
ENRODE
Badof
EMDGP
EndofBFPT
EMEDAFAPTR
EpdofEF
EndoflF
EndofPB
ENDGF STREAVCH
BndoiTele
EndoflT
Endofw
Bntor
EntriosirocFile
ENTRIESPERPAGRE
Entry-point for program
{00 Prog)
Entry-point for systen
EMRYEND
ERKTRYSIZE
Eqs
Error reports
ESCAPEL
"ESIZE
Everparity
Ezchange
Bxec
Exgo corzands
EXECBLOCE
ExecRlock
for TRANSFFR cozmand
ExecConeole
BEECCONDN
Exgcutive
Exccutive toletypo
FailClose
Failure of prograzs
Failure roports
Fast stream blook °
conatants
FEC
FBSIZE
FClosePB
FotchCoda
FotchkBxocRord
Fig.,i
Fig.2
Fig,3
Fig.4
Fig.5
'Fig,b
E‘ig,g
Flg,
Fig,9
Fig,10
Fig, 11
Fig,12
Fig,13
Fig,14
Fig.15

R8RS

e e e i

S S

Fig,16
Fig,17
pig,18
Fig,19
Fig,20
Fig,2l
Fig,42
Fig,23
Fig,24
Fig.2)5
Fig,20
Flg.2y
Fig,28
Fig,29
Fig30
FIIB
Flle arvation
File deletion
File pormissions
Fils t3pes
Fils Yectors
FILENUNB
FILEOWNER
Files

input/output stresms
Filing ayasten constants
FindHeading
Finish
FIRSTDATA
P IRSTENTRY
FirstNextBFPT
FIRETPAGE
FNoxXtPB
Foreedrinish
ForcedGiveup
Forzat .

of cormpiled sogrant
Format of diaeds
Format of loadad esotion
FPRE
FRER
Frea
Freo
Fres
Freo
FReselPB
FE
Fsr
FEFSIZE
F&FtoCore
F&Lin
FEv
F&VECSIZE
F¥C

storage
atore constants
store file

Garbaze collusction
Goneral constanta
Goneralinteodotollp
GeneralLinePrinter
got files

Gotc

Giveyp
GiveUpstaok
CGivolpStacksize

Global-sotiing directives

globals
GRAVE

(1]

Gulds to those booka
GUSs

GUSS

Hardware instructions

store file conatantas

i

104
109
111
101
101
116G
102
102

58
100

2}

83
10

Y21}

10z
29

102
8o

WEs BEeE

Hoadings

Headinga constants

HPHGR

HARD

IBLK

I8lock

i

1FBUFFER

IF51ZB

In

IKSFTEND

1KBITPTR

INBIFF

TNDEX

Index

Index entriea constanta

Index of syaten files

Indsx operatiens

Index structure

Indoxos

1KESC

INFILESIZE

Inforsation block

Information bleck
constants

InfronFilte

InfrozFils censtants

Initialising the syaten

Initiateiransfer

IRT

Input funotions

Input/output routines

InStack

IntcodotoandironTelatyps

Interluds

Internal character code

INTERRUPT

Interrupt

INTERRUPTADLRE 58

INIERRUPTIXHIBITED

INTRRRLPT1NHIBITED

Iatorrupts

INTREASDN

Intreduction

IPRE

ISEZE

181G

JurpTo

Hornel of systexn

Labols {sotting)

Languege

LASTDAFA

LASTENIRY

LASTPAGE

1B

Loap

LEFTARRIN

LRNGTH

1GLoop

Library files

Line-printer

LINEGFPLAST

LIXEEFIFTR

LINEBUFFER

LENEFREDE

LinePrinter

Eink

LENKING

IMASY

Load

LoadDiscRtsliNec

Txt

100
101
101

102
foz

1oz

BEE

g

Eoeanl

=4
&

101

=
EU\E

Coa

83

135
130

1z7

LoadFile
loadGoLoop

Logding of prograus
Eoading the sypsten
LoadSection
LoadsysterFile

Log in

login

Logln Prog
LOOKATRIR

Looktip
LookUpinMPL
LookUpUsax

Hechina cods instructions

Machins constents

Main loop of systen

HakoNewrila

MakeOrePegeBody

ranifests

Manusled

Master f£ile list

Haster file list
constents

HAXG

MAXD

HexvYecSiza

Message

MFL

MFITIRSTP AGE

MELEWE

MINSPRRDAL

Miscellaneous facilities

MPMNextR

MPMNex{D

NL {ete,)

KEVER

MBVBEIDY

NewlHseBlock

NevfreeStore

KEWLIKEL

NosLocation

NewMFIEntTy

KovMFIPage

Kowvoo

KesWord

KEET

Kext

RoxtBIock

KextBuffIF

NexXtByte

NoxtCh (Pigds)

KextCh {NextN)

KNextEF

KoxtrilleFpt

FKoxtlotter

Foxty

Fexta

KoxtPB

NextTole

NextTT

Next¥WaitBFPT

HONE

ROREASC

FOSIURE

HOTBYTE

NOTERIRY

NOTHIMGTYPED

MNOT&ET

XOTUSED

WL

NULLBODY

-
2

=
D~y
Ly VYT e

)
£'\l-&

79
63

113
23
B

111
111

33

73

i3
128

KullProgran

NUMPP AGE S

N¥TB

NETPAGE

or

OFEUFFER

QFFSETC

OFPAGE

&SIZE

OLDRODY

OLDSIZE

OXEUINUTE

Operating aysten text

Operator interventfon
{ses Interrupt)

Oporator's console
(se0 ExocConenla)

Operator'e teletype
(se0 Tolotype)

08f ~ discropancioes

DSRaport

O&Reporti

Nspaports {1iat)

ouT

out

outg

UutAddre

DUTBIFERD

OUTRFFPTR

outBLre

DUTBUET

QutBuffar

Outhyte

DutCRLF

DutPate

Outbateandiice

OUTESC

OutJustify

CatLe

auty

OutKevLine

DutXewlines

Outh

Tutp

[oiry3

Cutput

Cutput routines

utputindorlines

outs

OutBtring

CutTole

OutTice

CattoFile

CuttoFile constents

outeT

O¥XER

OYV}ERONLY

FAE

PACERND

PACENNE

PHESIZE

Paper taps punch

Paper tape reader
(sao also E115,4)

parity

PARITYBIT

PARITYMAEK

PEC

PEChain

PECLOSE

PEEXDOF

33

38 B2

PBREXT

PEPRE

PEREEET

PBSIZR

FBETR

PERIQD

Poripherals

PERM

Porzanont
input/output streans

Peraigsions

PGS

PInterrupt .

Post-rorten arrangerents

FOWERON

PPIR

PPt

PreparoforRun

PRIME

PRIMSTL

Prinitive dise routinss

FPrinter

PrirtorReport

Private disc routines

Privatestack

Protadure pointer

Frog

Progran failure

Progracsing Lanzuege

Prograng — loading

Prograss ~ running

PIR

Punch

PutBack

PutBack veotor constants

FWC

QUERYE

Quickvalrsr

QUIETEND

RBLOCK

RDRIBVE&M

READABS

RoadBackwards

READBFFSIZE

REABBLIKK

Readpuff

Roador {sco also ILi5.4)

Reader atrean constents

RoadorDev

READER[EFTTORISHT

Roader0ffiine

REASDNFOR INFERRUPT

Reasons for interrupt

Roforoncos

RoloasekonSystenGlobals

Rerota conselas

REP

Reportdlocks

ReportCallirgco

ReportFrooStorestate

Report¥essage

Reports

Reportstrean

Report¥ords

RESST

Resot

ResatRFPT

RosotEP

ResotiF

Resstipr

ResotoF

-1
Bl
e+

2geeee

g

...
Ow
=t

e

i

12y
18

-
-

L RRESERSESERER Bran

Ie}
i3
3]

o |

Eg&

22

axt Con

ResetPB 20 36
RESETSTATE 97
Rasotstate 3o 39
RosstGteteTT 39 48
RosotTole 4% 50
ResotiT 38 4r
Rosot¥ 49 61
RestariGlook 52 63
RoatorcFroestory 27 33
RESTRICTED 101
RETURN 9
Return 1
Returnchein 6% ;;
ReoturnDiscalock 57 73
ReturnDiscVector 3
RETURNY 99
ReturnVeo 24 30
Return¥ord 20 32
ROUTINE o5
RPRE 6
RSIZB %
RUDIUTE g9
Run Z 9
Run-block ~onetants [£3]
RUNDUT a9
RUMDUTE 99
RVOiveUp 20 32
SAME 100
SCAN oz
Sactid 5 12
EEG 1
Bagzrantation of the M9

systen for corpilation 103 115
SEIFPTR 04 02
EERIAL 100
Sat-up 3 97
satDatoandrive 1103
SatGlobais 10 17
SotLabols 9 15
SotStackBase 79 16z
sotting up £iles oG 127
SelUpDiscPage 76 100
EetUplumayBxecstrusturs 13 zi
SatUpExecfonsolo 86 1oz
SatUpFs 70 g5
SotUpParityTable 85 106
SatUpPMstecks 7 101
SetUpResder 108
BotUpRunBlock 8 102
SstUpStreazs 5 106
SetiUpSundryItens 77 tol
SatUpTirsoinayClock 78 01
SHARP'E 09
size 97
6ize {of numeral) 33 42
size (of string) 115 132
SLASHL
SHABLOCK 9%
Source 30 38
SOLRCE 97 .
Spaoisl funotions in WiC 72 89
steck 11
Stack elsment 100
stack pointer 27
Stacks, privafta 19

Standerd contenta of
TRANSFTR blook elerents o

StandardErroxfn } 126 143
Staudardivelp 1z 20
standnrdpit 15 22
STARE 100

e o, o i

State
STATE
StateBFPT
StaterT
BTATUS
STOPCH
Storage ellocation {cora)
Storage allecation (dise)
StoreCode
STR
STREAM
Strean elersnts usod by
InitiateTransior
Strean prinitives
Strean vaotor constants
STREAVABLE
StrearError
Streems fron filgs
Btreans
{s00 IE14,1, 11t y
1137, 1In:z, YII1:i6}
String
Style
SWCKH
Suichack
SWMCEINHIBITED
Systen construoting
Systen entrp-pairt
Syaten housskeoping °

30 38

30 40
58

108 126

100
73 9
95 111
731z
75
ey

Izt Lon
Systen index 119
Syator set-up 73 97
Sratonlndex 119
TRIESIZR 98
Tolotype 37 45
Telatype charsctor code
Toletypo stresn constenta %
TeratnateRun 3 g
Text of the syston 1 8
THISFILIR 100
TIME 95
TireoiDay 5L 64
TIMEQFDAYCLOCK 93 Iz
TRANST ER 9 gi
Tranelerin 74 9%
TransforinC 74 96
Transiertut 74 06
TrapPegoThrow 125 141
Treps (sco Pornissions)
TryAeain 45 37
TryDiadAgain 50 61
T " 86 1oy
TTREAD 9 o
TTHRITE 65 a2
TurnPage {(Addveatorile) 11g 135
TurzPego (Quttorils) 63
TYPE 100
Typos of file n1
B o6

ULMASYK
UNDEF 1X=D

Unload
NRESTRICTED
UPARROW

dpdate)
UpdateDisoVeotorElemont
UpdateHsad
Updatorernission
Usoar

Usor dotaile
Validation
Yoctor allocation
VectorfronFile
VactortoFile
¥TABL

Wait

wic
Wordsfronhiads
Write

WriteAddr
¥RITERLOCK
WriteByto

WriteN

Writeo

¥rites

Written IC

Wrong

XOFFt

& SR

