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Abstract. LoCo is a fragment of classical first order logic tailored
for expressing configuration problems. The core feature of LoCo is
that the number of components used in configurations does not have
to be finitely bounded explicitly, but instead is bounded implicitly
through the axioms. Computing configurations reduces to model-
finding. We present the language, related algorithms and complex-
ity results as well as a prototypical implementation via answer set
programming.

1 Introduction

In this work we tackle the problem of technical product configura-
tion: Connect individual components conforming to a component
catalogue so as to meet a given objective while respecting certain
constraints. Solving such configuration problems is one of the ma-
jor success stories of applied AI research: Starting from early work
on rule based systems [16], manifold general purpose AI techniques
such as constraint satisfaction problem (CSP) and Boolean satisfia-
bility (SAT) solving, heuristic search, and description logics (DLs)
have successfully been applied to configuration — for a survey see
e.g. [14].

In the classical definition of a configuration problem the number
of components to be used is fixed [19]. In practice, however, the
number of components needed is often not easily stated beforehand.
Hence extensions of the standard CSP formalism were developed,
such as dynamic, composite or generative CSP [18, 21, 23], allowing
to model the dynamic activation of components during search. Dy-
namic and composite CSP reduce to classical CSP [24] as the num-
ber of additional components is explicitly bounded; generative CSP

allow infinite configurations.
Complementary to the CSP formalism and its variations there

has also been substantial research on logic-based configuration for-
malisms. Here, the conditional inclusion of components into config-
urations is commonly modelled using implication and/or a form of
existential quantification, a combination that easily leads to infinite
models/configurations. The first such logic-based formalisms were
based on DLs [4, 17], reducing the problem of finding a configuration
to constructing a model of a set of logical axioms. For DLs, the so-
called tree model property prohibits modelling configurations where
component connections form non-tree structures and, in general, the
models need not be finite. The logic-based version of generative CSP

presented in [9] also admits infinite models. In [12] it has been pro-
posed to model the conditional inclusion of components by evalu-
ating a positive existentially quantified first order sentence formed
using conjunction and a restricted form of implication over an ex-
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tensional finite constraint database. This work is closely related to
dynamic and composite CSP, and hence does not come with support
for describing component ports and connections. In [1] LoCo has
been introduced. LoCo is also a fragment of first order logic, allows
to describe arbitrary component topologies and implicitly bounds the
number of components needed through the axioms and a number of
explicitly bounded components. Configurations are found via model
construction. The standard use case of LoCo looks as follows:

• The user specifies the problem in LoCo; cf. Section 34.
• It is then decided whether the specified problem is finite, and, if

not, possible fixes are suggested. Finally bounds on the number of
components are computed (3); cf. Section 4.

• Then the specification is translated to executable code. In Section
5 we touch upon a translation into answer set programming.

The present work extends [1] as follows: We extend the language
of LoCo by axiom types (6) and (7). Next we present a stronger ver-
sion of Proposition 1 as well as complexity results related to enforc-
ing finite configurations. We show how integer programming can be
used for bounds computation instead of the propagation algorithm
presented in [1]. Finally we present a prototypical implementation.

2 The House Problem — Running Example
As a running example we use a simplified version of the House Prob-
lem that we received from our industrial partner Siemens [3]. This
is a disguised rack configuration problem, a layered version of bin
packing with side constraints.

The task is to put things of various types and sizes into cabinets
which have to be stored in rooms of the house. A cabinet has two
shelves, each providing a certain storage space for either things of
type A or B. Constraints on component attributes determine where
a thing or a cabinet can be stored: Big things can only be stored
in big cabinets whereas some cabinet need to be located at a certain
position in a room; in the case of two small cabinets one can possibly
be placed on top of the other in the same position. The goal is to find
a minimal number of cabinets, counting twice all big cabinets.

3 The Language of LoCo

Formally, LoCo is a fragment of classical first order logic with equal-
ity interpreted as identity. We also use existential counting quantifiers
and a variant of sorts for terms, but both these extensions reduce to
basic first order logic.
Components: Each of the different component types is modelled
as an n-ary predicate Component(id, ~x). Here id is the component’s
identifier, and ~x a vector of further component attributes.

4 Eventually this shall be done via a graphical user interface.



Sorted Attributes: The component attributes belong to different
sorts — e.g. numbers, strings, etc.. Using sorted variables and terms
simplifies notation. In particular, for each component type we intro-
duce one sort ID for the identifiers. We stipulate that the finitely many
different attribute sorts are all mutually disjoint.

We now show how our sorts can be accommodated in classical first
order logic —- this is very similar to the reduction of classical many-
sorted logic to pure first order logic (cf. e.g. [7]). We first introduce
unary predicates for each sort (e.g. ID for sort ID) and add domain
partitioning axioms:

(∀x)
_

S∈SORT S

S(x),

(∀x)
^

Si,Sj∈SORT S,i 6=j

¬(Si(x) ∧ Sj(x)).

Then, in a sorted formula, we replace each subformula (∀id)φ(id),
where the universal quantifier ranges over component identi-
fiers only, by (∀x)ID(x) ⇒ φ(x) and likewise (∃id)φ(id) by
(∃x)ID(x)∧φ(x) — this is the standard reduction from many-sorted
to classical FO. We postpone the discussion of how to treat sorted
terms until Section 3.1.
Counting Quantifiers: For restricting the number of potential con-
nections between components we use existential counting quantifiers
∃u

l with lower and upper bounds l and u such that l ≤ u, l ≥ 0 and
u > 0. For example, a formula ∃u

l xφ(x) enforces that the number
of different x (here x denotes a vector of variables), such that φ(x)
holds, is restricted to be within the range [l, u]. In classical logic
without counting quantifiers this can be expressed as

_
l≤n≤u

ˆ
(∃x1, x2, . . . , xn)[φ(x1) ∧ φ(x2) ∧ . . . ∧ φ(xn)] ∧

[
^

i,j∈{1..n},i 6=j

xi 6= xj ] ∧ [(∀x)φ(x)⇒
_

i∈{1..n}

x = xi ]
˜
.

As usual sorted quantifiers range over a single sort only. But occa-
sionally, by an abuse of notation, we will write e.g. ∃u

l xφ(x)∨ψ(x),
where φ and ψ expect different sorts. This abbreviates a formula en-
forcing that the total number of objects such that φ or ψ is between l
and u, where the disjunction is inclusive.
Connections: Configuration is about connecting components: For
every set {C1, C2} of potentially connected components we intro-
duce one of the binary predicate symbols C12C2 and C22C1, where
predicate Ci2Cj is of sort IDi × IDj . We allow connections from a
component type to itself, i.e., C2C. Connections between two com-
ponent types are axiomatized as follows:5

(∀id1, ~x) C1(id1, ~x)⇒ (1)

(∃u1
l1

id2) [C12C2(id1, id2) ∧ C2(id2, ~y) ∧ φ(id1, id2, ~x, ~y)]

This axiom specifies how many components of type C2 can be
connected to any given component of type C1. The purpose of the
subformula φ (with variables among id1, id2, ~x, ~y) is to express ad-
ditional constraints, like e.g. an aggregate function

P
n ≤ Capacity.

For these constraints we allow φ to be a Boolean combination of
arithmetic expressions and attribute comparisons (<,=, ...).

5 Throughout this paper free variables in formulas are to be read as existen-
tially quantified.

Example 1. In the House Problem each thing of type A needs to be
placed into exactly one cabinet; moreover, things that are big can
only be put in big cabinets:

(∀idTA, tSize, tBig) thingA(idTA, tSize,tBig)⇒

(∃11idC) thingA2Cab(idTA, idC) ∧ cab(idC , cSize,cBig,cTop) ∧
[(cBig = tBig) ∨ tBig = 0]

For some configuration problems it is necessary to distinguish dif-
ferent cases in the binary connection axioms:

(∀id1, ~x) C1(id1, ~x)⇒ (2)

[
_
i

(∃ui
li

id2) [C12C2(id1, id2) ∧ C2(id2, ~y) ∧ φi(id1, id2, ~x, ~y)]],

where the intervals [li, ui] are non-overlapping and
φi(id1, id2, ~x, ~y) may be a different formula for each case.6

An even higher level of granularity can be reached by completely
unfolding the existential counting quantifiers.

Example 2. When connecting positions and cabinets we wish to dif-
ferentiate between the cases where exactly one or two cabinets are
connected to a position:

(∀idP ) pos(idP )⇒

[(∃11idC) cab2Pos(idC , idP ) ∧ cab(idC , size,big,top)

∧ top = 0] ∨

[(∃22idC) cab2Pos(idC , idP ) ∧ cab(idC , size,big,top) ∧
big[1] = 0 ∧ big[2] = 0 ∧
[(top[1] = 1 ∧ top[2] = 0) ∨ (top[1] = 0 ∧ top[2] = 1)]]

Each case has a separate constraint part φ. When l = u in the
counting quantifier we can address each component instance and the
respective attributes individually, abbreviated here as e.g. big[1] and
big[2]. While the order of the instances is not defined there clearly
exists a permutation such that the constraint is satisfied.

Whenever possible an axiom for the reverse direction should be
included, too:

(∀id2, ~x) C2(id2, ~x)⇒ (3)

(∃u2
l2

id1) [C12C2(id1, id2) ∧ C1(id1, ~y) ∧ ψ(id1, id2, ~x, ~y)]

We stipulate that the upper bound u of the counting quantifier is
greater than zero in all connection axioms; an omitted upper bound
means arbitrarily many components may be connected whereas an
omitted lower bound is read as zero.

Next there are also rules for supporting one-to-many connections
(4), i.e. connecting one component with a set of components.

(∀id1, ~x) C(id1, ~x)⇒ (4)

(∃u
l id2) [

_
i

C2Ci(id1, id2) ∧ Ci(id2, ~y)]

In this rule the quantifier ∃u
l ranges over the i > 1 different ID

sorts. Note that the single component on the left hand side is not
allowed to be part of the set.

6 Note that there are unique smallest, and biggest, li, and ui, respectively.



Example 3. In the House Problem a cabinet has a separate binary
connection to each type of thing determining that the number of in-
stances that can be stored lies between zero and a certain upper
bound. To make sure that there are no empty cabinets in our model,
the following one-to-many axiom states that each generated cabinet
needs to have at least one thing placed in it:

(∀idC , cSize,cBig,top) cab(idC , cSize,cBig,top)⇒
[(∃1idT ) [thingA2Cab(idT , idC) ∧ thingA(idT , tSize,tBig)] ∨
[thingB2Cab(idT , idC) ∧ thingB(idT , tSize,tBig)]

The exclusive-or variant of the axiom looks as follows, with l, u
the same in all disjuncts:

(∀id, ~x) C(id, ~x)⇒
M

i

[(∃u
l idi)C2Ci(id, idi) ∧ Ci(idi, ~y)] (5)

We stipulate for every one-to-many connection that the component
on the left-hand side needs to have binary connections coming in
from all components appearing on the right-hand side.

For some configuration problems it may be necessary to address
the individual connected components in a one-to-many connection
instead of the whole set. To this end we introduce the following form
of a connection axiom:

(∀id, ~x) C(id, ~x)⇒ (6)

[
_
i

[
^
j

(∃
nij
nij

idj)C2Cj(id1, idj) ∧ Cj(idj , ~yj)] ∧ φi(id, idj , ~x, ~yj)]

The component C can be connected to a number of components
Cj — butC cannot be among theCj . The rule has i cases: Each case
i states for each of the components Cj the exact number nij of con-
nections between C and Cj . Note that we allow nij = 0, but there
must not be two disjuncts with identical bounds nij for all partaking
components Cj ; hence all the i cases are mutually exclusive. This
axiom type can express the other one-to-many connection axioms as
long as no upper bounds in the counting quantifier are omitted: All
the different possible cases can be enumerated.

As a last type of connection axiom we introduce a “connection-
generating” axiom for expressing that some connections depend on
the presence of others:

(∀) φ(~x)⇒ C12C2(id1, id2). (7)

Here φ(~x) is a Boolean combination of components, connections
and arithmetic and attribute comparisons.

Example 4. In the House Problem we wish to express that if a thing
belonging to a person is stored in a room then the room belongs to
the person. Note that things are stored in cabinets which are stored
in positions belonging to rooms.

(∀) [pers(idPE) ∧ thingA(idTA, ~attrT ) ∧ pers2Thing(idPE, idTA) ∧
cab(idC , ~attrC) ∧ thingA2Cab(idTA, idT ) ∧ pos(idPO) ∧
cab2Pos(idC , idPO) ∧ room(idR) ∧ pos2Room(idPO, idR)]⇒

room2Pers(idR, idPE)

3.1 Specifying Configuration Problems
The specification of a configuration problem in our logic consists of
two parts:

• domain knowledge in the form of the connection axioms, naming
schemes, a component catalogue and an axiomatisation of arith-
metic; and

• instance knowledge in the form of component domain axioms.

Below we will speak of input and generated components. The in-
tuition is that only for the former we know exactly how many are
used in a configuration from the beginning. We stipulate that a con-
figuration problem always includes at least one component of the
input variant.

3.1.1 Domain Knowledge

Domain knowledge consists of connection axioms, a specification of
the attribute ranges and the component catalogue.
Connection Axioms Connection axioms take the form introduced
above.
Ports Component ports are modelled as individual components in
LoCo. A normal component may have many ports (i.e. be connected
to many port components); however, each port belongs to exactly one
component.

Example 5. Position is used as a component port of a room to place
cabinets in it at a certain location. The connection of a component
port has the same structure as a binary connection axiom:

(∀idR) room(idR)⇒

(∃41idP ) room2Pos(idR, idP ) ∧ pos(idP )

Attribute Ranges For all attribute sorts a naming-scheme is in-
cluded. For ordinary component attributes these take the form (8)
for sort predicate T and some first order formula φ(x):

(∀x) T (x) ≡ φ(x). (8)

For component attributes of sort ID the naming-scheme has the
form (9); i.e. components are numbered:

(∀x)T (x)⇒ (∃n)x = TName(n). (9)

The form (9) allows terms not to be component identifiers even
if they are a component number: We introduce a sort EXCESS with-
out naming-scheme axiom and the names of components not used
in a configuration can be discarded by assigning them to this type.
Finally, for every component type we introduce an axiom

(∀idi, idj , ~x, ~y) [ C(idi, ~x) ∧ C(idj , ~y) ∧ idi = idj ]⇒ ~x = ~y

expressing the fact that, in database terminology, the respective ID

is a key. Unique name axioms for all distinct terms are included, too.
Finally, the domain knowledge might include domain dependent ax-
iomatizations of attribute value orderings or e.g. finite-domain arith-
metic.
Component Catalogue For each component type the catalogue con-
tains information on the instances that actually can be manufactured.
In LoCo this is done with an axiom:



(∀id, ~x) C(id, ~x) ≡
_
i

~x = ~Vi,

where the ~Vi are vectors of ground terms. If the component has no
attributes the axiom is omitted.

3.1.2 Instance Knowledge

The subdivision of the component types into components of type in-
put and of type generated takes place on the instance level. Note that
a component being input does not mean we have to specify all the
component’s attribute values, it only means we know exactly how
many instances of this component we want to use.

For components C of the input variant we make a closure assump-
tion on the domain of the components identifiers:

(∀x) ID(x) ≡
_

IDi∈ID

x = IDi.

where ID is a finite set of identifiers IDi and ID is the respective
sort predicate. This axiom is stronger than the naming-scheme for the
component; hence, if a configuration exists, identifiers mentioned in
the naming-scheme axiom but not in the domain closure axiom can
only belong to the sort EXCESS.

On the instance level components to be used in the configuration
can be listed, too. This can be done via ground literals or via formulas
of the form (∃)C(id, ~x) or (∀)¬C(id, ~x), where id, ~x may be vari-
ables or terms. Known (non-)connections can be specified via ground
literals like e.g. ¬C12C2(ID1, ID2). Similar to input components we
support closure axioms on connections

(∀) Ci2Cj(idi, idj) ≡
_

(idi = ID1 ∧ idj = ID2).

4 Enforcing Finite Configurations

Next we discuss how to enforce that configurations contain only
finitely many components.

4.1 Locally Bounding Component Numbers

We start by discussing in which way the connection axioms can be
used to locally bound the number of components used. Let us first
introduce some notation: Let C denote the set of components of type
C that can be used in a configuration. Let |C| denote this set’s car-
dinality and lb(C) and ub(C) the lower and upper bound on the set’s
cardinality. Then assume a binary connection defined by formulas (1)
and (3). For component C2 we then have:

l1 ∗ lb(C1) ≤ u2 ∗ |C2| and l2 ∗ |C2| ≤ u1 ∗ ub(C1) (10)

Connecting the elements of C2 to as many elements of C1 as possi-
ble (u2) while making only the minimum number of connections in
the backwards direction (l1) gives a lower bound on the cardinality
of C2 if we assume |C1| to be as small as possible. The intuition be-
hind the upper bound is analogous. Observe, however, that we cannot
derive the desired finite bound if l2 = 0 or C1 is not finitely bounded.
We disregard the “constraint formulas” φ and ψ for this calculation.

Next assume we have a basic one-to-many connection axiom (4)
fromC to severalCi with bounds l, u and a binary connection axiom
from each Ci to C with bounds li, ui. Here we get:

X
i

li ∗ lb(Ci) ≤ u ∗ |C| and l ∗ |C| ≤
X

i

ui ∗ ub(Ci) (11)

In the case of an exclusive disjunction in the one-to-many axiom
(5) we get:

X
i

lb(xi) ≤ |C| ≤
X

i

ub(xi) with (12)

li ∗ lb(Ci) ≤ xi ∗ u and xi ∗ l ≤ ui ∗ ub(Ci)

The number of times case i applies is reflected by xi. We observe
that for both formulas (11) and (12) we need l > 0 and all the Ci to
be finitely bounded for C to be finitely bounded, too.

Next consider a general one-to-many axiom (6) and let lj , uj de-
note the lower and upper bounds in the binary connection axiom in
the direction from Cj to C. Denote by xi the number of times case i
applies. Then we have for

X
i

lb(xi) ≤ |C| ≤
X

i

ub(xi) with (13)

lj ∗ lb(Cj) ≤
X

i

xi ∗ nij ≤ uj ∗ ub(Cj)

Equations similar to the ones we just presented can also be found
in [8], a work that proposes (1) to model configuration problems via
UML and (2) to solve them via integer programming. We note that
LoCo is considerably more general, though.

4.2 Globally Bounding Component Numbers
We formalize these local interactions between different component
types via the configuration graph. This is a directed and-or-graph
where the different component types are the vertices. An edge from
C1 to C2 means C1 can be finitely bounded if C2 is; an and-edge
from C to several Ci means C can be finitely bounded if all of the
Ci are. The notion of a path in such a graph is the natural tree-like
generalization of a path in a directed graph.

If we have local condition (10) with l2 > 0 we include an edge
from C2 to C1. For local conditions (11) and (12) we include an and-
edge fromC to allCi if l > 0. If we have an axiom (6) we include an
and-edge fromC to allCj if there is no disjunct such that all nij = 0
in the one-to-many axiom.

A configuration graph maps in a very natural way to a set of Horn
clauses: Each component type becomes a propositional letter. For an
edge from C1 to C2 include the clause C2 ⇒ C1; for an and-edge
from C1 to some Ci include (

V
i Ci)⇒ C1.

Satisfiability for Horn formulas can be checked efficiently with
the well-known marking algorithm [6], mimicking unit resolution
for Horn clauses: It repeatedly marks those heads of clauses whose
literals in the clause body are all marked.

From this it follows that in linear time it is possible to decide
whether user-defined input components suffice to make the config-
uration problem finite: Initially mark all input components and run
the standard Horn algorithm. Now all components are marked iff the
problem is finite, meaning that in all models of the specification all
component sets have finite cardinality.

Proposition 1 (Finiteness of configurations). It can be decided in
linear time whether a given configuration problem is finite.

Observe that this is a stronger result than the one presented in [1]:
Whenever the algorithm returns “no” the model can be made infinite
by adding components that are not connected to other components.



Finding smallest sets of “input” components

If the user-defined input components do not make the problem fi-
nite we might want to recommend a smallest fix. This amounts to
the following problem: Given a directed graph, find some smallest
set S of vertices such that for every vertex there is a path ending in
some vertex in S or the vertex is in S already. If the graph is acyclic
taking all sinks suffices. If there are only binary connections we can
contract all cycles and then take all sinks in the resulting graph in
O(NumberOfComponentTypes + NumberOfAxioms); this set is a
unique representation of all cardinality-minimal sets of components
that if input make the problem finite.

If there are cycles and one-to-many connections there no longer is
such a unique set. We can still find all inclusion-minimal such sets,
again using the Horn algorithm, as follows. Let Φ be a set of definite
Horn clauses, obtained as above from a configuration graph. We first
mark all variables corresponding to sinks in the graph and put them
on a list ilist, since these will have to be input components in all
finite models. Then we run the marking algorithm. If now all com-
ponents are marked we output ilist and are done. Otherwise we
call a recursive procedure enum. It uses on the one hand the marking
algorithm from Horn logic to mark variables with 1, but additionally
marks certain variables with 0 (meaning they are not chosen as input
components). More precisely the procedure works as follows:

1. Let x1 be the smallest non-marked variable in Φ. Mark x1 with 1
and put it on ilist, i.e., pick x1 to be an input component.

2. Run the marking algorithm.
3. If now all variables are marked 1 then output ilist, otherwise

recursively call enum. (Note that since x1 is marked the number
of unmarked variables has decreased, but is still nonempty.)

4. Mark x1 with 0, i.e., try x1 not to be an input component.
5. Determine if the configuration problem can actually be made fi-

nite without picking x1 as input component. (This test can be per-
formed by setting all the still unmarked variables to 1, hypothet-
ically running the marking algorithm and checking if in this way
all variables will receive mark “1”.) If yes, then recursively call
enum. (Note that since x1 is marked the number of unmarked
variables has decreased, but is still nonempty.)

Note that every time, enum is called, the following two invariants
hold: First, the problem can be made finite by making a subset of the
unmarked variables input components. Second, by making all vari-
ables on ilist input components, all components corresponding to
variables marked by 1 will be finite.

Also note that every time, enum is called, we will output one suc-
cessful configuration after a number of steps that is polynomial in the
number of variables, since in the worst case we will choose all re-
maining (unmarked) variables as input components. Such algorithms
are called enumeration algorithms with polynomial delay [13].

Proposition 2 (Enumerating inclusion-minimal sets of inputs).
There is a polynomial-delay algorithm that enumerates all inclusion-
minimal sets of components that suffice to make the configuration
problem finite.

Note that there may be exponentially many such inclusion-
minimal sets. Finding sets of input components that are of minimal
cardinality turns out to be harder:

Proposition 3 (Cardinality-minimal sets of inputs). The problem to
decide whether there is a set of components of size at most k that
suffice to make the configuration problem finite is NP-complete.

Proof sketch:. Finding a minimal key for a database under functional
dependencies is NP-complete [15]. A subset K of the database at-
tributes A is a key if K and the functional dependencies determine
all of A. Logically this problem can be expressed as follows: The at-
tributes A become atomic propositions A. A functional dependency
C → B becomes an implication (

V
C) ⇒ (

V
B); i.e. it can be ex-

pressed as Horn clauses.

We may assume that in practice the user incrementally adds input
components to the problem until it becomes finite. Hence inclusion-
minimal sets of inputs are of greater practical relevance.

4.3 Computing Bounds on Component Numbers
Given that the problem is finite we wish to compute bounds on the
number of components needed. We observe that the local conditions
(10), (11), (12) and (13) can naturally be expressed in integer pro-
gramming. Hence lower and upper bounds can be computed by solv-
ing two integer programs per generated component. On the other
hand, an arbitrary integer programming problem can be reduced to
a LoCo problem giving rise to condition (13) and we have:

Proposition 4 (Bounds computation is NP-complete). Computing
lower and upper bounds on the number of components needed to
solve a configuration problem in LoCo is NP-complete.

But just how many components can we have in the worst case?
Assume we have 2n binary connection axioms forming a path
(C1, C2, . . . , Cn) in the configuration graph, with Cn the only in-
put component and u the same in all axioms. We can then generate
up to un instances of C1, i.e. exponentially many. In this context it
is worth pointing out that cycles in the graph can lead to smaller, but
not to larger, upper bounds.

While this exponential blow-up can not be avoided we could ease
the task of bounds computation by settling for less tight bounds: For
each generated component we can read off an upper bound from the
longest path in the configuration path leading to an input compo-
nent. But tighter bounds of course mean a smaller search space after
translating LoCo problems into executable formats such as constraint
programming or SAT.

5 Implementing LoCo

The major objective in the design of LoCo was to ensure finite-
ness of the logical models without forcing the knowledge engineer
to finitely bound everything herself. This finiteness of configurations
also gives us access to state-of-the-art software for solving combi-
natorial search problems via SAT solvers or constraint and integer
programming.

We have prototypically implemented LoCo in answer set program-
ming using the Potassco framework [11]. A detailed description of
the translation is beyond the scope of this paper and, together with a
thorough evaluation, subject of future work.

Example 6. The following code snippet shows the transformation of
a binary connection, one of the cornerstones of our formalism:

1{thingA2Cab(T,C):cabGen(C)}1 :- thingA(T).
1{thingA2Cab(T,C):thingA(T)}cMax :- cab(C).
:- thingA2Cab(T,C), not cab(C).
:- not c1(T,C), thingA2Cab(T,C).
c1(T,C) :- thingA2Cab(T,C), tBig(T,B), B==0.
c1(T,C) :- thingA2Cab(T,C),

tBig(T,TB), cBig(T,CB), TB==CB.



Line 1 represents the connection from thing to cabinet as shown
in Example 1 while line 2 represents the reverse direction. Both lines
use so-called cardinality constraints [22]: Line 1 means that there is
exactly one ground instance of the predicate thingA2Cab(T,C)
for every T such that C and T are identifiers of cabinets and things
of type A. The condition part (cabGen(C)) in such rules must be
specified by ground facts in the knowledge base. Hence our knowl-
edge base contains all instances of thingA and cabGen; the latter
are the finitely many component instances which might be used in the
configuration. The instances of cab are those that actually are used.
The integrity constraint in line 3 ensures that every cabinet that fea-
tures in a connection also is in the extension of the cab predicate.
Lines 4-8 depict the mapping of the constraint part (see Example
1). The integrity constraint in line 4 states that for every connection
between a thing and a cabinet the constraint c1 must hold. The fol-
lowing lines represent the mapping of a disjunction, i.e. either thing
is not big (line 5) or thing and cabinet have the same value for at-
tribute big (lines 6-7). Using similar transformation steps we further-
more are able to map arbitrary Boolean combinations of arithmetic
expressions, attribute comparisons and aggregate functions.

The translation of the other axiom types of LoCo is along the same
lines, but considerably more involved. Note that we explicitly repre-
sent all generated components that might be used in the configuration
(there is a finite upper bound); however, this may be exponentially
many in the size of the domain axiomatization.

After translating LoCo problems to answer set programs as
sketched above deciding satisfiability of the ground programs is
known to be NP-complete [22]. For non-ground programs, however,
this bound does not hold; in fact, answer set programming with vari-
ables is NEXPTIME-complete [5].

Preliminary experimental results are very encouraging, however:
For the House Problem we can compete with the hand-written prob-
lem encoding in answer set programming presented in [10]; our
translation yields a very similar program. On the Partner Units Prob-
lem, another challenging configuration problem, we reach the same
performance as the answer set program presented in [2] if for the
latter the problem-specific search strategy is turned off.

6 Future Work

The big open theoretical question of this work is whether the task of
deciding satisfiability of LoCo problems is in NP. A positive answer
to this question would pave the way to an implementation that avoids
generating exponentially many components.

For practical usability developing an intuitive graphical user in-
terface will be crucial. Finding optimal configurations is likewise of
great practical importance. Here we envision a model that attaches
costs to individual component instantiations and the respective con-
nections and allows to build objective functions on top of that.

Finally we plan to translate LoCo into the MINIZINC language
next [20]. This will give us access to state-of-the-art SAT, constraint,
integer programming and hybrid solvers and provide LoCo with a
portfolio of complementary solving back-ends.
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