
Social Networks for Importing and Exporting
Security

Bangdao Chen, A.W.Roscoe

Oxford University Computer Science Department
James Martin Institute for the Future of Computing

{Bangdao.Chen, Bill.Roscoe}@cs.ox.ac.uk

Abstract. Online social networks are rapidly changing our lives. Their
growing pervasiveness and the trust that we develop in online identities
provide us with a new platform for security applications. Additionally,
the integration of various sensors and mobile devices on social networks
has shortened the separation between one’s physical and virtual (i.e.
web) presences. We envisage that social networks will serve as the portal
between the physical world and the digital world. However, challenges
arise when using social networks in security applications; for example,
how can one prove to a friend (or Friend) that your Facebook page
belongs to you and not a man in the middle? Once you have proved
this, how can you use it to create a secure channel between any device
belonging to you and one belonging to your friend? We show how human
interactive security protocols (HISPs) can greatly assist in both these
areas and in general create a decentralised and user-oriented model of
security. And we demonstrate that by using this security model we can
quickly and efficiently bootstrap security for sharing information within
a large group.

1 Introduction

Online social networks (OSNs), such as Facebook, Google+, Foursquare, Twit-
ter, and LinkedIn, have enjoyed phenomenal growth in recent years. The authors
of [12] analysed relationships and communication on Twitter, and pointed out
that Twitter also plays the role of a social medium: information can spread widely
and quickly. For example, in less than 12 hours after the first tweet of Osama Bin
Laden being killed, there were 2.2 million tweets related to this event [3]. OSNs
therefore not only help to create and maintain a large amount of relationships
between humans, they also provide efficient and convenient platforms for sharing
and spreading data amongst a large audience.

The future of OSNs is changing with the growing pervasiveness of device
connections. For example, the CEO of Ericsson [2] has forecast that there will
be 50 billion device connections by 2020, which will create a “connected society”.
Sensors are often used to make data about physical objects available online, for
example, to display the sensory data on OSNs. An IBM researcher connected his



2 Bangdao Chen, A.W.Roscoe

house with Twitter1: a set of sensors are used to generate tweets about power
consumption, water usage and the temperature of the house. We also notice that
there are plenty of body-monitoring sensors [1] with mobile connectivity in the
market today.

The integration of OSNs on mobile devices has further shortened the sepa-
ration between our virtual presences on the web and our physical existence. By
using a mobile device, OSNs have the opportunity to collect more private data;
for example, location data or medical data from on-body medical sensors. There
is already a clear need for a solid security model for social networking, and the
more we use them for, the more we need them to be secured.

Given that the social network providers are increasingly making their appli-
cations available as secure web sites, there remain two primary concerns:

A How can we know that a given site belongs to a given user: the identification,
or authentication problem? In general such knowledge may be absolute or
come with some identifed confidence level.

B The provision of appropriate security models for collecting, using and sharing
data from the local user and his or her devices including sensors.

In this paper we concentrate on A, and furthermore show how security de-
veloped for social networking can be used to conveniently bootstrap other secure
connections.

We imagine that in general solutions to A might involve any one, or combi-
nations of (i) prexisting security infrastructures such as PKIs, (ii) reputational
models based on trust ratings by other network users, and (iii) bootstrapping
security by person-to-person contact by interaction outside the social network.
In this paper we concentrate on (iii) and show how Human-Interactive Security
Protocols (HISPs) can be used to do this efficiently when there is a means for
getting a small amount of information from the owner of the page that is to
be authenticated to the person who wants to authenticate it. This transmis-
sion might be via personal contact or using a second medium that is trusted as
authentic.

In this paper we make the following contributions:

1. We propose a security model that exploits the trust on social networks by
using HISPs. This model can be used to authenticate online identities and
create secure connections between devices.

2. We demonstrate these by implementing a prototype system. It can efficiently
bootstrap security for a large group. It shows the practicability of using our
security model in future mobile computing.

2 Using a HISP

A typical HISP relies on the assumption that there is an empirical channel
in a specific application, in which one or more humans can compare a short

1 http://stanford-clark.com/andy_house.html



Social Networks for Importing and Exporting Security 3

authentication string (SAS) received from the empirical channel. The best of
these protocols, for example those of [13, 14, 16–20, 22, 23], enable assurance to
these humans that there is no attack that would allow an intruder to get the
system into an insecure state (where the connections established are other than
what the humans believe), with probability meaningfully greater than 2−b, where
b is the number of bits in the check-string. In addition, to have such a chance,
the attacker will have a 1 − 2−b chance of his presence being revealed by the
difference between the strings.

HISPs can be thought of as tools that enable one (perhaps informal) authentic
channel to efficiently authenticate, and then secure another one. This means that
they have two complementary potential uses in social networking.

1. We can use a HISP to authenticate online identities by using existing con-
nections (typically personal or telephone conversations between the humans
involved.) In this case, we import security from existing social relationships
to social networks.

2. We can use a HISP to create secure connections between devices, in this
case, we can use authenticated social network accounts as proxies to display
SAS’s. This can significantly improve the usability of HISPs. We therefore
export security from social networks to security applications.

In the following sections we will introduce two HISPs that we use in our
implementation.

2.1 Pair-wise HISP

Below is the pair-wise HISP we use:

1. A −→ B : hash(0 : hkA), hash(k), InfoA,
2. B −→ A : hash(1 : hkB), pk, InfoB ,

Each party creates a hash, or digest key: we call these hkA and hkB . These
are needed to randomise the final check-string. A creates a session key k. B
either creates freshly, or re-uses, an asymmetric key pair (pk, sk). There is no
need for the “public” key pk to be certified. The length of these keys will depend
on the desired level of security2, the amount of available computing power, and
the cryptosystem in use.

In the first pair of steps of the protocol, A and B both commit each other
without knowledge to values of hkB or hkA. The only one of the four parameters
hkA, hkB , pk and k communicated openly is B’s public key pk. InfoA and InfoB
are the information A and B wants to authenticate. In our example, when Alice
wants to verify Bob’s OSN account, InfoB contains Bob’s social network account
profile; similarly, InfoA contains Alice’s social network account profile when Bob
wants to verify Alice’s OSN account.

The protocol now proceeds:

2 The key certainly needs to be strong enough so that there is no realistic chance of
it being broken during the life of the session being established. Further strength is
required to ensure that the contents of that session remain secret after it ends.



4 Bangdao Chen, A.W.Roscoe

3. A −→ B : hkA, {k}pk
4. B −→ A : hkB

The second part of Message 3 is to tell B the actual value of the session key,
which is now checked against the hash. It is the transmission of the unencrypted
keys hkA and hkB at this stage that represents the core of the protocol. Firstly,
of course, the participants must check that these are the same values that were
represented in Messages 1 and 2. If not, the run is abandoned. Secondly, they
(and anyone else who has been listening in) can compute a value for

digest(hkA ⊕ hkB , (pk, hash(k), InfoA, InfoB))

where ⊕ is bit-wise exclusive or and (X,Y ) is an ordered pair. The protocol
completes successfully if A (or A and B) are convinced that their two versions of
the value – the check-string of this protocol – are equal: in becoming convinced
they must not use a channel which can be “spoofed” by an intruder. Typically
one will read their value to the other, or A will read B’s value directly and
compare it with her own. Whichever knows that the two values are equal can
conclude that the link is authenticated. Typically this is either A or both of
them. It is this comparison that makes it a HISP.

Naturally, if the protocol has proceeded uninterfered with, A’s and B’s values
will be equal. If, however, an intruder has imposed his own values onto the
receivers of Messages 1–4, A and B will not agree on all four parameters. For
security, what is important is that they agree on pk and hash(k), so we will
concentrate on what happens if the intruder interferes with these.

The digest function [17, 18] is designed so that, as hk varies, the probability
that digest(hk,X) = digest(hk, Y ) for X 6= Y is less than ε, where typically ε
is very close to the theoretically optimal value of 2−b for b the number of bits in
the output of digest. It must also have the property that for any fixed value d,
the chance that digest(hk,X) = d as hk varies is less than ε also. More details of
this protocol can be found in [9]. Formal verification of this protocol is presented
in [21].

An important quality a HISP must have is that it protects the SAS that
the users compare from combinatorial searching by potential attackers: analysis
must be able to show that no matter what conceivable amount of computing an
attacker uses, he has no better chance of getting lucky and persuading the users
to agree on an SAS in inappropriate circumstances than if it had made a single
guess. All the HISPs we see in this paper have that property.

2.2 Group HISP

The Symmetric HCBK (SHCBK) protocol [18] is used in our implementation.
This, the general description, connects an arbitrary-sized group. Good examples
of group authentication using HISPs are SiB [15], GAnGs [7] and SPATE [24].

1. ∀A −→N ∀A′ : A, INFOA, hash(A, hkA)
2. ∀A −→N ∀A′ : hkA



Social Networks for Importing and Exporting Security 5

3. users compare digest(hk∗, {INFO’A|A ∈ G}), where hk∗ is the XOR of all
hkA’s for A ∈ G

SHCBK has each node “publish” its name and a collection of information
that it wishes to be authentically connected with that name. It also sends a
hash3 of a randomly generated key hkA coupled with the name. Once it has re-
ceived that information from all nodes, and therefore become committed to the
set of identities, INFO and hashed keys it will use, it publishes its previously
secret hkA. The point is that by the time of this last publication, it was in fact
committed to all the data used in the above protocol, even though it does not
yet know all the hkAs. HCBK stands for Hash Commitment Before Knowledge.
A careful security analysis of this protocol (see [18], for example) demonstrates
that any attacker is unable to profit from combinatorial analysis aimed at get-
ting the SAS’s (i.e. digests) to agree even though nodes have difference views
of the authenticated information. Good HISPs such as SHCBK therefore offer
maximum security for a given amount of human effort.

We can reduce the number of human interactions if there is a trustworthy
Initiator I, consider the rest of the group as G′, then the above protocol can
be modified as following: in the process of comparing digest values, I compares
digest value published by ∀A (A ∈ G′), ∀A compares the digest value published
by I; I then publishes the final result of digest comparison, ∀A checks this result.
We call it Semi-SHCBK protocol. Therefore the total number of messages to be
exchanged via empirical channels changes from N(N − 1)/2 to 3N − 3. If there
is a trustworthy Initiator, when N > 6, Semi-SHCBK protocol is more efficient
than SHCBK protocol.

The key generation is simple: we include a copy of an uncertified Diffie-
Hellman public key in INFOA, then after a successful run of SHCBK or Semi-
SHCBK protocol, each user generates N −1 shared pair-wise secret keys sk. For
example, skαβ means a shared secret key between user α and user β. To generate
a group key skG, the following group key protocol is used (−→S means sending
encrypted information using a corresponding pair-wise secret key):

1. ∀A −→S ∀A′ : NonceA
2. skG = Nonce∗, where Nonce∗ is the XOR of all NonceA’s for A ∈ G

Each member also generates an anonymous ID. It can be used to publish in-
formation anonymously on OSNs. The anonymous ID is created by hash(NonceA,
A’s social network ID) mod 1015. This will generate a 15-digit4 ID for each group
member.

2.3 Improving the usability and security of HISPs

The practicability of using HISPs is in inverse proportion to the cost of human
effort. For example, factors that determine the practicability are: the availability

3 Hash means a standard cryptographic hash function that has two main properties:
collision resistance, and inversion resistance.

4 We use the same length of digits as Facebook ID.



6 Bangdao Chen, A.W.Roscoe

of empirical channels; the length of information to be compared; and the times
of comparison required in one run.

In order to reduce the amount of human effort without compromising security,
one solution is to allow automated comparison of SAS’s online. For example,
when OSN pages are being used to display SAS’s in HISPs there is clearly also
the the option for these same pages to compare the SAS’s provided they are
connected securely to the local device that is participating in the HISP.

If all participants have this property we could use a longer SAS, but in general
we assume that there is likely to be some human participant creating the link in
person. The primary motivation for using HISPs is, after all, allowing this.

3 Proving online identities

In order to use OSNs as empirical channels we must answer the following ques-
tion: “how do I know that what I am seeing on the page comes from the person
or other entity that I think it does”. To better analyse this problem, we divide it
into two sub-questions: how do I know the (e.g. Facebook) page I am seeing is
authentic within the OSN? and how do I know it belongs to the person I think
it does? The first of these questions can be solved by conventional computer
security, for example, the https service on OSNs.

The second question can be converted into the following one: “is this an es-
tablished Friend for which you are certain of the link between page and person?”
If the answer is yes, then secure access to that page is clearly a good empiri-
cal channel. This is the most common way of authentication in our daily life.
For example, one may have experiences in interacting with a social network ac-
count, one may authenticate a social network account by the number of common
Friends, or one can authenticate a social network account by viewing its profile,
Friends list, photos, history of participated events and other context information.

If we can not make our decision based on past experiences, we may use
telephony or physical interactions to accomplish this task. A HISP is therefore
used to authenticate OSN accounts. For example, Alice wants to know that the
social network account of Bob is authentic; if Alice has a phone number of Bob
and she is certain of the authenticity of this phone number, she then runs a HISP
with Bob to verify his account by using telephony as the empirical channel.

Note that the availability of HISPs provides us with the flexibility to boot-
strap security from any existing authentic connections, whether one derived from
physical proximity or other means such as telephone.

And there are other alternatives of authenticating online identities in prac-
tice, for example:

1. Centralised authentication. For example, Twitter provides authentication
service. The verified account will display a special indicator (a small icon
or a “badge”). However this service is limited to celebrities on Twitter. A
similar situation can be found in other OSNs.

2. Introducing decentralised authorities. For example, we can publish OSN ac-
counts of a group on a company’s https web-page. In this case, the company



Social Networks for Importing and Exporting Security 7

acts as an authority which authenticates a group. Similarly, a trusted or-
ganisation or a trusted individual can also play the role of an authority.
For example, a community leader may only keep Friends that belong to the
community, therefore his or her Friend-list can be used to help authenticate
the community members. This can be used to replace the human effort of
authenticating group members and can greatly improve the application in
authenticating a group when its size is large. In our implementation, when
prompting users to verify the member-list of a group, we provide an op-
tion for users to use a trusted authority (in the form of an https web-page).
Details of this approach are presented in Section 5.

3. Introducing trust ratings. Rating by trust is a common practice in OSN
research, for example, in [11], the authors described a semantic web-based
OSN, and they developed algorithms to rate the inferred reputation of a
node. Another distinct example is PGP. It exploits ratings to determine the
level of authenticity of downloaded public keys. A rating scale of 1 to 4
is used: full (complete trust), marginal (partial trust), untrustworthy and
don’t know. The most distinct advantage of this method is that it provides
pervasive automated authentication. We have implemented a demonstration
rating system by using the same ratings introduced in PGP (see Section 5).

4. Blackballing. Blackballing5 is a voting method used in many gentleman’s
clubs: members have a large number of white and black balls and each mem-
ber casts a single ball into the ballot box to vote for a proposition, if there are
one or more black balls in the ballot box, everyone will immediately know this
proposition has been vetoed. In our implementation, each member checks the
list objects one-by-one, if one object is “vetoed” by one member, then list L
is “vetoed”. This is also a form of utilising “crowd knowledge” which effec-
tively reduces the security mistakes when members manually authenticate
each other.

4 Bootstrapping a large group by using OSNs

A critical problem in using HISPs in group scenarios is group formation which
must be solved before the protocol starts. The difficulty is obvious when we
try to organise a large group from the very beginning: we have to collect mem-
ber’s information to generate a member-list, and then to verify that the objects
included in the member list are legitimate.

The correctness of bootstrapping a group can be defined as follows: all mem-
bers acknowledge a list L, which contains details of all members; the resulting
group G contains exactly the same number of members recorded in L and no
one, except for the members included in L, can be allowed to join G. This is
important to allow automated comparison of SAS’s in running a group HISP.

We assume group formations are presented in the form of events; for example,
the Department of Computer Science creates a list of their faculties and students

5 http://en.wikipedia.org/wiki/Blackballing



8 Bangdao Chen, A.W.Roscoe

in order to share their project data; they arrange an event (e.g. a Facebook event)
by informing all members within the department via emails or by posting a notice
to the public. We generalise these events of group formation into the following
two events:

A. Preemptive event: group members know who is the Initiator and they all
trust him/her before the event runs, therefore the Semi-SHCBK protocol is
used.

B. Non-preemptive event: except for the Initiator, the rest of the group does
not know of the event in advance. The Initiator sends out invitations to ask
for participation. Those who accept it join the event. Members do not trust
the Initiator in advance, therefore the SHCBK protocol is used.

4.1 Collecting group information

Collecting group information is easy and efficient on OSNs. A group can be cre-
ated by an event, such as a Facebook event, or it can be generated by sending
invitations to the members. This arrangement is suitable both for collocated
authentication and remote authentication. For example, in a conference, the or-
ganiser announces the conference event on Facebook and the participants simply
find and join this event.

This was a laborious process. In GAnGs [7] the authors presented two solu-
tions for collecting information from group members when they are in the same
room: the first solution is to use an untrusted projector as a central node by
displaying its Bluetooth address as a 2D barcode; all members connect their
mobile phones to the projector by reading this barcode and send their details to
this projector which then broadcasts the list L to the group. The second solution
is to create a tree structure of collecting member’s information one-by-one by
reading 2D barcodes of Bluetooth addresses. This can be a laborious process
which involves a large amount of human effort. For example, the second solu-
tion requires 30 human interactions for a group of ten members. And the first
solution requires a projector which is not necessarily available.

4.2 Counting and verifying members

In both events, the only human effort required is to verify the objects included
in L. The rest of the processes are completed automatically by the program.

In GAnGs [7] the authors assumed humans can accurately count less than ten
individuals via physical interactions. They randomly divide a large group into
small subgroups in order to allow humans to count and verify members correctly.
This action provides greater usability but leads to weaker security: there may
be the chance that attackers are allocated to the same sub-group, therefore they
provide a greater than 95% probability of attack detection [7] rather than the
value of 1− 2−b assumed by the HISP (b is the bit-length of the SAS).

We notice that by reducing physical interactions, we can not only improve se-
curity, we can also reduce impacts from other uncontrolled factors; for example,



Social Networks for Importing and Exporting Security 9

the luminous intensity, the physical distances, the quality of mobile phone cam-
eras or display screens, and the physical coordination between humans. While
the current practices of implementing a rating system are mostly experimental,
we observe that the presence of a decentralised authority is strong in scenarios
with security demands. For example, in a conference scenario, the organiser can
manage the “guest list” of the conference’s Facebook event. He or she can either
remove those illegal “guests” or set this event to be visible only to the “guests”
on a given “guest list”. In an online community, the community leader can man-
age the legitimate list of community members on his or her social web-page (for
example, he or she keeps the list as a group in the Friends-list).

5 Demonstration implementation

We have implemented a secure location sharing service to demonstrate the use
of our security model. We have developed three versions of mobile applications:
RIM (Blackberry), Android, and iOS (iPhone, iPad and iTouch). One server
SO is used as the coordination server. All devices are connected to SO. To
demonstrate the use of on-device computing resources, we have also implemented
a demonstration storage directory service (we call it CS Department Internal
Cloud).

The mobile phone application first checks the ratings; if there are accounts
which fail to pass the rating check, it will prompt the user with a dialogue calling
for authentication resource (from a decentralised authority), it will automatically
remove the authenticated objects from the stack of the member list; the objects
that are left on the stack will be verified by empirical authentication, for example,
by using a HISP. Figure 1 shows the flow chart of the authentication process.

If the entire member list has been verified, the protocol starts to run; the
user will then start to share his or her data of locations on Facebook (or directly
between devices) if the protocol has been finished successfully; the user can also
manage his or her shared on-device storage. Figure 2 shows the screen shots of
the application on Android.

An OSN account is created by the Initiator for the group. This group account
is shared within the group, therefore each member can access this account and
publish their encrypted data anonymously using the anonymous ID. This mes-
sage is constructed in the form of (Anonymous ID, Encrypted Message, MACG).
The last component is a MAC using the group key.

We use Bouncy Castle Crypto Java API on RIM and Android; and OpenSSL
C Library for iOS. We use 1024-bit Diffie-Hellman public keys to generate shared
secret keys; 128-bit AES is used to encrypt data.

6 Performance analysis

We have tested the mobile applications on Blackberry Bold 9000 (BB9000) (4
devices), Blackberry Storm 9500 (BB9500) (1 device), HTC Wildfire (HTC) (1
device), Dell Streak (Dell) (1 device), iPhone 3 (1 device), iPad 1 (2 devices).



10 Bangdao Chen, A.W.Roscoe

Fig. 1: The flow chart of the authentication process.

10 volunteers joined this test. They are located in different places. Coordination
is made via phone calls, sending SMSs, and messaging on OSNs. Note in order
to simplify our test, the member-list is imported from a Facebook event. We
assume there is a trustworthy leader. Therefore, the semi-SHCBK protocol is
used. Figure 3 shows the time consumption of bootstrapping a group6 of all the
devices we have. The total time cost is around 193 seconds.

We can see the cost of coordination is high in group formation because of
many uncontrolled random factors. However, the verification and comparison is
efficient and only takes a small fraction of the total time.

Device Time Ratio Speed1 Speed2

BB9000 3.69s 99% 1.72kb/s 4.32kb/s
BB9500 4.49s 99% 1.35kb/s 3.75kb/s

HTC 3.74s 99% 1.56kb/s 4.80kb/s
Dell 0.85s 99% 2.42kb/s 7.15kb/s

iPhone 0.11s 99% 4.38kb/s 8.74kb/s
iPad 0.08s 99% 4.06kb/s 13.7kb/s

Table 1: Facts and statistics.

6 Clearly, the time is determined by the slowest device.



Social Networks for Importing and Exporting Security 11

Fig. 2: Screen shots of the mobile application.

Table 1 shows the facts and statistics of different devices. The second column
is the time of computing DH secret; the third column is the ratio of the time of
computing DH secret against the time of total on-device computing (excluding
communication); the fourth column is the speed of connection between the device
and the coordination server; the last column is the speed of the connection
between the device and the Facebook server. We can see the time of on-device
computation mostly originates from the DH secret computation.

According to the above analysis, we can identify two challenges for the fu-
ture: (A) providing more convenient coordination methods; (B) increasing the
speed of mobile connections. Challenge A requires research on usability. Tests
will be made in the future to identify attributes that improve the speed of the
coordination process. Challenge B is less significant since there are continuous
developments in improving the speed of mobile connections; for example, the
deployment of 4G network.



12 Bangdao Chen, A.W.Roscoe

Fig. 3: Time consumption.

7 Related research

WhozThat [4] is a system making use of OSN IDs among mobile phones: two
users exchange their OSN IDs using Bluetooth, and it then introduces social
context into the local context; for example, one may play the favorite music
of the other. This is similar to our solution of binding OSN IDs with mobile
devices while our intention is to facilitate identification and connection rather
than interaction between humans. CenceMe [10] is a more advanced mobile OSN
system which detects users’ social activities by analysing sensory data on mobile
phones. It demonstrates a well designed integration of OSNs on mobile phones:
automated input of social information (deducted from sensory data) replaces
traditional manual input. This is similar to our vision for future OSNs; for ex-
ample, sensor networks like on-body sensor networks can be exploited by OSNs
to automatically generate and display social patterns.

In [8] the authors presented a concrete implementation of Cloud Computing
Service (for storage) on Facebook. However, there is no description as to actually
utilise the Cloud after creation. Our solution gives a clear data flow between
different interfaces and it can be put in use instantly.

Security is a key enabling factor for the above practices. In [5] the authors
suggested OSN operators should not be trusted and data should be encrypted
before posting online. They provided an example of creating a peer-to-peer sys-
tem by using a pair-wise HISP to distribute public keys. A similar example was
discussed in [6], which proposed a completely decentralised peer-to-peer system
by storing data on user devices.

We notice that although there is much research on creating decentralised
systems to improve security, practices without using a PKI or existing security



Social Networks for Importing and Exporting Security 13

infrastructures can be difficult. And such peer-to-peer systems are not efficient
when the scale of sharing increases. Practices introduced in [7, 24] reveal the high
complexity of group HISPs when using physical interactions to collect group
information and authenticate members, therefore they are not practical when
bootstrapping a large group.

8 Conclusions

We have presented the model of social networks for importing and exporting
security. It can be adapted to deal with various security requirements emerging
from new applications; for example, it authenticates OSN accounts by exploiting
existing social relationships; it can bootstrap security for a group of any size by
using OSNs. The secure location sharing service we have implemented demon-
strates these features of this model. In the future, the growing investment on
security by social network companies and the increasing public concerns over
OSN privacy will make our solution more secure in authenticating online iden-
tities, and the development of computing power on mobile devices will make it
more efficient in delivering security services.

References

1. Body-monitoring sensors. http://store.runkeeper.com/.
2. CEO to shareholders: 50 billion connections 2020. http://www.ericsson.com/

thecompany/press/releases/2010/04/1403231.
3. How Fast the News Spreads Through Social Media. http://blog.sysomos.com/

2011/05/02/how-fast-the-news-spreads-through-social-media/.
4. A. Beach, et al. Whozthat? evolving an ecosystem for context-aware mobile social

networks. Network, IEEE, 22(4):50 –55, july-aug. 2008.
5. J. Anderson, C. Diaz, J. Bonneau, and F. Stajano. Privacy-enabling social net-

working over untrusted networks. In Proc. WOSN ’09.
6. S. Buchegger and A. Datta. A Case for P2P Infrastructure for Social Networks -

Opportunities&Challenges. In Proc. WONS’09.
7. C.-H. O. Chen, et al. GAnGS: gather, authenticate ’n group securely. In the 14th

ACM international conference on Mobile computing and networking, 2008.
8. K. Chard, S. Caton, O. Rana, and K. Bubendorfer. Social cloud: Cloud computing

in social networks. In Proc. IEEE CLOUD 2010.
9. B. Chen, L. Nguyen, and A.W.Roscoe. Reverse authentication in financial transac-

tions and identity management. To appear in Wireless Networks, Mobile Networks
and Applications, 2012.

10. E. Miluzzo, et al. Sensing meets mobile social networks: the design, implementation
and evaluation of the cenceme application. In Proc. ACM SenSys ’08.

11. J. Golbeck and J. Hendler. Accuracy of metrics for inferring trust and reputation.
In 14th Int’l Conf. on Knowledge Engineering and Knowledge Management, 2004.

12. H. Kwak, C. Lee, H. Park, and S. Moon. What is Twitter, a social network or a
news media? In Proc. the 19th Int’l Conf. on World Wide Web, 2010.

13. S. Laur and K. Nyberg. Efficient Mutual Data Authentication Using Manually
Authenticated Strings. In Proceeding of Cryptology and Network Security, pages
90–107. Springer, 2006.



14 Bangdao Chen, A.W.Roscoe

14. A. Lindell. Comparison-Based Key Exchange and the Security of the Numeric
Comparison Mode in Bluetooth v2.1. In RSA Conference, 2009.

15. J. M. McCune, A. Perrig, and M. K. Reiter. Seeing-Is-Believing: Using Camera
Phones for Human-Verifiable Authentication. In IEEE Symposium on Security and
Privacy, 2005.

16. L. Nguyen, editor. chapter Part 6: Mechanisms using manual data transfer.
17. L. Nguyen and A. Roscoe. Efficient group authentication protocol based on human

interaction. In Proc. FCS-ARSPA’06, pages 9–31.
18. L. Nguyen and A. Roscoe. Authenticating ad hoc networks by comparison of short

digests. Information and Computation, 206:250–271, 2008.
19. L. Nguyen and A. Roscoe. Separating two roles of hashing in one-way message

authentication. In FCS-ARSPA-WITS, 2008.
20. L. Nguyen and A. Roscoe. Authentication protocols based on low-bandwidth un-

spoofable channels: a comparative survey. Computer Security, 19(1):139–201, 2011.
21. A. Roscoe, T. Smyth, and L. Nguyen. Model checking cryptographic protocols

subject to combinatorial attack. Available on http://www.cs.ox.ac.uk/files/

4157/guess.pdf.
22. A. W. Roscoe. Human-centred computer security. Unpublished draft, 2006.
23. S. Vaudenay. Secure Communications over Insecure Channels based on Short Au-

thenticated Strings. In Proceeding of Advances in Cryptology - Crypto, pages 309–
326. Springer, 2005.

24. Y.-H. Lin, et al. SPATE: Small-Group PKI-Less Authenticated Trust Establish-
ment. IEEE Transactions on Mobile Computing, 9(12):1666–1681, Aug 2010.


