
Parameterized Complexity of Weighted Satisfiability
Problems

Nadia Creignou1∗ and Heribert Vollmer2†

1 Laboratoire d’Informatique Fondamentale de Marseille, CNRS UMR 7279,
Aix-Marseille Université, 163 avenue de Luminy, F-13288 Marseille Cedex 9, France.

creignou@lif.univ-mrs.fr
2 Institut für Theoretische Informatik, Leibniz Universität Hannover, Appelstr. 4,

30167 Hannover, Germany.
vollmer@thi.uni-hannover.de

Abstract. We consider the weighted satisfiability problem for Boolean circuits
and propositional formulæ, where the weight of an assignment is the number of
variables set to true. We study the parameterized complexity of these problems and
initiate a systematic study of the complexity of its fragments. Only the monotone
fragment has been considered so far and proven to be of same complexity as the
unrestricted problems. Here, we consider all fragments obtained by semantically
restricting circuits or formulæ to contain only gates (connectives) from a fixed
set B of Boolean functions. We obtain a dichotomy result by showing that for
each such B, the weighted satisfiability problems are either W[P]-complete (for
circuits) or W[SAT]-complete (for formulæ) or efficiently solvable. We also
consider the related counting problems.

1 Introduction

Satisfiability of circuits and formulæ are fundamental problems, which are the core of
many complexity classes. This is true not only in the “classical” complexity setting
but also in parameterized complexity theory. Here, with each problem instance we
associate a parameter. Instances with the same parameter are thought to share a common
structure. A parameterized problem is fixed-parameter tractable (in FPT) if it can be
solved in polynomial time for each fixed value of the parameter, where the degree of
the polynomial does not depend on the parameter. Much like in the classical setting, to
give evidence that certain algorithmic problems are not in FPT one shows that they are
complete for superclasses of FPT, like the classes in the so-called W-hierarchy.

Weighted satisfiability (where the weight of a solution is given by the number
of variables assigned true) gives rise to a parameterized version of the problems of
satisfiability of circuits or formulæ. The goal is then to decide the existence of satisfying
assignments of weight exactly k, where k is the parameter. From a complexity theoretic
viewpoint, these parameterized problems are very hard since they are W[P]-complete
for circuits and W[SAT]-complete for formulæ (see, e.g., [8]).
∗ Supported by Agence Nationale de la Recherche under grant ANR-09-BLAN-0011-01.
† Work done while on leave at the University of Oxford. Supported by DFG VO 630/6-2 and

EPSRC EP/G055114/1.

This intractability result raises the question for restrictions leading to fragments
of lower complexity. Concerning formulæ such restrictions have been considered in
previous work. Indeed Marx [10] studied the parameterized complexity of satisfiability
problems in the famous Schaefer’s framework where formulæ are restricted to general-
ized conjunctive normal form with clauses from a fixed set of relations (the constraint
language). He obtained a dichotomy classification by showing that for every possible
constraint language the weighted satisfiability problem for generalized CNF formulæ
is either in FPT or W[1]-complete (thus, in any case, much lower than the W[SAT]-
completeness for general weighted SAT). A similar yet different approach is not to
restrict the syntactic shape of the formulæ by stipulating a certain normal form but rather
to require formulæ to be constructed from a restricted set of Boolean functions B (in
contrast to the Schaefer framework, one might say that these are semantic restrictions).
Such formulæ are called B-formulæ. This approach has first been taken by Lewis, who
showed that deciding satisfiability of B-formulæ is NP-complete if and only if the set
of Boolean functions B has the ability to express the negation of implication 6→ [9].
Since then this approach has been applied to a wide range of algorithmic problems
from the area of circuits [14,3] or propositional formulæ in, e.g., temporal logics [2] or
non-monotonic logics [5].

The goal of this paper is to follow this approach and to show that Post’s lattice allows
to completely classify the complexity of weighted satisfiability for all possible sets of
allowed Boolean functions. We consider both circuits and formulæ, and the complexity
of deciding whether they admit a satisfying assignment of weight exactly k. We show that
depending on the set B of allowed connectives the parameterized weighted satisfiability
problem is either W[P]-complete (for circuits) and W[SAT]-complete for formulæ, or in
P. More precisely, we prove that the complexity of these problems is W[P]-complete or
W[SAT]-complete (depending on whether they concern circuits or formulæ) as soon as
B can express either the function x∧ (y ∨ z), or any 2-threshold function as for example
the ternary majority function. The problem becomes solvable in polynomial time in all
remaining cases. Thus, in a sense, we exactly pinpoint the reason for intractability of
weighted satisfiability by exhibiting which Boolean functions make the problem hard.

Besides the decision problem, we study the complexity of the corresponding counting
problems. We prove here also a dichotomy theorem in showing that the problems
are either #W[P]-complete (or #W[SAT]-complete), or in FP. The frontier of this
dichotomy is not the same as in the decision case, since some tractable decision problems,
as, e.g., the weighted satisfiability problem in which only the connective→ is allowed,
become hard counting problems.

Our results are summarized in Fig. 1. White sets B of Boolean functions lead to easy
problems, black sets lead to hard problems. The gray colored nodes correspond to those
sets B for which the decision problems are easy, but the counting problems are hard.

The rest of the paper is structured as follows. We first give the necessary preliminaries.
Afterwards, we define the weighted satisfiability considered herein. We then classify the
parameterized complexity of these problems. Next, we consider the counting problems
and finally conclude with a discussion of the results.

2

2 Preliminaries

Parameterized complexity. We assume familiarity with the basic classes and reducibility
notions from parameterized complexity theory, see, e.g., [8,12], such as FPT, W[P],
W[SAT], fpt-reductions and Turing fpt-reductions.

Boolean circuits and propositional formulae. We assume familiarity with propositional
logic. A Boolean function is an n-ary function f : {0, 1}n → {0, 1}. We define Boolean
circuits (see also [17]) in the standard way as directed acyclic graphs with each node
of in-degree k > 0 labeled by a Boolean function of arity k. For non-commutative
functions, there is in addition an ordering on the incoming edges. Nodes of in-degree
0 are either labeled as Boolean constants 0 or 1, or as input nodes. In addition, one
node of out-degree 0 is labeled as the output node. We think of the input nodes as being
numbered 1, . . . , n. This definition of a Boolean circuit corresponds to the intuitive idea
that a circuit consists of a set of gates which are either input gates, or compute some
Boolean function with arguments taken from the predecessor gates. The value computed
by the circuit is the result computed in the distinguished output-gate. So, a circuit C with
n input nodes naturally computes an n-ary Boolean function, we denote it by fC .

We denote the value computed by C on input a ∈ {0, 1}n by C(a). If C(a) = 1, we
say that a satisfies C. We call C satisfiable if there is some tuple a ∈ {0, 1}n that satisfies
C. We define the weight of a tuple a = (a1, . . . , an) ∈ {0, 1}n to be

∑n
i=1 ai, the

number of 1-entries of a. We say C is k-satisfiable if it is satisfied by a tuple of weight
k. A circuit C is monotone if for all a = (a1, . . . , an) ∈ {0, 1}n such that C(a) = 1,
a1 ≤ b1, . . . an ≤ bn implies C(b1, . . . bn) = 1.

A formula ϕ is a circuit where the underlying graph forms a tree. Hence, such circuits
can always be written as a formula in the usual string representation without growing
significantly in size. For a general circuit, the length of its “formula representation”
can be exponential in the size of the original circuit. Further we denote by ϕ[α/β] the
formula obtained from ϕ by replacing all occurrences of α with β. The set Var(ϕ)
denotes the set of variables occurring in the formula

Deciding the k-satisfiability of a Boolean circuit, p-WCIRCUIT-SAT, where k is
taken to be the parameter, is of fundamental importance for parameterized complex-
ity theory. Indeed, p-WCIRCUIT-SAT is W[P]-complete under fpt-reductions (see [8,
Theorem 3.9]). Deciding the k-satisfiability of a Boolean formula, p-WSAT, is W[SAT]-
complete by definition.

Given B a finite set of Boolean functions, a B-circuit (resp. a B-formula) is a
Boolean circuit (a formula) using only functions (connectives) from B.

Clones of Boolean functions. A clone is a set of Boolean functions that is closed under
superposition, i.e., it contains all projections (that is, the functions f(a1, . . . , an) = ak
for 1 ≤ k ≤ n and n ∈ N) and is closed under arbitrary composition. Let B be a finite
set of Boolean functions. We denote by [B] the smallest clone containing B and call
B a base for [B]. The set [B] corresponds to the set of all Boolean functions that can
be computed by B-circuits. All closed classes of Boolean functions were identified by
Post ([13]). Post also found a finite base for each of them and detected their inclusion
structure, hence the name of Post’s lattice (see Figure 1).

3

In order to define the clones, we require the following notions, where f is an n-ary
Boolean function:

– f is c-reproducing if f(c, . . . , c) = c, c ∈ {0, 1}.
– f is monotonic (or, monotone) if a1 ≤ b1, a2 ≤ b2, . . . , an ≤ bn implies
f(a1, . . . , an) ≤ f(b1, . . . , bn).

– f is c-separating of degree k if for all A ⊆ f−1(c) of size |A| = k there exists an
i ∈ {1, . . . , n} such that (a1, . . . , an) ∈ A implies ai = c, c ∈ {0, 1}.

– f is c-separating if f is c-separating of degree |f−1(c)|.
– f is self-dual if f(x1, . . . , xn) ≡ ¬f(¬x1, . . . ,¬xn).
– f is affine if it is of the form f(x1, . . . , xn) = x1 ⊕ · · · ⊕ xn ⊕ c with c ∈ {0, 1}.

In the following we will often use well-known Boolean functions, as ∧, ∨, ¬,
⊕, → the implication function and the ternary majority operation maj (defined by
maj(x1, x1, x3) = 1 if and only if x1 + x2 + x3 ≥ 2). We will also refer to q-threshold
functions as functions f verifying f(x1, . . . , xn) = 1 if and only if

∑n
i=1 xi ≥ q.

Observe that maj is thus a ternary 2-threshold function. More generally Tn
k will denote

the k-threshold function of arity n.
A list of all clones with definitions and finite bases is given in Table 1 on page 5, see

also, e.g., [4]. Clones of particular importance in this paper, either because they are of
technical importance or because they mark points in Post’s lattice where the complexity
of our problems changes, are the following:

– The clone of all Boolean functions BF = [∧,¬] = [∧,∨,¬, 0, 1].
– The monotonic clones M∗, e.g., M2 = [∧,∨] and M = [∧,∨, 0, 1].
– The dual clones D∗, e.g., D2 = [maj].
– The disjunctive clones V∗, e.g., V = [∨, 0, 1].
– The conjunctive clones E∗, e.g., E = [∧, 0, 1].
– The affine clones L∗, e.g., L = [⊕, 0, 1].
– The implication clone S∗0, e.g., S0 = [→].

We will often add some function f /∈ C to a clone C and consider the clone C ′ =
[C ∪ {f}] generated out of C and f . With Post’s lattice one can determine this C ′

quite easily: it is the lowest clone above C that contains f . The following list contains
identities we will frequently use.

– [S02 ∪ {0, 1}] = [S12 ∪ {0, 1}] = BF

– [S00 ∪ {0, 1}] = [D2 ∪ {0, 1}] = [M2 ∪ {0, 1}] = [S10 ∪ {0, 1}] = M

– [S10 ∪ {1}] = [M2 ∪ {1}] = M1

– [S00 ∪ {0}] = [M2 ∪ {0}] = M0

– [D2 ∪ {1}] = S201, [D2 ∪ {0}] = S211

Let f be an n-ary Boolean function. A B-formula ϕ such that Var(ϕ) ⊇
{x1, . . . , xn} is a B-representation of f(x1, . . . , xn) if it holds that σ : Var(ϕ) →
{0, 1} satisfies ϕ if and only f(σ(x1), . . . , σ(xn)) = 1. Such a B-representation exists
for every f ∈ [B]. Yet, it may happen that the B-representation of some function uses
some input variable more than once.

4

Clone Definition Base

BF All Boolean functions {x ∧ y,¬x}
R0 {f ∈ BF | f is 0-reproducing} {x ∧ y, x⊕ y}
R1 {f ∈ BF | f is 1-reproducing} {x ∨ y, x↔ y}
R2 R0 ∩ R1 {x ∨ y, x ∧ (y ↔ z)}
M {f ∈ BF | f is monotone} {x ∧ y, x ∨ y, 0, 1}
M0 M ∩ R0 {x ∧ y, x ∨ y, 0}
M1 M ∩ R1 {x ∧ y, x ∨ y, 1}
M2 M ∩ R2 {x ∧ y, x ∨ y}
S0 {f ∈ BF | f is 0-separating} {x→ y}
Sn
0 {f ∈ BF | f is 0-separating of degree n} {x→ y,Tn+1

2 }
S1 {f ∈ BF | f is 1-separating} {x 9 y}
Sn
1 {f ∈ BF | f is 1-separating of degree n} {x 9 y,Tn+1

n }
Sn
02 Sn

0 ∩ R2 {x ∨ (y ∧ ¬z),Tn+1
2 }

S02 S0 ∩ R2 {x ∨ (y ∧ ¬z)}
Sn
01 Sn

0 ∩M {Tn+1
2 , 1}

S01 S0 ∩M {x ∨ (y ∧ z), 1}
Sn
00 Sn

0 ∩ R2 ∩M {x ∨ (y ∧ z),T3
2} if n = 2,

{Tn+1
2 } if n ≥ 3

S00 S0 ∩ R2 ∩M {x ∨ (y ∧ z)}
Sn
12 Sn

1 ∩ R2 {x ∧ (y ∨ ¬z),Tn+1
n }

S12 S1 ∩ R2 {x ∧ (y ∨ ¬z)}
Sn
11 Sn

1 ∩M {Tn+1
n , 0}

S11 S1 ∩M {x ∧ (y ∨ z), 0}
Sn
10 Sn

1 ∩ R2 ∩M {x ∧ (y ∨ z),T3
2} if n = 2,

{Tn+1
n } if n ≥ 3

S10 S1 ∩ R2 ∩M {x ∧ (y ∨ z)}
D {f ∈ BF | f is self-dual} {maj(x,¬y,¬z)}
D1 D ∩ R2 {maj(x, y,¬z)}
D2 D ∩M {maj(x, y, z)}
L {f ∈ BF | f is affine} {x⊕ y, 1}
L0 L ∩ R0 {x⊕ y}
L1 L ∩ R1 {x↔ y}
L2 L ∩ R2 {x⊕ y ⊕ z}
L3 L ∩ D {x⊕ y ⊕ z ⊕ 1}
E {f ∈ BF | f is constant or a conjunction} {x ∧ y, 0, 1}
E0 E ∩ R0 {x ∧ y, 0}
E1 E ∩ R1 {x ∧ y, 1}
E2 E ∩ R2 {x ∧ y}
V {f ∈ BF | f is constant or a disjunction} {x ∨ y, 0, 1}
V0 V ∩ R0 {x ∨ y, 0}
V1 V ∩ R1 {x ∨ y, 1}
V2 V ∩ R2 {x ∨ y}
N {f ∈ BF | f is essentially unary} {¬x, 0, 1}
N2 N ∩ D {¬x}
I {f ∈ BF | f is constant or a projection} {id, 0, 1}
I0 I ∩ R0 {id, 0}
I1 I ∩ R1 {id, 1}
I2 I ∩ R2 {id}

Table 1. The list of all Boolean clones with definitions and bases, where Tn
k denotes the

k-threshold function of arity n, 5

BF

R1 R0

R2

M

M1 M0

M2

S2
1

S3
1

Sn
1

S1

S2
12

S3
12

Sn
12

S12

S2
11

S3
11

Sn
11

S11

S2
10

S3
10

Sn
10

S10

S2
0

S3
0

Sn
0

S0

S2
02

S3
02

Sn
02

S02

S2
01

S3
01

Sn
01

S01

S2
00

S3
00

Sn
00

S00

D

D1

D2

E

E1 E0

E2

V

V0V1

V2

L

L0L1 L3

L2

N

N2

I

I0I1

I2

p-WSat(B):
W[SAT]-complete

in P
in P

p-WCircSat(B):
W[P]-complete

in P
in P

#p-WSat(B):
#W[SAT]-complete
#W[SAT]-complete

in FP

#p-WCircSat(B):
#W[P]-complete
#W[P]-complete

in FP

Fig. 1. Graph of all Boolean clones

Example 1. Let h(x, y) = x ∧ ¬y. An {h}-representation of the function x ∧ y is
h(x, h(x, y)).

3 Weighted Satisfiability Problems

Let B be a finite set of Boolean functions. We are interested in the complexity of
weighted satisfiability problems as a function of the set B of allowed connectives. We
define weighted satisfiability problems for B-circuits and for B-formulæ as follows:

Problem: p-WSAT(B)

Input: a B-formula ϕ and k ∈ N
Parameter: k

6

Question: Does ϕ have a satisfying assignment of weight exactly k?

The corresponding problem for circuits is denoted by p-WCIRCSAT(B).
Our goal is to obtain a complexity classification of these problems according to

B. Observe that if B1 and B2 are two finite sets of Boolean functions such that B1 ⊆
[B2], then every function of B1 can be expressed by a B2-formula, its so-called B2-
representation. This provides a canonical fpt-reduction from p-WCIRCSAT(B1) to
p-WCIRCSAT(B2): Given (C1, k) an input of the first problem, construct in logarithmic
space the pair (C2, k) in which C2 is obtained from C1 in replacing all B1-functions by
their B2-representation (observe that since B1 and B2 are not part of the input the cost
of computing these representations is not taken into account in the complexity of the
reduction). However, since the B2-representation of some function may use some input
variable more than once (see Example 1) this reduction is not necessarily polynomial
when we turn to formulæ. In order to avoid an exponential blow-up when dealing with
formulæ we will seek short representations, i.e., representations in which every variable
appears exactly once. We say that a set B efficiently implements an n-ary function f if
there is a B-formula ϕ that is equivalent to f(x1, . . . , xn) and in which each xi appears
exactly once. In that case the above reduction applies to formulæ as well, and we get a
canonical fpt-reduction from p-WSAT({f}) to p-WCIRCSAT(B).

4 The Complexity of Weighted Satisfiability Problems

In the following B denotes a finite set of Boolean functions,

Lemma 2. p-WSAT(B) is in W[SAT] and p-WCIRCSAT(B) is in W[P].

Proof. For circuits it follows from the fact that {∧,∨,¬} can represent all Boolean
functions. Therefore, p-WCIRCSAT(B) ≤fpt p-WCIRCSAT({∧,∨,¬}), the latter be-
ing in W[P] by definition, thus proving membership in W[P]. For formulæ the fact that
p-WSAT(B) ≤fpt p-WSAT({∧,∨,¬}) follows from [16, Theorem 4.7]. ut

Lemma 3. If B contains the constants 0 and 1, and if M ⊆ [B], then p-WSAT(B) is
W[SAT]-complete, and p-WCIRCSAT(B) is W[P]-complete.

Proof. It is proved in [1] that p-WSAT({∧,∨}) is W[SAT]-complete and that
p-WCIRCSAT({∧,∨}) is W[P]-complete. Since M ⊆ [B], either [B] = M or [B] = BF.
In both cases, since by assumption B contains the two constants and according to
[15, Lemma 4], B efficiently implements the functions ∧ and ∨. This shows that
p-WSAT({∧,∨}) ≤fpt p-WSAT(B), thus concluding the proof for formulæ. The same
reduction actually shows the hardness result for the circuit problem. ut

The following lemma shows that we can freely use the constant 1 as soon as the
function ∧ can be computed by a B-circuit.

Lemma 4. If [B] contains the conjunction function then p-WSAT(B ∪{1}) fpt-reduces
to p-WSAT(B) and p-WCIRCSAT(B ∪ {1}) fpt-reduces to p-WSAT(B).

7

Proof. Let ϕ be a B ∪ {1}-formula. Let ϕ′ := ϕ[1/t] ∧ t, where t is a fresh variable.
Since ∧ ∈ [B] the formula ϕ′ can be represented by a B-formula. Moreover, it is
clear that ϕ has a satisfying assignment of weight k if and only if ϕ′ has a satisfying
assignment of weight k + 1, thus showing that p-WSAT(B ∪ {1}) ≤fpt p-WSAT(B).
The same proof shows a similar result for circuits. ut

Dealing with the constant 0 requires additional tricks. First let us introduce variants
of our problems as technical tools: p-WSAT+(B) and p-WCIRCSAT+(B) denote our
original problems restricted to monotone instances. Let us observe that Lemmas 3 and 4
still hold for these variants. Obviously proving hardness for these variants is enough for
proving hardness for the original problems.

Definition 5. Let l be a positive integer. A formula ψ is l-costly if every satisfying
assignment of ψ has weight at least l.

Lemma 6. If for every non-negative integer k there exists a (k + 1)-costly B-
formula, then we obtain the reductions p-WSAT+(B ∪ {0}) ≤fpt p-WSAT+(B) and
p-WCIRCSAT+(B ∪ {0}) ≤fpt p-WCIRCSAT+(B).

Proof. Let ϕ be a monotone B∪{0}-formula. Let ψ be a (k+ 1)-costly B-formula over
m variables. Consider theB-formula ϕ′ obtained from ϕ in replacing every occurrence of
0 by ψ(y1, . . . , ym), where the yi’s are fresh variables. If there is a satisfying assignment
for ϕ of weight k, then it can be extended to a satisfying assignment of ϕ′ of same weight
by setting all the yi’s to 0. Conversely, any truth assignment to the variables of ϕ′ of
weight k makes the formula ψ false (since it is (k+ 1)-costly). Therefore, the restriction
of such an assignment to the variables of ϕ provides a satisfying assignment of ϕ of
weight at most k. Since by assumption ϕ is monotone this implies that ϕ is k-satisfiable.
To sum up, ϕ has a satisfying assignment of weight k if and only if ϕ′ has a satisfying
assignment of weight k, thus concluding the proof. The same proof holds for circuits.
Observe that in the reduction the size of ϕ′ is in the worse case the size of ϕ times the
size of ψ, which is an arbitrary function depending on k. Therefore, the reduction here is
an fpt-reduction, but not a many-one-log-space reduction as in Lemma 4. ut

Lemma 7. If [B] contains some q-threshold function (of arbitrary arity n ≥ q) where
q ≥ 2, then there exists an l-costly B-formula for any l ≥ 1.

Proof. Build a balanced tree of depth d whose gates are q-threshold functions, with
q ≥ 2. Every satisfying assignment of this tree must have weight at least qd. Thus,
in choosing d large enough, say such that qd > l, we can build this way an l-costly
B-formula. ut

Lemma 8. If D2 ⊆ [B], then p-WSAT(B) is W[SAT]-complete and p-WCIRCSAT(B)
is W[P]-complete.

Proof. Suppose that D2 ⊆ [B]. Note that in this case M ⊆ B ∪ {0, 1}. Therefore,
p-WSAT+(B ∪{0, 1}) is W[SAT]-complete and p-WCIRCSAT+(B ∪{0, 1}) is W[P]-
complete according to Lemma 3. The hardness result for the formula problem is proved
by the following sequence of reductions: p-WSAT+(B ∪ {0, 1}) ≤fpt p-WSAT+(B ∪

8

{0}) ≤fpt p-WSAT+(B) ≤fpt p-WSAT(B). The first reduction holds according to
Lemma 4 since [B ∪ {0}] is a superset of S211, and thus ∧ ∈ [B]. Observe that B can
express the ternary majority function (see Table 1), which is a 2-threshold function. Thus,
the second reduction follows from Lemma 7 and Lemma 6. As mentioned above the
last reduction is trivial. The same sequence of reductions provides the desired result for
circuits. ut

Lemma 9. If S10 ⊆ [B], then p-WSAT(B) is W[SAT]-complete, and
p-WCIRCSAT(B) is W[P]-complete.

Proof. Suppose that S10 ⊆ [B]. We still have M ⊆ [B ∪ {0, 1}], therefore
p-WSAT+(B∪{0, 1}) is W[SAT]-complete according to Lemma 3. Hardness is proved
by the following sequence of reductions: p-WSAT+(B ∪ {0, 1}) ≤fpt p-WSAT+(B ∪
{1}) ≤fpt p-WSAT+(B). The first reduction holds according to Lemma 7 and Lemma
6. Indeed [B ∪ {1}] is a superset of M1, and thus a superset of D2. For this reason
[B ∪ {1}] contains the ternary majority function, which is a 2-threshold function. The
second reduction follows from Lemma 4 since ∧ ∈ S10 and thus ∧ ∈ [B]. The same
sequence of reductions provides the desired result for circuits. ut

Lemma 10. If Sn00 ⊆ [B] for some n ≥ 2, then p-WSAT(B) is W[SAT]-complete and
p-WCIRCSAT≤(B) is W[P]-complete.

Proof. Observe that M = [Sn00 ∪ {0, 1}], and hence that M ⊆ [B ∪ {0, 1}] . Thus,
according to Lemma 3, p-WSAT+(B ∪ {0, 1}) is W[SAT]-complete. The lemma fol-
lows then from the following sequence of reductions: p-WSAT+(B ∪ {0, 1}) ≤fpt

p-WSAT+(B∪{0}) ≤fpt p-WSAT+(B). The first reduction holds according to Lemma
4 since M0 = [Sn00 ∪ {0}], and hence ∧ ∈ [B ∪ {0}]. Observe that Sn00 contains the
2-threshold function T2

n+1. Hence, the second reduction follows from Lemma 6 and
Lemma 7. The same sequence of reductions provides the desired result for circuits. ut

In the following lemmas we prove tractability results for circuit problems (tractability
for formulæ follows trivially as a special case).

Lemma 11. If [B] ⊆ V, or [B] ⊆ E, or [B] ⊆ L, then p-WSAT(B) and
p-WCIRCSAT(B) are in P.

Proof. The basic idea is to compute a normal form of the functions computed by such
B-circuits, from which it is easy to decide whether the circuits are k-satisfiable.

First, let V2 ⊆ [B] ⊆ V. Let C(x1, . . . , xn) be a B-circuit. The Boolean function
described by C can be expressed as fC(x1, . . . , xn) = a0 ∨ (a1 ∧ x1)∨ . . .∨ (an ∧ xn),
where the ai’s are in {0, 1}. The values ai, where 0 ≤ i ≤ n, can be determined easily
by using the following simple facts: a0 = 0 if and only if fC(0, . . . , 0) = 0 and ai = 0
for 1 ≤ i ≤ n if and only if a0 = 0 and fC(0i−1, 1, 0n−i) = 0. This can be checked
in polynomial time since the value problem for B-circuits is known to be in P (see
[14]).We conclude that the normal form, from which deciding k-satisfiability is easy,
can be computed efficiently.

Tractability for E2 ⊆ [B] ⊆ E follows as above in computing the dual normal form,
i.e., fC(x1, . . . , xn) = a0 ∧ (a1 ∨ x1) ∧ . . . ∧ (an ∨ xn).

9

Finally let L2 ⊆ [B] ⊆ L. The proof follows by computing the normal form as
fC(x1, . . . , xn) = a0⊕ (a1∧x1)⊕ . . .⊕ (an∧xn). Similar to the above the values ai’s
can be easily determined by n well-chosen oracles to the circuit value problem. Again
deciding k-satisfiability is easy from this normal form. ut

Lemma 12. If S00 ⊆ [B] ⊆ S0 then p-WSAT(B) and p-WCIRCSAT(B) are in P.

Proof. Observe that→ is the basis of S0. SinceB ⊆ S0 anyB-circuit can be transformed
in logarithmic space into an {→}-circuit in locally replacing each gate f ∈ B by its
{→}-representation. Note that such a circuit has satisfying assignments of all possible
weights (except may be the all-0 one). To see this, start from the output gate and go
backwards. At every gate take backwards the edge corresponding to the right argument
of the implication. Thus we get a path from the output gate to a ‘target-gate’ which is
either a variable or the constant 1 (the constant 0 does not appear by assumption). In
case of a variable, setting this variable to 1 is sufficient to satisfy the circuit. Therefore
from this we can build satisfying assignments of any weight ≥ 1. If by the described
procedure we reach the constant 1, then the circuit represents a tautology. The special
case of the all-0 assignment has to be dealt with separately. ut

We are now in a position to state our main result for weighted satisfiability decision
problems. Indeed a careful examination of Post’s lattice shows that the above lemmas
cover all the lattice and thus provide a complete classification.

Theorem 13. Let B be a finite set of Boolean functions.

1. If D2 ⊆ [B] or S10 ⊆ [B] or Sn00 ⊆ [B] for some n ≥ 2, then p-WSAT(B) is
W[SAT]-complete, and p-WCIRCSAT(B) is W[P]-complete under fpt-reductions.

2. In all other cases p-WSAT(B) and p-WCIRCSAT(B) are in P.

5 Complexity of the Counting Problems

There are natural counting problems associated with the decision problems studied
above.

Problem: p-#WSAT(B)

Input: a B-formula ϕ and k ∈ N
Parameter: k

Output: Number of satisfying assignments for ϕ of weight exactly k

The corresponding problem for circuits is denoted by p-#WCIRCSAT(B).
In the following, as proposed in [8], we use ≤fpt to designate a parsimonious fpt-

reduction, while ≤fpt-T will refer to a Turing fpt-reduction. Let us now introduce two
complexity classes, which are the counting analogues of W[SAT] and W[P]. To the best
of our knowledge, the class #W[SAT] has not been considered in the literature so far.

Definition 14. The class #W[SAT] is the closure of p-#WSAT({∧,∨,¬}) under fpt-
parsimonious reductions, that is

#W[SAT] := [p-#WSAT({∧,∨,¬})]fpt.

10

Whereas it was originally defined in terms of counting accepting runs of a κ-restricted
nondeterministic Turing machines, the class #W[P] can be defined in a similar way
(see, e.g., [8, page 366]):

Definition 15. The class #W[P] is the closure of p-#WCIRCSAT({∧,∨,¬}) under
fpt-parsimonious reductions, that is

#W[P] := [p-#WCIRCSAT({∧,∨,¬})]fpt.

Proposition 16. p-#WSAT(B) is in #W[SAT] and p-#WCIRCSAT(B) is in #W[P].

Proof. This follows from the proof of Lemma 2 in observing that all reductions are
parsimonious. ut

We first state two lemmas which allow to take care of the constants. The first one is
simply the observation that the reduction in Lemma 4 is parsimonious.

Lemma 17. If [B] contains the conjunction function then p-#WSAT(B ∪ {1}) parsi-
moniously fpt-reduces to p-#WSAT(B) and p-#WCIRCSAT(B ∪{1}) parsimoniously
fpt-reduces to p-#WCIRCSAT(B).

Given a formula ϕ, let #Satk(ϕ) denote its number of satisfying assignments of
weight exactly k.

Lemma 18. If [B] contains the disjunction function then p-#WSAT(B ∪ {0}) Turing
fpt-reduces to p-#WSAT(B) and p-#WCIRCSAT(B ∪ {0}) Turing fpt-reduces to
p-#WCIRCSAT(B).

Proof. Let ϕ be a B ∪ {0}-formula. Let ϕ′ := ϕ[0/f] ∨ f , where f is a fresh
variable. Since ∨ ∈ [B] the formula ϕ′ can be represented by a B-formula. More-
over, #Satk(ϕ′) = #Satk(ϕ) +

(
n

k−1
)
, thus showing that p-#WSAT(B ∪ {0}) ≤fpt

p-WSAT(B). The reduction consists of a precomputation phase, one oracle call, and
then some postcomputation, namely the summation of the result from the oracle and the
binomial coefficient; hence it is actually a 1-Turing fpt-reduction. The same reduction
holds for circuits. ut

Lemma 19. If M2 ⊆ [B], then p-#WSAT(B) is complete for the class #W[SAT] and
p-#WCIRCSAT(B) is complete for #W[P], both under Turing fpt-reductions.

Proof. First we prove that p-#WSAT({∧,∨,¬}) ≤fpt-T p-#WSAT({∧,∨}). Let ϕ be
a {∧,∨,¬}-formula. Without loss of generality one can suppose that ϕ is in negation
normal form, NNF. Indeed, if it is not the case one can transform it in NNF in polynomial
time in pushing the negation symbols in front of variables in applying de Morgan’s laws
and the double negation elimination. Now we use a well-known reduction to express a
general formula as conjunction of a monotone and a negated monotone formula. The
formula ϕ(x̄) = ϕ(x1, . . . , xn) is mapped to ψ(x1, . . . , xn, y1, . . . , yn) where ¬xi is
replaced by a fresh variable yi. This gives

#Satk(ϕ(x̄)) = #Satk(ψ(x̄, ȳ) ∧
∧n

i=1(xi ∨ yi) ∧ ¬
∨n

i=1(xi ∧ yi))
= #Satk(α(x̄, ȳ) ∧ ¬β(x̄, ȳ))

11

where α and β are {∧,∨}-formulæ defined by

α(x̄, ȳ) = ψ(x̄, ȳ) ∧
n∧

i=1

(xi ∨ yi) and β(x̄, ȳ) =

n∨
i=1

(xi ∧ yi).

Thus we have
#Satk(ϕ) = #Satk(α)−#Satk(α ∧ β).

Indeed, if a k-assignment satisfies α but not α ∧ β, then it satisfies α ∧ ¬β. Conversely
a k-assignment that satisfies α ∧ ¬β, satisfies α and does not satisfy α ∧ β. This proves
that p-#WSAT({∧,∨,¬}) 2-Turing fpt-reduces to p-#WSAT({∧,∨}).

Now, M ⊆ [B ∪ {0, 1}], hence there are short B ∪ {0, 1}-representations of ∧ and
∨ [15], therefore p-#WSAT({∧,∨}) ≤fpt p-#WSAT(B ∪ {0, 1}). Since both ∨ and
∧ are in M2, and thus in B we can get rid of the constants by applying successively
Lemmas 18 and 17.

For circuits p-#WCIRCSAT({∧,∨,¬}) is #W[P]-complete by definition (see Def.
15). The completeness of p-#WCIRCSAT({∧,∨}) results from the fact that the reduc-
tion from the weighted satisfiability of Boolean circuits to the weighted satisfiability of
monotone circuits given in [8, Thm 3.14] is parsimonious . Then the same sequence of
reductions as in the case of formulæ allows to conclude. ut

Lemma 20. If S10 ⊆ [B], then p-#WSAT(B) is complete for the class #W[SAT] and
p-#WCIRCSAT(B) is complete for #W[P], both under Turing fpt-reductions.

Proof. Observe that M1 ⊆ [B ∪ {1}], therefore, by Lemma 19, p-#WSAT(B ∪ {1})
is #W[SAT]-complete. The result is then obtained by the reduction p-#WSAT(B ∪
{1}) ≤fpt p-#WSAT(B), which follows from Lemma 17 since ∧ ∈ S10 ⊆ [B]. A
similar proof provides the result for circuits. ut

Lemma 21. If S00 ⊆ [B], then p-#WSAT(B) is complete for the class #W[SAT]
and p-#WCIRCSAT(B) is complete for #W[P]-complete, both under Turing fpt-
reductions.

Proof. Similar to the proof above in using the fact that p-#WSAT(B ∪ {0}) is
#W[SAT]-complete and the reduction p-#WSAT(B ∪ {0}) ≤fpt-T p-#WSAT(B),
which is obtained through Lemma 18. ut

Lemma 22. If D2 ⊆ [B], then p-#WSAT(B) is #W[SAT]-complete and
p-#WCIRCSAT(B) is #W[P]-complete, both under Turing fpt-reductions.

Proof. Observe that [D2 ∪ {1}] = S201, therefore according to Lemma 21 we get hard-
ness for p-#WSAT(B ∪ {1}). It remains to show that p-#WSAT(B ∪ {1}) ≤fpt

p-#WSAT(B). For this we will use some specific functions gl which belong to D2

(for they are self-dual) and which are defined as follows:

gl(x1, . . . , xl, 0) = x1 ∧ . . . ∧ xl, and gl(x1, . . . , xl, 1) = x1 ∨ . . . ∨ xl.

Let maj denote the ternary majority function, which is also a function from D2. Let ϕ be
a B ∪ {1}-formula. Consider ϕ′ defined by:

ϕ′ := maj(ϕ[1/t], t, gk+2(y1, . . . , yk+2, t)),

12

where t and the yi’s are fresh variables. Then we map (ϕ, k) to (ϕ′, k+ 1). Observe that
every assignment which sets t to 0 and that satisfies ϕ′ has at least weight k + 2 (and
thus is too costly). Now consider assignments that set t to 1 and that satisfies ϕ′. Either
they satisfy gk+2(y1, . . . , yk+2, 1) = y1 ∨ . . . ∨ yk+2 or they don’t. In the latter case
they have to satisfy ϕ. To sum up we have the following equality:

#Satk(ϕ′) =

k−1∑
j=1

(
k + 2

j

)(
n

k − j − 1

)
+ #Sat(k−1)(ϕ).

As in Lemma 18 above, we thus obtain a 1-Turing fpt-reduction. Note that we do not
obtain a Turing polynomial-time-reduction, since the time required to compute the B-
representation of gk+2 maybe too high; we only have parameterized polynomial-time.

ut

Lemma 23. If B ⊆ V, or B ⊆ E, or B ⊆ L, then p-#WSAT(B) is in FP.

Proof. Easy after having computed the normal form as in Lemma 11.

We are now in a position to state the full classification for the counting problems.

Theorem 24. Let B be a finite set of Boolean functions.

1. If D2 ⊆ [B] or S10 ⊆ [B] or S00 ⊆ [B], then p-#WSAT(B) is #W[SAT]-complete
and p-#WCIRCSAT(B) is #W[P]-complete, both under Turing fpt-reductions.

2. In all other cases p-#WSAT(B) and p-#WCIRCSAT(B) are in FP.

6 Conclusion

In this paper we obtained a complete classification of the parameterized complexity
of the weighted satisfiability problem, depending on the Boolean functions allowed
to appear, both for formulas and for Boolean circuits, and both in the decision and in
the counting context. It may seem a little disappointing not to see any involved FPT
algorithm in our classification, contrary to the classification of Marx [10] in Schaefer’s
framework that revealed some nontrivial FPT algorithms. However let us advocate that
Post’s framework does not seem well adapted to such nontrivial algorithms. Indeed in the
classifications that appeared in the literature in the past, the tractable cases usually turned
out to be trivially algorithmically solvable (with the possible exception of auto-epistemic
logic [5] in which a nontrivial algorithm was developed for the affine fragment).

Parameterized counting complexity was introduced in [7,11], but surprisingly is not
much developed so far. We see our paper also as a contribution to this study. While the
class #W[P] was introduced in [7] in analogy to W[P], we here introduced #W[SAT]
in analogy to W[SAT], and we present natural complete satisfiability problems for both
classes. So we believe our study makes a step towards a better understanding of counting
problems within parameterized complexity.

One might also consider the variants of the weighted satisfiability problem in which
the task is to find a satisfying assignment of weight at most k or at least k. Preliminary
results exist for the monotone fragment, see, e.g., [8,6]. We leave further results for these
variants as future work.

13

Acknowledgement. We are grateful to Arne Meier (Hannover) and Steffen Reith
(Wiesbaden) for helpful discussions.

References

1. K. R. Abrahamson, R.G. Downey, and M.R. Fellows. Fixed-parameter tractability and
completeness IV: On completeness for W[P] and PSPACE analogues. Annals of Pure and
Applied Logic, 73(3):235–276, 1995.

2. M. Bauland, T. Schneider, H. Schnoor, I. Schnoor, and H. Vollmer. The complexity of
generalized satisfiability for linear temporal logic. Logical Methods in Computer Science,
5(1), 2008.

3. E. Böhler, N. Creignou, M. Galota, S. Reith, H. Schnoor, and H. Vollmer. Boolean circuits
as a representation for Boolean functions: Efficient algorithms and hard problems. Logical
Methods in Computer Science, 2012. To appear.

4. E. Böhler, N. Creignou, S. Reith, and H. Vollmer. Playing with Boolean blocks I: Post’s
lattice with applications to complexity theory. SIGACT News, 34(4):38–52, 2003.

5. N. Creignou, A. Meier, M. Thomas, and H. Vollmer. The complexity of reasoning for
fragments of autoepistemic logic. ACM Transactions on Computational Logic, 2012. To
appear.

6. S. Dantchev, B. Martin, and S. Szeider. Parameterized proof complexity. Computational
Complexity, 20(1):51–85, 2011.

7. J. Flum and M. Grohe. The parameterized complexity of counting problems. SIAM J. Comput.,
33(4):892–922, 2004.

8. J. Flum and M. Grohe. Parameterized Complexity Theory. Springer, 2006.
9. H. Lewis. Satisfiability problems for propositional calculi. Mathematical Systems Theory,

13:45–53, 1979.
10. D. Marx. Parameterized complexity of constraint satisfaction problems. Computational

Complexity, 14(2):153–183, 2005.
11. C. McCartin. Parameterized counting problems. Annals of Pure and Aplpied Logic, 138(1-

3):147–182, 2006.
12. R. Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University Press, 2006.
13. E. Post. The two-valued iterative systems of mathematical logic. Annals of Mathematical

Studies, 5:1–122, 1941.
14. S. Reith and K. Wagner. The complexity of problems defined by Boolean circuits. In

Proceedings Mathematical Foundation of Informatics (MFI99), pages 141–156. World Science
Publishing, 2005.

15. H. Schnoor. The complexity of model checking for boolean formulas. Int. J. Found. Comput.
Sci., 21(3):289–309, 2010.

16. M. Thomas. On the applicability of Post’s lattice. CoRR, abs/1007.2924, 2010.
17. H. Vollmer. Introduction to Circuit Complexity. Springer Verlag, Berlin Heidelberg, 1999.

14

	 Parameterized Complexity of Weighted Satisfiability Problems
	Nadia Creignou and Heribert Vollmer

