
Cross-platform access control for
mobile web applications

John Lyle∗, Salvatore Monteleone†, Shamal Faily∗ Davide Patti† and Fabio Ricciato‡
∗ Department of Computer Science, University of Oxford. first.last@cs.ox.ac.uk
‡ Innovation and Industry Relations, Telecom Italia. fabio.ricciato@telecomitalia.it

† Department of Electrical, Electronic and Computer Engineering (DIEEI), University of Catania. first.last@dieei.unict.it

Abstract—Web browsers are a common platform for deliv-
ering cross-platform applications. However, they currently fail
to provide consistent access control for security and privacy
sensitive JavaScript APIs, such as geolocation and local storage.
This problem is exacerbated by new HTML5 APIs and the
increasing number of personal devices people own and use. In this
paper we present the webinos platform which aims to provide
a single, cross-device policy system for web applications on a
wide range of web-enabled devices including TVs, smartphones,
in-car systems and PCs. webinos solves the existing deficiencies
in web authorisation by introducing the concept of a personal
zone, the set of all devices and services owned by a particular
user. All devices in this zone can synchronize their access control
policies through interoperable middleware and can create flexible
rules which may refer to an individual user, device or the
entire zone. We provide details of the architecture and explain
how our experience during design highlighted several conceptual
challenges.

I. INTRODUCTION

Web applications are gaining access to an increasing amount
of important functionality. Thanks to growing support for new
HTML5 standards, such as JavaScript APIs for geolocation
data, sensors and local storage, web applications have the
potential to replace native applications in many situations [1].
Proponents of web applications will also claim that there
is a potential security advantage: the web browser provides
a sandbox, isolating each page from the local device. This
compares favourably with relatively unrestricted native code.

However, the web browser (or web runtime) was not orig-
inally designed for complex applications, and its sandbox
security model must be broken to accommodate the new
JavaScript APIs. Unfortunately, HTML5 API specifications [2]
do not provide detail about how authorisation should be im-
plemented, beyond a requirement for consent and revocation,
leaving this as an implementation option for each browser
or user agent. Considering the number of new APIs under
development – access to cameras, address books, calendars,
and network information [3] – as well as the wide range of
security and privacy implications they have for both individual
and corporations, there is a pressing need for new standards
for web application access control.

Any access control system for web applications must take
into consideration the fact that people own and use several
different devices, often at the same time. More types of device
are becoming web-enabled, including smartphones, tablets, in-
car systems (such as the BMW ConnectedDrive [4]), games

consoles and smart TVs. Each will need to implement autho-
risation for new HTML5 API requests, taking into account
the unique user interface and interaction patterns that the
device offers. For example, an in-car system might be voice
activated, and notify the user of a new access control request
through audio. A television might be more context-sensitive,
changing interaction method depending on whether the user
was watching a movie or casually channel-hopping. Moreover,
the rise of ‘second screen’ companion applications – which
allow TV-watchers to interact with the programme through
their smartphones and tablets – might enable more interesting
authorisation decisions affecting both devices. It also seems
reasonable that any access control decision made by a user on
one device might also be synchronised with others. For exam-
ple, if a user grants a web application permission to access
the address book on their smartphone, they probably want to
allow the same application access to the address book on the
user’s PC. Web application access control must therefore be
flexible enough to support different devices and interactions,
while allowing the synchronisation of user policies between
each device.

Browsers are beginning to support synchronization of access
control decisions (Google Chrome, for example), but these fail
to account for the many different contexts of use associated
with each device. For example, a ‘prompt every time’ policy
for geolocation data may be appropriate on a smartphone –
where current location changes – but would be irritating on
a TV. There are also many ways of notifying mobile users
about privacy events [5] and the most appropriate method
will be context sensitive. These requirements are difficult to
address with ad-hoc browser settings, which only allow limited
authorisation decisions and synchronisation options.

We assert that users require, but currently lack, a common
way of managing with web application permissions. Standard,
cross-device access control policies, which can address web
APIs while also being transferable to different devices, are
needed. This would enable devices to create custom user
interfaces but still produce interoperable authorisation deci-
sions, which could then be synchronised between devices.
This, in turn, would let users make access control decisions
infrequently (where the same decision applies to multiple
devices) but would also allow decisions based on device-
specific interactions and context.

In this paper we describe the architecture and implemen-

tation of webinos: a cross-device web application platform.
webinos is designed to give web developers access to a
standard set of APIs for device features, as well as providing a
common policy model for access control. It also aims to give
users a ‘seamless’ experience by providing better connectivity
between devices. The platform is targeted at four domains: PC,
mobile, in-car and smart TVs. We have developed an XACML-
based system which provides a single policy enforcement
mechanism for a user’s personal zone – the devices they
own and use. Our main contributions are: the introduction
of a personal zone architecture, the definition of a modified
XACML policy system to support this abstraction on all
devices, and several observations from design experience.

We begin in Section II by discussing the state of the art
in access control and policy enforcement for mobile web
applications and web widgets. In Section III we describe
the requirements for a personal, cross-device authorisation
system and give an introduction to the webinos personal
zone model. Following this, Section IV describes the webinos
policy framework and section V covers four of the conceptual
challenges faced during design and development. Finally, in
section VI we conclude.

II. BACKGROUND

A. Web applications, widgets and browser security

A web application in a mobile context is a web page or
collection of web pages delivered over HTTP which uses
server or client-side processing to produce an application-
like experience within a web browser [6]. In comparison,
web widgets are interactive applications for displaying and/or
updating local or remote data, packaged to facilitate downloads
to a workstation or mobile device [7]. As such, widgets are
similar to web applications but are packaged for installation.

Web browsers support a sandbox model of security, isolating
each web application from the device. When a web application
wants to break this sandbox, it requires either an implicit
user consent based on an action (e.g. file uploads through
clicking on a button and selecting a file) or explicit consent
through some form of prompt (e.g. the geolocation API). This
decision may be remembered by the browser for subsequent
requests. On most browsers, saved explicit consent decisions
can be revoked through a settings page. Web applications are
identified by origin – their DNS name, port and protocol –
and JavaScript on any one origin cannot (in general) access
any other. Consent decisions, however, are often stored based
on hostname [8].

Widgets are run in a web runtime which is similar to a
browser. Widgets are packaged as zip files, containing (among
other things) a configuration file listing the APIs they request
access to. These can be used as permission requests in a
similar manner to Android application manifests. Widgets can
be identified by namespace and id attributes declared in the
configuration file, and widget packages can be signed by their
author. Widgets are not restricted by the same origin policy,
but may use the Widget Access Request Policy instead [9].

B. Mobile applications and access control

The most popular native mobile application systems are
Google Android and iOS. Android takes an ‘all-or-nothing’
approach to authorisation; this involves developers specifying
a mandatory access control policy for APIs in the application
manifest [10]. At install time, users either agree to grant all
requested permissions or none at all. On iOS, applications are
granted access to the full system by default, although users
are able to enable or disable access to geolocation data.

The Android policy system has been criticised for being
ineffective, although recent results suggest that application
permissions are a valuable security mechanism [11]. Several
attempts have been made to modify how policies are specified
and used. A common complaint is that Android permissions
cannot be individually allowed or denied, a feature provided
by MockDroid [12]. Apex [13] does the same, as well as
supporting controls such as limiting the number of times a
permission may be used. The CRePe system [14] allows the
specification of fine-grained context-dependent policies, which
may be based on time, location and the originator of the policy.
CRePe also supports optional notification that a particular
context has been activated. Reddy et al. [15] make the obser-
vation that Android policies are resource-centric rather than
application-centric, and that security would be better served if
applications could request access just to common functionality
such as ‘scan barcode’ rather than the whole camera. This is
analogous to program-language security features, where only
certain methods are made public to external callers. Finally,
SEAndroid has been proposed to better sandbox applications,
confine privileged daemon processes and provide a central,
analysable system policy [16].

C. Bridging the gap: web application security frameworks

Web applications and widgets require standardised APIs for
accessing device features, and these are only slowly being
implemented by browsers. As a result, several initiatives have
been started to speed up standardisation and create cross-
platform web application runtime environments. These have
also included security frameworks.

The BONDI security framework for web applications was
created by OMTP, a consortium of operators and handset
manufacturers. OMTP was eventually enlarged and renamed
as the Wholesale Application Community (WAC). The WAC
2.0 framework [17] combined BONDI with work by the W3C
Device APIs and Policy Working Group [3]. BONDI uses
XACML (eXtensible Access Control Markup Language) to
specify widget access control policies. All widgets requesting
access to WAC APIs are mediated by the XACML policy
enforcement system. XACML is a general-purpose access con-
trol policy language based on subjects, resources, actions and
conditions [18]. XACML also defines a reference architecture
for policy control and enforcement as well as a message
schema. To better situate XACML for a mobile environment,
BONDI reduced the number of allowed expressions and spec-
ified an appropriate dictionary.

A problem with the WAC model is the role of the handset
user as a policy authority. Once an application has been
granted access to a certain device capability then it can use,
transmit, and share it without any further control or restriction.
Work by the EU FP7 PrimeLife project [19] addressed this
issue by developing tools to protect user data and manage
privacy requirements; these tools included a policy language
for privacy and data protection based on XACML [20].

Finally, the Chrome browser also supports up-front permis-
sion requests by installable web applications (equivalent to
widgets) downloaded from the Chrome Web Store. Permis-
sions are split into high, medium and low-risk categories, with
APIs for accessing geolocation and browser history marked
as ’low’. Geolocation may also be requested at runtime in
the same manner as normal web pages. The Chrome browser
supports synchronisation of settings between different devices
when the user has logged in with their Google user account.
However, the privacy and security implications of synchro-
nising access control decisions and other data with a central
provider such as Google are considerable. Users may need
assurance of the integrity and confidentiality of their cloud-
based data [21], and may wish to chose a synchronising host
that they trust. This implies a need for standard cloud data
policies to allow users to migrate between different providers.

D. Related literature

Mobile access control policies have been discussed exten-
sively in academic literature, although rarely in the context
of web applications. In ubiquitous computing research, Kim
et al. [22] have proposed an extended role-based access
control model which can take into consideration changes
in user context. Roles are useful abstractions in working
environments, but are perhaps less appropriate for personal
devices and ad-hoc collaborations. Corradi et al. [23] also
introduce a context-based access control system and context
model. Again, however, the focus is on pre-defined policies for
certain contexts rather than user-defined policies for personal
resources. Indeed, user-defined policies for ad-hoc interactions
are arguably a more complicated problem; Mazurek et al. show
that in home environments people need fine-grained access
control and want to be able to express policies requiring others
to ask before access to a resource is granted [24]. Baldauf et
al. give a further survey of context-aware systems [25].

Several authors have suggested modifications to web
browsers and their security model, most of which aim to
mitigate attacks by malicious web pages. The Gazelle Web
Browser [26] aims to protect web applications (defined by
origin) from each other by separating them and their resources
into different OS-enforced protection domains. This protection
also applies to browser plugins. The Tahoma Web Browsing
System [27] isolates websites by compartmentalising them
into virtual machines. It makes web applications first-class
objects, requiring them to be installed and approved before
first use. Tahoma mediates all network interaction, and requires
web applications to have a widget-like manifest which define
any plugins that are required by the application. Finally,

Singh et al. [28] introduce the notion of a user principle and
suggest that all access to certain APIs and actions (geolocation,
browsing history) should be considered owned by the user and
access to them should therefore also be mediated by users.

In native mobile applications, the many improvements have
been suggested to the Android permission system, as discussed
in section II-B. In addition, Ai et al. [29] propose an alternative
synchronisation system for storing and recovering user data via
an online service. If applied to permissions, this might be a
way to implement cross-device policies. However, their focus
is primarily on preventing the loss of user data, rather than
multi-device use cases.

E. Summary

Users are required to make access control decisions for both
native and web applications. The general principles are the
same in both cases – users must mediate access to potentially
sensitive resources – although the way in which permission is
granted differs. However, in both cases users end up making
decisions out of context, either at install time or first use, and
only for one device at a time. Existing systems which are
context-aware tend to be aimed at users with one device as
part of larger organisations, and systems such as Chrome allow
synchronisation but not context adaptation. Yet context is even
more important when policies are synchronised: one’s security
and privacy preferences when installing a mobile application
at home may not be same as those associated with using
it outdoors. Unfortunately, designing access control policies
for different device and contexts is easier said than done,
and likely to become more complex for web applications as
they become more functionally capable and used on a wider
range of devices. Furthermore, additional scenarios involving
multiple devices being used together at the same time, and
multiple users interacting, increase the need for a common
way of expressing access control policies.

III. CROSS-DEVICE AUTHORISATION

The state of the art described in the previous section mostly
focused on one user with one mobile device. This does not
reflect how people use technology today: they may rely on
several devices in different contexts. This section describes
the requirements for access control within a personal network
of devices and explains how the webinos architecture begins
to satisfy them.

A. Requirements for personal cross-device access control

Each user device can potentially run several web applica-
tions, each requiring access to local hardware capabilities as
well as functionality from other devices. In combination with
the current state of the art described in the previous section,
we have elicited the following requirements.

1) Users and other stakeholders shall be able to control
access by web applications to JavaScript APIs. These
APIs may allow access to local and remote resources.

2) Users shall be able to create both device-specific and
device-agnostic policies.

3) The platform shall provide synchronization for access
control policies, so that policies can be described on
one platform and enforced on all.

4) The platform shall allow context-sensitive access control
decisions: e.g. these may change depending on the
environment.

5) The platform shall protect user privacy: access re-
questors shall be able to qualify how they will use
the data they are requesting, and users shall be able to
express constraints about data disclosure.

Existing browsers and systems such as WAC provide some
support for requirement 1, and the Chrome browser supports
limited synchronisation to satisfy requirement 3. Context-
aware middleware provides support for requirement 4. The
XACML language may be well suited to expressing policies
to satisfy requirement 2, and work by Ardagna et al. [20]
can adapt this to satisfy requirement 5. However, the combi-
nation of these requirements and the cross-device nature of
web browsing provide motivation for the development of the
webinos platform.

B. The webinos platform

webinos is a cross-device application platform for mobile
web applications and widgets. It provides applications with a
set of APIs for accessing local resources, such as sensors and
contacts, as well as APIs for communication with other devices
and services. The platform aims to create a seamless multi-
device user experience through data synchronisation and a
consistent access control system. webinos is supported on four
main device domains: PCs, smartphones, in-car systems and
set-top boxes. It was primarily aimed at people who use and
own many web-enabled devices, with an emphasis on personal
and social computing. More detailed personas of anticipated
users are available in project deliverables [30], as are detailed
use cases and scenarios [31].

The platform was designed with the following high-level
goals in mind:

• Interoperability of applications across the aforemen-
tioned four device domains. Each application can com-
municate with others on the same device, with another
device belonging to the same user, or with an unknown
device elsewhere.

• Compatibility – achieved through standard JavaScript
APIs. This allows applications to run on multiple devices
with minimal modification.

• Security and privacy for users and application develop-
ers.

• Adaptability – allowing applications and devices to take
advantage of information about the current environment.

• Usability – through the creation of a seamless experience
for users of applications across multiple devices.

C. webinos ‘personal zones’ of devices

The webinos platform aims to meet requirements 2-5 from
Section III-A by introducing the concept of a personal zone,
the set of all devices owned by an end user. It is an abstraction

Fig. 1. Overview of the webinos personal zone model.

which provides a basis for managing devices, together with
the services running on them. From the web application
perspective, all devices in the zone support and expose a set of
standard APIs for accessing services such as device features
(cameras, geolocation), networking with other devices, and
cloud services.

Personal zones contain three key components: the web
runtime, proxy and hub. The Web Runtime is where web
applications are executed. The runtime has been extended to
provide a set of JavaScript APIs which allow applications to
join a personal zone, communicate with other devices and
access features. These API requests are forwarded to the
personal zone proxy.

The Personal Zone Proxy (PZP) implements the APIs
and provides the communication layer with other devices. It
communicates with the hub through a mutually authenticated
TLS session and communicates peer-to-peer with other proxies
where internet connectivity is unavailable. Each proxy has its
own policy enforcement and decision point.

The Personal Zone Hub (PZH) runs on a web server, which
may be hosted by a third party or be part of a user’s home
networking equipment. It is the central point of access to the
zone, so that each device can contact others and request access
to resources and services. The hub is a repository for synchro-
nized data and policies, and provides policy enforcement for
incoming requests. The hub enrols each PZP into the zone by
issuing it with a certificate.

The relationship between these components can be seen in
Figure 1.

As an example, suppose that Alice is using her smartphone
and wants to access a media file on her PC. She loads her
media player web application, which requests access to the
file via a JavaScript API provided by the webinos web runtime
extension on her smartphone. The runtime extension passes the
request to the PZP, which passes the request to the web-based
PZH. The hub then forwards this to the PZP on Alice’s PC,
which contains the implementation of the File API. The file
is then transferred through the hub back to the media player
application on the smartphone.

IV. THE webinos POLICY FRAMEWORK

A. Basic architecture
The webinos platform provides privacy protection and ac-

cess control features to meet the privacy and security require-
ments of web applications and users. This means protecting
against malware and other users who may attempt to access
more data than they should or simply avoiding the unnecessary
disclosure of personal data. To satisfy these requirements
webinos relies on the strong identification of web applications,
users and devices, combined with a least-privilege access
control based on XACML.

However, while the latest version of XACML introduced
a privacy profile specifying two purpose attributes [32], it is
still not well suited for describing data handling policies. For
this reason the XACML architecture has been adapted using
PrimeLife extensions. [33], allowing webinos to make access
control decisions based on both the request context and user
preferences.

The object model depicted in Figure 2 shows the main com-
ponents of the webinos policy framework. Both the PZP and
PZH enforce policies using standard XACML components,
supplemented by:

• The Decision Wrapper creates the initial policy enforce-
ment query based on incoming requests.

• The Access Manager makes the final decision by com-
bining XACML access control and DHDF data.

• The Data Handling Decision Function (DHDF) engine
provides privacy and data handling functionalities.

• The Request Context manages all contextual information;
it stores all the data and credentials released by a user in
a given session.

• The PDP Cache (PDPC) stores PDP decisions that could
be share among personal devices.

PIP

Context
Handler

PAP PDPC

PZP

PDP

Data
Reader

Request
Context

Credential
System

Obligations

PEP

DHDF
Engine

Access
Manager

Decision
Wrapper

PZP / PZH

Access
Requestor

Remote
Access

Requestor

Overlay
Network

PZ’s copy of
PAP / PDPC / PIP

Fig. 2. Components of the webinos policy framework on a device. Requests
come from either local or remote sources, and are then managed by the
Decision Wrapper. Policies are held on a PZP and may depend on data fetched
from the rest of the personal zone

B. Adapting the state of the art
Policies are expressed in a similar way to the format defined

in BONDI [34]. However, BONDI policies do not support

cross-device interaction. The webinos framework therefore
modifies the subject of policies to refer to the device and user.
Policies are also able to refer to a dynamically changing set
of features, as new APIs may be added by new applications.
webinos policies are usually composed in the following way,
where device T is the target device and device R is the
requesting device:

User U can access Feature F of Device T through applica-
tion A on Device R

Figures 3 and 4 show an application requesting access to
a remote device feature. Every subject (user, application and
device) has an id used to determine if a specific policy should
be taken in account when enforcing incoming requests. To
perform this selection the Policy Manager tries to match the
request’s information against policy targets.

ContextPolicies

Policy
Enforcement

T
R

U

A 1. Request Position

4. Position

2. Can T return
Geolocation’s data to

R?

3. YES

Fig. 3. Example of a request to access a remote device’s features. Application
A launched by user U in set-top box R requires access to geolocation data
provided by car T.

ContextPolicies

Policy
Enforcement

Reply

Requestor
Device

Target
Device

Requested
API

Request’s Info

Request

APP

Fig. 4. Every application that requires to access a feature sends a request
which is filled with information on the subjects and requested feature.

Special URIs are used as ids in policies to match subjects
and services. Whenever an entity (user, device, application or
service) is registered for the first time, a record with some
basic identity information is stored. These records are used to
convert a generic ID into a convenient URI.

There are four basic types of information in the policy’s
subject. The user, identified by the URI of their PZH. The
requesting device, as identified by the TLS certificate issued to
each device when it enrols in a personal zone; omitting this in a
policy allows it to apply to applications running on any device.
The target device, similarly identified; omitting this allows for
policies which refer to an API on all devices, e.g. denying
any access to location data. Finally, the application ID, author

<policy-set combine="first-matching-target">
<policy combine="first-applicable">
<target>
<subject>
<subject-match attr="user-id"

match="U"/>
<subject-match attr="id" match="A"/>
<subject-match attr="requestor-id"

match="R"/>
</subject>

</target>
<rule effect="permit">
<condition>
<resource-match attr="api-feature"

match="http://www.w3.org/ns/
api-perms/geolocation"/>

</condition>
</rule>
<rule effect="deny">
<condition>
<resource-match attr="api-feature"

match="*"/>
</condition>

</rule>
</policy>
<policy combine="first-applicable">
<rule effect="deny">
<condition>
<resource-match attr=

"api-feature" match="*"/>
</condition>

</rule>
</policy>

</policy-set>

Fig. 5. Example policy set, showing two policies on a device. The first policy
allows user U (using application A on device R) to access geolocation data.
The second denies access from every other combination of users, applications
and devices.

and distributors. This is necessary in device domains (such in-
car systems) where only applications developed by the device
manufacturer may access certain resources.

Information about the application must be provided by the
web runtime, which may be more vulnerable to attack. An
advantage of moving policy enforcement into the PZP is that
the impact of a malicious web runtime is limited: the proxy
may be able to assess the state of the runtime, and policies
applying to all applications will still be enforced.

Figure 5 gives an example of a policy which would be held
on a local device.

C. Inter-zone policy enforcement

When web applications are running on different devices
within a personal zone, access control is managed by the
policies defined by the user and distributed on each device.
When applications in different personal zones are requesting
resources (e.g. Alice accesses Bob’s location API), it depends
on policies created by both users. In this scenario, Bob can
create policies referring to Alice in the subject, and therefore
control her access to each resource. It can be argued that other

attributes in the subject may be omitted, as Bob has little
assurance in Alice’s software and may not trust it to correctly
identify applications or devices. However, these fields are still
present because Alice and Bob may be able to provide such
assurances: e.g. they may be in the same physical location,
and Bob may know exactly which device Alice is using and
whether or not it is trustworthy. To save wasted bandwidth
from denied access requests, Alice may chose to implement
the more specific aspects of the policy herself. This also makes
sense when considering trust: Bob trusts Alice to only let
certain applications and devices use the resources he has made
available to her. Alice can do this by creating a policy within
her personal zone where the resource is an API on Bob’s
device, but the subjects are her applications and devices. Such
a policy would need to be synchronised between all of Alice’s
devices.

V. CONCEPTUAL CHALLENGES

A first proof-of-concept of the webinos system has been
specified and implemented. This section will describe three
conceptual challenges that have been experienced when de-
signing and developing a cross-domain access control system.

A. Integration with existing security frameworks

Our experiences with webinos have added weight to the
argument that existing browser access control is inadequate
for increasingly sophisticated web applications. Browsers tend
to either always prevent access to local resources, prompt
the user for permission, or use implicit consent based on
user actions. In a multi-device scenario, however, authorisation
prompts cannot always be dictated by just the browser. Some
applications require remote access to data and APIs – e.g.
remote data wiping features for lost or stolen devices, and
‘in case of emergency’ applications 1. These scenarios require
more than just authorisation prompts and stored decisions.

Display capabilities on devices are also different: compare
a TV to an in-car system, which may be displaying route in-
formation. Browser-style access notifications may be difficult
to notice or disrupt the experience of the user. The same is
true of how users input their access control decisions. For
some devices, such as sensors or embedded systems, it may
even make sense to delegate policy creation to a more capable
device. The webinos security framework was conceived in
order to be flexible enough for all of these settings. Adopting a
common policy description language and enforcement frame-
work would allow just interfaces to be adapted on individual
devices, rather than the whole authorisation system.

The integration of webinos with a browser security model
– a sandbox with time-of-use prompting – is in conflict with
the webinos policy-driven approach. This means that existing
browser APIs such as geolocation would need to be changed.
We believe this is not necessarily a problem for compatibility,
as webinos policies can be configured to behave like browsers.
For example, access to the geolocation API in the browser

1http://ice-app.net/whatis.html

results in a user prompt and this decision can be saved per
domain. In webinos, a policy can be configured to allow
or deny access, or prompt the user based on application
credentials, user and device context.

B. Subject and resource definitions

In a standard access control scenario, the resources to be
protected are unequivocally defined, as is the access requestor.
However, in a multi-device scenario different platforms may
have different capabilities and implementations, and the impor-
tance of related assets to be protected will vary. For example,
on a smart phone, access to telephony capabilities must be
protected whereas on an in-car system the travelling data may
be more important. It is therefore difficult to come up with
a definition of high, medium and low risk permissions in the
same way that the Chrome Web Store does.

We assume that each sensitive resource is only exposed by a
certain API, reducing the problem to the definition of webinos
APIs. These had to be specialized in order to cover all the
features of each device domain and, conversely, abstract in
order to describe common features. For example, many assets
are common to all domains (e.g. File APIs), some are common
to a subset of sub-domains (e.g. Telephony for in-car systems
and smartphone) and some are exclusive to a domain (e.g. TV
APIs). The APIs were designed to support domain-specific
applications but also to facilitate portability of policies (e.g. a
user would like to give an application access to a temporary
directory for file system access whatever the target device is or
give access to the Telephony API either from his smartphone
or car).

As an added complication, the same API can be imple-
mented with different technologies on each platform. The
geolocation API can be provided by GPS, Cell-ID on smart-
phones, IP on laptop, or fixed ADSL line on a TV set. The
implication in terms of privacy may vary as a result. For
example, a user might grant access to the geolocation API
on their PC, as this could only reveal their current home
town through IP-based location services. If this permission
also revealed their GPS-derived location while in their car or
on their mobile device, this could reveal a history of their
movements and interactions. The Telephony API is another
example: if the end user is roaming on their mobile, then the
potential impact of misuse (due to network costs) is greater
compared to a home landline. Users might therefore wish
to change the authorisation method from ‘always allow’ to
‘prompt first’. Policies should be capable of reflecting which
underlying technology is used and the operating mode of the
device. As a result, any default policies will be difficult to
define and may quickly become complicated.

C. Policy management with varying ecosystems

Actors, value chains and liability frameworks are different in
each device domain. This means that the policy management
authority and associated hierarchy can vary from one domain
to another as well as the system for provisioning such policies.
XACML’s policy combining algorithms make it possible to

write policies for all of these domains. The use of XACML
makes web applications potentially more acceptable in envi-
ronments where additional security policies may apply. For
instance, when an institution’s employees may be the target
of physical violence (e.g. animal testing laboratories), policies
could be created limiting access to their location data from
untrusted web applications.

The webinos design decision for the first proof-of-concept
implementation was to separate policy enforcement from the
policy storage and deployment system, leaving each domain to
define means and rules for policy deployment and composition
of policies from different sources. Again, this implies that each
device will need to be shipped with different access control
policies and defaults.

D. Shared devices

In this paper we have not discussed how to manage devices
with multiple owners and users. There are two distinct sce-
narios. First, devices which have several owners but are only
used by one person at a time. For example, a tablet or laptop.
In this case multiple personal zone proxies can be installed
on each device, running under different operating system user
accounts. This modifies Figure 1 to add a ‘user account’ as a
level of indirection between the user and their device.

The second case is more complicated: some devices are used
by several people at the same time. For example, a car with
several passengers, or a TV in a shared room. At present,
webinos requires that these devices still belong to one user
and be part of one personal zone. However, the user can
limit this device so that it has fewer permissions to access
the other devices in his or her personal zone. This prevents a
guest from using it to access resources on the owner’s other
devices. We are also investigating linking the policy system
to authentication, such that a policy enforcement point on a
shared device can demand additional authentication from the
end user. This would be OS-specific, for example requiring
a short PIN entry using a remote control, and would then
make the device capable of accessing other resources and
editing local policies. This approach is possible (without policy
integration) as part of the defined authentication API [35].
However, further features are needed to adapt and control
notifications by applications running on shared devices. For
example, a shared device might be prevented from displaying
notifications about private events, such as receiving a new
email.

VI. CONCLUSION AND FUTURE WORK

This paper has argued that existing browser-based au-
thorisation methods for JavaScript APIs are insufficient for
multi-device, context-aware scenarios. The policy architecture
developed in webinos is proposed as an alternative: it makes
a number of significant changes from the current state of
the art, showing policies which are both abstract enough to
be transferable to different devices, as well as specific to
particular scenarios. Our experience in the first implementation
of the platform has highlighted several challenges, such as

the different implementation of common APIs and how to
managed shared devices.

The main focus of future work will be to continue de-
veloping the webinos platform and to further evaluate its ef-
fectiveness through several concept applications. Other future
work will aim to support the delegation of access control
decisions, e.g. to a tech-savvy friend, a user support group,
a forum on a social network, or a trusted service provider. In
addition, we plan to implement tools to support developers in
writing appropriate permissions and designing applications. In
particular, allowing developers to trial their applications based
on typical user policies (perhaps gained through user groups
or anonymous feedback) would help identify where too few
or too many permissions were requested, as well as where
applications do not fail gracefully.

ACKNOWLEDGEMENTS

The research described in this paper was funded by the EU
FP7 webinos project (FP7-ICT-2009-05 Objective 1.2).

REFERENCES

[1] A. Taivalsaari and T. Mikkonen, “The web as an application platform:
The saga continues,” in Software Engineering and Advanced Applica-
tions (SEAA), 2011 37th EUROMICRO Conference on, September 2011,
pp. 170 –174.

[2] “Geolocation API Specification: W3C Editor’s Draft,” http://dev.w3.org/
geo/api/spec-source.html, February 2010.

[3] “Device APIs Working Group Website,” http://www.w3.org/2009/dap/,
December 2011.

[4] “Bmw connecteddrive,” April 2012. [Online]. Avail-
able: http://www.bmw.com/com/en/insights/technology/connecteddrive/
2010/info%tainment/information/internet information.html

[5] L. Jedrzejczyk, B. A. Price, A. K. Bandara, and B. Nuseibeh, “On
the impact of real-time feedback on users’ behaviour in mobile
location-sharing applications,” in Proceedings of SOUPS ’10. ACM,
2010, pp. 14:1–14:12. [Online]. Available: http://doi.acm.org/10.1145/
1837110.1837129

[6] The W3C, “Mobile Web Application Best Practices,” De-
cember 2010. [Online]. Available: http://www.w3.org/TR/2010/
REC-mwabp-20101214/

[7] The Wholesale Application Community, “Glossary of terms,” August
2011. [Online]. Available: http://www.wacapps.net/glossary

[8] M. Zalewski, The Tangled Web: A Guide to Securing Model Web
Applications. No Starch Press, 2011.

[9] “Widget Access Request Policy: W3C Recommendation,” February
2012. [Online]. Available: http://www.w3.org/TR/widgets-access/

[10] W. Enck, M. Ongtang, P. McDaniel, W. Enck, M. Ongtang, and
P. McDaniel, “Understanding Android Security,” Security Privacy, IEEE,
vol. 7, no. 1, pp. 50 –57, Jan - Feb 2009.

[11] A. P. Felt, K. Greenwood, and D. Wagner, “The effectiveness of
application permissions,” in Proceedings of the 2nd USENIX conference
on Web application development, ser. WebApps’11. Berkeley, CA,
USA: USENIX Association, 2011, pp. 7–7. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2002168.2002175

[12] A. Beresford, A. Rice, N. Skehin, and R. Sohan, “Mock-droid:
trading privacy for application functionality on smartphones,” in
Proceedings of HotMobile 2011, 2011. [Online]. Available: http:
//www.cl.cam.ac.uk/research/dtg/android/mock/

[13] M. Nauman, S. Khan, and X. Zhang, “Apex: extending android
permission model and enforcement with user-defined runtime
constraints,” in Proceedings of the 5th ACM Symposium on Information,
Computer and Communications Security, 2010, pp. 328–332. [Online].
Available: http://doi.acm.org/10.1145/1755688.1755732

[14] M. Conti, V. Nguyen, and B. Crispo, “Crepe: Context-related policy
enforcement for android,” in Information Security, ser. Lecture Notes in
Computer Science, M. Burmester, G. Tsudik, S. Magliveras, and I. Ilic,
Eds. Springer Berlin / Heidelberg, 2011, vol. 6531, pp. 331–345.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-18178-8 29

[15] N. Reddy, J. Jeon, J. A. Vaughan, T. Millstein, and J. S. Foster,
“Application-centric security policies on unmodified android,” UCLA
Computer Science Department, Tech. Rep. 110017, 2011. [Online].
Available: http://fmdb.cs.ucla.edu/Treports/acp-tr.pdf

[16] “SEAndroid Website,” http://selinuxproject.org/page/SEAndroid, March
2012.

[17] “WAC Specifications 2.1,” http://specs.wacapps.net/, January 2012.
[18] S. Godik and T. Moses, “EXtensible Access Control Markup Language

(XACML) version 1.1,” http://www.oasis-open.org, May 2005.
[19] “Primelife policy language,” http://www.primelife.eu/results/documents/

153-534d, August 2010.
[20] Claudio A. Ardagna et al., “Advances in access control policies,” in

Privacy and identity management for life. Springer, 2011, pp. 327–
341.

[21] D. Lin and A. Squicciarini, “Data protection models for service
provisioning in the cloud,” in Proceedings of SACMAT. ACM, 2010,
pp. 183–192. [Online]. Available: http://doi.acm.org/10.1145/1809842.
1809872

[22] Y.-G. Kim, C.-J. Mon, D. Jeong, J.-O. Lee, C.-Y. Song, and D.-K. Baik,
“Context-aware access control mechanism for ubiquitous applications,”
in Advances in Web Intelligence, ser. Lecture Notes in Computer
Science. Springer Berlin / Heidelberg, 2005, vol. 3528, pp. 932–935.
[Online]. Available: http://dx.doi.org/10.1007/11495772 37

[23] A. Corradi, R. Montanari, and D. Tibaldi, “Context-based access control
management in ubiquitous environments,” in Network Computing and
Applications, 2004. (NCA 2004). Proceedings. Third IEEE International
Symposium on, aug.-1 sept. 2004, pp. 253 – 260.

[24] Mazurek et al., “Access control for home data sharing: Attitudes, needs
and practices,” in Proceedings of the 28th international conference
on Human factors in computing systems, ser. CHI ’10. New
York, NY, USA: ACM, 2010, pp. 645–654. [Online]. Available:
http://doi.acm.org/10.1145/1753326.1753421

[25] M. Baldauf, S. Dustdar, and F. Rosenberg, “A survey on context-aware
systems,” International Journal of Ad Hoc and Ubiquitous Computing,
vol. 2, no. 4, pp. 263–277, June 2007.

[26] H. J. Wang, C. Grier, A. Moshchuk, S. T. King, P. Choudhury, and
H. Venter, “The multi-principal os construction of the gazelle web
browser,” in Proceedings of the 18th conference on USENIX security
symposium, ser. SSYM’09. Berkeley, CA, USA: USENIX Association,
2009, pp. 417–432. [Online]. Available: http://dl.acm.org/citation.cfm?
id=1855768.1855794

[27] R. S. Cox, S. D. Gribble, H. M. Levy, and J. G. Hansen, “A
safety-oriented platform for web applications,” in Proceedings of
the 2006 IEEE Symposium on Security and Privacy, ser. SP ’06.
Washington, DC, USA: IEEE Computer Society, 2006, pp. 350–364.
[Online]. Available: http://dx.doi.org/10.1109/SP.2006.4

[28] K. Singh, A. Moshchuk, H. J. Wang, and W. Lee, “On the incoherencies
in web browser access control policies,” in Security and Privacy (SP),
2010 IEEE Symposium on, may 2010, pp. 463 –478.

[29] C. Ai, J. Liu, C. Fan, X. Zhang, and J. Zou, “Enhancing personal infor-
mation security on android with a new synchronization scheme,” in Wire-
less Communications, Networking and Mobile Computing (WiCOM),
2011 7th International Conference on, sept. 2011, pp. 1 –4.

[30] The webinos consortium, “User expectations of privacy and security,”
March 2011. [Online]. Available: http://webinos.org/blog/2011/03/16/
d2-3-industry-landscape-ipr-licensing-governance/

[31] ——, “Use cases and scenarios,” March 2011. [Online]. Available: http:
//webinos.org/blog/2011/03/22/webinos-report-use-cases-and-scenarios/

[32] E. R. B. Parducci, H. Lockhart, “XACML v3.0 Privacy Pol-
icy Profile Version 1.0,” http://docs.oasis-open.org/xacml/3.0/xacml-3.
0-privacy-v1-spec-cd-03-en.pdf, March 2010.

[33] C. A. Ardagna, S. De Capitani di Vimercati, S. Paraboschi, E. Pedrini,
and P. Samarati, “An xacml-based privacy-centered access control sys-
tem,” in Proceedings of the first ACM workshop on Information security
governance, ser. WISG ’09. ACM, 2009, pp. 49–58.

[34] “Bondi architecture and security requirements appendices,”
http://bondi.omtp.org/1.01/security/BONDI Architecture and
Security Appendices v1 01.pdf, July 2009.

[35] The webinos consortium, “Phase 1 device, network
and server-side api specifications,” November 2011.
[Online]. Available: http://webinos.org/blog/2011/11/01/
webinos-report-phase-i-device-network-and-server-side-api-specifications/

http://dev.w3.org/geo/api/spec-source.html
http://dev.w3.org/geo/api/spec-source.html
http://www.w3.org/2009/dap/
http://www.bmw.com/com/en/insights/technology/connecteddrive/2010/info% tainment/information/internet_information.html
http://www.bmw.com/com/en/insights/technology/connecteddrive/2010/info% tainment/information/internet_information.html
http://doi.acm.org/10.1145/1837110.1837129
http://doi.acm.org/10.1145/1837110.1837129
http://www.w3.org/TR/2010/REC-mwabp-20101214/
http://www.w3.org/TR/2010/REC-mwabp-20101214/
http://www.wacapps.net/glossary
http://www.w3.org/TR/widgets-access/
http://dl.acm.org/citation.cfm?id=2002168.2002175
http://www.cl.cam.ac.uk/research/dtg/android/mock/
http://www.cl.cam.ac.uk/research/dtg/android/mock/
http://doi.acm.org/10.1145/1755688.1755732
http://dx.doi.org/10.1007/978-3-642-18178-8_29
http://fmdb.cs.ucla.edu/Treports/acp-tr.pdf
http://selinuxproject.org/page/SEAndroid
http://specs.wacapps.net/
http://www.oasis-open.org
http://www.primelife.eu/results/documents/153-534d
http://www.primelife.eu/results/documents/153-534d
http://doi.acm.org/10.1145/1809842.1809872
http://doi.acm.org/10.1145/1809842.1809872
http://dx.doi.org/10.1007/11495772_37
http://doi.acm.org/10.1145/1753326.1753421
http://dl.acm.org/citation.cfm?id=1855768.1855794
http://dl.acm.org/citation.cfm?id=1855768.1855794
http://dx.doi.org/10.1109/SP.2006.4
http://webinos.org/blog/2011/03/16/d2-3-industry-landscape-ipr-licensing-governance/
http://webinos.org/blog/2011/03/16/d2-3-industry-landscape-ipr-licensing-governance/
http://webinos.org/blog/2011/03/22/webinos-report-use-cases-and-scenarios/
http://webinos.org/blog/2011/03/22/webinos-report-use-cases-and-scenarios/
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-privacy-v1-spec-cd-03-en.pdf
http://docs.oasis-open.org/xacml/3.0/xacml-3.0-privacy-v1-spec-cd-03-en.pdf
http://bondi.omtp.org/1.01/security/BONDI_Architecture_and_Security_Appendices_v1_01.pdf
http://bondi.omtp.org/1.01/security/BONDI_Architecture_and_Security_Appendices_v1_01.pdf
http://webinos.org/blog/2011/11/01/webinos-report-phase-i-device-network-and-server-side-api-specifications/
http://webinos.org/blog/2011/11/01/webinos-report-phase-i-device-network-and-server-side-api-specifications/

	Introduction
	Background
	Web applications, widgets and browser security
	Mobile applications and access control
	Bridging the gap: web application security frameworks
	Related literature
	Summary

	Cross-device authorisation
	Requirements for personal cross-device access control
	The webinos platform
	webinos `personal zones' of devices

	The webinos policy framework
	Basic architecture
	Adapting the state of the art
	Inter-zone policy enforcement

	Conceptual challenges
	Integration with existing security frameworks
	Subject and resource definitions
	Policy management with varying ecosystems
	Shared devices

	Conclusion and future work
	References

