
Higher-Order Functions and Structured Datatypes

Michael Benedikt
Department of Computer Science

Oxford University
Parks Road, Oxford, UK

michael.benedikt@cs.ox.ac.uk

Huy Vu
Department of Computer Science

Oxford University
Parks Road, Oxford, UK

huy.vu@cs.ox.ac.uk

ABSTRACT
Recent proposals from the World Wide Web consortium
propose adding support for higher-order functions within
the XQuery standard. In this work we explore languages
adding higher-order features on top of XML and other struc-
tured datatypes. We define a higher-order extension for Core
XQuery, along with a higher-order algebra over complex val-
ues which has the same complexity as the XML-based lan-
guage. We discuss our language and its relation with pro-
posed extensions to the XQuery standard, study the com-
plexity of evaluation, and briefly discuss our approach to
implementing the language.

1. INTRODUCTION
Higher-order functions play a fundamental role in com-

puter science, and most functional programming languages
feature them. While relational query languages, such as
SQL, have not generally had a close connection to func-
tional programming languages, the main XML query lan-
guage, XQuery is functional, descending from earlier work
on functional query languages. As such, it is natural to con-
sider support for higher-order queries – transformations of
queries, transformation of transformations of queries, etc. –
within XQuery. And indeed, the proposed next iteration of
the standard, XQuery 3.0 [9], supports higher-order func-
tions. Moreover, higher-order functions have been included
in a number of XQuery processors including Saxon-PE 9.3
and BaseX 7.1.1 1.

The motivating scenario for higher-order functions in
XQuery is a traditional one: to gain modularity. The follow-
ing example is taken from a whitepaper by an XQuery work-
ing group member on adding higher-order query support to
XQuery [10]. We want to build a “generic sorting query”
which sorts a sequence by the sort key defined by a user
provided function. In our higher-order version of XQuery,
we proceed as follows.

1http://basex.org/

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 200X ACM X-XXXXX-XX-X/XX/XX ...$10.00.

Example 1. We define the generic function.

sort := [$seq, $key]
{for $a in $seq order by $key($a) return $a}

[$seq, $key] declares that this is a function of two arguments,
the first being a node sequence and the second an input rep-
resenting an “arbitrary” function of the appropriate type.

Then we apply sort to a particular sequence and function:

query0 := sort(doc(“books.xml”)/book)([$x] $x/title)

Above doc(“books.xml”)/book returns a sequence of books
having title, author, and year children, while [$x] $x/title
is a function that takes as argument a book $x and returns
the title. The output of this term is a sequence of books
ordered by their titles.

The higher-order query above is written in XQuery 3.0
syntax [9] as follows.

declare function local:sort($seq as item()*, $key as
function(item()*) as item()*) as item()*
{

for $a in $seq order by $key($a) return $a
};

let $f := function($x) { $x/title }
return

local:sort(doc(“books.xml”)/book, $f)

Transformations of queries play an important role in data
integration and XML access control [6]. In the next exam-
ple, we consider the situation where we need an interface to
control the access of a query over an XML sequence.

Example 2. Given a sequence $seq and a query $Q, ac-
cesses to $seq via $Q are transformed for security reasons,
returning the result of $Q on $seq only after it is filtered.
However, we may wish to develop the query without a par-
ticular filter in mind. This could be implemented via the
following expression in our higher-order XQuery language:

query1 := [$fil, $Q, $seq] $Q($fil($seq))

The notation [$fil, $Q, $seq] is a declaration that there
are three arguments – equivalently, it is a sequence of three
λ-abstractions.

Later, we can partially evaluate using the following query
as the filter:

fil0 := [$x] {for $y in $x where $y/year > 1990 return $y}

creating the higher-order XQuery query2 := query1(fil0)
that returns the result of $Q on only a selection of $seq.
The reduced form of query2 is as follows.

query2 = [$Q, $seq] $Q(
{for $b in $seq where $b/year > 1990 return $b})

Although there is no formal semantics for XQuery 3.0,
in several implementations we have looked at, such as
BaseX, the mechanism for creating functions that can be
passed as arguments into higher-order queries is via let
expressions. One could model the example above (albeit with
less modularity) in such an implementation as follows:

declare function local : query2($Q as function(item()*) as
item()*, $seq as item()*) as item()*
{

let query1 := function($fil, $Q, $x)
{ $Q($fil($x)) }

let $fil0 := function($y)
{ for $b in $y where $b/year > 1990 return $b }

return
$query1($fil0, $Q, $seq)

};

In this paper, we will present a higher-order XML query
language, denoted XQH, extending the Core XQuery lan-
guage of Koch [8]. We will also look at higher order
query languages for other “structured datatypes”, defining
a higher-order language on complex values, denoted HOCV,
and compare it to XQH.

There is already a known connection between Core
XQuery, Complex-valued languages, and λ-calculi. Koch
[8] has shown a correspondence between the complex-valued
query language Monad Algebra and Core XQuery; Monad
Algebra includes a restricted λ-calculus in it, allowing the
definition of higher-order terms. But Monad Algebra (as
Core XQuery) does not allow abstraction over queries – it
has higher-order constants but no higher-order variables. In
our previous work [3, 14], we considered the combination of
database queries and a more extensive λ-calculus, allowing
abstraction over queries, queries over queries, etc. However,
our prior work did not support complex values or XML. Here
we will thus look to bridge the more general higher-order
querying framework of [3, 14] with the support for complex
values and XML. We will focus on the evaluation problem for
both of these higher-order languages for “structured data”.
We show that support for query variables comes “almost for
free” in these languages. Support for arbitrary order vari-
ables leads to non-elementary complexity, but with a natural
restriction again we get no increase in the worst-case bounds.

Organization. Section 2 defines the higher-order vari-
ant of XQuery, XQH. Section 3 gives HOCV, a higher-
order complex-valued language, and discusses the relation-
ship with XQH. Section 4 shows the complexity of evaluat-
ing HOCV terms containing variables of arbitrary order. In
Section 5 we give conclusions, briefly discuss our prototype
implementation, and related work. Due to space limitations,
proofs are omitted, but can be found in [13].
Acknowledgement Benedikt is supported in part by EP-
SRC EP/H017690/1 (the Engineering and Physical Sciences
research council, UK) and by the European Commission
FET-Open project FOX, FP7-ICT-233599.

2. A HIGHER-ORDER EXTENSION OF
CORE XQUERY

Before presenting our language, we define the set of ab-
stract types, and their order which plays a large rule in the
syntax.
• B is the “base type”, representing a function-free ob-

ject; order(B) = 0.
• If T1 and T2 are AT, then T1 → T2 is an AT and

order(T1 → T2) = max
`
order(T1) + 1, order(T2)

´
Each abstract type has a denotation; the base type maps to
sequences of nodes within unranked labeled ordered trees.
Additional XML features, such as attributes, can be coded
into this extension. This coding does not impact evaluation.
All the trees and lists of trees are associated with the basic
abstract type B. T1 → T2 denotes the set of functions from
the denotation of T1 to the denotation of T2.

For each abstract type we assume a set of variables asso-
ciated with it. We are now ready to give the syntax of the
higher-order extension of Core XQuery:

query := () | 〈a〉query〈/a〉 | query query
| var | var/axis :: ν
| for var in query return query
| if cond then query
| [V]query
| query(query)

V := ∅ | var,V
cond := query = query | query

In the syntax above, a denotes an XML tag, axis denotes
XPath paths, ν denotes node tests, and var is a set of
XQuery variables. The equivalence = can be (a) atomic
equality (denoted [

.
=]), which compares labels of two leaves,

or (b) deep equality (denoted [∼=]), an isomorphism test of
two nodes (identified with their subtrees).

The syntax of XQH is based roughly on that of Koch’s Core
XQuery (reviewed in the next section), adding support for
higher-order operators. It adds the general λ-abstraction
construct [V]query, in which V is a list of variables. For
simplicity, [V1][V2]query is rewritten as [V1,V2]query and
[]query is rewritten as query. The construct query(query),
which we sometimes write query @ query for the conve-
nience of parsing, denotes the application of a query to an-
other query.

Similarly to Core XQuery, we do not represent other
XQuery operators, e.g. let, true, and, or, because they can
be derived from the operators above. For example, one can
code true using a query that always evaluates to a nonempty
collection. For more details on how to encode these opera-
tions, see [8].

Before giving the semantics of XQH, we describe a function
AT assigning abstract types to each XQH query. We give the
inductive definition for several cases; the rules for other cases
can be easily inferred from the syntax of the queries. 1. AT of
each query without an abstraction is B. 2. AT of a query with
a nonempty abstraction [] is defined as: AT([x,V]query) =
AT(x) → AT([V]query) 3. If AT(query1) = T1 → T2 and
AT(query2) = T1, then AT(query1 @ query2) = T2. For
example, the expression $x, where $x is a variable of base
type, has type B → B: it is an ordinary query. There are
of course, queries that can not be assigned a type – e.g.
if we have a subquery ([var,D]q2) @ q1, with AT(var) 6=
AT(q1). It is easy to check this (syntactic) “well-typedness

condition”. In this work, we will always assume that queries
are well-typed. Note that, as shown in Example 2, XQuery
3.0 adopts a finer type system, where (e.g.) one can specify
that a variable binds to a sequence as opposed to a single
node.

The semantics of XQH is defined by a set of reduction rules.
In the rules, we use “,” to denote concatenation, → to de-
note a direct reduction, and⇒ a derivation from a sequence
of → transitions. Within reductions we allow an extended
syntax with a constant term for every node sequence within
a document. The rules include:

()→ []

q ⇒ τ AT(q) = B
〈a〉q〈/a〉 → [〈a〉τ〈/a〉]

q1 ⇒ τ1 q2 ⇒ τ2 AT(q1) = AT(q2) = B
q1q2 → τ1, τ2

AT(q) = B q ⇒ τ

q/axis :: ν → [τ1, . . . , τm]

where [τ1, . . . , τm] is a list of τ ’s nodes are ordered by docu-
ment order w.r.t. τ . Additionally, for every i, the root of τi

is labeled by ν, and the path from the root of τ to the root
of τi matches axis.

AT(x) = AT(q1) = B q1 ⇒ (τ1, . . . , τn) ∀i ≤ n q2(x/τi)⇒ τ ′i
(for x in q1 return q2)→ τ ′1, · · · , τ ′n

AT(cond) = B cond⇒ [τ1, . . .]

(if cond then q)→ q

AT(cond) = B cond⇒ []

(if cond then q)→ []

Above [τ1 . . .] is always a non-empty nodelist. We omit
the rules for equality above: these state that an equality
returns a fixed non-empty tree exactly when the two terms
satisfy the corresponding equality (atomic or deep).

In addition, to the rules above, we can transform terms
via standard β-reduction: e.g. ([x]q1)@q′ can be transformed
to q1[x 7→ q′] in a subterm. Although this adds non-
determinism (due to choice of reduction), one can show that
a unique normal form exists.

A significant difference from XQuery is that in the seman-
tics there are no variable bindings (“dynamic environments”)
representing interaction with an external input document.
Instead, the inputs must be hard-coded into the query, with
documents built up explicitly via node construction. We do
this to keep the semantics less cluttered, and more similar
to our higher-order nested relational language. We can still
trivially translate every query evaluation problem into our
language.

Example 3. Let $D and $R be two variables that have
AT equal to B, $Q be a query variable that has AT equal to
B → B. The query:

([$Q $D]$Q($Q($D)))
[$SEQ]
〈SEQ〉{
for $i in $SEQ/child :: route, $j in $SEQ/child :: route

where $i/to = $j/from return
〈route〉{〈from〉{$i/from}〈/from〉, 〈to〉{$j/to}〈/to〉}〈/route〉
}〈/SEQ〉

consists of a higher-order query performing composi-
tion – [QD]$Q($Q($D))) – applied to a query that takes

a sequence of “routes”, where each “route” contains a pair
of “from” and “to”, and joins them. The composition
will return routes with three intermediate legs. We can
extend this idea to express an exponential number of joins
succinctly using query variables – indeed, this is one cause
of the high complexity we will see for higher-order queries.

The order of a query is the order of the AT of the query.
In our complexity results, we will be interested in queries
of order 0 – i.e. ones that evaluate to a document. XQm

H

denotes the set of XQH queries containing variables of order
at most m.

3. HIGHER-ORDER COMPLEX-VALUED
QUERIES

We now define a corresponding language over complex
values, basing it on the complex-valued query language
Monad Algebra [11, 8]. In general, complex values can be
built on top of sets, bags, or lists. Here we give the for-
mal definition only for the set-based version of the higher-
order complex-valued language HOCV, the list-based ver-
sion, named HOCVL, extends Monad Algebra on lists in a
similar way.

Nested Relational Types. As with Higher-order XML,
we start with the type system. We fix an infinite linearly-
ordered set of attribute names (or attributes). We associate
with each attribute name Ai a range Dom(Ai) of possible
values. For simplicity, we often assume all attributes range
over the integers Z.

Next we will define the types along with their order. The
basic types are the collection of attribute ranges. We extend
basic types to nested relational types as follows. Basic types
are nested relational types. If T1, . . . , Tn and A1, . . . , An

with n ≥ 1 are nested relational types and attribute names
respectively, then 〈A1 : T1, . . . , An : Tn〉 and {T1} are nested
relational types.

We manipulate nested relational types by using the stan-
dard operations on lists, such as concatenation T + T ′ (as-
suming no overlap of T and T ′), adding nesting {T } of T ,
and the projection πA(T), for an attribute A in T . The
denotation of a nested relational type is the collection of
all finite instances over the type, where the collection of in-
stances is defined in the obvious way.

Although we do not consider boolean attributes here, we
do have a “boolean type”, denoted {〈〉}. Note that there are
only two instances of type {〈〉}, namely, the empty instance
∅, which we identify with false, and the singleton, also
denoted {〈〉}, which we identify with true.

Higher-order Types over Nested Types. Nested re-
lational types are the basic building blocks of more complex
types. We will introduce further types now, and the no-
tion of order. The order of any nested relational type is 0.
We define higher-order types over nested types by using the
function type constructor: if T , T ′ are types with denota-
tion D,D′, then T → T ′ is a type with denotation the set
of functions from D to D′, whose order is

order(T → T ′) = max
`
order(T) + 1, order(T ′)

´
We abbreviate a type of the form T1 → . . .→ Tm → T ′ as

(T1 × . . . × Tm) → T ′ (an abbreviation only, since we
have no product operation on types). Similarly we will write
elements of such types in their curried form. We refer to
order 1 types as query types.

Constants. We fix a set of constants of each type T .
Constants can be thought of as specific instances of the given
type; formally, the semantics is defined with respect to an
interpretation of each constant symbol by an object of the
appropriate type; but we will often abuse notation by iden-
tifying the constant and the object. The order of a constant
is the order of a type. We study the following constants:
• We will include constants for all nested relational in-

stances, referred to as nested relational constants.
• We consider the following order 1 constants – i.e. query

constants;
– singleton set construction of type T → {T };
– flatten of type {{T }} → {T };
– pairing of type 〈A1 : {T1}, . . . , An : Tn〉 → {〈A1 :
T1, . . . , An : Tn〉};

– for each nested relational type containing a type
Ai the unary projection operator πAi of type 〈A1 :
T1, . . . , An : Tn〉 → Ti;

– for any type T the binary operator ∪, which re-
turns the union of two order 0 terms of type T ;

– for each relational type T the unary selection op-
erator σAi=Aj , which selects a subset of the tu-
ples from a given nested relation of type {A1 :
τ1, . . . , An : τn}, where = is either (a) “atomic
equality” [

.
=], that is, a label comparison, or (b)

[∼=] isomorphism on nested relations;
– for each set of attribute names A1 . . . An tuple

formation with these attributes
• Lastly, we consider an order 2 constant, named map,

of type (T → T ′)→ {T } → {T ′}
Terms. Higher-order terms are built up from the con-

stants above and variables by using the operations of ab-
straction and application:
• every constant or variable is a term of its type;
• if X is a variable of type T and ρ is a term of type T ′,

then λX. ρ is a term of type T → T ′;
• τ is a term of type T → T ′ and ρ is a term of type T ,

then τ(ρ) is a term of type T ′.
The semantics of terms uses a set operational rules, in-

cluding the standard λ-calculus rules for β-reduction and
application, plus rules for constants at order 0:

X ⇒ {τ1, . . . , τn}
flatten(X)→ τ1 ∪ . . . ∪ τn

X ⇒ 〈A1 : τ1, . . . , An : τn〉
pairwithA1(X)→ {〈A1 : ρ1, . . . , An : τn〉 | ρ1 ∈ τ1}

τ ⇒ 〈A1 : τ1, . . . , An : τn〉
πAi(X)→ τi

∀i.fi ⇒ τi

〈A1 : f1, . . . , An : fn〉 → 〈A1 : τ1, . . . , An : τn〉

X ⇒ {τ1, . . . , τn} ∀i.f(τi)⇒ τ ′i
map(f,X)→ {τ ′1, . . . , τ ′n}

We omit the rules for selection, union, and singleton above.
As with XQH there are conditions for a term to be well-

typed. We omit a full discussion of this here, and from now
on assume that terms are well-typed. In giving the syntax
above we have implicitly considered typed versions of every
operator, and assumed explicit types for every variable; in
this case checking well-typedness is fairly straightforward.

If we do not assume this, then we have a typing problem
for the language which is more complicated than the XML
version – e.g. if we project on attribute a, then we must
be sure the term we project on must have an a attribute in
it. Still it can be shown that standard algorithms for typing
in the simply typed λ-calculus (e.g. Wand’s algorithm [16])
can be extended to this languages: see [13] for details.

The order of a term τ is the order of its type. We say
that a term τ is closed if it contains no free occurrences
of variables. One can show that well-typed closed terms of
order 0 evaluate under the operational semantics to a unique
nested relation.

We denote HOCVk (resp. HOCVk
L) the fragment of HOCV

(resp. HOCVL) where the order of variables is bounded by
k.

We also define the size of a term. The size of a nested
relational constant is the size of the corresponding instance.
The size of a variable is the size of a standard string represen-
tation of the type of the variable. The size of a higher-order
term is inductively defined as 1 plus the sum of the sizes of
its top-level subterms.

The Complex-Value/XML correspondence at
higher-order. We recall the correspondence between
XQuery and complex-valued languages proved by Koch.
Koch has considered a fragment of XQuery, named Core
XQuery (or XQ for short), with abstract syntax:

query := () | 〈a〉query〈/a〉 | query query
| var | var/axis :: ν
| for var in query return query
| if cond then query

cond := var = var | query

From the syntax, we can see that XQ is a special case
of XQH where higher-order variables are absent. On the
complex-valued side, Koch considered Monad Algebra on
lists in [8]. This is equivalent to HOCV0

L, HOCVL terms
without higher-order variables. Koch’s result can thus be
restated as saying that there exists a polynomial reduction
between the evaluation problems for XQ0

H and HOCV0
L.

We note that the correspondence extends to the higher-
order setting:

Proposition 1. Given k ≥ 0, evaluating XQk
H queries

and evaluating HOCVk
L terms are polynomially reducible.

The proposition is shown by giving a translation between a
HOCVk term and an XQk

H query, which is an extension of
the original translation in [8]. The details of the translation
are given in [13].

The bottom line is that from now on we can study the
complexity of HOCVL, and derive the complexity of XQH

from these results. The advantage is that HOCVL is easier to
analyze, since the syntax is simpler and more compositional.
The next section concentrates on the results for the set-based
language HOCV, but the complexity results easily carry over
to the list-based version HOCVL.

4. COMPLEXITY OF THE EVALUATION
PROBLEM

The evaluation problem considered in this section is de-
fined as follows. The boolean query evaluation problem takes
as input a well-typed HOCV term of boolean query type,
along with a set of nested relational constants. The out-
put is true iff the application of the term on the instances
evaluates to the (unique) nonempty instance of {〈〉}.

We will be interested in the combined complexity of the
problem, where the size of the input is the database size plus
the term size, as well as the query complexity, in which the
database instance is fixed. When the query is fixed, higher-
order features can be compiled away, and the complexity is
thus the same as the data complexity of the corresponding
base language (e.g. Core XQuery): in all cases, these are
known from Koch’s work [8] to be in polynomial time.

We first review the complexity of evaluation for HOCV0

terms, i.e. terms with abstraction over nested relational vari-
ables. We say“review”, because the equivalence result in the
previous section and Koch’s complexity results in [8] give
bounds on their evaluation:

Proposition 2. The evaluation problem for HOCV0 with
[
.
=] without negation (resp. with negation) is NEXPTIME-

complete (resp. TA[2O(n),O(n)]-complete). TA[2O(n),O(n)]
refers to he class of alternating machines that uses (linearly)
exponential amount of time but only linearly many alterna-
tions – see [8].

The evaluation problem for HOCV0 with [∼=] is

TA[2O(n),O(n)]-hard and in EXPSPACE.

Note that there is still a gap in the complexity of evaluat-
ing HOCV0 with [∼=], which is TA[2O(n),O(n)]-hard and in
EXPSPACE.

Before turning to terms that may include variables of or-
der higher than 0, we state a result about β-reduction that
will be useful.

Proposition 3. When reducing from a HOCVk term to
an HOCVk−1 term with k ≥ 1, the size of basic subterms
(terms whose parse tree does not contain @ nodes or λ
nodes) does not increase.

The following theorem shows that the evaluation problem
for terms with query variables remains in EXPSPACE. Thus
the currently known worst-case bound is no worse when
query variables are added. Furthermore, we show that the
upper bound is now tight.

Theorem 4. The evaluation problem of HOCV1 with ei-
ther [

.
=] or [∼=] is EXPSPACE-complete.

For the upper bound, we show that an evaluation strat-
egy based on full β-reduction followed by a standard evalua-
tion procedure for Core XQuery will use exponential space.
Proposition 3 gives a bound on the size of tree representa-
tions emerging in normalization, and the bound now follows
from a corresponding bound on Core XQuery evaluation for
terms of this size. The lower bound uses a method for cod-
ing machine computations in XML documents from Koch’s
[8] – however it makes use of an iteration technique that is
specific to the higher-order setting.

For terms containing variables of order 2, the complex-
ity goes up significantly, to 2-EXPTIME. In general, we can
ascertain the complexity of evaluating HOCV terms of arbi-
trary degree, using techniques from [14].

Theorem 5. Given k ≥ 1, the problem of evaluating
HOCVk with either [

.
=] or [∼=] is:

• m-EXPSPACE-complete if k = 2m− 1, i.e. k is odd,
• (m+ 1)-EXPTIME-complete if k = 2m, i.e. k is even.

The membership is shown by first reducing variables of
higher order using β-reduction, then recursively evaluating
the term containing variables of lower order. The hard-
ness is shown analogously to the proof of Proposition 13

HOCV XQuery Negation Eq. Complexity

no [
.
=] NEXPTIME

HOCV0 XQ yes [
.
=] TA[2O(n), O(n)]

no/yes [∼=] in EXPSPACE

HOCV1 XQ1
H no/yes = EXPSPACE

HOCV2 XQ2
H no/yes = 2-EXPTIME

HOCV2m−1 XQ2m−1
H no/yes = m-EXPSPACE

HOCV2m XQ2m
H no/yes = (m+1)-EXPTIME

Table 1: Complexity of Evaluation

in [14], which shows similar bounds in the relational case,
but roughly one exponential lower than the ones here. This
uses the “Church numeral” technique well-known in the λ-
calculus literature [1]: using higher-order queries to imple-
ment (hyper)-exponential iteration. The main difference
from the relational bounds stems from the fact that a nested
relational type can represent a set of doubly-exponential car-
dinality, whereas a relational type can only represent a set
of exponential cardinality.

Table 1, with Eq. an abbreviation of Equality, summa-
rizes the complexity of fragments of XQuery, Monad Alge-
bra and their higher-order analogs. In the table, = denotes
that a language uses either atomic equality or deep equality,
no/yes denotes that a language either does not have nega-
tion or has negation. All the complexity results in the table
are complete except for the case of HOCV0 and XQ with
deep equality, which have a TA[2O(n),O(n)] lower bound and
EXPSPACE upper bound. When the language contains vari-
ables of order 1, the complexity of the evaluation problem
becomes EXPSPACE-complete.

Lowering the complexity. The complexity of evaluat-
ing higher-order complex-valued languages is related to two
factors; the complexity of λ-reduction, and the complexity
of lower-order evaluation. In the case of XML and complex
values, the complexity of lower-order evaluation is in turn
related to the ability to create and iterate over large inter-
mediate structures. We consider how to eliminate the first
factor, using the same restriction as in our prior work on the
relational case [14].

A variable x ∈ τ is self-nested if x occurs in two subtrees
s, t of the construction tree of τ and two roots of s and t are
linked to the same @ node.

A term is self-nested free (or un-nested) if it does not con-
tain any self-nested variable. Intuitively, a term is un-nested
if a variable never occurs as an argument of itself in the
term. The complexity of evaluating self-nested free terms is
much lower than the complexity of evaluating normal terms,
matching the best known upper bound for ordinary Core
XQuery.

Theorem 6. The evaluation problem for un-nested
HOCVn terms with n ≥ 1 is EXPSPACE-complete.

The algorithm underlying this result is again basically β-
reduction. The key idea (also present in [14]) is that during
reduction, the size of a term may increase but the height
of the term changes only linearly – this in turn implies an
exponential bound on the size of every intermediate term
produced. This last fact allows an algorithm that guesses
and verifies each intermediate result in EXPSPACE.

Theorem 6 follows from a more general result, that allows
the nesting restriction to hold only above some order.

Theorem 7. Let HOCVn[m] with 1 ≤ m ≤ n be the set
of HOCVn terms where all variables of order higher than
m are un-nested. The evaluation problem for HOCVn[m] is
(m + 1)/2-EXPSPACE-complete if m is odd or (m/2 + 1)-
EXPTIME-complete if m is even, which are the bounds for
HOCVm.

5. DISCUSSION
We have considered an extension of Core XQuery and

a complex-valued query language to include higher-order
transformations. Even though the evaluation problem is
non-elementary in the general case, we showed that restric-
tions on nesting lead to drastic reductions in the complexity
of the evaluation problem.

Theory and Practice. The previous results show that
the complexity of query evaluation is caused by the ability
of nested higher-order queries to enable “massive sharing of
subexpressions”. We admit that the worst case examples
used in the proofs (i.e. “Church numerals”) are extremely
artificial. Still the ability to use higher-order features to
succinctly express complex queries is in principle a feature,
not a bug, and we would like to allow users to exploit it as
much as possible.

Currently we have a prototype implementation of XQH

that works on top of the XML query engine BaseX. The en-
gine works by alternating β-reductions and ordinary XQuery
evaluation. The main feature present in the engine to deal
with high complexity is graph reduction, the same one used
in our prior work in the relational case [15]. Intermediate
queries are stored as DAGs, rather than trees; while per-
forming β-reduction, rather than always copy a subterm
that is repeated multiple times, we look for opportunities
to share it. At the end of reduction, the final DAG is eval-
uated bottom-up with the granularity of XML queries used
in the bottom-up evaluation determined via a cost-based re-
finement algorithm, reminiscent of the one used in [2]. De-
tails can be found in [13]. The main new difficulty here is
in the cost-based analysis. While for relational higher-order
queries, [15] relies on cost estimates provided by an under-
lying relational engine, for XML query engines robust cost
estimation interfaces are not readily available. Thus we cur-
rently rely on manually-provided cost information.

There are several limitations of our language that are
worth highlighting. First of all, XQuery 3.0 adds many inter-
esting features in addition to higher-order functions, such as
more powerful switch expressions, grouping operators, and
exception handling. The interaction of these with higher-
order features still needs to be examined. Although we mo-
tivated our work by support for greater modularity and in-
cremental development of XQuery transformations, the lan-
guage presented here is monolithic. In our implementation
we are exploring interactive development of XML transfor-
mations, along with partial evaluation.

Related Work. Our work is extremely closely related to
Koch’s work concerning Core XQuery and its fragments and
their relationship to complex-valued languages [8] . Koch
gave bounds on the complexity of evaluating those frag-
ments, along with reductions between evaluation problems
for Core XQuery and Monad Algebra. Our XQH and HOCV
are extensions of XQ and Monad Algebra, respectively, that
support higher-order queries. Our complexity bounds can

be seen as extension of those in [8] – indeed, we combine the
techniques from our prior work on relational higher-order
queries [14] with those of Koch for XQuery.

Recently, Cooper [4] has defined a higher-order language
that integrates λ-calculus with nested relational calculus.
In his work, he also provides a type-and-effect system for
the higher-order language and a translation from the lan-
guage into SQL. Tackling a similar problem from a practi-
cal side, Ulrich [12] has described an implementation that
uses the FERRY framework [7] to translate a subset of the
LINKS programming language [5], which is functional and
strongly typed, into SQL. The FERRY framework explores
subsets of programming languages that can be transformed
into queries executable by relational database engines. Un-
like in our work, no complexity bounds are given in works
like [4]. But unlike these works, we have not implemented
the higher-order nested relational language, only the XML
and relational versions; our implementation focuses on one
optimization technique, while [4, 5] deal with a wide range
of implementation issues.
6. REFERENCES
[1] A. Beckmann. Exact Bounds for Lengths of

Reductions in Typed λ-Calculus. J. Symb. Log.,
66(3):1277–1285, 2001.

[2] M. Benedikt, C. Y. Chan, W. Fan, R. Rastogi,
S. Zheng, and A. Zhou. DTD-directed publishing with
attribute translation grammars. In PVLDB, 2002.

[3] M. Benedikt, G. Puppis, and H. Vu. Positive Higher
Order Queries. In PODS, 2010.

[4] E. Cooper. The script-writer’s dream: How to write
great SQL in your own language, and be sure it will
succeed. In DBPL, 2009.

[5] E. Cooper, S. Lindley, P. Wadler, and J. Yallop. Links:
Web programming without tiers. In FMCO, 2007.

[6] W. Fan, F. Geerts, and X. J. A. Kementsietsidis.
Rewriting Regular XPath Queries on XML Views. In
ICDE, 2007.

[7] T. Grust, M. Mayr, J. Rittinger, and T. Schreiber.
FERRY: Database-supported program execution. In
SIGMOD, 2009.

[8] C. Koch. On the Complexity of Nonrecursive XQuery
and Functional Query Languages on Complex Values.
ACM TODS, 31(4):1215–1256, 2006.

[9] J. Robie, D. Chamberlin, M. Dyck, and J. Snelson.
XQuery 3.0: An XML Query Language. W3C
Working Draft, 2010.

[10] J. Snelson. Higher order functions for XQuery, 2010.
personal communication.

[11] V. Tannen, P. Buneman, and L. Wong. Naturally
Embedded Query Languages. In ICDT, 1992.

[12] A. Ulrich. A FERRY-based query backend for the
LINKS programming language. Master’s thesis,
University of Tübingen, 2011.

[13] H. Vu. Higher-Order Queries and Applica-
tions. PhD thesis, Oxford University, 2012. Available at
http://www.cs.ox.ac.uk/people/huy.vu/PhDThesis.pdf.

[14] H. Vu and M. Benedikt. Complexity of higher-order
queries. In ICDT, 2011.

[15] H. Vu and M. Benedikt. HOMES: A higher-order
mapping evaluation system. PVLDB, 4(12), 2011.

[16] M. Wand. A simple algorithm and proof for type
inference. Fundamenta Infomaticae, 10:115–122, 1987.

