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Abstract. We report on the extension of the CSP-based refinement
checker FDR to encompass a prioritisation operator as envisaged in [23].
This is embedded into the tool using similar technology to the well-known
chase operator. We show how it can be used to analyse systems under
what we term unstable failures, in which the usual notion of failure is
augmented by a fair notion of acceptance along what would previously
have been characterised as a divergence. This is important in practical
application to the operation of Verum’s ASD:Suite.

1 Introduction

Hoare’s process algebra CSP, as explained in [11, 22, 23] treats the actions
a process can perform alike, except that while ordinary visible commu-
nications in the alphabet Σ require the agreement of the external envi-
ronment to occur, the two special actions τ and X (the latter a visible
signal of successful termination) do not. In particular, processes in these
versions of the language cannot express a preference between whatever
actions may be enabled in a given state.

Priority means preferring some actions that a system can perform to
others. This preference can be based solely on the event name. In other
cases it might depend on which process is performing the event, or on
some operator like a prioritised version ←� of � within a process.

Over the years there have been a number of versions of CSP with
added priority, for example [7, 15, 14], and languages such as occam [12]
which have incorporated priority operators into the CSP model of interac-
tion. Priority can be introduced either by prioritised analogues of existing
process constructs such as � (external choice) and ‖ (parallel composi-
tion), or by assigning priorities to action labels in ΣτX = Σ ∪ {τ,X}.

In this paper we will consider only the second of these options in
detail: an operator Pri≤(P) where ≤ is a representation of an allowable
priority order on ΣτX and P is a process. In every state of the process
P it only allows actions that do not violate ≤’s priority specification: in
general ≤ is partial order on ΣτX where the special actions τ and X are
incomparable with each other and greater than all members of Σ that



are not maximal in the order. Pri≤(P) never allows P to perform action
x in a state where there is a greater one available. We will discuss this
operator in more detail in Section 3, after first recalling some background.

While that operator limits what the process P can do based on pri-
ority, it neither expects P itself to be a prioritised object nor exports
any prioritisation amongst the actions it allows: at least at the level of
operational semantics it makes sense to consider it in a world of ordinary,
unprioritised, semantics.

The same is not true of a prioritised external choice that we might
write P←� Q . The semantics of (a → P)←� (b → Q) has to understand
that a is preferred to b, but both remain available. As a result ←� would
be much harder to incorporate into a tool like FDR [21, 1] that has a lot
invested in a particular model of transition system. This difficulty coin-
cides with the fact that any operational or behavioural semantic model
has to be changed to include ←� in the language.

It is in fact possible to implement prioritised parallel operators in
terms of Pri≤(·). This is easy to see for the standard CSP parallel P A‖B
Q in which P and Q must respectively communicate all events in A and
B , synchronising on A∩B : we simply apply the priority operator outside
the parallel operator (perhaps a many-way one) giving desired precedence
to the component processes’ actions. This would probably be done inside
any hiding of the network’s internal actions.

In Section 4 we describe the implementation of Pri≤(P) operator
within FDR and give examples of its use and performance. We discuss
the interaction with FDR’s state compression functions.

There are many different notions of fairness in the literature of con-
current systems, but one that is particularly relevant to CSP with its
emphasis on handshaken communication and failures-style model is that
of fair acceptance discussed in Section 6: if a process has an infinite se-
quence of τ events possible, but while it is performing then it is offered
some set of visible events A such that infinitely many of the states it
passes through could perform as alternatives to τ , then one of them is
accepted, so the divergence does not occur. While at first sight fairness
and priority seem to be at odds with one another, we show that priority
is key to building acceptance fairness into FDR checks through an exten-
sion of the usual stable failures model to include unstable failures that
encompass this idea, as discussed in Section 7. Mechanisms for checking
unstable failures refinement using priority are introduced in Section 8.



We illustrate this style of reasoning in Section 9 via an application to
an industrial tool: Verum’s ASD:Suite for the development of embedded
software, into which FDR is integrated.

2 Background: CSP and its semantics

The CSP process algebra is based on the concept of instantaneous ac-
tions handshaken between a process and its environment, whether that
environment consists of processes it is interacting with or some notional
external observer. It enables the modelling and analysis of patterns of
interaction. The books [11, 22, 23, 26] all provide thorough introductions
to CSP. The main constructs that we will be using in this paper are set
out below.

– The constant processes STOP , SKIP and div which respectively do
nothing, terminate immediately with the signal X and diverge by
repeating the internal action τ .

– a → P prefixes P with the single communication a which belongs to
the set Σ of normal visible communications. Similarly ?x : A→ P(x )
offers the choice A and then behaves accordingly.

– CSP has several choice operators. P � Q and P u Q that respectively
offer the environment the first visible events of P and Q , make an
internal decision via τ actions whether to behave like P or Q .
The asymmetric choice operator P B Q that offers the initial visible
choices of P until it performs a τ action and opts to behave like Q .
In the cases of P � Q and P BQ , the subsequent behaviour depends
on what initial action occurs.

– P \ X behaves like P except that all actions in X become (internal
and invisible) τs.

– P [[R]] behaves like P except that whenever P performs an action a,
the renamed process must perform some b that is related to a under
the relation R.

– P ‖
A

Q is a parallel operator under which P and Q act independently

except that they have to agree (i.e. synchronise or handshake) on all
communications in A. A number of other parallel operators can be
defined in terms of this.

There are also other operators such as P ; Q (sequential composition),
P 4 Q (interrupt) and P Θa Q (throwing an exception) that do not play
a direct role in this paper.



It is always assumed that the meaning, or semantics, of a CSP process
is the pattern of externally visible communication it exhibits. As shown
in [22, 23], CSP has several styles of semantics, that can be shown to
be appropriately consistent with one another. The two styles that will
concern us in this paper are operational semantics, in which rules are given
that interpret any closed process term as a labelled transition system
(LTS), and behavioural models, in which processes are identified with sets
of observations that might be made from the outside. By convention these
behavioural models are chosen to be compositional under all operators
including recursion.

An LTS models a process as a set of states that it moves between via
actions in ΣτX, where τ cannot be seen or controlled by the environment.
(X is regarded as visible but is not controlled by handshaking.) An ex-
ternal observer interacting with a process cannot always tell what state
it is in. Note that LTSs are a sequential model in which all processes,
even ones built from parallel operators pass through one state at a time.
There may be many actions with the same label from one of their states,
in which case (even if the label is in Σ) the environment has no control
over which is followed.

The best known behavioural models of CSP are based on combinations
of the following types of observation.

– Traces are sequences of visible communications a process can perform.
– Failures are combinations (s,X ) of a finite trace s and a set of actions

that the process can refuse in a stable state reachable on s. A state
is stable if it cannot perform either of the actions τ and X that the
process can perform without the cooperation of the environment.1

– Divergences are traces after which the process can perform an infinite
sequence of uninterrupted τ actions, in other words diverge.

These well-known models are

– T in which a process is identified with its set of finite traces;
– F in which it is modelled by its (stable) failures and finite traces;
– N in which it is modelled by its sets of failures and divergences, both

extended by all extensions of divergences: it is divergence strict.

Note that traces, failures and divergences are all observations that can
be made of a single behaviour of a process in linear time: unlike with LTS
1 The action X is sometimes included in refusal sets, and notional failures added

corresponding to states where X is possible: this issue is discussed in [23] but is
irrelevant to the present paper.



semantics, the way that a process’s behaviour branches as it evolves is not
recorded. As described in [23], there is a range of other models based on
other, usually richer, forms of linear behaviours. One that is important
to this paper is refusal testing, in which we record not just one stable
refusal at the end of a trace, but have the option to record one before
each event of the trace as well as at the end. Refusal testing models have
long (see [18]) been recognised as being relevant to priority, for reasons
we will discuss in the next section. However we show in this paper that
(unexpectedly) refusal testing models are not always sufficient, and the
sometimes one needs to look at the yet more refined models in which
the refusal information during and at the end of traces is replaced by
acceptance or ready sets: the actual sets of events made available from
stable states. These latter models, which sit at the extreme of what a
CSP-style behavioural model can record, are sometimes called acceptance
traces models.

There is an interesting relationship between priority and the mod-
elling of timed systems. Semantic models for versions of CSP incorporat-
ing time – either continuous [20] or discrete [16, 17, 23] – usually bear a
close relationship to refusal testing, since they involve recording what vis-
ible events at each time instant that the model records. It has long been
recognised that in order to simulate discrete timed systems accurately on
FDR it is necessary to give τ actions priority over the event (typically
tock) representing the passage of time. With that goal, FDR has for sev-
eral years (initially in prototype versions and then as officially released
functionality) implemented a checking mode2 specifically for that:

assert P [T= Q :[tau priority over]: A

analyses this trace refinement under a modified operational model in
which no event in A can happen when the process can perform a τ . This
is closely related to applying the Pri≤(·) operator with an order in which
the events in A are less than {τ,X}, and all other members of Σ are

2 That mode was designed for the CSP dialect tock -CSP, in which the event tock is
used by the programmer, explicitly modelling the passage of time. More recently
explicit support has been added for Timed CSP [2, 20, 26], where a real-time seman-
tics is given for the CSP language with a WAIT t construct which takes precisely t
time units before terminating. That support is provided via a translation to tock -
CSP as discussed in [16, 17, 23], and priority of τ over tock is still required there.
The priority construct used there is, however, couched in terms of the one described
in the present paper, which essentially supersedes the [tau priority over] mode.
This is so particularly as (i) it works for all models and not just traces and (ii) can
be used at any level in the process that is outside recursions.



incomparable to all events. However it can only be applied at the top
semantic level as it is imposed by the checking mode.

3 A priority operator

The Pri≤(P) operator discussed in the introduction is slightly more gen-
eral than the one described in Chapter 20 of [23]. The one described there
was parameterised by a partial order on a subset of Σ, in which all events
in that subset were assumed to be strictly less than τ and X.3 It behaves
in exactly the same way as our operator in which the order is extended
to the whole of ΣτX by placing the events not in the domain of the origi-
nal order as additional maximal elements all incomparable to every other
action in ΣτX (as discussed for the τ priority model above). This order
meets the restrictions described earlier, and which we will explain shortly.

The operational semantics of Pri≤(·) are easier to understand than its
abstract behavioural semantics. They do not, however, fit into the frame-
work described as “CSP-like” in [23, 24], because they require negative
premises: an action cannot occur unless all actions of higher priority are
impossible.

The following two SOS (Structured Operational Semantics) rules are
necessary unless our new operator is going to turn the philosophy of CSP
upside down, since the process P is allowed to perform X and τ without
the co-operation of its environment, which in this case is our new operator:

P τ−→ P ′

Pri≤(P) τ−→ Pri≤(P ′)

P X−→ P ′

Pri≤(P) X−→ Ω

It is these rules that imply that the actions τ and X must be maximal
in the order ≤ that any instance of Pri≤(P) uses: no other action can
prevent them. In fact we would expect the following rule to be the only
operational semantic rule needed to govern this operator’s behaviour,
provided that we augment it in the case x = X by the convention that
the result of any X action is the terminated process Ω:

P x−→ P ′ ∧ ∀ y 6= x .x ≤ y .P 6 y−→ · · ·
Pri≤(P) x−→ Pri≤(P ′)

So this rule must generate the same τ and X actions as the two spe-
cific rules above. It implies that any action maximal in the partial order,
including τ and X, can proceed unfettered.
3 So, unlike here, a member of Σ with priority greater than another must itself have

lower priority than τ .



We assumed a further property of ≤, namely that every non-maximal
event is less than τ and X. We can see the need for this from two of the
“laws” of CSP and the operational semantics of other CSP operators. The
first is not a law in itself but is derivable from standard laws: the principle
that a process P preceded by a single τ action – we can write this τP –
is equivalent to P in every model. This does not in itself imply that τ
has to have high priority, since in τP it is not in competition with other
events. However, consider the processes P1 = (a → Q) � (b → Q) and
P2 = (a → Q) � (τ(b → Q)) where the identity of Q is unimportant.
Our principle implies they are equivalent. The first state of the operational
semantics of P2 has two actions: a leads to Q and τ to P1.

Suppose we were to apply our priority operator to P1 and P2 in
a context where a < b. Pri≤(P1) cannot perform a as its first visible
action, so we can infer that Pri≤(P2) cannot either. It is this that allows
us to infer that if a process can perform a τ action together with a second
action a that b, not immediately available, would preclude, then it is not
appropriate to allow a. Thus if a has a lower priority than b then it must
have a lower priority than τ since that might enable b.

The principle that explains the priority of X is the law which explains
that it is not controllable:

P � SKIP = P B SKIP

named �-SKIP -resolve in [22, 23]. If P is an initially stable process such
as P1 which has no initial X, then the operational semantics of the left-
hand side of this equation has a range of visible initial actions and X,
while the right-hand side has exactly the same initial actions in Σ and
the τ introduced by the operational rule.

If applying Pri≤(·) to the left- and right-hand sides is going to give
equivalent results, we can infer that τ and X must have equal priority.

While it would make perfect sense operationally to drop the restric-
tions on ≤, the above arguments show that the Pri≤(P) operator would
not make sense in any of CSP’s existing abstract models despite our aim
that it would make sense over refusal testing models. Another way of
viewing the restrictions is to say that τ and X are unaffected by the pri-
ority order, and that non-maximal events can only happen from stable
states (ones with no τ or X).

We cannot expect our prioritisation operator to respect a CSP model
that does not tell us which events a process performs happen from stable
states, and whether all Σ-events less than a given event are then refused.
The traces model certainly does not do this because its observations are



completely independent of whether the process is stable or not. While
failures-based models would seem to satisfy this requirement – as failures
occur in stable states and tell us what these states refuse – they do not.
Consider the pair of processes (a → b → STOP) B (a → STOP) and
(a → STOP) B (a → b → STOP). These divergence-free processes have
identical failures, but imagine applying a priority operator to them where
a < b. In each case the a → · that appears to the left of B is prevented
because τ is an alternative. So only the other a is allowed, meaning that
the results of the prioritisation are different: one can perform b and one
cannot. We conclude that it is not enough to know information about
stable states only at the ends of traces; rather we need to know about
stability and the refusal of high-priority events earlier in traces as well.

The refusal testing model described briefly in the introduction does
distinguish these two processes, because they have different behaviours
beginning 〈Σ \ {a}, a〉, so the fact that Pri≤(·) maps them to processes
with different traces is OK if we are testing that refusal testing is re-
spected. Several variations on the refusal testing model, and a richer one
in which exact ready or acceptance sets are recorded on the stable states
in a trace, are detailed in Chapters 11 and 12 of [23]. In the simplest of
these, the stable refusal testing model RT , the behaviours recorded of a
process are all of the forms

– 〈X0, a1,X1, . . . ,Xn−1, an ,Xn〉 and
– 〈X0, a1,X1, . . . ,Xn−1, an ,Xn , •,X〉

where n ≥ 0 and each Xi is either a refusal set (subset of Σ) or • (indi-
cating that no refusal was observed).

The refusal testing value of a process P can tell us what traces are
possible for Pri≤(P): P can only perform an action a that is not maximal
in ≤ when all greater actions (including τ) are impossible. In other words
the trace 〈a1, . . . , an〉 is possible for Pri≤(P) if and only if

〈X0, a1, x1, . . . ,Xn−1, an , •〉

is a refusal testing behaviour, where Xi is • if ai−1 is maximal, and {a ∈
Σ | a > aa−1} if not (even if that set is empty so an−1 is less than only
τ and X).

It came as a surprise to us, however (particularly given what the first
author wrote in [23]) to discover that there are cases where the refusal
components of refusal testing behaviours of Pri≤(P) can not be com-
puted accurately from the corresponding behaviour of P . This is because



Pri≤(P) can refuse larger sets than P : notice that if P offers all visible
events, then the prioritised process refuses all that are not maximal in ≤.

Consider the processes

DF1(X ) =u{a → DF1(X ) | a ∈ X }

DF2(X ) =u{?x : A→ DF1(X ) | A ⊆ X ,A 6= ∅}

These are equivalent in the refusal testing models: each has all possible
behaviours with traces in Σ∗ that never refuse the whole alphabet Σ.

Now consider P1 = DF1({a, b}) ||| CS and P2 = DF2({a, b}) ||| CS
where CS = c → CS . Clearly these are also refusal testing equivalent.
Now suppose ≤ is the order in which b > c and a is incomparable to each
of b and c. We ask the question: is 〈{c}, a, •〉 a refusal testing behaviour
of Pri≤(Pi)?

When i = 1 the answer is “no”, since whenever P1 performs the event
a the set of events it offers is precisely {a, c} (it can also offer {b, c}).
On the other hand, P2 can choose to offer {a, b, c}: in this state the
priority operator prevents c from being offered to the outside, meaning
that Pri≤(P2) can be in a stable state where a is possible but c is not:
so in this case the answer is “yes”. This demonstrates that we need more
information than refusal testing of Pi to calculate the refusal testing
behaviours of Pri≤(Pi).

On close inspection this example tells us that Pri≤(·) is only compo-
sitional for refusal testing when the structure of ≤ is such that whenever
a and b are incomparable events in Σ and c < b then also c < a. This
means that the order has to take one of two forms:

– A linearly ordered list of collections of equally prioritised events, the
first of which contains {τ,X}.

– A linearly ordered list of collections of equally prioritised events, the
first of which is exactly {τ,X}, together with a further collection of
events that are incomparable to the members of the first two of these
collections and greater than the rest.

The second of these includes the order used for the timed priority model,
in which the only prioritisation is that {τ,X} have greater priority than
the time event(s), typically {tock}.

Both exclude some interesting applications of priority, including the
main example in this paper.

These issues disappear for the acceptance traces model FL and its
variants, which are therefore the only CSP models with respect to which
our priority operator can be defined in general.



With respect to this model, the semantics of Pri≤(P) are the be-
haviours

{〈A0, a1,A1, . . . ,An−1, an ,An〉 | 〈Z0, a1,Z1, . . . ,Zn−1, an ,Zn〉 ∈ P} ∪
{〈A0, a1,A1, . . . ,An−1, an , •,X〉 | 〈Z0, a1,Z1, . . . ,Zn−1, an , •,X〉 ∈ P}

where in every case one of the following holds:

– ai is maximal under ≤ and Ai = • (so there is no condition on Zi

except that it exists).
– ai is not maximal under ≤ and Ai = • and Zi is not • and neither

does Zi contain any b > ai .
– Neither Ai nor Zi is •, and Ai = {a ∈ Zi | ¬ ∃ b ∈ Z .b > a},

and in each case where Ai−1 6= •, ai ∈ Ai−1.
Notice how we are able, when P offers the set Z , to calculate the set

that Pri≤(P) offers: the set {a ∈ Z | ¬ ∃ b ∈ Z .b > a}.
The above definition can easily be adapted to all the variants set out

in [23] of the model FL in which the exact sets of events offered from
stable states are recorded through the trace, rather than refusal sets.

4 Implementation in FDR

As described, for example, in [22, 23], FDR adopts a two-level imple-
mentation strategy for CSP. Its compiler typically identifies a number of
component processes which run in parallel combinations in the complete
system. The compiler then reduces each of these components to an explicit
state machine: a list of states and transitions. It also devises sets of rules,
called supercombinators by which combinations of actions of these compo-
nents become actions of the whole. Full details can be found in [23]. Aside
from these, it also handles operators on state machines which are declared
as transparent or external within CSP scripts: the former are operators
that are not intended to change the behavioural semantics of the machine
they are applied to, the latter may change the semantics. Examples are
state compression operators such as normal and diamond, and the chase
operator which sits somewhere between transparent and external since
while it can change semantics, it is usually used in places where it does
not. (It can be declared as either.) transparent and external opera-
tors thus transform the state machine representing a process by direct
manipulation of state machine representations, the only difference being
whether these transformations are intended to leave the abstract seman-
tics unchanged or not.



There is no reason in principle why Pri≤(P) should not be imple-
mented as a low-level operator within a particular component. We have
yet to find a convincing example of why this is useful, however, and at
the time of writing no such implementation exists. There would, however,
be practical problems4 if the operator was recursed through: a recursive
definition of a process P in which an instance of P occurs within the new
operator.

It would not, however, be possible to embed Pri≤(P) within the su-
percombinator framework without a complete revision of the latter. For
this only enables FDR to calculate actions of a multi-component systems
from the actions that the components positively have and does not allow
for the sort of negative premises that we saw in the operational semantics
of our new operator above. In the language of [23, 24], this is because
Pri≤(P) is not a CSP-like operator as described in [24, 23]

The natural mode of implementing our new operator is therefore as
external, and this is what we have done. It acts in a way similar to
chase: as a wrapper or environment for the state machine it is acting on,
which calculates the entire set of initial actions of its arguments before
deciding what to do with these.5

In common with chase, the result of applying our priority operator
can be treated like any other state machine within FDR, for example
becoming a component of a supercombinator-based parallel combination
or having other external or transparent operators applied to them.

Because of the relative complexity of representing a general partial
order to FDR, we took the decision to restrict the form of order allowed
to specifying a list 〈A0, . . . ,An〉 of disjoint subsets of Σ, individually
groups of equal-priority events, with decreasing priority through the list.
Any members of the first subset A0 have equal priority to X and τ , and
any member of Σ that lies outside

⋃n
i=0 Ai is incomparable to all other

members of the order. We have not yet found a practical example that
requires more generality.

FDR 2.93 therefore implements the new external operator prioritise,
which has two modes of use:

4 The problem alluded to that it would be difficult to “close off” the exploration of a
low-level component with this type of recursion. It is similar to documented existing
problems with recursing through some standard CSP operators such as parallel and
hiding [8, 24].

5 chase determines if the argument has any τ actions, and if it does simply follows
one without making this τ visible on the outside. Thus the result of applying chase

only has visible actions, and it only has these from states of the argument with no
τ .



prioritise(P,A0,A1,..,An) prioritise(P,As)

where As is a list of subsets of Σ. The advantage of the latter is that As
can be any expression for such a list, for example a list comprehension
calculated within the program under consideration.

There are in fact two versions implemented, namely prioritise and
prioritise_nocache, the difference being identical to the existing chase
and chase_nocache. The cached version remembers the states it has ap-
plied prioritisation to and the transitions it has calculated for them, while
the nocache version recalculated every time. We recommend that the
nocache version is normally used, particularly when applied to a pro-
cess with a large state space, since amount of memory consumed by the
caching can be considerable.

4.1 Priority and compression

FDR implements a number of operators that take an LTS and attempt
to construct a smaller LTS or Generalised LTS (GLTS) with the same
semantic value. A GLTS is like an LTS except that information such as
divergence, refusals and acceptances is included as explicit annotations
to nodes rather than being deduced only from transitions.

The compressed (G)LTS can then replace the original in higher-level
compositions as a way to address the state explosion problem. Most of
these were designed primarily for failures and traces style model, and so
are not necessarily accurate in refusal testing or acceptance traces. In
other words, compress(P) is not necessarily equivalent to P in RT , FL
and similar models. diamond, one of the most frequently used compres-
sions, falls into this category. Indeed, the form of GLTS produced by some
of the compressions does not contain enough information for the richer
models.

Furthermore normal, which reduces a process to its normal form in the
current semantic model, would be extremely complex in refusal testing
and is not presently implemented: out initial impression is that it would
probably be slow and ineffective in many cases. [It would be more natural
in FL but has not yet been implemented.]

Nevertheless, all compressions applied in the definition of P in Pri≤(P)
must preserve acceptance traces or refusal testing equivalence (dependant
on ≤), for otherwise there is the danger that applying the priority oper-
ator to the revised P might not produce the same answer.

In part as a remedy for this problem, we have implemented the com-
pression divergence-respecting weak bisimulation as defined in [23]. (This



factors an LTS by the maximum weak bisimulation relation that does
not identify any pair of states, one of which is immediately divergent
and the other one not). This respects all CSP models and has the added
advantage that, unlike some other compressions, turns an LTS into an
LTS rather than a GLTS, whose present structure gives insufficient infor-
mation for the implementation of priority. We will report separately on
this implementation and weak bisimulation’s place in the family of CSP
compression functions.

5 Using prioritise

In this section we consider ways in which the new operator can be used
in the modelling and implementation of some types of system, either ex-
tending what can be modelled in CSP or making modelling more natural
and efficient.

5.1 Priority and time

As detailed in [23] and elsewhere, it is usual to adopt the principle of
maximal progress when building process algebra models of timed systems
that have the possibility of internal τ actions. This principle says that
whenever a τ action becomes available, some action must happen imme-
diately. So processes never hang around for any non-zero time interval
with a τ available.

A good example of why this principle is necessary is provided by the
case in which the outputs of one timed process are fed into the inputs of
the other. If both of these processes are designed to wait for a communica-
tion if none is immediately available, we have to ask what happens when
they are both willing to proceed. A simple case of this is provided by the
following tock -CSP model of a one-place buffer, taken from Chapter 14
of [23]:

TCOPY 2 = left?x → tock → TCOPY 2′(x )
� tock → TCOPY 2

TCOPY 2′(x ) = right !x → tock → TCOPY 2
� tock → TCOPY 2′(x )

The natural way of composing two of these processes is via a timed ana-
logue of the CSP chaining operator >>: connect the output channel right
of one to the input channel left of the other, hide the resulting com-
munications and synchronise the two processes on the event tock that
represents the regular passage of time.



Without the maximal progress assumption this process can perform
as many tock events as it likes before the τ transferring a data item from
left to right occurs, even though that τ has been available since after the
first tock . This is unrealistic. Maximal progress can be implemented in this
example via the operator prioritise(P,{},{tock}): tock is given lower
priority than τ and X, with all other events being unaffected by priority.
As stated in the introduction, this has the same effect as running the
combination as the right-hand side of the assertion that FDR implements
specifically for this purpose.

Having prioritise as an operator rather than a checking mode allows
more generality, since for example we can create timed components that
each have independent clocks, each driving its own version of maximal
progress. Or we can take a timed component which is built using maximal
progress and then hide tock or similar events so we get an untimed view
of the process, or rescale the clock by arranging to hide all but the N th,
2Nth, 3N th etc tocks.

5.2 Priority and tactics

Sometimes one builds a CSP of a system to test if certain sorts of state
are reachable. Good examples of this are the models of puzzles such as
peg solitaire, Sudoku and the knight’s tour that can be found in [22, 23].
It is often desirable to establish strategies for how such state spaces are
explored, and priority can help us do this.

One example of this is provided by Warnsdorff’s algorithm for the
knight’s tour, which instructs the experimenter, when confronted with a
choice of next moves, always to choose a place to move to with a minimum
of still-free neighbours.6 A natural way of implementing this in CSP is to
have a process for each square on the board which always knows if it has
ever been occupied and, if not, how many free neighbours it still has. In
the coding we allude to here there is also a single process representing the
knight, which is parameterised by its present position. We then choose
events move.n.p to represent the act of moving the knight to point p on
the board (p will be a pair of integer co-ordinates) where n is the number
of free neighbours of p. Each square then monitors not only moves to it,
but also moves to its neighbours so it can maintain its state correctly.

6 There may sometimes be a number of such minimum choices, and there are choices
that follow Warnsdorff and do not find a complete tour. So it is more of a heuristic
than an algorithm. However for square boards that have a knight’s tour, there is
one that can be found with this heuristic.



The obvious way of implementing this is by giving priority to move.n.p
events according to n: the smaller it is, the higher priority.

Section 20.1 of [23] explains an alternative coding of this in which
the squares have to agree that there is none amongst those neighbour-
ing the knight that is unused and has (successively) 0, 1, . . . , r − 1 free
neighbours before one with r can be moved to. In effect this simulates
a prioritised execution without itself using priority. However the coding
using prioritise is certainly more efficient and natural. For example,
in an experiment using FDR’s standard breadth-first search,7 the version
with prioritise solved an 8 × 8 board in 16 seconds, as opposed to 62
seconds for the version with the [23] coding. If the board gets much big-
ger than this, the number of states possible following Warnsdorff using
BFS becomes too great to search conveniently, and at this point a sec-
ond advantage of using prioritise becomes apparent. It is very simple
to experiment with refinements of the original order, meaning that FDR
less frequently has a choice of equally-ranked options to follow.

Files exploring all these options are available for download via the web
site of [23]8, along with others analysing the problem of long and skinny
knight’s tours (of a M ×N board where M is small) as discussed in [13].

Note that Warnsdorff’s algorithm strictly reduces the extent to which
one searches for a knight’s tour. The fact that FDR finds solutions using
it (and even considerably tightened versions of it) is a testament to the
effectiveness of the heuristic that it represents. If you reverse the priority
order – so that you choose a target with the largest number of free neigh-
bours – then there is no solution in the 8× 8 case if the knight starts in
a corner.

A similar and yet subtly different case is given by Sudoku. Here we
have a choice of which square to fill in next, and this can also be made by
priority: perhaps one of those with the least number of options that are
not immediately blocked by the same symbol residing in the same row,
column or box. The difference here is that we can make a choice of square
without restricting the range of solutions that may be found: a solution is
simply an assignment of symbols to squares, not a path. So here we can
use priority on choice of square without any danger of making the puzzle
insoluble.

7 In fact, depth-first search is significantly more effective in conjunction with versions
of Warnsdorff’s algorithm.

8 www.cs.ox.ac.uk/ucs



5.3 Explicitly prioritised models

The prioritise operator can potentially be used to improve the CSP
models (and hence FDR verification) of models of concurrent system that
depend on priority for their semantics. Several examples of this are pro-
vided by statecharts (of which there are a number of variants with different
priority assumptions). Some examples are given below.

– Statemate statecharts [10, 25] have a two-level timing model in which
small time steps continue for as long as necessary until no more
progress occurs, at which point a big time step occurs. This is closely
analogous to the maximal progress assumption discussed above, and
can be modelled by giving the actions associated with progress priority
over one that triggers a big time step.

– Statecharts provide a hierarchical model of state machine, in which
individual states of a high-level machine can contain subsidiary ma-
chines. One generally wishes to prioritise high-level actions over low-
level ones where both are possible.

– Some models of statechart provide very precise rules for selecting
which action or actions of a state or parallel (“and”) collection of
states perform, the motivation presumably being to make the be-
haviour of a statechart model deterministic.

We have yet to make use of priority for significant examples of this type.

6 Fairness and priority

There are many different concepts of fairness in the literature on seman-
tics and verification. Broadly speaking it means the assumption that if a
machine has the option to do something infinitely often during an infinite
execution, then it will eventually take this opportunity. This may or may
not be a reasonable assumption depending on circumstances.

Historically speaking, FDR has not concentrated on the analysis of
fairness as much as some other tools which typically analyse fairness
through the medium of Büchi Automata. That is because general fair-
ness is not necessary to calculate the refinement relations that FDR is
built for. Fairness is highly relevant, however, to properties specified in
languages like LTL which allow a range of eventuality properties to be
expressed.

Fairness is often expressed in terms of state spaces, for example a
given state must be visited infinitely often in an infinite behaviour. There
are two features of CSP that limit this type of reasoning. Firstly, semantic



models cast in terms of observed behaviours give us no direct knowledge
of what states a process passes through: for any process there is a se-
mantically equivalent one where no state is ever visited twice. Secondly,
processes only perform normal visible actions when their environments
permit, meaning that any judgement of what is and is not fair must be
made relative to what offers the environment was making through time.

In this paper we will concentrate on a particular sort of fairness that
matches well to the CSP model, acceptance fairness, as described below.

When we observe a CSP process we see it perform events, joined
together to form traces. We see what events our process refuses when
we offer them, and we sometimes choose to record when it diverges by
performing an infinite sequence of internal actions. The traditional view
is that when a process is diverging we do not see what it offers or refuses.
After all, it is usual to regard divergence as a disastrous behaviour that
swallows all others in CSP models that record it, and a diverging process
does not sit still and offer a single set of events.

However, from the standpoint of fairness, if a process has a set of visi-
ble actions A available alongside the τ ’s making up a divergence infinitely
often as the divergence progresses, and the environment is offering actions
from A throughout this time, then it is reasonable to postulate that one
of these must actually occur. In other words, the divergence does not ac-
tually occur at all, and in some sense our process cannot refuse sets that
intersect with A during the course of this divergence.

In other words, we might say that any particular divergent execution
has an acceptance set associated with it: the events that are available
from infinitely many of its states. It therefore refuses any set that does
not intersect with this set. It is reasonable to term any such set an un-
stable refusal, and to get a corresponding notion of unstable failure. Of
course we would want to include traditional stable failures in the repre-
sentation of a process, and therefore define the union to be the extended
failures of a process. We can then choose to compare this against a failures
specification, and correspondingly reduce the set of divergence traces for
a failures-divergences specification.

It is this that we term acceptance fairness. As we will see, it is possible
to assume acceptance fairness only relative to certain accepted events A,
and even differentiate to some extent between different sorts of τ actions
in the associated choices. But first of all assume that we want to analyse
this concept of unstable failures relative to all Σ events and all τs, and
that we are trying to decide if the extended failures of a process P are



contained in the stable failures allowed by a specification S :

S vUF P

A similar, and yet subtly different, notion of fairness has been exam-
ined in [6]. In this, a process does not refuse a set X if, from any state P
along a chain of τs, there is further state P ′ reachable after zero or more
further τs from which a member of X can be performed. This therefore
requires not only that events offered in conjunction with τs infinitely of-
ten are fairly accepted, but that the τs leading to offers are also treated
fairly. To illustrate this, consider the process ND = ND u a → ND whose
operational semantics begins with a choice of two τs: one leading to ND
and one to a → ND .

Under our concept of acceptance fairness, this process can unstably
refuse a since it can always choose the left-hand τ and therefore never
reach a state where a is available. In the equivalences investigated in [6]
this process cannot refuse a because it can always reach the state where
a is offered.

In the next two sections we will examine how unstable and extended
failures are computed, and how we can formulate FDR checks of them
using priority.

In the rest of this paper we make two simplifying assumptions: firstly,
and like FDR, we assume that the set Σ of all ordinary events is finite.
There is little prospect of dropping it practically; to drop it theoretically
one would have to resolve an ambiguity that arises in the definition of
unstable refusal when one considers an infinite set. Secondly, to avoid
some special casing for the termination event X, we assume that the
constructs ; and SKIP are not used, so processes do not perform X.
There should be no problem in later extending our work to encompass
these constructs.

7 Calculating unstable failures

Deciding whether S vUF P will normally be done in two parts: firstly
performing the check S vF P which tests whether the traces and stable
failures of P conform to S . All we therefore have to do is work out whether
the unstable failures of P conform to S . Before we show how to do this
we need to examine the concept of an unstable failure more closely.

The unstable failures (s,X ) of P can expected to manifest themselves
as divergences in a state exploration: divergences during which X is in
some sense offered P during an infinite final period after the conclusion of



the trace s. To be an unstable failure, there would have to be a divergence
after s in which members of X are only available (as alternatives to τ) in
finitely many states.

The unstable failure (s, ∅) would correspond to any actual divergence,
and (s, Σ) would correspond to a divergence on which (using the finite
alphabet assumption) eventually there are no Σ actions offered through
a tail of the behaviour.

It is clear how we can extract the unstable failures of any process from
its operational semantics: simply inspect the divergent trajectories of our
process P . These are the infinite sequences of states Pi of P ’s operational
semantics, with P0 = P and actions Pi

xi−→ Pi+1 such that only finitely
many of the xi are not τ . The trace associated with this trajectory is the
sequence of these non-τ xi , and an unstable refusal is any subset X of Σ
whose members are only directly possible for finitely many of the Pi .

The only fairness we are expecting arises from interactions with the
environment: every finite and infinite trajectory of the operational se-
mantics remains possible under some circumstances. It is this case that
corresponds well both to our industrial example and the treatment with
priority below. As stated above, we are only considering acceptance fair-
ness.

An obvious question is whether we can turn unstable failures (either
by themselves or in combination with traces and/or stable failures) into
a compositional semantic model.

The answer to this appears to be “no”. At least two of the standard
CSP operators cause problems here. The first – and more obvious – is
hiding. It is clear that in order to know the offers that are made along
divergences of P \ X , we need to know what offers are made alongside X
events that constitute a divergence of P \ X .

Perhaps the most telling example to illustrate this is provided by

QQ = (b → STOP)B (a → QQ)

QQ \ {a} does not have the unstable failure (〈〉, {b}) because b is pos-
sible infinitely often along the only divergent trajectory. However in every
CSP model detailed in [23], QQ is equivalent to the following RR (both
being divergence-free and hence without unstable failures themselves),
where

RR = ((b → STOP)BAS ) u (a → RR)

where AS = a → AS . But RR \ {a} does have the unstable failure
(〈〉, {b}) as the only divergent trajectory on the empty trace never has
any visible alternative to τ .



The obvious conclusion to draw from this example is that in order
to get a compositional model showing unstable failures, under hiding, we
would need to record infinite behaviours including all unstable offers that
occurred on the way – a much richer model than anything resembling
failures.

The second, and less expected, problem operator is parallel. Consider
the processes

P = a → (b → P � a → P)

R = (P \ {a}) ‖
{b}

(P \ {a})

P ′ = b → P ′ � a → P ′

R′ = (P ′ \ {a}) ‖
{b}

(P ′ \ {a})

Plainly P \ {a} cannot unstably refuse {b}, and has the same unstable
failures as P ′ \ {a}. If our supposed model were compositional, we would
therefore expect R and R′ to be equivalent also. It is natural also to
expect these processes to be equivalent to P \ {a} and P ′ \ {a}. This is
so for R′, because the only state of its operational semantics offers b.

Imagine, however, that the first P in R does two hidden as, the second
does two, the first does two again, and so on. The parallel composition R
is then never in a position where the two processes can agree on b, and so
this trajectory gives the unstable failure (〈〉, {b}) in contradiction to what
we are expecting. It is interesting to note that the offending trajectory is,
in the most obvious sense, fair since both processes perform an infinite
number of actions.

The problem with parallel does not arise with the alternative view of
unstable failure discussed above, but that still does not solve the problem
with hiding.

We conclude that unstable failures are an interesting way of looking
at the operational behaviour of a given process, but fall well short of a
conventional-style model for CSP.

8 Unstable failures checking via priority

At first sight priority and fairness seem to be mutually exclusive: a pri-
oritised system, by its very definition, does not behave fairly between its
options.

Nevertheless priority has frequently been used (e.g. [3]) to implement
fairness in practical examples: if we have a point in a program where



there is an external choice that we want to be made fairly, simply give the
various options priority in turn. That way, if the environment continuously
offers one, say C of these choices and the crucial point in the program
is reached infinitely often (actually, the number of options in the choice)
then C is bound to be picked. The most obvious approach is to rotate
priorities in some round-robin manner.

This technique will make an implementation satisfy abstract fairness
assumptions, but it is far too specific to represent a simulation of such
assumptions themselves. If we prove a property of a system whose fairness
is implemented this way, there is no way of knowing that the property
will still hold of systems which make fair choices in a different order.
One could achieve this, or at least something a lot closer, by taking a
nondeterministic choice over the infinity of processes representing all fair
schedules, but that would be far from practical model checking.

As already stated, our aim is to model the particular property of
acceptance fairness. Given a failures specification S and an LTS imple-
mentation of a process P , we want to know if the unstable failures of P
are contained in the stable failures of S . We can, without loss of general-
ity, assume that S implies deadlock freedom because, in general, S vF P
if and only if AS ||| S vF AS ||| P where AS = a → AS as above and a
is some event not occurring in S or P .

It follows that a process P that can diverge without offering some
event infinitely often will fail the S vUF P we consider, because that sort
of divergence constitutes the unstable refusal of the whole alphabet – the
direct analogue of the stable concept of deadlock.

Suppose that S is the specification of being deadlock-free, namely
DF = u{a → DF | a ∈ Σ}, and P = Q \ M for a τ -free process Q and
some set of actions M . This structure P \ M is extremely helpful because
it allows us to see the resulting τ actions by reference to P itself.

In unstable failures, P will satisfy this provided (i) Q is deadlock free
in the usual stable failures model and (ii) it can never perform an infinite
sequence of M events along which no event outside M is ever available.

Priority can tell us if there is such an infinite sequence starting from
the beginning of Q ’s execution. Prioritise all events outside M higher
than all those in M . Then Pri≤(Q) can perform an infinite sequence of
M events if and only if none or them is offered from the same state as a
higher priority, non-M event in Σ. Since we have assumed that Q has no
τ actions, this means that the trajectory Q performs here has no non-M
event on offer from any state. Thus Pri≤(Q) \ M has divergence 〈〉 if
and only if there is a behaviour of the sort described above. Similarly it



has minimal divergence s 6= 〈〉 if it can perform the trace s and then,
immediately after the last event in s, engage in an infinite sequence of
hidden M events with no non-M alternative.

Proving divergence freedom of this process does not, however, prove
that P \ M can never unstably refuse the whole alphabet. If m ∈ M and
a 6∈ M then, for any n, the process NA(n) \ {m} can unstably refuse Σ,
where

NA(0) = m → NA(0)
NA(n) = (a → STOP) � (m → NA(n − 1)) (n > 0)

is the process that performs an infinite sequence of ms with a offered as
an alternative to the first n. Clearly, for n > 0, Pri≤(NA(n)) is equivalent
to a → STOP , so hiding m will leave it divergence free.

We can solve this problem and find the unstable refusal in NA(n) \ {m}
if we introduce a second copy of m by renaming, say m ′, and make it in-
comparable with both a and m in the priority order.

Pri≤(NA(n)[[m,m ′
/m,m]]) can now perform any number of m ′ events

whatever the value of n because the possibility of a in initial states does
not exclude m ′. After a trace of n or more m ′ events, this prioritised pro-
cess will also be able to perform m, which is excluded in the initial states.
Therefore Pri≤(NA(n)[[m,m ′

/m,m]]) \ {m} can diverge after sufficiently
long traces of m ′s.

These divergences simply reflect NA(n)’s ability to perform an infinite
trace of m’s with only finitely many offers of a along the way: by the time
a particular divergence appears there are no further offers available.

We can generalise this construction to one that enables us to decide
the absence of unstable failures (s, Σ) for Q \ M for the case alluded
to above of a τ -free deadlock-free LTS Q . Simply choose a new event
m ′ outside M and not used by Q , and make it incomparable with all
other elements of the order in which members of Σ \ (M ∪ {m ′}) have
higher priority than members of M (with no other orderings amongst
these events). Then

Pri≤(Q [[m,m ′
/m,m | m ∈ M ]]) \ M

is divergence free if and only if Q \ M can never perform an infinite
sequence of hidden M actions with no alternative from outside M , or in
other words if it does not have an unstable failure of the form quoted
above.

Note that the process checked here has the same number of states as
Q : every state of Q is reachable because of the role of m ′, but there is
only one state of this construct for each of Q .



As a variation on this, suppose we partition Σ \ (M ∪ {m ′}) into two
parts, F and U . We could then prioritise F above M as above, and make
the events of U incomparable alongside m ′. A divergence of the resulting
system would then coincide with an unstable failure (s,F ). Thus absence
of divergence means that in any infinite sequence of hidden M events,
events from F must be offered infinitely often. This gives an efficient way
to extend from simple deadlock freedom to some other failures specifica-
tion, but we need some further trick to extend to general deadlock-free
failures specifications S .

Suppose S is a general deadlock-free specification process that a pro-
cess P trace refines. Then we can define NR(S ) to be the set of those X
that are subset minimal with respect to (〈〉,X ) not being a failure of S .
NR(S ) is nonempty because Σ is finite and (〈〉, Σ) 6∈ S .

Choose a new event d that is outside the set αS of all elements of Σ
that are possible for S . (Note that αP ⊆ αS because we are assuming that
S vT P .) For a set of refusals R, let T (R) =�

X∈R d → (?x : X → DS )
where DS = d → DS . Note that T (R) ‖

αS
P can deadlock if and only

if, when one of the sets X ∈ R is offered to P on 〈〉, P refuses it. This
parallel composition is therefore deadlock free if no member of R is an
initial (stable) refusal of P .

Now let

Test(S ) = (?x : S 0 → Test(S/〈x 〉)) � T (NR(S ))

The parallel composition Test(S ) ‖
αS

P is then deadlock free if and only if

S vF P , given that we know that S vT P : the composition can deadlock
if and only if, after one of its traces s, P can refuse a set that S does not
permit.

This construction for deciding failures refinement is very similar to
the “watchdog” one set out in [9]. The main difference is that ours is
constructed with no τ actions: the visible action d replaces τ . The above
analysis applied, of course, to the standard stable failures model.

In the case where P = Q \ M we can assume that M ∩(αS∪{d}) = ∅,
for if not then we can use renaming to make this so without changing the
result of the refinement check. Under this assumption it is reasonable to
ask whether Q \ M meets the specification S with respect to unstable
failures if and only if

Test(S ) ‖
αS

(Q \ M ) = (Test(S ) ‖
αS

Q) \ M



is deadlock-free in this sense. Note that this equality holds because of
the above assumption, and that the process to which hiding is applied
on the right-hand side is free of τ actions. If this same process is not
conventionally deadlock free, then the stable failures refinement S vF

Q \ M can easily be seen to be false.
Now none of the events of Test(S ) is hidden by \ M , so it follows that

any infinite sequence of τ actions by the right-hand side above all come
from M events hidden in Q and that Test(S ) remains in the same state
throughout. Furthermore this state cannot be one that offers a d if this
divergence gives rise to the unstable refusal Σ. Thus unstable refusals of
Σ correspond to Test(S ) being in one of the offer states ?y : Y → DS
of T (NR(s)) for s being the current trace of Q \ M . Thus in such a
behaviour, Q \ M exhibits the unstable failure (s,Y ), contrary to S .

We therefore have a general technique for deciding whether, for τ -
free Q , Q \ M meets an arbitrary failures specification with respect to
unstable failures.

Some of our earlier examples like QQ and RR demonstrate that we
cannot expect such success for processes Q that have τ actions that we
do not have the ability to see directly in CSP. It is fortunately straight-
forward, for any CSP process Q and an event d not in its alphabet, to
create a process Q ′ with τ -free operational semantics such that Q ′ \ {d}
is equivalent as an LTS to Q ’s operational semantics. This can be achieved
by syntactic transformation of the definition of Q .9 This transformation
is syntactic and certainly does not respect semantics. The syntax of QQ
and R transform to

QQd = (b → STOP) � (d → a → QQd)
RRd = (d → ((b → STOP) � (d → AS )))

� (d → a → RRd)

which are themselves not equivalent.
Of course a similar transformation can be done at the LTS level: each

τ is turned into the extra visible action d .
Our conclusion is that it is possible to decide S vUF Q \ M on FDR

extended by priority for finite-state S and Q provided P ’s operational
semantics contains no τ actions. To decide S vUF P for general P with
τ actions, we we have to transform it back into the first form.

9 Our arguments to date show that there is no transformation based on abstract
semantics alone.



9 An industrial example: availability checking in Verum’s
ASD:Suite

This section describes the example which inspired the application of
prioritise to fairness properties. We first give some background on
ASD:Suite and then describe how we use a model of fast and slow τs
to capture appropriate fair availability properties using the techniques
described above.

9.1 Background on ASD:Suite

Analytical Software Design (ASD) [4] is software design automation plat-
form developed by Verum10 that provides software developers with fully
automated formal verification tools that can be applied to industrial scale
designs without requiring specialised formal methods knowledge from the
user. ASD was developed for industrial use and is being increasingly de-
ployed by customers in a broad spectrum of domains, such as medical
systems, electron microscopes, semi conductor equipment, telecoms and
light bulbs. Industrial examples, such as the development of a digital
pathology scanner, using ASD can be found in [5].

ASD is a component-based technology: systems are defined in terms
of ASD components and foreign components. An ASD component is a
software component specified, designed, verified and implemented using
ASD and is specified by:

1) An ASD interface model specifying the externally visible behaviour
of a component and

2) an ASD design model specifying its inner working and how it interacts
with other components.

Corresponding CSP models are generated automatically from design and
interface models, and the ASD component designs are formally verified
using FDR, though the CSP is not visible to the end user.

The source code that implements an ASD component is generated
automatically from its design model in the specified target programming
language. A foreign component is one which forms part of the run-time
environment that that ASD generated code interacts with and is captured
as an ASD interface model. Foreign components are the mechanism by
which ASD components are integrated with existing legacy code and off-
the-shelf components.

Figure 1 gives an overview of the standard ASD architecture which
10 www.verum.com
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Fig. 1. ASD architecture.

is based on the client-server model. Within an ASD model, system be-
haviour is specified in terms of stimuli and responses. A stimulus in Com-
ponent A represents either a synchronous procedure call initiated from
a Client above or an asynchronous notification event received from its
queue. A response in Component A will either be a response to its Client
above or a synchronous procedure call downwards to Interfaces B or C .

ASD design and interface models are specified in an extended version
of the Sequence Based Enumeration specification language [19] and au-
tomatically translated into corresponding CSP models. The CSP model
not only captures the behaviour in the ASD models as specified by the
user, but it also reflects the properties of the ASD run-time environment
in which the generated code will be executed. This includes:

1) The externally visible behaviour of the foreign components and ASD
components that form the environment in which the ASD design runs;

2) Synchronous procedure calls can only be initiated downwards from
a client to a server component and therefore the corresponding syn-
chronous return events only occur upwards from a server component
to its client;

3) a client can only invoke 1 synchronous procedure call on the server at
a time;



4) a client can only invoke a synchronous procedure call on its server
when the server’s queue is empty; and

5) the server queue is non-blocking: there is always space in the queue if
the used components choose to post a notification event in it.

The CSP models are verified for errors such as deadlocks, livelocks, in-
terface compliance, illegal behaviour, illegal nondeterminism, data range
violations and refinement of the design and it’s used interfaces with re-
spect to a given specification, known as the design’s implemented interface
specification. In Figure 1, the implemented interface is that Component
A must satisfy is Interface A.

An ASD design model specifies the complete implementation of a com-
ponent from which the run-time code is generated; it must therefore be
deterministic. On the other hand, an interface model is a partial view
of a foreign component and captures only the visible communication be-
tween itself and its client component that is using it. Therefore, interface
specifications are typically more abstract and nondeterministic in nature.
As well as stimuli and response events shared with its client, an inter-
face specification can also contain abstract modelling events to represent
internal behaviour that is itself invisible to its client but might neverthe-
less influence the state of the component in a manner which is visible to
the client. For example, a simplified version of the standard ASD timer
interface specification is defined in Figure 2.

Fig. 2. ASD interface model.

There are 2 canonical states defined in this interface model, namely In-
active and Active. In the Inactive state, this interface offers 2 synchronous
procedure calls to its client represented by the stimuli ITimer.CreateTimer
and ITimer.CancelTimer. If its client calls ITimer.CreateTimer then the in-
terface immediately returns with the synchronous return event ITimer.VoidReply,



thereby passing the thread of control back to its client; the client is now
free to carry on executing its own instructions and the interface is now
in state Active. In state Active, there is a modelling event called IHw-
Clock that represents in the internal clock triggering an asynchronous
notification event, ITimerCB.Timeout, to be put on its client’s queue.
This modelling event is hidden from its client reflecting the fact that
the client cannot see the internal workings of the timer component and
therefore doesn’t know when it has occurred. Since the client’s queue is
non-blocking, from its client’s point of view the interface might still be in
Active or have moved to Inactive with a notification being placed on its
queue. The modelling events can also be used to capture a nondetermin-
istic choice over a range of response sequences that depend on internal
behaviour abstracted from the interface specification. Typically, a user
will select whether modelling events are eager, namely that they will al-
ways occur if the system waits long enough for them, or lazy capturing
the case where they nondeterministically might or might not occur. These
correspond to the two main modes of abstraction for CSP described in
Chapter 12 of [22], which play an important role in formulating ASD’s
CSP specifications.

A design model with its used interface models and appropriate plumb-
ing, referred to as the complete implementation, is refined against its cor-
responding implemented interface specification, that specifies the design’s
expected visible behaviour by its client. In turn this implemented inter-
face becomes the used interface when designing and verifying the client
component using it. In this refinement, the communication between the
design model and its used interface models is hidden, since it is not visi-
ble to a client using this design. One of the properties that the complete
implementation must satisfy is livelock freedom. For example, if a design
can invoke a cycle of infinite communication with one or more of its used
interfaces without any visible communication being offered with its client,
we say the client is starved and this erroneous behaviour must be flagged
and corrected. Within CSP such behaviour is captured as divergence.

9.2 Benign and malign divergence

There are divergences that arise during the verification of ASD models
that are not regarded as erroneous behaviour in practice due to assump-
tions of fairness in the notion of ‘time passing’ at run-time. These are
referred to as benign divergences.

An example of how a benign divergence arises in ASD is with the
implementation of a timer driven polling loop as follows. An ASD com-



ponent A is designed to monitor the state of some device by periodically
polling it to request its status. In the event that the returned status is
satisfactory, component A merely sets a timer, the expiry of which will
cause the behaviour to be repeated. In the event that the returned status
is not satisfactory, an asynchronous notification is sent to A’s client and
the polling loop terminates. Thus, A is not interested in normal results;
it only communicates visibly to its client if the polled data is abnormal.
Whenever component A is in a state in which it is waiting for the timeout
event to occur, it is also willing to accept client API stimuli, one of which
may be an instruction to stop the polling loop. The design of component
A has at least 2 used interfaces, one of them being the Timer interface,
Timer, as described above and the other being the interface, PolledUC, for
the used component whose status is being polled This is summarised in
Figure 3.

Component A

Timer Interface PolledUC Interface

PolledUC.{Start,Stop,Poll}Tim
er.{

Cre
ate

,C
ance

l}

Tim
er.V

R
Queue

PolledUC.{VR,OK,Fail}

Timer.TimeoutCB

CLIENT.{START,STOP} CLIENT.{VR, ERROR_CB}

Me.Clock Internal modelling event representing the occurrence of the clock timing out.

Fig. 3. Component A and its interfaces.

A subset of the behaviour of the design of component A relevant to this
discussion can be summarised by the state transition diagram in Figure 4.
The events prefixed with CLIENT represent the communication that is
shared with the specification on the left-hand side of the refinement and
therefore remains visible; all the other events become hidden. The labelled
states represent the states of interest for the purposes of describing the
divergence in question. All event labels are prefixed with the component
name that shares the communication with the design. Events with labels
ending in CB are asynchronous notification events that are taken from
the design’s queue. The divergence occurs in state Y , where the system
can perform an infinite cycle of hidden events via state Z , repeating the



X

Y

Z

CLIENT.START

Timer.Create

Timer.TimeoutCB

PolledUC.Poll PolledUC.OK

Timer.Create

PolledUC.Fail

CLIENT.ERROR_CB

PolledUC.Stop; VR

PolledUC.Start; VR

CLIENT.VR

CLIENT.VR

Timer.Cancel

PolledUC.Stop; VR

CLIENT.STOP

Fig. 4. Subset of Component A’s behaviour.

action of timing out, discovering that the polled component is fine and
setting the timer again.

In the CSP model and at run-time, A could carry on polling device
PolledUC indefinitely. However, at run-time a distinction is made between
τ loops where a client API call is available as an alternative and τ loops
that offer no alternative and therefore genuinely starve the client. In the
former case, the design’s client is able to intervene and perform a pro-
cedure call that breaks this loop. Provided such a client API stimulus is
available then this divergence is not regarded as an error in the design; it
will not diverge at run-time because in the real environment time passes
between creating a new timer and the corresponding timeout notification
event between which the client is able to perform an API call. The design
is correct under that assumption which can be safely made due to the
implementation of the Timer component. In the example design in the
diagram above, the visible event CLIENT.STOP is available in state Y as
an option for breaking the diverging cycle of τ events. The assumption
at run-time is that the internal clock does not timeout instantaneously,
assuming that the create timer procedure call did not set the timer to 0.
It is also assumed that it will eventually occur. Therefore a client using
the timer process can rely on its occurrence as well as there being some



time that passes within which the client may legitimately communicate
with components above it in the stack (i.e. the client’s client).

In the CSP models, the modelling event Me.Clock cannot be lazily
abstracted, since that would imply that it could choose never to happen.
On the other hand, simply hiding it means that it is eager and therefore
could occur instantaneously. This in turn can cause a divergence in the
model exploiting the eager modelling event, which at run-time is not
regarded as erroneous behaviour under the assumed circumstances. It is
not desirable to place artificial restraints upon the occurrence of such
modelling events, as this could restrict the model more than it is able to
execute at run-time thereby introducing the risk of missing errors in the
design during verification. One cannot simply ignore all divergences in
the refinement checks, since they may mask genuine client starvation or
other errors normally detected as failures that are present in the design.
Abstracting the timing information out is also not an option as there
must be a one to one correspondence between the ASD models and the
run-time code. Interface models are typically supplied by a third party
describing existing hardware or software behaviour and therefore assumed
to be fixed.

We therefore need CSP models such that the benign divergences
are ignored, without losing any behaviour, including genuine divergences
called malign divergences, in the design that may result in genuine er-
rors that need to be found. Conventional CSP cannot solve this problem,
but a solution is achieved using the priority-based techniques described
in Section 8. The set of modelling events M is partitioned into two sets.
The first set MSE comprises the slow eager modelling events that are
controlled by the external used components and are assumed to occur
eventually, but not so fast that their speed starves their client, for ex-
ample ME.Clock in the timer polling loop example described above. The
second set ML comprises the modelling events that might or might not
occur and are therefore accurately modelled by lazy abstraction.

If P is the system model with all these modelling events left visible,
a divergence in P \ MSE can take three forms

– The infinite sequence of τs may only contain finitely many hidden
MSE actions. This clearly represents a form of malign divergence.

– There might be infinitely many hidden MSE actions, only finitely many
of which have the alternative of a client API event. This is another
form of malign divergence since there is the possibility of client star-
vation.



– Finally, infinitely many of the MSE events might have a client API
event as an alternative. As discussed above, this is a benign divergence.

You can think of there being a distinction between “slow τs” formed by
hiding MSE – these give the client time to force an API – and ordinary
“fast τs”, which do not. This is slightly different from the scenarios in
Section 8 because we are only considering unstable offers to be made at
the slow τs along a divergence.

Checking the divergence-freedom of

Pri≤(P [[m,m ′
/m,m | m ∈ MSE ]]) \ MSE

gives precisely the check for malign divergence that we want: it does not
find benign ones. If we needed to check more precisely what API offers
were made along sequences of MSE events, we could use the machinery
of unstable failures checking discussed earlier in this paper.

After establishing that all divergences are benign, and if necessary
make correct offers, the rest of system properties can be checked in the
stable failures model of CSP, as is conventional for checks involving lazy
abstraction.

10 Conclusions

We have shown how a version of priority, consistent with abstract models
of CSP significantly stronger than the usual ones, can be embedded within
CSP and implemented in FDR. This extends our ability to model and
verify timed systems, to express search strategies more efficiently and to
model other languages that themselves have prioritised execution.

A far less obvious benefit is that it allows us to verify that processes’
unstable failures are satisfactory, namely that they will offer chosen events
infinitely during any divergence, when they are assumed to accept such
events (breaking the divergence) if offered.

Our industrial case study was satisfying because this was an example
in which a practical problem inspired the creation of a piece of theory (i.e.
the connections between priority and model checking acceptance fairness)
that would not have been discovered without it. Beyond the scope of the
present paper, we have had to bring further fairness considerations into
our models to handle further nuances of the ASD models. That will be
the subject of a future paper.

We have no doubt that priority will find many other uses in expressing
interesting behaviours and specifications in CSP.
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