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Abstract

The dynamic nature of ontology development has moti-
vated the formal study of ontology evolution problems.
This paper presents a logical framework that enables
fine-grained investigation of evolution problems at a de-
ductive level. In our framework, the optimal evolutions
of an ontology O are those ontologies O′ that maximally
preserve both the structure of O, and its entailments
in a given preservation language. We show that our
framework is compatible with the postulates of Belief
Revision, and we investigate the existence of optimal
evolutions in various settings. In particular, we present
first results on TBox-level revision and contraction in
the EL and FL0 families of Description Logics.

Introduction
Ontologies written in the Web Ontology Language
(OWL) (Horrocks, Patel-Schneider, and van Harme-
len 2003), and its revision OWL 2 (Cuenca Grau et
al. 2008b) are becoming increasingly important for a
wide range of applications. The formal underpinning of
OWL is based on Description Logics (DLs) – knowledge
representation formalisms with well-understood compu-
tational properties (Baader et al. 2003). A DL ontology
O typically consists of a TBox T , which describes gen-
eral (i.e., schema-level) domain knowledge, and an ABox
A, which provides data about specific individuals.

OWL ontologies are being extensively used in the
clinical sciences, where large-scale ontologies have been
developed (e.g., the NCI Thesaurus (Nci), the Founda-
tional Model of Anatomy (Fma), and Snomed). These
ontologies are not static entities, but rather they are
frequently modified when new information needs to be
incorporated, or existing information is no longer consid-
ered valid (e.g., the developers of Nci perform over 900
monthly changes (Hartung, Kirsten, and Rahm 2008)).
The impact of such changes on the semantics of the
ontology, however, is difficult to predict and understand.

This dynamic nature of ontologies motivates the study
of ontology evolution from both foundational and prac-
tical perspectives (Fridman Noy et al. 2004; Haase and
Stojanovic 2005; Flouris et al. 2008; Qi and Du 2009;
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Calvanese et al. 2010; Wang, Wang, and Topor 2010b;
Jiménez-Ruiz et al. 2011; Konev, Walther, and Wolter
2008; Gonçalves, Parsia, and Sattler 2011).

In AI and Belief Revision, the process of “incorpo-
rating” new information into a knowledge base (KB) is
called revision, whereas the process of “retracting” infor-
mation that is no longer considered to hold is called con-
traction (Alchourrón, Gärdenfors, and Makinson 1985;
Peppas 2007). The properties that revision and con-
traction operators need to satisfy are dictated by the
principle of minimal change (Alchourrón, Gärdenfors,
and Makinson 1985), according to which the semantics
of a KB should change “as little as possible”, thus en-
suring that modifications have the least possible impact.
A distinction is often made between revision and up-
date, where the purpose of the latter is to bring the
KB up to date when the world changes (Katsuno and
Mendelzon 1991; Kharlamov and Zheleznyakov 2011;
Liu et al. 2011). In this paper, however, we use the term
evolution to encompass revision and contraction, and
we do not consider here the problem of update.

Logic-based semantics derived from the principle
of minimal change have been recently studied in the
context of ontology evolution. These semantics are
either model-based (MBS) or formula-based (FBS).
Under both semantics, evolution of an LO-ontology
O results in an LO′-ontology O′ that incorporates (or
retracts) the required information, and the difference
lies in the way O′ is obtained. Under MBS the set of all
models M of O is evolved into a new set M′ of models
that are “as close as possible” to those in M (w.r.t.
some notion of distance between models); then, O′ is
the ontology that axiomatises M′ (Qi and Du 2009;
Giacomo et al. 2009; Calvanese et al. 2010; Kharlamov
and Zheleznyakov 2011; Wang, Wang, and Topor 2010b;
2010a). MBSs, however, suffer from intrinsic inex-
pressibility problems, even for lightweight DLs such as
DL-Lite (Calvanese et al. 2007), where axiomatisation
of M′ requires a DL with disjunction and nominals
(Kharlamov and Zheleznyakov 2011).

Under FBS, O′ is defined as a maximal subset of
the deductive closure of O (under LO-consequences)
that satisfies the evolution requirements. FBSs for DLs
have been less studied. In particular, existing results



(Calvanese et al. 2010; Lenzerini and Savo 2011) are
restricted to DL-Lite, where the deductive closure of O
is finite. It is unknown, however, how to compute O′
if the closure of O is infinite, as is the case when O is
an EL ontology (Baader, Brandt, and Lutz 2005).

Approaches to ontology evolution typically adopted
in practice (especially when changes occur at the TBox
level) are essentially syntactic (Haase and Stojanovic
2005; Kalyanpur et al. 2006; Jiménez-Ruiz et al. 2011).
Many such approaches are based on the notion of a
justification: a minimal subset of the ontology that
entails a given consequence (Kalyanpur et al. 2005;
Schlobach et al. 2007; Kalyanpur et al. 2007; Peñaloza
and Sertkaya 2010). For example, to retract an axiom
α entailed by O, it suffices to compute all justifications
for α in O, find a minimal subset R of O with at least
one axiom from each justification, and take O′ = O \R
as the result of the evolution. This solution complies
with a “syntactical” notion of minimal change: retract-
ing α results in the deletion of a minimal set of axioms
and hence the structure of O is maximally preserved.
Furthermore, O′ is guaranteed to exist for expressive
DLs, and practical algorithms have been implemented in
ontology development platforms (Kalyanpur et al. 2007;
Suntisrivaraporn et al. 2008). By removing R from
O, however, we may be inadvertently retracting con-
sequences of O other than α, which are “intended”.
Identifying and recovering such intended consequences
is an important issue.

This paper presents a framework that bridges the
gap between logic-based and syntactic approaches to
ontology evolution. On the logic side we focus on FBSs,
which deal with formulae rather than models, and hence
are closer in spirit to syntactic approaches than MBSs.
Roughly speaking, evolution of an LO-ontology O is
“triggered” by semantic constraints C = (C+, C−) – sets
of formulae in a constraint language LC specifying both
the consequences C+ that must hold in an evolved on-
tology O′, and the consequences C− that cannot hold.
The principle of minimal change is reflected in our
framework along two dimensions. The first one is struc-
tural : ontologies are the result of a time-consuming
modeling process and thus O′ should not change the
structure of O in a substantial way. The second di-
mension is deductive: in addition to satisfying the con-
straints C, O′ should, on the one hand, avoid intro-
ducing spurious consequences that do not follow from
O ∪ C+ and, on the other hand, it should maximally
preserve the consequences of O in a given preservation
language LP. Ontologies that comply with the princi-
ple of minimal change along these two dimensions are
called optimal evolutions. To show that our semantics
does not lead to unexpected results, we discuss instan-
tiations of our framework and establish a connection
with the revision and contraction postulates of Belief
Revision (Alchourrón, Gärdenfors, and Makinson 1985;
Peppas 2007).

An important issue in our framework is expressibility
(Can an optimal evolution O′ of O be expressed in a

given LO′ for given C and LP?). If such O′ exists, we
aim at establishing bounds to its size (Cadoli et al. 1999).
We show that if LP is finite (i.e., it has only finitely
many non-equivalent sentences for any finite signature)
an optimal O′ exists provided that the constraints them-
selves can be satisfied; this case already extends all
syntactic evolution approaches known to us and also
captures the scenario where LP is DL-Lite. We then ad-
dress the challenging problem of expressibility when LP
is an “infinite” language and focus on the retraction of
axioms in TBoxes expressed in the lightweight DLs EL
and its “dual” logic FL0 (Baader et al. 2003). We show
inexpressibility of optimal contractions in both cases
when LP coincides with the ontology language, even
when retracting a single subsumption between atomic
concepts. Our negative results provide insights in the
causes of inexpressibility, so we then focus on EL (which
is especially relevant for bio-medical ontology model-
ing), investigate sufficient conditions for expressibility,
and study the size of the resulting optimal evolutions.
To the best of our knowledge, ours are the first re-
sults on TBox-level revision and contraction beyond
DL-Lite. Finally, we report on experiments in which we
study contraction in Snomed. This paper is accompa-
nied with an online technical report containing all proofs
www.inf.unibz.it/˜zheleznyakov/krfull.pdf .

Preliminaries
Our evolution framework is applicable to first-order logic
(FOL) rather than Description Logics. Our work, how-
ever, is motivated by DL ontologies, so we will use DL
terminology throughout the paper. We assume standard
definitions of (function-free) FOL signature, predicates,
sentences, interpretations, satisfiability and entailment.

An ontology O = T ∪ A consists of a finite set of
sentences T (the TBox) and a finite set of ground atoms
A (the ABox). A DL is a recursive set of ontologies
closed under renaming of constants and the subset re-
lation. Predicates in DL signatures are either unary
(called atomic concepts) or binary (atomic roles). DLs
use a specialised syntax, where variables are omitted,
and which provides operators for constructing complex
concepts (formulae with one free variable) and roles
(formulae with two free variables) from simpler ones, as
well as a set of axioms. For ξ a concept, role, or (set
of) axiom(s), sig(ξ) denotes the set of atomic concepts,
roles and constants in ξ.

An interpretation I for a DL signature Σ is a pair
I = (∆I , ·I), where ∆I is a non-empty domain set and
the interpretation function ·I maps each constant a to an
element aI ∈ ∆I , each atomic concept A to a set AI ⊆
∆I , and each atomic role R to a relation RI ⊆ ∆I×∆I .
Many DLs provide the > and ⊥ concepts, which are
interpreted as >I = ∆I and ⊥I = ∅, respectively.

Let L and L′ be DLs s.t. L′ ⊆ L and O be an L-
ontology. The closure of O w.r.t. L′, written ClL′(O)
(or Cl(O) when L′ is clear from the context), is the
set of all L′-axioms α entailed by O. Let α ∈ ClL′(O),
then [α] = {β ∈ ClL′(O) | β ≡ α}. Clearly, [α] is an



equivalence class in the quotient set of ClL′(O) modulo
logical equivalence.

The Description Logics EL and FL0
We next describe the specific DLs mentioned in this
paper, namely EL (Baader, Brandt, and Lutz 2005) and
its “dual” logic FL0 (Baader et al. 2003). Since we
only mention these logics in the context of TBox-level
evolution, we omit the definition of ABoxes.

Let L be either EL or FL0 and let Σ be a DL signature,
which we consider implicit in all definitions. The set of
L-concepts is the smallest set containing >, A, C1 uC2,
and QR.C with Q = ∃ if L = EL and Q = ∀ if L = FL0,
for A an atomic concept, C, C1 and C2 L-concepts, and
R an atomic role. For w = R1 . . . Rn a word of atomic
roles, Q ∈ {∃,∀} and C a concept, we denote with Qw.C
the concept QR1. . . .QRn.C.

The quantifier depth of an L-concept is inductively de-
fined as follows, for A atomic, and C, C1, C2 L-concepts:
(i) depth(A) = 0; (ii) depth(QR.C) = 1+depth(C); and
(iii) depth(C1 u C2) = max(depth(C1), depth(C2)).

An L-axiom is of the form C1 v C2, where C1 and C2

are L-concepts (C1 ≡ C2 is a shorthand for C1 v C2

and C2 v C1). An L-TBox is a finite set of L-axioms.
The semantics is standard. We denote with Lmin the DL
that only allows for axioms A v B with A,B atomic.1

An EL-TBox T is normalised if it has only axioms
of the following forms, where A, B, A1, A2 are atomic
concepts or >: A v B, A1 u A2 v B, ∃R.A v B, or
A v ∃R.B. Each EL-TBox T can be normalised into a
TBox T ′ that is a conservative extension of T (Baader,
Brandt, and Lutz 2005). The canonical model IT of a
normalised EL-TBox T is defined as follows:

• ∆IT = {vA | A ∈ sig(T ) ∪ {>} is a concept};
• AIT = {vB | T |= B v A}; and

• RIT = {(vA, vB) | T |= A v ∃R.B}.
Deductively, IT is described by the basic closure BCl(T )
of T , i.e., the subset of Cl(T ) with all axioms of the
form A v B, or A v ∃R.B, with A,B,R ∈ sig(T )∪{>}.
The set BCl(T ) is of size polynomial in the size of T .

Ontology Evolution Under Constraints
We next introduce our ontology evolution framework.
Since our framework is not restricted to any particular
Description Logic, we adopt the general definition of a
DL in the preliminaries.

Semantic Constraints
Ontologies are dynamic entities, which are subject to
frequent modifications. Consider, for example, the de-
velopment of an ontology Oex about disorders of the
skeletal system, which entails the following axioms:

β1 = Arthropathy v JointDisorder,

β2 = ArthropathyTest v JointFinding,

γ1 = Arthropathy v JointFinding.

1Lmin is arguably the smallest DL and Lmin ⊆ EL∩FL0.

After close inspection, the developers of Oex notice
that γ1 is due to a modeling error and should be re-
tracted, whereas the other entailments are intended and
hence the retraction of γ1 should not invalidate them.
These requirements are formalised in our framework
using a constraint C = (C+, C−), where C+ specifies the
entailments that must hold in the evolved ontology and
C− specifies those that cannot hold. In our example, we
have C+ex = {β1, β2}, C−ex = {γ1}, and Cex = (C+ex, C−ex).

Definition 1. Let LC and LO′ be DLs. An LC-
constraint is a pair C = (C+, C−), with C+, C− ∈ LC.
We say that O′ ∈ LO′ conforms to

• C+ (written O′ ∝ C+) if O′ |= C+;

• C− (written O′ ∝ C−) if O′ 6|= α for all α ∈ C−; and

• C (written O′ ∝ C) if O′ ∝ C+ and O′ ∝ C−.

We say that C is LO′-conformant if there exists an
ontology O′ ∈ LO′ such that O′ ∝ C.

In general, C+ may contain new information to be
incorporated in O, or information already entailed by
O to be preserved in the evolution; conversely, C− may
contain information in O to be retracted, or information
not in O that must not be introduced by the evolution.
A constraint C such that C− contains a tautology α, (i.e.,
∅ |= α) cannot be LO′-conformant, regardless of LO′.

Let us assume that the following axioms about skeletal
disorders are also contained in Oex:

δ1 = JointDisorder v SkeletDisorder u JointFinding,

δ2 = JointDisorder v ∃located.Joint,
δ3 = ∃located.Joint v ∃located.Skeleton,
δ4 = SkeletDisorder ≡ Disorder u ∃located.Skeleton,
δ5 = Cortisone v Steroid u ∃treats.JointDisorder.

Clearly, an ontology containing δ1 cannot conform to Cex;
in contrast, axioms δ2-δ5 do not preclude conformance.
The following reasoning tasks are thus of interest.

(T1) Check if O′ conforms to C;
(T2) Check if C is LO′-conformant.

Task T1 amounts to checking entailment. Furthermore,
as shown next, task T2 also reduces to entailment check-
ing provided that LO′ can express the constraints.

Proposition 2. Let C = (C+, C−) be an LC-constraint
with LC ⊆ LO′. Then, C is LO′-conformant iff either
C+ is satisfiable and C+ ∝ C−; or C− = ∅.

Essentially, a constraint is conformant if its two com-
ponents C+ and C− do not contradict each other. The
constraints in our running example are clearly EL-
conformant since β1, β2 ∈ EL where every ontology
is satisfiable, and {β1, β2} 6|= γ1.

The Notion of an Evolution

The notion of conformance, however, does not yet es-
tablish a connection between the original ontology O
and the evolved ontology O′. The required connection
is established by the notion of an evolution.



Definition 3. Let LO and LO′ be DLs. An ontology O′
is an LO′-evolution of a satisfiable LO-ontology O un-
der constraint C = (C+, C−) if the following holds:

1. O′ ∈ LO′;
2. O′ ∝ C; and

3. if C+ is satisfiable, then an ontology O1 ∈ LO exists
s.t. O |= O1, O1∪C+ is satisfiable, and O1∪C+ |= O′.

With EvolLO′(O, C) we denote the class of all LO′-
evolutions of O under C.

The last condition in Definition 3 essentially ensures
that O′ only entails “genuine” information that follows
from O∪C+, thus preventing the introduction of logical
consequences unrelated to O and C+; furthermore, the
main role of ontology O1 in the definition is to preserve
satisfiability in the evolution whenever possible: if C+ is
satisfiable, then every evolution O′ is guaranteed to be
satisfiable as well. As discussed later on, Condition 3 in
Definition 3 makes our notion of evolution compatible
with the postulates of Belief Revision, according to which
unsatisfiable revisions are only acceptable when the new
information itself is unsatisfiable.

Definition 3 motivates the following reasoning tasks.

(T3) Check if O′ is an LO′-evolution of O under C;
(T4) Check if some LO′-evolution of O under C exists.

Task T3 amounts to entailment checking provided
that O ∪ C+ is satisfiable. The following proposition
shows that tasks T4 and T2 are inter-reducible, thus
establishing a strong connection between constraint con-
formance and existence of an evolution.

Proposition 4. Let C be an LC-constraint where LC ⊆
LO′. Then, EvolLO′(O, C) is non-empty iff C is LO′-
conformant.

In our example, O′ex = C+ex = {β1, β2} is an evolu-
tion of Oex. Although O′ex conforms to Cex and does
not introduce spurious entailments (in fact, it is the
simplest ontology with these properties), it is arguably
not compliant with the principle of minimal change, as
it loses all information in Oex that is not in C+ex (e.g.,
everything that follows from axioms δ2-δ5).

Optimal Evolutions
The principle of minimal change is reflected in our
framework both structurally and deductively. On the
one hand, O′ should minimize alterations in the struc-
ture of O; on the other hand, O′ should maximally
preserve the entailments of O in a given preservation
language LP . Formally, our framework defines a preorder
≥LP over the class EvolLO′(O, C), which establishes a
“preference” relation between evolutions based on the
aforementioned structural and deductive criteria. Our
definition of ≥LP uses the notion of entailment w.r.t. a
DL introduced in (Konev, Walther, and Wolter 2008).

Definition 5. Let LP be a DL. We say that an ontol-
ogy O1 LP-entails an ontology O2 if O2 |= α implies
O1 |= α for each α ∈ LP. The binary relation ≥LP over
EvolLO′(O, C) is defined as follows: O′1 ≥LP O′2 iff

1. O′1 LP-entails O′2, and

2. O′2 ∩ O ⊆ O′1 ∩ O.

It is well-known that a preorder induces an equivalence
relation as given next.

Definition 6. The equivalence relation ≡LP induced by
≥LP is defined as follows: O′1 ≡LP O′2 iff O′1 ≥LP O′2
and O′2 ≥LP O′1. Given O′ ∈ EvolLO′(O, C), we denote
with [O′] the equivalence class to which O′ belongs.

Ontologies in the same equivalence class are indis-
tinguishable from the point of view of our framework:
they coincide in their entailments over the preservation
language, and they contain the same axioms from O.

We can now establish a partial order �LP over the
quotient set, and define optimal evolutions as the ontolo-
gies belonging to an �LP -maximal equivalence class.

Definition 7. The relations �LP and �LP over the
quotient set EvolLO′(O, C)\ ≡LP are as follows:

• [O′] �LP [O′′] iff O′ ≥LP O′′; and

• [O′] �LP [O′′] iff [O′] �LP [O′′] and [O′] 6= [O′′].

We say that O′ ∈ EvolLO′(O, C) is LP-optimal if [O′]LP
is a �LP -maximal element in EvolLO′(O, C)\ ≡LP .

In our example, the evolution O′ex = {β1, β2} is not
EL-optimal: first, it does not include “harmless” axioms
from Oex such as δ2-δ5; second, O′ex does not entail con-
sequences of Oex such as JointDisorder v SkeletDisorder
or Cortisone v Steroidu∃treats.SkeletDisorder, which do
not cause γ1 to be entailed.

Definition 7 thus motivates the following tasks.

(T5) Check if O′ is LP-optimal in EvolLO′(O, C);

(T6) Check if an LP-optimal O′ ∈ EvolLO′(O, C) exists.

Note that there can be multiple LP-optimal evolutions
of O. In particular, each ontology in an �LP -maximal
class is LP-optimal; furthermore, ontologies in the same
�LP -maximal class are indistinguishable, whereas ontolo-
gies in different �LP -maximal classes are incomparable.
Hence, the following additional task is also of interest.

(T7) Compute [some/all] LP-optimal evolutions.

In an application, it may be desirable to single out a
“preferred” optimal evolution. This could be achieved, by
imposing a preference relation over axioms in O (e.g.,
using trust values), or by taking into account users’
feedback. Such mechanisms, however, are application
dependent and hence external to our framework.

Framework Instantiations & Belief Revision

We next argue that our evolution semantics is theoret-
ically well founded, and does not lead to unexpected
results. To this end, we discuss several instantiations
of our framework, and establish a connection with the
Belief Revision postulates.



R1 O ∗ (C+, ∅) ∈ LO
R2 O ∗ (C+, ∅) |= C+
R3 O ∪ C+ |= O ∗ (C+, ∅)
R4 If O ∪ C+ is satisfiable, then O ∗ (C+, ∅) |= O ∪ C+
R5 If C+ is satisfiable, then O ∗ (C+, ∅) satisfiable
R6 If C+1 ≡ C

+
2 , then O ∗ (C+1 , ∅) ≡ O ∗ (C+2 , ∅)

C1 O ÷ (∅, C−) ∈ LO
C2 O |= O ÷ (∅, C−)
C3 If O ∝ C−, then O ÷ (∅, C−) ≡ O
C4 If ∅ 6|= C−, then O ÷ (∅, C−) ∝ C−
C5 If O |= C−, then (O ÷ (∅, C−)) ∪ C− |= O
C6 If C−1 ≡ C

−
2 , then O ÷ (∅, C−1 ) ≡ O ÷ (∅, C−2 )

Figure 1: Basic revision and contraction postulates in Belief Revision

No evolution. Intuitively, constraints C act as “trig-
gers” to the evolution of O. In particular, if O already
conforms to C and LO′ = LO, then O should not evolve.
The following proposition ensures that our framework
behaves as expected in such situation, and (the equiva-
lence class of) O is singled out as optimal.

Proposition 8. Let LO′ = LO = LC, let O ∈ LO,
let C be an LC-constraint, and O ∝ C. Then, for each
O′ ∈ EvolLO′(O, C) and each DL LP, O′ is LP-optimal
iff O′ ∈ [O].

Revision. Revision is the process of accommodating
new information while preserving satisfiability whenever
possible (Alchourrón, Gärdenfors, and Makinson 1985;
Peppas 2007). The new information is perceived as reli-
able, and it prevails over all conflicting knowledge in the
ontology. More precisely, the process of revision is for-
malised by means of a revision function “∗”, which maps
each theory K in a language L and each L-formula ϕ to
a new L-theory K ∗ ϕ; in this setting, the principle of
minimal change is formalised as a set of postulates that
each revision function ought to satisfy (Peppas 2007;
Alchourrón, Gärdenfors, and Makinson 1985).

Revision can be captured in our framework by us-
ing C+ to represent the new information and C− to be
the empty set. Furthermore, since in Belief Revision
no distinction is usually made between the languages
of K, ϕ and K ∗ ϕ, we will also assume that that lan-
guages LO, LO′ and LC coincide. In this setting, revision
functions can be defined as given next.

Definition 9. Let LO = LO′ = LC and LP be DLs. A
revision function ∗ is a binary function that maps each
LO-ontology O and each LC-constraint C of the form
C = (C+, ∅) to an ontology O ∗ C such that

(i) O ∗ C is LP-optimal in EvolLO′(O, C); and

(ii) If C+1 ≡ C
+
2 , then O ∗ (C+1 , ∅) ≡ O ∗ (C+2 , ∅).

Our next step is to show that revision functions as
in Definition 9 are consistent with the basic postulates
of Belief Revision. These postulates can be formulated
in the context of our framework as given in Figure 1.
Postulate R1 says that the result of the revision is also
an ontology in the relevant language; postulate R2 says
that the new information always holds after revision;
postulate R3 and R4 together state that, whenever the
new information does not contradict O, there is no
reason to remove any information from O; postulate
R5 says that satisfiability should be preserved whenever
possible (unsatisfiability is only acceptable if the new

information itself is unsatisfiable); finally, postulate R6
states that the syntax of the new information is irrelevant
to the revision process.

Theorem 10. Let LO = LO′ = LC and LP be DLs,
and let ∗ be a revision function as in Definition 9. Then,
function ∗ satisfies postulates R1 to R6 in Figure 1.

Contraction. Contraction is the process of retract-
ing information that is no longer considered to hold.
Like revision, contraction is defined using a func-
tion “÷” mapping each theory K and formula α to
a theory K ÷ α while satisfying a given set of pos-
tulates (Alchourrón, Gärdenfors, and Makinson 1985;
Peppas 2007). Similarly to revision, contraction can be
captured in our framework using a constraint C by set-
ting C+ = ∅ and C− to represent the information to be
retracted. Contraction functions can be defined in our
framework as follows.

Definition 11. Let LO = LO′ = LC and LP be DLs.
A contraction function ÷ is a binary function that maps
each LO-ontology O and each LC-constraint C of the
form C = (∅, C−) to an ontology O ÷ C such that

(i) O ÷ C is LP-optimal in EvolLO′(O, C); and

(ii) If C−1 ≡ C
−
2 , then O ÷ (C−1 , ∅) ≡ O ÷ (C−2 , ∅).

Contraction postulates can also be adapted to our
framework (Figure 1). Postulates C1 and C2 are self-
explanatory; C3 says that if O already conforms to C
(i.e., it does not entail any axiom in C−), then there
is no reason to change O; C4 says that tautologies are
the only sentences that cannot be retracted; C5, called
the recovery postulate, states that we can get back the
initial theory by first retracting some information and
then adding it back; finally, C6 is the analogue to R6.

Theorem 12. Let LO = LO′ = LC, and LP be DLs,
and let ÷ be a contraction function as in Definition 11.
Then, ÷ satisfies postulates C1-C4, and C6 in Figure 1.

Our contraction functions satisfy all postulates ex-
cept for the recovery postulate. Consider our running
example and let O1

ex = {β1, δ1} and C− = {γ1}. The
ontology O2

ex = {β1, JointDisorder v SkeletDisorder} is
Lmin-optimal, so let O1

ex÷C = O2
ex. Since O2

ex∪C− 6|= δ1,
we have O2

ex ∪ C− 6|= O1
ex, which falsifies C5. Failure to

satisfy C5 is hence intuitive (and expected).

Syntactic Repair. We finally show that “syntactic
approaches to contraction” in ontologies – often called
ontology repair techniques (Kalyanpur et al. 2005; 2006;
Schlobach et al. 2007) – can be easily captured in our
framework using the empty preservation language.



Algorithm 1: Evolution for finite LP
INPUT :O : satisfiable,

C = (C+, C−): LO′-conformant,
LP: finite and computable

OUTPUT :LO′-ontology O′

1 If C+ is unsatisfiable, Return O′ := O ∪ C+;
2 Om := max. subset of O such that Om ∪ C+ is

satisfiable and (Om ∪ C+) ∝ C;
3 S1 := {α | α ∈ allLP(sig(O)), and O |= α};
4 Sm := max. subset of S1 such that Om ∪ C+ ∪ Sm

is satisfiable and (Om ∪ C+ ∪ Sm) ∝ C;
5 Return O′ := Om ∪ C+ ∪ Sm.

Definition 13. Let O and U be ontologies s.t. O |= U .
A syntactic repair of O for U is an ontology O′ ⊆ O s.t.

(i) O′ 6|= α for each α ∈ U ; and

(ii) for all β ∈ O\O′, there is α ∈ U s.t. O′∪{β} |= α.

Syntactic repairs are in fact evolutions:

Proposition 14. Let LO = LO′ = LC, and LP = ∅.
Let O, U ∈ LO, and O′ ∈ LO′ be a syntactic repair of
O for U . Then, O′ ∈ EvolLO′(O, (∅, U)) is LP-optimal.

Note that there can be exponentially many different
syntactic repairs of O for U ; thus, the non-determinism
inherent to the choice of an optimal evolution already
manifests itself in syntactic approaches.

Computing Optimal Evolutions
Having established our framework, the focus in the re-
mainder of this paper will be on the computation of
LP-optimal evolutions of an ontology O.

Existence of an optimal evolution critically depends on
the properties of preservation language LP . In particular,
we will make a clear distinction between finite and
infinite languages, as given next.

Definition 15. A DL L over a signature Σ is finite if
for every finite Σ′ ⊆ Σ there are only finitely many non-
equivalent L-sentences over Σ′. Otherwise, L is infinite.
A finite DL L is computable if an algorithm allL exists
that given a finite signature Σ′ computes a set allL(Σ′) of
non-equivalent L-sentences over Σ′ such that any other
L-sentence over Σ′ is equivalent to some α ∈ allL(Σ′).

Finite Preservation Languages

Many practically relevant languages are finite and com-
putable as in of Definition 15; these include, for example,
propositional logic, the language Lmin, or the description
logic DL-Lite (Calvanese et al. 2007).

If LP is finite, an optimal LP-evolution is guaranteed
to exist provided that the constraints are conformant;
indeed, the closure ClLP(O) contains only finitely many
non-equivalent axioms, and thus the (non-empty) quo-
tient set Evol(O, C)\ ≡LP contains finitely many equiv-
alence classes. Furthermore, if LP is computable, then
Algorithm 1 computes one such LP-optimal evolution.

Theorem 16. Let LC ∪ LP ∪ LO ⊆ LO′ and let en-
tailment in LO′ be a decidable problem; let LP be finite
and computable, and let C be an LO′-conformant LC-
constraint. Then, Algorithm 1 computes an LP-optimal
LO′-evolution of a satisfiable ontology O under C.

Note that Algorithm 1 generalises the algorithm in
(Calvanese et al. 2010) for computing so-called Bold
Evolution Semantics for DL-Lite ontologies.

Infinite Languages: Inexpressibility
Many DLs, however, are infinite in the sense of Defini-
tion 15. We next study the case where LP is infinite
and present inexpressibility results for FL0 and EL.

More precisely, we consider the case where LP is
either FL0 or EL, and where LO and LO′ coincide with
LP; for each choice of LP, we provide an LO-TBox T
and conformant constraints C for which no LP-optimal
evolution of T under C exists. We focus on the simplest
case of contraction, where C− consists of a single axiom
of the form A v B with A and B atomic concepts.

Inexpressibility for FL0. Suppose that we want to
retract axiom γ1 in our running example from the sin-
gleton TBox Tex = {γ1} while maximally preserving all
FL0-consequences of T w.r.t. Σ = sig(T ) ∪ {located}.
Clearly, the FL0-closure of T w.r.t. Σ is an infinite set
containing all axioms Arthropathy u X v JointFinding
with X an FL0-concept over Σ; in particular, the fol-
lowing axioms αk are in the closure for each k ≥ 1:

Arthropaty u ∀locatedk.JointFinding v JointFinding.

Unfortunately, inexpressibility can already be shown in
this simple setting. Intuitively, each of these axioms αk

can be “recovered” without introducing the undesired
consequence γ1; furthermore, no finite subset of these
axioms entails the remaining ones. As a result, one would
need to recover an infinite set of axioms in the closure
in order to ensure maximality.

These intuitions can be made precise as given in the
following lemma.

Lemma 17. Let Σ = {A,B,R} with A,B concepts
and R a role, let T = {A v B}, and let Λ be the
following (infinite) set of axioms:

Λ = {A u ∀Rn.Z v B | n ∈ N, Z ∈ {A,B}}.
Then, the following conditions hold:

(i) Λ ⊆ ClFL0
(T );

(ii) Λ 6|= A v B;

(iii) if a finite Γ ⊆ ClFL0
(T ) satisfies Γ 6|= A v B, then

there is a finite Γ′ ⊆ Λ s.t. Γ′ ≡ Γ; and

(iv) each α ∈ Λ satisfies Λ \ {α} 6|= α.

Lemma 17 immediately leads to an inexpressibility
result for FL0: it suffices to consider T = {A v B}
and C = (∅, T ) and use Lemma 17 to show that no
FL0-optimal evolution of T under C exists.

Theorem 18. Let LO = LO′ = LP = FL0 and let
LC = Lmin. There exists an LO-TBox T , and an LC-
constraint of the form C = (∅, {α}) with ∅ 6|= α such that
no LP-optimal LO′-evolution of T under C exists.



Inexpressibility for EL. The logic EL is not only
more useful for ontology modeling than FL0, but fortu-
nately it also behaves better in terms of expressibility of
optimal evolutions. For example, consider the retraction
of the axiom γ1 in Tex, which illustrated our inexpressibil-
ity result for FL0. The EL analogue to the FL0-axioms
αk in our example are the following axioms α′k:

Arthropaty u ∃locatedk.JointFinding v JointFinding.

As in the case of FL0, any subset of these axioms can
be included in an evolution of Tex without regaining γ1;
in contrast to the previous case, however, it suffices to
recover the following axiom, which entails all the others:

Arthropaty u ∃located.> v Joint.

Inexpressibility results for EL originate from non-trivial
interactions between cyclic axioms of the form A v ∃R.A
and of the form ∃R.B v B. The former axiomatises
existence of R-connected instances of A and entails all
axioms of the form A v ∃Rn.A; the latter axiomatises
recursion and entails ∃Rn.B v B for each n ∈ N. The
“harmful” interaction between these kinds of axioms is
formally described by the following lemma.

Lemma 19. Let T be the following EL-TBox:

T = {Z v ∃R.A, A v ∃R.A, ∃R.B v B, A v B}.

Furthermore, for each k ∈ N, let

αk = Z v ∃Rk.(A uB);

βk = Z v ∃Rk.B;

Λk = {αi | 1 ≤ i ≤ k}.

Finally, let Λ =
⋃∞

k=1 Λk and let T ′ = T \ {A v B}.
Then, the following conditions hold:

(i) Λ ⊆ ClEL(T );

(ii) T ′ ∪ Λ 6|= A v B;

(iii) If a finite Γ ⊆ ClEL(T ) satisfies T ′ ⊆ Γ and Γ 6|=
A v B, then T ′ ∪ Λk |= Γ for some k ∈ N; and

(iv) T ′ ∪ Λk 6|= βk+1 for each k ∈ N.

Lemma 19 implies that, regardless of how large a
subset Γ ⊆ ClEL(T ) we pick as the result of contract-
ing T with A v B while preserving T ′, we can always
find k ≥ 1 such that Γ 6|= βk+1 and adding βk+1 to Γ will
not make us recover the undesired entailment A v B.
The following inexpressibility result immediately follows.

Theorem 20. Let LO = LO′ = LP = EL and let
LC = Lmin. There exists an LO-TBox T , and an LC-
constraint C = (C+, {α}) with C+ ⊆ T and C+ 6|= α such
that no LP-optimal LO′-evolution of T under C exists.

Contraction in EL
Lemma 19 suggests that inexpressibility can be over-
come by constraining the structure of T ; more precisely,
one could devise sufficient conditions for precluding
in ClEL(T ) either axioms of the form A v ∃R.A or ax-
ioms of the form ∃R.B v B. The former can be achieved

vArth

vCort

vJoint

vJDvSkel

vSD

Figure 2: Graph forOex = {β1, β2, γ1, δ1, . . . , δ5}. Abbre-
viations: “SD”, “Arth”, “Skel”, “JD” and “Cort” stand
for SkeletDisorder, Arthropaty, Skeleton, JointDisorder,
and Cortisone, respectively.

with a suitable acyclicity condition; the latter involves
precluding recursion.

In this section, we study EL-contraction under each of
these alternatives. For convenience, we restrict ourselves
to EL-TBoxes in normal form. We consider w.l.o.g. the
case where C− = {α} with α ∈ Lmin; furthermore,
instead of assuming C+ = ∅, we consider a slightly more
general setting where C+ may contain a “protected”
subset of axioms in T that must survive the contraction.

In our technical results, we restrict ourselves to a
preservation language LP that is a fragment of EL, and
which we call ELc.

Definition 21. The DL ELc consists of all EL-TBoxes
containing only axioms of the form Z v ∃w.Z ′, or of the
form ∃w.Z ′ v Z, where w is a word of roles and Z,Z ′

are either atomic concepts or >.2

Essentially, ELc disallows conjunction, but allows for
arbitrarily deep nesting of existential concepts on both
the left and right hand side of axioms. Thus, ELc is an
infinite language, in the sense of Definition 15.

Although extending this preservation language with
conjunction might increase the size of the computed
optimal evolutions by an exponential factor, we believe
that ELc is a sufficiently large fragment of EL to il-
lustrate the key issues involving existence of optimal
contractions. (Note that the inexpressibility result that
follows from Lemma 19 only relies on the preservation of
the ELc entailments βk = Z v ∃Rk.B). We conjecture
that the contraction algorithms presented in this section
can be extended to the case where LP = EL, and leave
the details for future work.

Contraction in acyclic EL
We next study contraction for EL TBoxes T under a
suitable acyclicity condition.

Acyclicity Our notion of acyclicity is formulated in
terms of the canonical model IT of T , and can be
checked in polynomial time w.r.t. the size of T .

2Note that w could be the empty word, in which case we
have a subsumption between atomic concepts.



Definition 22. A normalised EL-TBox T with canoni-
cal model IT = (∆IT , ·IT ) is acyclic if the graph (V,E)
consisting of nodes V = {vA | vA ∈ ∆IT } and (directed)
edges E = {(vA, vB) | (vA, vB) ∈ RIT for some role R}
is acyclic. With δ(T ) we denote the length of the longest
path in this graph. By ELa we denote the DL consisting
of all acyclic EL TBoxes in normal form.3

Our acyclicity condition generalises the usual acyclic-
ity condition in EL-terminologies (Baader et al. 2003;
Konev, Walther, and Wolter 2008); that is, the nor-
malisation of each acyclic EL-terminology is acyclic as
in Definition 22. In particular, the positive results pre-
sented in this section could be applicable to reference
bio-medical ontologies such as Snomed and (the EL
versions of) Nci, which are acyclic terminologies.

For instance, note that the (normalisation of) example
ontology Oex = {β1, β2, γ1, δ1, . . . , δ5} about skeletal
disorders is also acyclic. The interesting fragment of the
graph corresponding to the (normalisation of) Oex as
given in Definition 22 is depicted in Figure 2.4

Acyclicity of T immediately ensures that the closure
ClEL(T ) cannot contain axioms of the form A v ∃w.A
with A atomic and w a word of atomic roles. More
generally, acyclicity of T establishes a bound on the
quantifier depth of concepts that can occur on the right-
hand-side of an axiom derived from T .

Lemma 23. Let T ∈ ELa, let A be an atomic concept
or >, and let D an arbitrary EL-concept. If T |= A v D,
then depth(D) ≤ δ(T ).

In contrast to concepts on the right-hand side of
derived axioms, the quantifier depth of concepts on the
left-hand side is not limited by acyclicity, which makes
ELa an infinite language (e.g., recursive axioms such as
∃R.B v B, which entails ∃Rn.B v B for each n ∈ N, are
allowed in T ). Adding an axiom of the form C v D to
an acyclic T where depth(C) > δ(T ), however, will not
introduce new subsumption relations between atomic
concepts in T .

Lemma 24. Let T ∈ ELa, let C and D be EL-concepts,
and assume that depth(C) > δ(T ). If T 6|= A v B with
A and B atomic concepts, then T ∪ {C v D} 6|= A v B.

The contraction algorithm Algorithm AContr (see
Algorithm 2) computes an ELc-optimal contraction T ′
of an ELa-TBox T . The algorithm works as follows.

In Step 1, a TBox Tm ⊆ T conforming to C is (non-
deterministically) selected; this ensures that the output
T ′ preserves a maximal syntactic subset of T .(Note that
existence of such Tm is ensured by the preconditions
of the algorithm). Steps 2 and 3 compute the subset
S1 ∪ S2 of ELc-axioms in ClELc(T ) of quantifier depth
at most δ(T ); clearly, S1 ∪ S2 is finite and exponential

3The a in ELa stands for “acyclic”.
4For simplicity, we did not depict in Figure 2 the nodes

corresponding to >, Disorder, Steroid, ArthropatyTest and
JointFinding, as well as the nodes corresponding to the fresh
concepts introduced by normalisation.

Algorithm 2: AContr

INPUT : T ∈ ELa, C = (C+, C−), such that
C+ ⊆ T , C− = {α} for α ∈ Lmin, and
T 6∝ C−, C+ ∝ C−

OUTPUT : EL TBox T ′

1 Tm := max. subset of T s.t. Tm ∝ C− & C+ ⊆ Tm;
2 S1 := {α = Z1 v ∃w.Z2 | T |= α and |w| ≤ δ(T )};
3 S2 := {α = ∃w.Z1 v Z2 | T |= α and |w| ≤ δ(T )};
4 Sm := max. subset of S1 ∪ S2 s.t. Tm ∪ Sm ∝ C−;
5 S3 := {α = ∃w.Z1 v Z2 | T |= α and

|w| ∈ [δ(T ) + 1, 2× δ(T ) + 1]};
6 Return T ′ = Tm ∪ Sm ∪ S3.

in size. In Step 4, the algorithm computes a maximal
Sm ⊆ S1∪S2 that can be added to Tm without regaining
α. At this point, Algorithm AContr needs to consider the
axioms in ClELc(T ) with concepts of quantifier depth
greater than δ(T ). By Lemma 23, no such axiom of
the form A1 v ∃w.A2 exists; however, T might entail
ELc-axioms of the form ∃w.A1 v A2 with |w| > δ(T ),
and by Lemma 24 all such axioms must also be entailed
by each optimal evolution (since they cannot make us
recover α). Even if there can be infinitely many such
axioms, Algorithm AContr only computes in Step 5 those
of quantifier depth at most 2× δ(T ) + 1, which we prove
sufficient. The intuition behind this bound is given by
the following example.

Example 25. Consider the following TBox T :

T = {A v ∃R.C, C v ∃R.B, ∃R.B v B}

Clearly, T is acyclic with δ(T ) = 2. Let us apply Algo-
rithm AContr to T , C+ = {A v ∃R.C,C v ∃R.B} and
C− = {A v B}.5 We have Tm = C+ and

S1 = Tm ∪ {C v B,A v ∃R.B};
S2 = {∃R.Z v B, ∃R2.Z v B | Z ∈ {A,B,C}};
Sm = S1 ∪ {∃R.A v B, ∃R2.A v B, ∃R2.C v B};
S3 = {∃Rk.Z v B | Z ∈ {A,B,C}, 3 ≤ k ≤ 5}.

The algorithm then returns T ′ = Tm ∪ Sm ∪ S3. To
see that T ′ is optimal, consider, for example, axiom
β = ∃R10.B v B, which follows from T . Note that we
can decompose k = 10 as a sum of numbers from 3
to 5 as follows: k = 3 × 2 + 4; since ∃R3.B v B and
∃R4.B v B are in S3, we have T ′ |= β.

The following lemma makes the intuitions in Exam-
ple 25 precise. In particular, it shows that if β = ∃w.A v
B with |w| > 2× δ(T ) + 1 follows from T , we can “de-
compose” w and derive β from axioms in S3.

Lemma 26. Let T ∈ ELa and let α = ∃w.Zn v Z0 be
an ELc-axiom with |w| > (2 × δ(T ) + 1) s.t. T |= α.

5For simplicity, we do not include in sets Si axioms that
are already entailed by Tm



Algorithm 3: NRContr

INPUT : T ∈ ELnr, C = (C+, C−), such that
C+ ⊆ T , C− = {α} for α ∈ Lmin, and
T 6∝ C−, C+ ∝ C−

OUTPUT : ELnr TBox T ′

1 Tm := max. subset of T s.t. Tm ∝ C− & C+ ⊆ Tm;
2 Sm := max. subset of BCl(T ) s.t. Tm ∪ Sm ∝ C−;
3 Return T ′ := Tm ∪ Sm.

Then, there exists an integer ` ≥ 2, subwords u1, . . . , ul
of w, and concepts {Y0, . . . , Y`} ⊆ sig(T ) ∪ {>} where
Y` = Zn and Y0 = Z0 such that

(i) w = u1 ◦ . . . ◦ul with δ(T ) < |uj | ≤ (2× δ(T ) + 1);

(ii) T |= ∃uj .Yj v Yj−1 for each j ∈ [1, `].

We can now show the correctness of our algorithm.

Theorem 27. Algorithm AContr computes an ELc-
optimal evolution T ′ of T ∈ ELa under C. Furthermore
the size of T ′ is exponential in the size of T .

Contraction in non-recursive EL
We next study contraction for non-recursive EL-TBoxes.
The simplest non-recursive fragment of EL, which we
call ELnr, is defined as follows.

Definition 28. The DL ELnr consists of all normalised
EL-TBoxes where neither (i) > nor (ii) concepts of the
form ∃R.C occur on the left hand side of axioms.6

Note that ELnr can express cyclic axioms of the form
A v ∃R.A and hence ELnr 6⊆ ELa. Since ELa allows
for axioms with ∃R.C on any side, we also have ELa 6⊆
ELnr. Furthermore, the normalisation of an EL-TBox
T satisfying properties (i) and (ii) in Definition 28
leads to a TBox in ELnr. Note also that ELnr is an
infinite language, e.g., the ontology {A v ∃R.A} entails
infinitely many axioms of the form A v ∃Rn.A for
n ∈ N.

The contraction algorithm We describe algorithm
NRContr (see Algorithm 3), which computes an ELc-
optimal contraction T ′ of a TBox T ∈ ELnr.

Step 1 is identical to Step 1 in Algorithm AContr. In
Step 2, Algorithm NRContr computes a maximal subset
of axioms in the basic closure of T that can be added
to Tm without recovering the undesired entailment α.
The basic closure of any EL-TBox contains only ELnr-
axioms, so the output T ′ is an ELnr-TBox; furthermore,
the basic closure is of size polynomial in the size of T
(and hence so is the output T ′). We next illustrate the
intuition behind this algorithm with an example.

Example 29. Consider the following ELnr-TBox:

T = {Z v ∃R.A, A v ∃R.A, A v B}.

We apply NRContr to T , C+ = {Z v ∃R.A,A v ∃R.A},
and C− = {A v B}. We then have that Tm = C+ and

6The nr in ELnr stands for “non-recursive”.

|T \ Tm|
|Sm| |Sm ∩ Lmin| Time (s) # of

(max/avg/min) (max/avg/min) (avg) tests

1 150/24/0 52/5/0 135 52
2 282/76/7 96/24/0 217 51
3 616/206/9 195/70/0 176 51
4 822/447/92 257/138/26 169 39
5 826/530/281 281/162/75 165 42

Table 1: Summary of experimental results

Sm = {Z v ∃R.B,A v ∃R.B}; hence, the algorithm
returns T ′ = Tm ∪ Sm.7

To see that T ′ is ELc-optimal, we make two observa-
tions. First, a TBox T ∈ ELnr cannot entail ELc-axioms
of the form ∃w.C v C, unless C = >, which are then
tautological; note that ELnr does not allow for > on
the l.h.s. of axioms, and hence T |= > v C implies
C = >. Second, although T entails infinitely many ax-
ioms αk = A v ∃Rk.B for k ∈ N, these are entailed by
axioms A v ∃R.A and A v ∃R.B, which are in T ′.

These intuitions can be made precise, and we can then
show correctness of our contraction algorithm.8

Theorem 30. Algorithm NRContr computes an ELc-
optimal evolution T ′ of T ∈ ELnr under C. Furthermore
the size of T ′ is polynomial in the size of T .

Experiments
We have implemented an optimised version of Algo-
rithm 1 for the particular case of contraction for a
TBox T and an Lmin-axiom α (i.e., where C+ ⊆ T
and C− = {α}). Concerning the preservation language,
we have chosen the (finite) language that extends Lmin

with all axioms of the form D v E, with D and E
(possibly complex) subconcepts occurring in T .

In this setting, Step 2 in Algorithm 1 amounts to
computing a syntactic repair Tm of T for α. Our imple-
mentation uses the reasoner HermiT (Motik, Shearer,
and Horrocks 2009) and the OWL API facility for com-
puting justifications (Kalyanpur et al. 2007).

We have applied our algorithm to a fragment of
Snomed with 6802 atomic concepts. In each test, we
have selected an entailed subsumption relationship α at
random and computed the corresponding contraction;
we have recorded the size (number of axioms) in T \ Tm
(Step 2 in Algorithm 1), the size of Sm (Step 4 Algo-
rithm 1), the size of the Lmin-subset of Sm and the time
overhead w.r.t. computing a syntactic repair (i.e., the
computation time for Steps 3-5 in Algorithm 1).

Table 1 summarises the obtained results. Since there
is a clear correlation between the number of axioms
deleted by the syntactic repair (i.e., |T \ Tm|) and the
number of recovered entailments (i.e., |Sm|), we have
grouped our tests according to |T \ Tm|.

7For simplicity, we do not include in Sm axioms that
follow already from Tm.

8www.inf.unibz.it/˜zheleznyakov/krfull.pdf



LO = LO′ C− ∈ Lmin LP Evol. size

FL0 {α} FL0 Inexpressible
EL {α} EL Inexpressible
ELa {α} ELc Exponential
ELnr {α} ELc Polynomial

Table 2: Size of computed optimal evolutions, where α
is an atomic subsumption of the form A v B

Note that Sm contains surprisingly many axioms, es-
pecially when considering syntactic repairs that involve
the deletion of several axioms from T . To estimate the
degree of redundacy in Sm we have checked for each
axiom α ∈ Sm whether Tm ∪ (Sm \ {α}) |= α and found
that in more than 95% of cases such entailment does not
hold, and hence α is likely to be non-redundant. Thus,
a purely syntactic approach to contraction would result
in a substantial and unnecessary loss of information; as
shown in the table, such loss of information is already
significant if we consider Lmin as preservation language.

Finally, note that the computation of optimal con-
tractions implies an overhead of 2-4 minutes on average.
Moreover, this overhead does not depend on the size
of Sm. These times are promising, considering that our
implementation is an early-stage prototype.

Conclusion and Future Work
We have presented a logic-based framework for ontology
evolution that can capture revision and contraction at
a fine-grained deductive level. Our framework is novel
and it opens many possibilities for future research. In
particular, many challenging problems are left open;
these include decidability of checking whether an op-
timal evolution exists, and complexity of computing
optimal evolutions, among others. The relationships be-
tween the problem of computing optimal evolutions and
other relevant reasoning problems, such as computing
the logical difference between DL ontologies (Konev,
Walther, and Wolter 2008), also need to be explored.

We have studied contraction for the DLs FL0 and EL
and shown that, in general, optimal contractions cannot
be expressed using finitely many axioms. Note that one
could potentially overcome these inexpressibility results
by allowing the “target” language LO′ of the evolution
O′ to be a more powerful than the language LO in which
the original ontology O is expressed; however, on the
one hand, LO′ might have much less favourable compu-
tational properties than LO and, on the other hand, it
might not be possible to perform further contractions
on the evolved ontology O′. Furthermore, we conjecture
that the inexpressibility results presented in this paper
for LO = EL and LO = FL0 hold even if LO′ is an
expressive DL such as SHIQ (Horrocks, Sattler, and
Tobies 2000).

We have devised sufficient conditions for existence
of finite optimal contractions and proposed suitable
contraction algorithms for such cases (see Table 2 for a

summary of our results). We are currently working on
relaxing these sufficient conditions and extending them
towards EL++ (the DL underpinning the OWL 2 EL
profile), and we are also investigating the applicability
of our framework to the contraction of ABox assertions.

To test the feasibility of our approach in practice, we
have performed contraction experiments on a fragment
of Snomed using finite preservation languages. Our re-
sults suggest that syntactic approaches to contraction
(i.e., ontology repair techniques) lead to a significant
and unnecessary loss of (non-redundant) information. Al-
though from a practical point of view, users may intend
to recover only a part of all this missing information,
understanding the impact of changes is important in
ontology modeling (Konev, Walther, and Wolter 2008;
Jiménez-Ruiz et al. 2011), and knowing which entail-
ments could be “harmlessly” regained can be very valu-
able. Finally, we are planning to integrate our imple-
mentation in the ContentCVS ontology versioning
system (Jiménez-Ruiz et al. 2011) and to make our con-
traction algorithms for EL practical by making them
more “goal oriented” as well as by exploiting ontology
modularisation techniques (Cuenca Grau et al. 2008a).
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