
Benchmarking Ontology-based Query Rewriting Systems

Martha Impraliou1, Giorgos Stoilos2 and Bernardo Cuenca Grau1

1Department of Computer Scinece, 2School of Electrical and Computer Engineering
University of Oxford, Oxford, UK National Technical University of Athens, Greece
martha.imprialou@balliol.ox.ac.uk gstoil@image.ece.ntua.gr
bernardo.cuenca.grau@cs.ox.ac.uk

Abstract
Query rewriting is a prominent reasoning technique in
ontology-based data access applications. A wide variety of
query rewriting algorithms have been proposed in recent
years and implemented in highly optimised reasoning sys-
tems. Query rewriting systems are complex software pro-
grams; even if based on provably correct algorithms, sophis-
ticated optimisations make the systems more complex and er-
rors become more likely to happen. In this paper, we present
an algorithm that, given an ontology as input, synthetically
generates “relevant” test queries. Intuitively, each of these
queries can be used to verify whether the system correctly
performs a certain set of “inferences”, each of which can be
traced back to axioms in the input ontology. Furthermore, we
present techniques that allow us to determine whether a sys-
tem is unsound and/or incomplete for a given test query and
ontology. Our evaluation shows that most publicly available
query rewriting systems are unsound and/or incomplete, even
on commonly used benchmark ontologies; more importantly,
our techniques revealed the precise causes of their correct-
ness issues and the systems were then corrected based on our
feedback. Finally, since our evaluation is based on a larger set
of test queries than existing benchmarks, which are based on
hand-crafted queries, it also provides a better understanding
of the scalability behaviour of each system.

Introduction
An important application of ontologies is data access, where
an ontology provides the knowledge describing the meaning
of application’s data as well as the vocabulary used to for-
mulate user queries. In this setting, query languages are of-
ten based on conjunctive queries (CQs), and the answers to
queries reflect both the application’s data and the knowledge
captured by the ontology (Calvanese et al. 2007; Poggi et al.
2008; Glimm et al. 2007; Lutz, Toman, and Wolter 2009;
Ortiz, Calvanese, and Eiter 2006).

The need for efficient query answering in ontology-based
data access applications has motivated the development of
(families of) lightweight ontology languages, such as DL-
Lite (Calvanese et al. 2007) (which underpins the OWL 2
QL profile (Motik et al. 2009)), DLP (which underpins the
OWL 2 RL profile), as well as (fragments of) datalog± (Calı̀
et al. 2010). These languages are tailored such that query

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

answering becomes tractable in data complexity (and even in
logarithmic space in the case of the logics underlying OWL
2 QL) .

In this setting, query rewriting is a common reasoning
technique of choice. Intuitively, a rewriting of a query Q
w.r.t. an ontology T is another query (typically a union of
CQs or a datalog query) that captures the information in T
relevant for answering Q w.r.t. T and arbitrary data. Due
to the growing interest in ontology-based data access, many
rewriting algorithms have been proposed in recent years and
implemented in (both commercial and non-commercial) rea-
soning systems. Examples of such systems include QuOnto
(Acciarri et al. 2005), Requiem (Pérez-Urbina, Horrocks,
and Motik 2009), Presto (Rosati and Almatelli 2010), Nyaya
(Gottlob, Orsi, and Pieris 2011), Rapid (Chortaras, Trivela,
and Stamou 2011), and IQAROS.1

Despite being based on provably correct algorithms, so-
phisticated optimisations needed in practice make these
query rewriting systems rather complex and error-prone
software programs. Consequently, both system and appli-
cation developers would greatly benefit from practical and
reliable benchmarking approaches to query rewriting.

To the best of our knowledge, little work has been done
so far towards the systematic benchmarking of ontology-
based query rewriting systems, and developers have relied
mostly on “hand-crafted” ontologies and queries for evalu-
ating their systems and comparing them to others. An ex-
ample of a popular benchmark for query rewriting, which
was first used in (Pérez-Urbina, Horrocks, and Motik 2009),
consists of nine ontologies and five hand-crafted queries for
each of them; systems are evaluated regarding the size of the
computed rewritings and the rewriting computation time.

Existing benchmarks, however, have several important
limitations. First, they are ad hoc: test queries are manually
generated for each specific ontology using the developers’
personal knowledge about the ontologies in the benchmark.
Second, given a test query Q and ontology T , it is currently
not possible to automatically check whether the relevant sys-
tems are sound (i.e., they compute only actual query answers
to Q w.r.t. T and arbitrary data) and complete (i.e., they
compute all answers to Q w.r.t. T and arbitrary data).

In this paper, we present a novel approach for addressing

1http://code.google.com/p/iqaros/

these important limitations. First, we present an algorithm
that synthetically generates test queries for an ontology T .
Our algorithm is generic, in the sense that it is applicable to
a wide range of ontologies and, in particular, to (Horn) on-
tologies that can be captured by existential rules (Baget et al.
2011; Calı̀ et al. 2010). Furthermore, our algorithm is fully
automatic and hence does not require experts’ involvement.
Most importantly, each generated query is relevant to T , in
the sense that it can be used to verify whether a system cor-
rectly performs a certain set of “inferences”, each of which
can be traced back to axioms in T . Second, we present tech-
niques that allow us to determine whether a given system is
unsound and/or incomplete for given Q and T ; these tech-
niques are easy to implement and in many cases help detect
errors with marginal manual effort.

Our evaluation shows that most publicly available query
rewriting systems are unsound and/or incomplete, even on
commonly used benchmark ontologies; most importantly,
our techniques revealed the precise causes of their unsound-
ness and incompleteness issues, and as a result some of the
evaluated systems were actually corrected by their devel-
opers based on our feedback. Finally, since our collection
of tests queries is more “exhaustive” than those in existing
benchmarks, our evaluation provides further insights into the
scalability behaviour of each system.

Preliminaries
We use standard notions of first-order constants, (free and
bound) variables, function symbols, terms, substitutions,
predicates, atoms, (ground) formulae, and sentences. A fact
is a ground atom, and an instance is a finite set of facts. For φ
a formula, with φ(~x) we denote that ~x are the free variables
of φ, while for σ a substitution, φσ is the result of applying
σ to φ. Satisfiability and entailment are defined as usual.
Ontologies We use description logics in the wider frame-
work of first order logic, and identify a DL TBox T with
a finite set of first order sentences. Specialised DL syntax
will sometimes be used in examples, and we assume that the
reader is familiar with the basics of such syntax (Baader et
al. 2002).
Existential Rules An existential rule (Baget et al. 2011; Calı̀
et al. 2010) is a sentence of the form

∀~x.∀~z.[φ(~x, ~z)→ ∃~y.ψ(~x, ~y)] (1)

where φ(~x, ~z) and ψ(~x, ~y) are conjunctions of function-free
atoms and ~x, ~y and ~z are pair-wise disjoint. Formula φ is the
body, formula ψ is the head, and universal quantifiers are
often omitted. Note that, by definition, existential rules are
safe–that is, all variables in ~x occur both in the body and
the head. If ~y is empty, the rule is datalog. Finally, the in-
stantiation of a datalog rule r w.r.t. a substitution σ mapping
all variables in r to constants is the instance Irσ consisting
all facts Bσ with B a body atom in r. If σ is an injective
mapping, then Irσ is an injective instantiation of r.

Many popular DLs (e.g., those underlying the OWL 2 pro-
files (Motik et al. 2009)) can be captured by existential rules.
Queries A query Q is a finite set of sentences containing
a distinct query predicate Q. A tuple of constants ~a is an

answer to Q w.r.t. TBox T and instance I if the arity of ~a
agrees with the arity of Q and T ∪ I ∪ Q |= Q(~a). We
denote with cert(Q, T ∪ I) the answers to Q w.r.t. T ∪ I .
A query Q is a union of conjunctive queries (UCQ) if it is a
set of datalog rules containing Q in the head but not in the
body. In this case, we sometimes abuse notation and use Q
to denote the head atom, rather than the head predicate. A
UCQ is a conjunctive query (CQ) if it has exactly one rule.
Query Rewriting Intuitively, a rewriting of Q w.r.t. T is
another query that captures all the information from T rel-
evant for answering Q over an arbitrary instance I (Cal-
vanese et al. 2007; Pérez-Urbina, Motik, and Horrocks 2010;
Gottlob, Orsi, and Pieris 2011). UCQs and datalog are com-
mon target languages for query rewriting; furthermore, vir-
tually all TBoxes to which existing rewriting techniques are
applicable can be captured by existential rules.

Definition 1. A datalog rewriting of a CQ Q w.r.t. TBox
T is a tuple 〈RD,RQ〉 with RD a set of datalog rules not
mentioningQ andRQ a UCQ with query predicateQwhose
body atoms mention only predicates from T , and where for
each I using only predicates from T we have

cert(Q, T ∪ I) = cert(RQ,RD ∪ I).

The rewriting 〈RD,RQ〉 is a UCQ rewriting ifRD = ∅.

The Chase Given a set of existential rules R and an in-
stance I , CQ answering overR∪ I can be characterised us-
ing the chase: a technique that computes a (possibly infinite)
set chase(R∪ I) of facts implied by R and I in a forward-
chaining manner; the result is a universal model over which
the CQ can then be evaluated. Although many chase proce-
dures have been proposed in the literature (Fagin et al. 2005;
Deutsch, Nash, and Remmel 2008; Marnette 2009), all vari-
ants of the chase satisfy the following basic properties:

• cert(Q,R∪ I) = cert(Q, chase(R∪ I)) for all Q,R, I .

• For each ground fact α mentioning only constants and
functions fromR∪ I ,R∪ I |= α iff α ∈ chase(R∪ I).

Query Rewriting Systems
Many optimised query rewriting systems for various ontol-
ogy languages have been developed in recent years (Cal-
vanese et al. 2007; Rosati and Almatelli 2010; Chortaras,
Trivela, and Stamou 2011; Gottlob, Orsi, and Pieris 2011).
To abstract from the implementation details, and focus only
on the properties of the system that we want to test for, we
introduce an abstract notion of a query rewriting system.

Definition 2. A query rewriting system rew for a DL L
is a computable function that, for each TBox T ∈ L and
each CQ Q with head predicate Q computes in a finite
number of steps a tuple rew(Q, T) = 〈RD,RQ〉 where
RD is a set of datalog rules not containing Q and RQ is
a UCQ with head predicate Q whose body atoms mention
only predicates from T . The system rew is (Q, T)-sound if
cert(RQ,RD ∪ I) ⊆ cert(Q, T ∪ I) for every instance I
containing only predicates from T . It is (Q, T)-complete if
cert(Q, T ∪ I) ⊆ cert(RQ,RD ∪ I) for every instance I
containing only predicates from T .

Most query rewriting systems are based on algorithms
whose behaviour on input T and Q can be characterised by
the application of the following two steps:

1. Pre-processing, where the input TBox T is transformed
into a setRT of existential rules.

2. Query rewriting, where a calculus (often a variant of res-
olution) is used to deriveRD andRQ fromRT and Q.

Consequently, two main sources of implementation errors
for rewriting systems can be identified, namely those caused
by either an incorrect pre-processing, or an incorrect imple-
mentation of the calculus.

Example 3. Let T consist of the following DL axiom:

Student ≡ Person u ∃enrolled.Course (2)

TBox T can be translated into the following setR of equiv-
alent existential rules:

Student(x)→ Person(x) (3)
Person(x) ∧ enrolled(x, y) ∧ Course(y)→ Student(x) (4)

Student(x)→ ∃y.(enrolled(x, y) ∧ Course(y)) (5)

Some rewriting systems that would accept T as a valid input
do not handle qualified existential restrictions (i.e., concepts
such as ∃enrolled.Course). If pre-processing T naively, one
such system rew1 might “ignore” the conjunction involving
sub-concept ∃enrolled.Course and translate T intoR1

T con-
sisting only of rule (3) and rule Person(x) → Student(x).
Such system would be unsound for T : given query Q1 =
Student(x) → Q(x), it would compute the UCQ rewriting
〈∅, {Q1,Q′1}〉, with Q′1 = Person(x) → Q(x), which for
instance I1 = {Person(c)} leads to the incorrect answer c.

Consider now a system rew2 that can handle qualified ex-
istential restrictions, but which, due to an implementation er-
ror, translates T intoR2

T consisting of rules (3), (4), and rule
Student(x) → ∃y.(enrolled(x, y)), thus leaving out con-
junct Course(y) in rule (5). Such system is incomplete for T ,
as witnessed by Q2 = enrolled(x, y) ∧ Course(y) → Q(x)
and I2 = {Student(d)}.

As described later on in our evaluation section, the afore-
mentioned normalisation issues are related to actual errors
we detected in the Rapid system (Chortaras, Trivela, and
Stamou 2011) using our approach, and which were not re-
vealed by existing benchmarks.

Finally, as already mentioned, state of the art implementa-
tions of rewriting calculi are highly optimised. As described
later on, our approach also allowed us to detect several cor-
rectness issues in implemented optimisations; these include
errors in ordering criteria for query atoms in IQAROS, and
issues with subsumption optimisations in Requiem (Pérez-
Urbina, Horrocks, and Motik 2009), among others. ♦

Example 3 suggests that implementation errors in both
pre-processing and rewriting steps can be effectively “un-
covered” by a suitable choice of test queries and subsequent
analysis of the systems’ outputs for such relevant queries.
In what follows, we present an algorithm for computing test
queries that are relevant to a TBox. We then present tech-
niques for checking systems’ correctness for a test query.

Algorithm 1 QueryGeneration(R, bound,Σ)
input: Existential rulesR; integer bound.

1: I0 := ∅ and root := ∅
2: for all r ∈ R do
3: Irµ := injective instantiation of r to fresh const. ~a.
4: I0 := I0 ∪ Irµ
5: root := root ∪ {~a}
6: end for
7: Ic := I0
8: repeat
9: Ic := Ic ∪ applyChaseRule(R, Ic)

10: until terminate(Ic, bound)
11: I := Ic \ I0 and CQ := ∅
12: for all ~a ∈ root do
13: for all I ′ ∈ paths(~a, I,Σ) do
14: Let σ map each constant in I ′ to fresh variable
15: CQ := CQ ∪ {

∧
P (~b)∈I′ P (σ(~b))→ Q(σ(~a))}

16: end for
17: end for
18: return CQ

Test Query Generation
Virtually all TBoxes to which state of the art rewriting sys-
tems are applicable can be captured by existential rules con-
taining only unary and binary predicates. Thus, we only
consider such TBoxes T in this section. Translation of T
into existential rules R can be performed using well-known
structural transformations, which might introduce “fresh”
symbols Σ (e.g., see (Motik, Shearer, and Horrocks 2009)).

Algorithm 1 can then be used to compute test queries from
R. The algorithm directly exploits the chase technique, and
works in three main stages:

1. Chase initialisation, via instantiation of body atoms inR.

2. Chase expansion, up to a pre-defined bound.

3. Query generation, by “navigating” the expanded chase
while replacing ground terms by fresh variables.

Chase initialisation For each rule r ∈ R, Algorithm 1 in-
stantiates all body atoms using fresh constants, which are
marked as root constants, thus constructing an instance I0
that “triggers” the application of each rule in R (lines 2–6).
For the rules in Example 3 we obtain the following initial
instance, where root = {a, (b, c)}:2

I0 = {Student(a),Person(b), enrolled(b, c),Course(c)}

Chase expansion A chase procedure is then used to ma-
terialise new implied facts from existing ones by forward
chaining application of rules in R (lines 8–10). Intuitively,
when initialised with I0, the properties of the chase ensure
that each rule application represents an inference that is rel-
evant to derive some answer to some query Q w.r.t. some
input instance (and for the given, fixed, TBox T).

2Note that rules (3) and (5) share the same body, so it suffices
to instatiate one of them.

Since the chase might not terminate, the algorithm ac-
cepts an integer bound (e.g., maximum number of gener-
ated facts), which can be used as a termination condition.
Alternatively, one can use any of the available acyclicity
conditions for existential rules (e.g., (Fagin et al. 2005;
Marnette 2009)), which analyse the information flow be-
tween the rules to ensure that no cyclic generation of fresh
terms occurs. If R satisfies any such condition, the chase
terminates, and one can dispense with the input bound. In
our example, chase expansion would lead to the following
instance Ic, where a1 and b1 are fresh constants generated
by the application of rule (5).

Ic = I0 ∪ {Person(a), enrolled(a, a1),Course(a1)
Student(b), enrolled(b, b1),Course(b1)}

Query generation Instance I = Ic \ I0 contains all facts
that have been derived from I0 during chase expansion. The
properties of the chase ensure that I is forest-shaped. More
precisely, since I contains only unary and binary predicates,
we can define G(I) as the graph whose nodes are the con-
stants in I and which contains an (undirected) edge between
c and d iff c and d occur together in a fact from I; then G(I)
consists of a set of disconnected trees each of which is rooted
at an individual from root.

Algorithm 1 generates queries by traversing G(I) (lines
12–17) along “paths”. More precisely, paths(~a, I,Σ) (see
line 13) is the set of all instances I ′ ⊆ I not containing
predicates from Σ and s.t. G(I ′) is a path in G(I) involving
a constant from ~a. Each such I ′ is then transformed into a
CQ by mapping each constant to a fresh variable s.t. root
constants are mapped to answer variables in the head of the
query. Clearly, all queries mentioned in Example 3 would be
generated by Algorithm 1 for input rules (3)–(5).

Note that, in the worst-case, Algorithm 1 might gener-
ate exponentially many queries w.r.t. the size of the input.
As shown in our evaluation, however, the number of gen-
erated queries for commonly-used benchmark ontologies is
relatively modest, and they can be computed in just a few
seconds. Finally, note that relevant test queries could also be
generated from I by considering instances I ′ ⊆ I whose
graph is a sub-tree of G(I), rather than simply a path; how-
ever, on the one hand, this results in a blowup in the number
of queries in practice and, on the other hand, our evaluation
suggests that path queries suffice for uncovering many errors
in systems and for analysing and comparing their behaviour.

Testing Correctness
Algorithm 1 provides a flexible way for generating relevant
test queries. In this section, we present practical techniques
for testing soundness and completeness of a rewriting sys-
tem for a given test query and a given TBox.

Testing Soundness
Assume that rew(Q, T) = 〈RD,RQ〉. Clearly, if we have
T ∪ Q |= RD ∪ RQ, the properties of first-order logic en-
tailment ensure that each answer to Q w.r.t. RD ∪ RQ and
an instance I is also an answer to Q w.r.t. T ∪ I , and hence
the query rewriting system rew is (Q, T)-sound.

Proposition 4 shows that T ∪ Q |= RD ∪ RQ can be
checked using any reasoner that is sound and complete for
checking entailment of a fact by T and an instance. For stan-
dard DLs, example such reasoners include HermiT (Motik,
Shearer, and Horrocks 2009) and Pellet (Sirin et al. 2007).

Proposition 4. Let rew(Q, T) = 〈RD,RQ〉. Then, we have
that T ∪ Q |= RD ∪RQ iff the following conditions hold:

1. T ∪ Irσ |= Hσ for each r ∈ RD, where H is the head of
r and Irσ an injective instantiation.

2. T ∪Q∪ Irσ |= Qσ for each r ∈ RQ, where Q is the head
of r and Irσ is an injective instantiation.

Proof. SinceQ does not occur inRD, we have that T ∪Q |=
RD ∪ RQ iff T |= RD and T ∪ Q |= RQ. Furthermore, it
is easy to check that a set F of sentences entails a datalog
rule r with head H iff F ∪ Irσ |= Hσ for Irσ an injective in-
stantiation; thus, sinceRD andRQ consist of datalog rules,
we have T |= RD iff Condition 1 holds and T ∪ Q |= RQ
iff Condition 2 holds.

In practice, however, checking soundness of rew using a
fully-fledged DL reasoner, as suggested by Proposition 4,
has the drawback that the process is subject to implementa-
tion errors of the DL reasoner. Although this problem can
be alleviated by performing the required entailment tests us-
ing several DL reasoners to detect possible discrepancies,
an alternative is to use a chase procedure, such as the one
we used for query generation (see Algorithm 1). Such pro-
cedure does not need to be optimised, and consequently its
implementation can be rather simple and transparent.

The following proposition shows how to exploit the chase
for checking (Q, T)-soundness of rew.

Proposition 5. Let rew(Q, T) = 〈RD,RQ〉 and letR be a
set of existential rules such that T andR are logically equiv-
alent. The following conditions imply that rew is (Q, T)-
sound:

1. Hσ ∈ chase(R ∪ Irσ) for each r ∈ RD, where H is the
head of r and Irσ an injective instantiation.

2. ~a ∈ cert(Q, chase(R∪ Irσ)) for each r ∈ RQ, where Q
is the head of r and Irσ an injective instantiation mapping
the variables in Q to ~a.

Furthermore, if Condition 2 does not hold, then rew is not
(Q, T)-sound.

Proof. To show the first claim in the proposition, it suffices
to prove that Condition 1 (resp. Condition 2) in the proposi-
tion implies Condition 1 (resp. Condition 2) in Proposition
4. Let r ∈ RD, and assume that Hσ ∈ chase(R ∪ Irσ)
with Irσ an injective instantiation; since Hσ mentions only
individuals from Irσ (recall that rules are assumed to be
safe), the properties of the chase (see preliminaries) ensure
that R ∪ Irσ |= Hσ; but then, since T |= R, we have
T ∪ Irσ |= Hσ, as required. Finally, let r ∈ RQ and let
~a ∈ cert(Q, chase(R∪ Irσ)), where Irσ is an injective in-
stantiation mapping the variables in Q to ~a. The proper-
ties of chase ensure that ~a ∈ cert(Q,R∪ Irσ), which im-
plies R ∪ Q ∪ Irσ |= Qσ. Since T |= R, we then have
T ∪ Q ∪ Irσ |= Qσ, as required.

To show proposition’s last claim, consider r ∈ RQ and
an injective instantiation Irσ , where ~x are the variables in
Q and ~a = σ(~x). Clearly, ~a ∈ cert(RQ,RD ∪ Irσ); fur-
thermore, Irσ contains only predicates from T . Next, as-
sume ~a 6∈ cert(Q, chase(R∪ Irσ)); then, the properties of
the chase imply that ~a 6∈ cert(Q,R∪ Irσ); finally, since
R |= T , we have ~a 6∈ cert(Q, T ∪ Irσ). Thus, rew is not
(Q, T)-sound.

Note that Proposition 5 provides only a sufficient con-
dition for (Q, T)-soundness of rew; indeed, it may be the
case that Condition 1 fails (i.e., Hσ 6∈ chase(R ∪ Irσ) for
some r ∈ RD), but rew is (Q, T)-sound. In contrast, as
shown, failure of Condition 2 for some r ∈ RQ provides a
counter-example for (Q, T)-soundness. Thus, if rew(Q, T)
is a UCQ (i.e.,RD = ∅), Proposition 5 provides both a nec-
essary and sufficient condition for (Q, T)-soundness.

Example 6. Consider TBox T , rulesR, queriesQ1,Q′1 and
system rew1 from Example 3. ForQ1 and T , rew1 computes
rew1(Q1, T) = 〈∅, {Q1,Q′1}〉. Let Iσ = {Person(a)} be an
injective instantiation ofQ′1 for σ = {x 7→ a}. Clearly, T |=
R and a 6∈ cert(Q1, chase(R∪ Iσ)). Thus, Proposition 5
implies that rew1 is indeed unsound for Q1 and T . ♦

In practice, to ensure (Q, T)-soundness of rew it suffices
to check that Conditions 1 and 2 in Proposition 5 hold al-
ready for a subset of the corresponding chase, in which case
chase termination does not need to be ensured. On the one
hand, these conditions involve checking whether a particu-
lar fact can be found in the chase (or whether a particular
answer can be derived from the chase); on the other hand,
chase construction is monotonic (i.e., derived facts are never
deleted), so if a fact can be found in (or an answer can be
derived from) a finite subset of the chase, then the fact (or
answer) is guaranteed to hold in the final chase.

To prove unsoundness, however, one needs to check fail-
ure of Condition 2, which requires the full expansion of
chase(R∪ Irσ) for each relevant r ∈ RQ; thus, chase termi-
nation becomes an important issue. Our evaluation will show
that these issues can be dealt with, and Proposition 5 can be
used effectively to determine soundness and unsoundness in
practice for typical benchmark ontologies.

Testing Completeness
Our strategy for detecting sources of incompleteness is to
look for and (semi)automatically explicate “disagreements”
between query rewriting systems for given Q and T . The
following definition provides the required notions to com-
pare systems’ outputs for completeness evaluation purposes.

Definition 7. Let rewi(Q, T) = 〈RiD,RiQ〉 for i ∈ {1, 2}.
We say that rew2 extends rew1 for Q and T if the following
condition holds for each instance I mentioning only predi-
cates from T :

cert(R1
Q,R1

D ∪ I) ⊆ cert(R2
Q,R2

D ∪ I) (6)

If rew2 extends rew1 and the inclusion in Condition (6) is
proper for some I , we say that rew2 strictly extends rew1.

Intuitively, if rew2 extends rew1, then it is “at least as
complete as” rew1 for the given Q and T . Thus, when eval-
uating several systems in practice, if one of them extends
all the others, we have strong evidence to believe that such
system is (Q, T)-complete. Furthermore, if a system rew2

is (Q, T)-sound and strictly extends rew1 for Q and T , we
can conclude that rew1 is incomplete for Q and T .

The following proposition provides sufficient conditions
for checking whether rew2 (strictly) extends rew1; hence,
when used in combination with Proposition 5, it allows us to
draw conclusions about systems’ completeness.

Proposition 8. Let rewi(Q, T) = 〈RiD,RiQ〉 for i ∈ {1, 2}.
If both of the following conditions hold, then rew2 extends
rew1 for Q and T :

1. Hσ ∈ chase(R2
D ∪ Irσ) for each r ∈ R1

D with head H ,
where Irσ is an injective instantiation.

2. Qσ ∈ chase(R2
Q ∪ Irσ) for each r ∈ R1

Q with head Q,
where Irσ is an injective instantiation.

Furthermore, if R1
D = R2

D = ∅, rew2 extends rew1 for Q
and T , and Qσ 6∈ chase(R1

Q ∪ Irσ) for some r ∈ R2
Q with

Irσ injective, then rew2 strictly extends rew1 for Q and T .

Proof. Assume that Hσ ∈ chase(R2
D ∪ Irσ) for each r ∈

R1
D; the properties of chase ensure thatR2

D ∪ Irσ |= Hσ for
each r ∈ R1

D; but then, since Irσ is an injective instantiation
of r, this implies that R2

D |= R1
D. Similarly, if Condition 2

holds, then we haveR2
Q |= R1

Q. As a result, (6) holds by the
properties of entailment, as required.

Finally, assume that R1
D = R2

D = ∅ and r ∈ R2
Q ex-

ists such that Qσ 6∈ chase(R1
Q ∪ Irσ) for Irσ an injective

instantiation. The properties of the chase then ensure that
R1
Q ∪ Irσ 6|= Qσ; since R2

Q ∪ Irσ |= Qσ, and rew2 extends
rew1, the inclusion in (6) is indeed proper.

Note that RiD and RiQ consist of datalog rules; thus, the
chase computations involved in Proposition 8 are guaranteed
to terminate. Furthermore, if we determine that rew2 strictly
extends rew1, we can track the application of chase rules
in the corresponding chase expansion to detect the source
of the systems’ disagreement in a (semi)automatic way. As
described in the evaluation section, this allowed us to detect
the sources of incompleteness in practice.

Example 9. ConsiderQ2, T and rew2 from Example 3 and
let rew2(Q2, T) = 〈∅,R2

Q〉. Since rew2 computes rewrit-
ings based on R2

T in Example 3, we have Q′2 6∈ R2
Q for

Q′2 = Student(x)→ Q(x). Let rew3 be a sound system s.t.
rew3(Q2, T) = 〈∅,R2

Q ∪{Q′2}〉. rew3 strictly extends rew2

sinceQ(a) 6∈ chase(R2
Q∪Iσ) for Iσ = {Student(a)}; thus,

rew2 is not (Q2, T)-complete. ♦

Experiments
We have implemented a test query generator (see Algorithm
1) that is applicable to TBoxes in the the DL ELHI.3 We
then applied our query generator to the benchmark ontolo-
gies described in (Pérez-Urbina, Horrocks, and Motik 2009).

3Available at http://code.google.com/p/sygenia/

For all test ontologies, except for A,AX, and S, the chase
naturally terminated in just a few seconds. Instead of fixing
an a priori integer bound for the “cyclic” ontologies (as re-
quired by Algorithm 1), our implementation annotates each
skolem constant generated by the chase with the rules with
existentials in the head that have been applied so far to gen-
erate them. If such a rule r is applicable to facts involving
a skolem constant, but r has been used before in order to
generate this particular skolem constant, then we detect a
“cycle”; what we bound is the number of such detected cy-
cles. Table 1 summarises our results. We can observe that
test queries for all ontologies can be generated rather effi-
ciently and the number of them is also relatively small.

T t(ms)]CQs T t(ms)]CQs
A 1 264 114 S 1 225 185

AX 2 856 453 U 847 81
P1 398 1 UX 1 548 101
P5 446 15 V 3 601 102

P5X 574 130

Table 1: Statistics of query generation

We used these queries to evaluate and compare CGLLR,4
REQUIEM,5 Rapid,6 IQAROS,7 and Nyaya;8 we didn’t
evaluate Presto and QuOnto, which aren’t publicly available.

Correctness Evaluation
We ran all systems over all ontologies and all our test queries
and analysed their output (UCQ) rewritings. Contrary to pre-
vious evaluations (Pérez-Urbina, Horrocks, and Motik 2009;
Chortaras, Trivela, and Stamou 2011; Rosati and Almatelli
2010), which were based on the same ontologies, but which
used “hand-crafted” test queries instead, we discovered im-
portant correctness issues in all these systems (see Table 2).

System Ontology]Queries Issue
Requiem
CGLLR AX 8 incomplete

Rapid U 36 unsound
U 18 incomplete

IQAROS S 25 incomplete

Nyaya S 82 incomplete
U, UX 23 incomplete

Table 2: Statistics about unsoundness and incompleteness

All systems, except for Rapid, were reported sound for
all ontologies and queries using the results in Proposition 5.
Rapid was reported unsound for ontology U; since Rapid
computes a UCQ rewriting for ontology U and all test
queries, we could prove unsoundess and find suitable “wit-
ness” instances by again exploiting Proposition 5. Further

4http://www.cs.ox.ac.uk/projects/requiem/C.zip
5http://www.cs.ox.ac.uk/projects/requiem/home.html
6http://www.image.ece.ntua.gr/∼achort/rapid.zip
7http://code.google.com/p/iqaros/
8http://mais.dia.uniroma3.it/Nyaya/Home.html

inspection of the problematic queries revealed that unsound-
ness was due to a normalisation error similar to the one de-
scribed in Example 3. The error was reported to the devel-
opers of Rapid and fixed in a subsequent release of the tool.

As shown in Table 2, all evaluated systems were found in-
complete for some test ontologies and queries. In particular,
we were able to exploit the results in Proposition 8 to detect
discrepancies in the UCQ rewritings computed by each sys-
tem; a more detailed inspection of the problematic queries
and witness instances confirmed that discrepancies were in-
deed due to incompleteness issues.

Rapid’s incompleteness was again due to normalisation
issues similar to those described in Example 3. Incomplete-
ness in both CGLLR and Requiem was due to an implemen-
tation bug in query subsumption and redundancy elimina-
tion optimisations. Incompleteness in IQAROS was due to
implementation bugs in ordering criteria for query atoms.
These errors were again reported to systems’ developers and
fixed based on our feedback.

Performance Evaluation
Performance was evaluated by using the systems’ latest
versions; in the case of CGLLR, Requiem, Rapid, and
IQAROS, the latest versions include fixes for all the cor-
rectness issues we identified in our experiments.

T CG Req Rap IQAR Nyaya
A 65.4 1.9 1.6 0.4 662.2

AX 5,680.0 10,442.2 586.8 64.2 >5h
P5 163.0 9.4 0.2 1.1 37.5

P5X 310.0 78.7 4.8 4.0 >5h
S 0.7 1.2 0.6 0.1 0.4
U 0.3 0.4 0.2 0.04 0.4

UX 0.3 0.6 0.3 0.06 0.6
V 2.3 3.4 0.7 0.8 5.7

Table 3: Sum of rewriting times (seconds) for all test queries

For each system, we measured the time to compute a UCQ
rewriting for each test query and for each ontology. Due to
space limitations we cannot present results for each test;
hence, for illustration purposes, Table 3 provides for each
ontology and each system the total time that the system took
to compute a rewriting for all test queries. We can observe
that Rapid and IQAROS were significantly faster than the
other systems.9 Moreover, Nyaya could not finish rewriting
the test queries for ontologies AX and P5X after 5 hours.

Finally, we have evaluated systems’ redundancy elimi-
nation mechanisms by measuring the size of the computed
UCQ rewritings (i.e., the number of CQs they contain). Ta-
ble 4 presents, for each ontology and each system, the sum
of the sizes of all (UCQ) rewritings computed for all the test
queries.10 We can observe that CGLLR presents the high-
est degrees of redundancy in its output, whereas Rapid and
IQAROS computed the most succinct rewritings.

9We do not present results for ontology P1 since it was trivial
(under 50 milliseconds) for all systems.

10See Table 1 for total number of test queries for each ontology.

T CG Req Rap IQAR Nyaya
A 70,350 4,645 4,133 5,445 4,073

AX 815,921 976,151 369,817 159,252 -
P5 33,363 90 90 90 90

P5X 74,552 33,292 13,599 8,269 -
S 5,148 4,493 857 835 2,288
U 2,856 1,933 489 486 1,640

UX 3,060 2,949 705 702 2,561
V 13,439 13,356 3,737 3,737 8,609

Table 4: Sum of rewriting sizes for all test queries.

Related Work and Conclusions
To the best of our knowledge all benchmarks for ontology-
based systems rely on hand-crafted test queries (Pérez-
Urbina, Motik, and Horrocks 2010; Guo, Pan, and Heflin
2005; Ma et al. 2006). The work that is closest to ours is
the formal study of incompleteness of ontology reasoners
(Stoilos, Cuenca Grau, and Horrocks 2010; Cuenca Grau
and Stoilos 2011), where the authors describe techniques
for synthetic query generation; however, these were limited
to very lightweight DLs (EL and DL-Lite) under very strict
acyclicity conditions, and the queries were used to evaluate
incomplete materialisation-based reasoners, such as Jena,
Sesame, and OWLim.

In this paper, we presented a test query generation algo-
rithm that can be applied to Horn ontologies. We also pre-
sented correctness evaluation techniques which have already
been proved useful to uncover serious implementation errors
in state of the art rewriting systems. These were not revealed
by existing benchmarks and hence our techniques have al-
ready proved valuable to systems’ developers.

Acknowledgements
This work was supported by the EU FP7 project SEALS and
by the EPSRC projects ConDOR, ExODA, and LogMap.
B. Cuenca Grau is supported by a Royal Society Univer-
sity Research Fellowship. Giorgos Stoilos is supported by
a Marie Curie FP7-Reintegration-Grants within European
Union’s Seventh Framework Programme (FP7/2007-2013).

References
Acciarri, A.; Calvanese, D.; Giacomo, G. D.; Lembo, D.;
Lenzerini, M.; Palmieri, M.; and Rosati, R. 2005. Quonto:
Querying ontologies. In Proc. of AAAI-05.
Baader, F.; McGuinness, D.; Nardi, D.; and Patel-Schneider,
P. 2002. The Description Logic Handbook: Theory, imple-
mentation and applications. Cambridge Uni. Press.
Baget, J.-F.; Leclère, M.; Mugnier, M.-L.; and Salvat, E.
2011. On rules with existential variables: Walking the de-
cidability line. Artificial Intelligence 175(9–10):1620–1654.
Calı̀, A.; Gottlob, G.; Lukasiewicz, T.; Marnette, B.; and
Pieris, A. 2010. Datalog+/-: A family of logical knowledge
representation and query languages for new applications. In
Proc. of LICS, 228–242.
Calvanese, D.; De Giacomo, G.; Lembo, D.; Lenzerini, M.;
and Rosati, R. 2007. Tractable reasoning and efficient query

answering in description logics: The DL-Lite family. J. of
Automated Reasoning 39(3):385–429.
Chortaras, A.; Trivela, D.; and Stamou, G. 2011. Optimized
query rewriting in OWL 2 QL. In Proc. of CADE-23.
Cuenca Grau, B., and Stoilos, G. 2011. What to ask to an
incomplete semantic web reasoner? In Proc. of IJCAI 2011,
2226–2231. AAAI Press.
Deutsch, A.; Nash, A.; and Remmel, J. B. 2008. The chase
revisited. In Proc. of the 27th ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems
(PODS 2008), 149–158.
Fagin, R.; Kolaitis, P. G.; Miller, R. J.; and Popa, L. 2005.
Data exchange: semantics and query answering. Theoretical
Computer Science 336(1):89–124.
Glimm, B.; Horrocks, I.; Lutz, C.; and Sattler, U. 2007. Con-
junctive query answering for the description logic SHIQ.
In Proc. of IJCAI-07.
Gottlob, G.; Orsi, G.; and Pieris, A. 2011. Ontological
queries: Rewriting and optimization. In Proc. of ICDE 2011.
Guo, Y.; Pan, Z.; and Heflin, J. 2005. LUBM: A Bench-
mark for OWL Knowledge Base Systems. Journal of Web
Semantics 3(2):158–182.
Lutz, C.; Toman, D.; and Wolter, F. 2009. Conjunctive
query answering in the description logic EL using a rela-
tional database system. In Proc. of IJCAI-09.
Ma, L.; Yang, Y.; Qiu, Z.; Xie, G. T.; Pan, Y.; and Liu, S.
2006. Towards a complete OWL ontology benchmark. In
Proc. of ESWC, 125–139.
Marnette, B. 2009. Generalized schema-mappings: from
termination to tractability. In Proc. PODS, 13–22.
Motik, B.; Cuenca Grau, B.; Horrocks, I.; Wu, Z.; Fokoue,
A.; and Lutz, C. 2009. OWL 2 Web Ontology Language
Profiles. W3C Recommendation.
Motik, B.; Shearer, R.; and Horrocks, I. 2009. Hypertableau
reasoning for description logics. J. Artificial Intelligence Re-
search (JAIR) 36:165–228.
Ortiz, M.; Calvanese, D.; and Eiter, T. 2006. Characterizing
data complexity for conjunctive query answering in expres-
sive description logics. In Proc. of AAAI-06.
Pérez-Urbina, H.; Horrocks, I.; and Motik, B. 2009. Effi-
cient query answering for OWL 2. In Proc. of ISWC 09.
Pérez-Urbina, H.; Motik, B.; and Horrocks, I. 2010.
Tractable query answering and rewriting under description
logic constraints. Journal of Applied Logic 8(2):186–209.
Poggi, A.; Lembo, D.; Calvanese, D.; Giacomo, G. D.; Lenz-
erini, M.; and Rosati, R. 2008. Linking data to ontologies.
J. Data Semantics 10:133–173.
Rosati, R., and Almatelli, A. 2010. Improving query an-
swering over DL-Lite ontologies. In Proc. of KR-10.
Sirin, E.; Parsia, B.; Grau, B. C.; Kalyanpur, A.; and Katz,
Y. 2007. Pellet: A practical OWL DL reasoner. J. Web
Semantics 5(2):51–53.
Stoilos, G.; Cuenca Grau, B.; and Horrocks, I. 2010. How
incomplete is your semantic web reasoner? In Proc. of
AAAI-10.

