
Tractable Extensions of the Description Logic
EL with Numerical Datatypes

Despoina Magka, Yevgeny Kazakov, and Ian Horrocks

Oxford University Computing Laboratory
Wolfson Building, Parks Road, OXFORD, OX1 3QD, UK

{despoina.magka,yevgeny.kazakov,ian.horrocks}@comlab.ox.ac.uk

1 Introduction and Motivation

Description logics (DLs) [1] provide a logical foundation for modern ontology
languages such as OWL1 and OWL 2 [2]. EL++ [3] is a lightweight DL for
which reasoning is tractable (i.e., can be performed in time that is polynomial
w.r.t. the size of the input), and that offers sufficient expressivity for a num-
ber of life-sciences ontologies, such as SNOMED CT [4] or the Gene Ontology
[5]. Among other constructors, EL++ supports limited usage of datatypes. In
DL, datatypes (also called concrete domains) can be used to define new con-
cepts by referring to particular values, such as strings or integers. For exam-
ple, the concept Human u ∃hasAge.(<, 18) u ∃hasName.(=,“Alice”) describes hu-
mans, named “Alice”, whose age is less than 18. Datatypes are described first
by the domain their values can come from and also by the relations that can be
used to constrain possible values. In our example, (<, 18) refers to the domain
of natural numbers and uses the relation “<” to constrain possible values to
those less than 18, while (=, “Alice”) refers to the domain of strings and uses the
relation “=” to constrain the value to “Alice”.

In order to ensure that reasoning remains polynomial, EL++ allows only for
datatypes which satisfy a condition called p-admissibility [3]. In an nutshell, this
condition ensures that the satisfiability of datatype constraints can be solved
in polynomial time, and that concept disjunction cannot be expressed using
datatype concepts. For example, if we were to allow both ≤ and ≥ for integers,
then we could express A v B t C by formulating the axioms A v ∃R.(≤, 5),
∃R.(≤, 2) v B and ∃R.(≥, 2) v C. Similarly, we can show that p-admissibility
does not allow for both < (or >) and =. For this reason, the EL Profile of OWL
2, which is based on EL++, admits only equality (=) in datatype expressions.

In this paper, we demonstrate how these restrictions can be significantly
relaxed without loosing tractability. As a motivating example, consider the fol-
lowing two axioms which might be used, e.g., in a pharmacy-related ontology:

Panadol v ∃contains.(Paracetamol u ∃mgPerTablet.(=, 500)) (1)

Patient u ∃hasAge.(<, 6) u
∃hasPrescription.∃contains.(Paracetamol u ∃mgPerTablet.(>, 250)) v ⊥ (2)

1 http://www.w3.org/2004/OWL



Axiom (1) states that the drug Panadol contains 500 mg of paracetamol per
tablet, while axiom (2) states that a drug that contains more than 250 mg of
paracetamol per tablet must not be prescribed to a patient younger than 6
years old. The ontology could be used, for example, to support clinical staff who
want to check whether Panadol can be prescribed to a 3-year-old patient. This
can easily be achieved by checking whether concept (3) is satisfiable w.r.t. the
ontology:

Patient u ∃hasAge.(=, 3) u ∃hasPrescription.Panadol (3)

Unfortunately, this is not possible using EL++, because axioms (1) and (2)
involve both equality (=) and inequalities (<, >), and this violates the p-
admissibility restriction. In this paper we demonstrate that it is, however, pos-
sible to express axioms (1) and (2) and concept (3) in a tractable extension of
EL. A polynomial classification procedure can then be used to determine the
satisfiability of (3) w.r.t. the ontology by checking if adding an axiom

X v Patient u ∃hasAge.(=, 3) u ∃hasPrescription.Panadol

for some new concept name X would entail X v ⊥.
Our idea is based on the intuition that equality in (1) and (3) serves a different

purpose than inequalities do in (2). Equality in (1) and (3) is used to state a fact
(the content of a drug and the age of a patient) whereas inequalities in (2) are
used to trigger a rule (what happens if a certain quantity of drug is prescribed
to a patient of a certain age). In other words, equality is used positively and
inequalities are used negatively. It seems reasonable to assume that positive
usages of datatypes will typically involve equality since a fact can usually be
precisely stated. On the other hand, it seems reasonable to assume that negative
occurrences of datatypes will typically involve equality as well as inequalities
since a rule usually applies to a range of situations. In this paper, we make a
fine-grained study of datatypes in EL by considering restrictions not only on the
kinds of relations included in a datatype, but also on whether the relations can
be used positively or negatively. The main contributions of this paper can be
summarised as follows:

1. We introduce the notion of a Numerical Datatype with Restrictions (NDR)
that specifies the domain of the datatype, the datatype relations that can
be used positively and the datatype relations that can be used negatively.

2. We extend the EL reasoning algorithm [3] to provide a polynomial reasoning
procedure for an extension of EL with NDRs, where the procedure is sound
for any NDR.

3. We introduce the notion of a safe NDR, show that every extension of EL with
a safe NDR is tractable and prove that our reasoning procedure is complete
for any safe NDR.

4. Finally, we provide a complete classification of safe NDRs for the cases of
natural numbers, integers, rationals and reals. Notably, we demonstrate that
the numerical datatype restrictions can be significantly relaxed by allowing
arbitrary numerical relations to occur negatively—not only equality as cur-
rently specified in the OWL 2 EL Profile. As argued earlier, this combination



Table 1. Concept descriptions in EL⊥(D)

Name Syntax Semantics

Concept name C CI

Top > ∆I

Bottom ⊥ ∅
Conjunction C uD CI ∩DI
Existential restriction ∃R.C {x ∈ ∆I | ∃y ∈ ∆I : (x, y) ∈ RI ∧ y ∈ CI}
Datatype restriction ∃F.r {x ∈ ∆I | ∃v ∈ D : (x, v) ∈ F I ∧ r(v)}

is of particular interest to ontology engineering, and is thus a strong candi-
date for the next extension of the EL Profile in OWL 2.

2 Preliminaries

In this section we introduce EL⊥(D), an extension of EL⊥ [3] with numerical
datatypes. In the DL literature datatypes are better known as concrete domains
[6]; we call them datatypes to be more consistent with OWL 2 [2]. The syntax
of EL⊥(D) uses a set of concept names NC , a set of role names NR and a set of
feature names NF . EL⊥(D) is parametrised with a numerical domain D ⊆ R (R
is the set of real numbers). NC , NR and NF are countably infinite sets and, addi-
tionally, pairwise disjoint. We call (s, y), where s ∈ {<,≤, >,≥,=} and y ∈ D, a
D-datatype restriction (or simply a datatype restriction if the domain D is clear
from the context). Given a D-datatype restriction r = (s, y) and an x ∈ D, we
say that x satisfies r and we write r(x) iff (x, y) ∈ s, where s ∈ {<,≤, >,≥,=}
and s is interpreted as the standard relation on real numbers. Table 1 recursively
defines concepts in EL⊥(D), where C and D are concepts, R ∈ NR, F ∈ NF

and r is a D-datatype restriction. An axiom α (in EL⊥(D)) is an expression of
the form C v D, where C and D are concepts. An (EL⊥(D)−)ontology O is a
set of axioms. A concept E is said to positively (negatively) occur in an axiom
C v D iff it occurs in D (C). An interpretation of EL⊥(D) is a pair I = (∆I , ·I),
where ∆I is a non-empty set, the domain of the interpretation, and ·I is the in-
terpretation function. The interpretation function maps each A ∈ NC to a set
AI ⊆ ∆I , each R ∈ NR to a relation RI ⊆ ∆I × ∆I and each F ∈ NF to a
relation F I ⊆ ∆I×D. Note that we do not require the interpretation of features
to be functional. In this respect, they correspond to the data properties in OWL
2 [2]. The constructors of EL⊥(D) are interpreted as indicated in Table 1. An
interpretation I satisfies an axiom α = C v D iff CI ⊆ DI (written I |= α). If
I |= α for every α ∈ O, then I is a model of O (written I |= O). If every model
I of O satisfies the axiom α then we say that O entails α and we write O |= α.
We define the signature of an ontology O as the set sig(O) of concept, role and
feature names that occur in O. We say that an axiom in EL⊥(D) is in normal
form if it has one of the forms: A v B′ (NF1), A1 u A2 v B (NF2), A v ∃R.B
(NF3), ∃R.B v A (NF4), A v ∃F.r (NF5) or ∃F.r v A (NF6), where A, A1, A2,
B ∈ N>C , B′ ∈ N>,⊥

C , R ∈ NR, F ∈ NF and r is a D-datatype restriction. The



normalization procedure is the same as for the EL++ [3]; more details can be
found in the technical report [7]. (N>C = NC ∪ {>}, N>,⊥

C = NC ∪ {>,⊥}).

3 Numerical Datatypes with Restrictions

In this section we introduce the notion of a Numerical Datatype with Restric-
tions (NDR) which specifies which datatype relations can be used positively and
negatively. We then present a sound polynomial consequence-based classification
procedure for EL⊥ extended with NDRs. Finally we prove that the procedure is
complete if the NDR satisfies special safety requirements.

Definition 1 (Numerical Datatype with Restrictions). A numerical data-
type with restrictions (NDR) is a triple (D, O+, O−), where D ⊆ R is a numeri-
cal domain and O+, O− ⊆ {<,≤, >,≥,=} is the set of positive and, respectively,
negative relations. An axiom in EL⊥(D) is an axiom in EL⊥(D, O+, O−) if for
every positive (negative) occurrence of a concept ∃F.(s, y) in the axiom, s ∈ O+

(s ∈ O−). An EL⊥(D, O+, O−)-ontology is a set of axioms in EL⊥(D, O+, O−).

We are going to describe a classification procedure for EL⊥(D, O+, O−),
which is closely related to the procedure for EL++ [3]. In order to formulate
inference rules for datatypes we need to introduce notation for satisfiability of
a datatype restriction and implication between datatype restrictions. For two
D-datatype restrictions r+ and r−, we write r+ →D r− iff r+(x) implies r−(x),
∀x ∈ D. We write r+ →D ⊥ iff there is no x ∈ D such that r+(x) holds. In
the opposite cases, we write r+ 9D r− and r+ 9D ⊥. We assume that deciding
whether r+ →D r− and r+ →D ⊥ can be done in polynomial time. It is easy to
see that this is the case when D is the set of natural numbers, integers, reals or
rationals for the set of relations {<,≤, >,≥,=}.

The classification procedure for EL⊥(D) takes as an input an ontology O
whose axioms are in EL⊥(D) and in normal form and applies the inference rules
in Table 2 to derive new axioms of the form NF1, NF3 and NF5. The rules are
applied to already derived axioms and use existence of axioms in O, r+ →D ⊥
or r+ →D r− as side-conditions. The procedure terminates when no new axiom
can be derived. It is easily checked that the procedure runs in polynomial time
(there are only polynomially many possible axioms of the form NF1, NF3 and
NF5 over sig(O)) and that the rules in Table 2 are sound (the conclusions of the
rules are logical consequences of their premises).

The completeness proof is based on the canonical model construction simi-
larly as for EL++ [3]. In order to deal with datatypes in the canonical model we
introduce a notion of a datatype constraint. Intuitively, a constraint specifies
which datatype restrictions should hold in a given element of the model and
which should not.

Definition 2 (Constraint). A constraint over (D, O+, O−) is defined as a
pair of sets (S+, S−), such that S+ = {(s1+, y1), . . . , (sn

+, yn)} with si
+ ∈ O+,

S− = {(s1−, z1), . . . , (sm
− , zm)} with sj

− ∈ O−, yi, zj ∈ D, (si
+, yi) 9D (sj

−, zj)



Table 2. Reasoning rules in EL⊥(D) (A,B,C,E ∈ N>C , C′ ∈ N>,⊥
C , R ∈ NR, F ∈ NF )

IR1
A v A IR2

A v > CR1
A v B
A v C′ B v C′ ∈ O

CR2
A v B A v C

A v D B u C v D ∈ O CR3
A v B

A v ∃R.C B v ∃R.C ∈ O

CR4
A v ∃R.B B v C

A v D ∃R.C v D ∈ O CR5
A v ∃R.B B v ⊥

A v ⊥

ID1
A v ⊥ A v ∃F.r+ ∈ O , r+ →D ⊥ CD1

A v B
A v ∃F.r+

B v ∃F.r+ ∈ O

CD2
A v ∃F.r+
A v B

∃F.r− v B ∈ O , r+ →D r−

and (si
+, yi) 9D ⊥ for 1 ≤ i ≤ n, 1 ≤ j ≤ m and m, n ≥ 0. A constraint

(S+, S−) over (D, O+, O−) is satisfiable iff there exists a solution of (S+, S−)
that is a set V ⊆ D such that every r+ ∈ S+ is satisfied by at least one v ∈ V
but no r− ∈ S− is satisfied by any v ∈ V .

Our model construction procedure works only for the cases where we can ensure
that every constraint over a numerical domain is satisfiable. This leads us to a
notion of safety for an NDR.

Definition 3 (NDR Safety). Let (D, O+, O−) be an NDR. (D, O+, O−) is
safe iff every constraint over (D, O+, O−) is satisfiable.

Definition 4 (Strong and Weak Convexity). The NDR (D, O+, O−) is
strongly convex when for every ri

+ = (si
+, yi) and rj

− = (sj
−, zj), with si

+ ∈ O+,
sj
− ∈ O− and yi, zj ∈ D (1 ≤ i ≤ n, 1 ≤ j ≤ m), if

∧n
i=1 r

i
+ →D

∨m
j=1 rj

−, then
there exists an rj

− (1 ≤ j ≤ m) such that
∧n

i=1 r
i
+ →D rj

−. (D, O+, O−) is weakly
convex when the implication holds for n = 1.

For example the NDR (Z, {<,>}, {=}) is weakly convex but not strongly
convex. It is weakly convex since the implications ((<, y) →Z

∨m
j=1(=, zj))

and ((>, y) →Z
∨m

j=1(=, zj)) never hold. However, it is not strongly convex:
it is (>, 2) ∧ (<, 5)→Z (=, 3) ∨ (=, 4), but also (>, 2) ∧ (<, 5) 9Z (=, 3) and
(>, 2) ∧ (<, 5) 9Z (=, 4).

Lemma 1. (D, O+, O−) is safe iff it is weakly convex.

Proof. We assume that (D, O+, O−) is not weakly convex and we prove that it
is non-safe. Since it is not weakly convex we have that for some r+ →D

∨m
j=1 rj

−



there exists no rj
− such that r+ →D rj

−. We define (S+, S−), with S+ = {r+}
and S− = {rj

−}mj=1 and we prove that (S+, S−) is not satisfiable. (S+, S−) is
indeed a constraint because r+ 9D ⊥ (otherwise r+ →D rj

− is true for every
rj
−) and for every rj

−, r+ 9D rj
− (otherwise r+ →D rj

− is true for at least one
rj
−). Additionally, it is not satisfiable, because from r+ →D

∨m
j=1 rj

− there can
be found no x such that r+(x) and

∧m
j=1 ¬r

j
−(x).

We prove that if (D, O+, O−) is not safe, then it is not weakly convex.
Since it is not safe then there exists a non-satisfiable constraint (S+, S−), where
S+ = {ri

+}ni=1 and S− = {rj
−}mj=1. We have S+, S− 6= ∅ because otherwise a

solution for (S+, S−) exists. Since (S+, S−) is not satisfiable there exists no
x for 1 ≤ i ≤ n such that ri

+(x) and
∧m

j=1 ¬r
j
−(x), or otherwise written,

ri
+ →D

∨m
j=1 rj

−. From this and ri
+ 9D rj

− (from the constraint definition),
(D, O+, O−) is not weakly convex. ut

Theorem 1 (Completeness). Let (D, O+, O−) be a safe NDR, let O be an
EL⊥(D, O+, O−)-ontology containing axioms in normal form and let O′ be the
saturation of O under the rules of Table 2. For every A, B ∈ (N>C ∩ sig(O)), if
O |= A v B, then A v B ∈ O′ or A v ⊥ ∈ O′.

Proof. The proof is analogous to the completeness proof for the EL++ language
[3]; we build a canonical model I for O using O′ and show that if A 6v B ∈ O′
and A 6v ⊥ ∈ O′ then I 2 A v B.
For every A ∈ NC , F ∈ NF , define S+(A,F ) and S−(A,F ), as follows:

S+(A,F ) = {r+ | A v ∃F.r+ ∈ O′, A v ⊥ /∈ O′} (3)
S−(A,F ) = {r− | ∃F.r− v B ∈ O, A v B /∈ O′} (4)

We now show that (S+(A,F ), S−(A,F )) is a constraint over (D, O+, O−). First
we prove that r+ 9D ⊥, ∀r+ ∈ S+(A,F ), which is true because otherwise
due to rule ID1 it would be A v ⊥ ∈ O′, in contradiction to the definition
of S+(A,F ). Additionally, there is no r+ ∈ S+(A,F ) and r− ∈ S−(A,F ) such
that r+ →D r−, otherwise from A v ∃F.r+ ∈ O′, ∃F.r− v B ∈ O and CD2

it would be A v B ∈ O′ which contradicts the definition of S−(A,F ). Since
(S+(A,F ), S−(A,F )) is a constraint over (D, O+, O−) and (D, O+, O−) is safe,
there exists a solution V (A,F ) ⊆ D of (S+(A,F ), S−(A,F )). We now construct
the canonical model I:

∆I = {xA | A ∈ (N>C ∩ sig(O)), A v ⊥ /∈ O′} (5)
BI = {xA | xA ∈ ∆I , A v B ∈ O′} (6)
RI = {(xA, xB) | A v ∃R.B ∈ O′, xA, xB ∈ ∆I} (7)
F I = {(xA, v) | v ∈ V (A,F )} (8)

We prove that I |= O by showing that I |= α, when α takes one of the NF1-NF6.
NF1 A v B: We need to prove AI ⊆ BI . Take an x ∈ AI . By (6), x = xC

such that C v A ∈ O′. From A v B ∈ O and since O′ is closed under CR1, we
have C v B ∈ O′. Hence x = xC ∈ BI by (6).



If B = ⊥, then we need to show that AI = ∅. If there exists x ∈ AI ,
then by (6) x = xC such that C v A ∈ O′. Since O′ is closed under CR1 and
A v ⊥ ∈ O′, we have C v ⊥ ∈ O′. Thus, x = xC /∈ ∆I by (5), which contradicts
our assumption that x ∈ AI .

We examine separately the case when A = >. We have that xA ∈ ∆I and
we need to show that xA ∈ BI . From rule IR2, we have that A v > ∈ O′. From
rule CR1, A v B ∈ O′; since xA ∈ ∆I and A v B ∈ O′ we get xA ∈ BI by (6).

NF2 A1 uA2 v B: We prove (A1 uA2)I ⊆ BI . Take an x ∈ (A1 u A2)I ;
then, x ∈ AI1 , x ∈ AI2 and by (6) x = xA for some concept name A such that
A v A1 ∈ O′ and A v A2 ∈ O′. Since A v A1 ∈ O′, A v A2 ∈ O′ and
A1 uA2 v B ∈ O, closure under rule CR2 gives A v B ∈ O′ or x ∈ BI , by (6).

NF3 A v ∃R.B: We show AI ⊆ (∃R.B)I ; take an x ∈ AI . By (6), x = xC

where C v A ∈ O′. Since A v ∃R.B ∈ O and O′ is closed under CR3, we have
C v ∃R.B ∈ O′. Since xC ∈ ∆I , we have C v ⊥ /∈ O′ and, hence, B v ⊥ /∈ O′
by CR5. Thus, xB ∈ ∆I and (xC , xB) ∈ RI by (7). Since B v B ∈ O′ by IR1, we
have xB ∈ BI by (6). Thus, x = xC ∈ (∃R.B)I .

NF4 ∃R.B v A: We prove (∃R.B)I ⊆ AI ; take an x ∈ (∃R.B)I . Then, there
exists y ∈ ∆I such that (x, y) ∈ RI and y ∈ BI . By (7) and (6) x = xC

and y = xD such that C v ∃R.D ∈ O′ and D v B ∈ O′ respectively. Since
∃R.B v A ∈ O and O′ is closed under CR4, C v A ∈ O′. By (6), x = xC ∈ AI .

NF5 A v ∃F.r+: We show that AI ⊆ (∃F.r+)I ; take an x ∈ AI . By (6),
there exists a concept name C such that x = xC and C v A ∈ O′. Since
A v ∃F.r+ ∈ O and O′ is closed under CD1, we have C v ∃F.r+ ∈ O′. We use
(3) and (4) to build (S+(C,F ), S−(C,F )); we have r+ ∈ S+(C,F ). By (8) we
have (xC , v) ∈ F I for every v ∈ V (C,F ). Since r+ ∈ S+(C,F ), there exists
v ∈ V (C,F ) such that v satisfies r+ and, hence, x = xC ∈ (∃F.r+)I .

NF6 ∃F.r− v B: We prove that (∃F.r−)I ⊆ BI ; take an x ∈ (∃F.r−)I . By
(5), there exists C ∈ (N>C ∩sig(O)) such that x = xC . By (3) and (4) we construct
(S+(C,F ), S−(C,F )). Since xC ∈ (∃F.r−)I , by (8), there exists v ∈ V (C,F ),
such that r−(v) and V (C,F ) is a solution for (S+(C,F ), S−(C,F )). Hence,
r− /∈ S−(C,F ), and so, C v B ∈ O′ by (4). By C v B ∈ O′ and (6), xC ∈ BI .

We now show that if A v B /∈ O′ and A v ⊥ /∈ O′, then O 2 A v B by
proving I 2 A v B (since I |= O). AI * BI holds, because xA ∈ ∆I (from
A v ⊥ /∈ O′ and (5)), xA ∈ AI (from A v A ∈ O′ using rule IR1 and by (6)) and
xA /∈ BI (from A v B /∈ O′ and (6)). ut

4 Maximal Safe NDRs for N, Z, R and Q

In this section we present a full classification of safe NDRs for natural numbers
(0 ∈ N), integers, reals and rationals. Table 3 lists all maximal safe NDRs for N,
Z, R and Q. Due to space constraints we present proofs only for the maximal
NDRs of natural numbers, that is NDR1, NDR2, NDR9 and NDR10. For these we
show that: (i) they are safe (ii) extending any of them leads to non-safety and (iii)
every safe NDR w.r.t. N is contained in one of the NDR1, NDR2, NDR9 or NDR10.
Table 4 presents some basic transformations between (satisfiable) constraints.



Table 3. Maximal safe NDRs for N, Z, R and Q where D is the domain and O+ ,O−
is the set of positive and, respectively, negative relations

NDR D O+ O−

NDR1 N, Z, R, Q {=} {<,≤, >,≥,=}
NDR2 N, Z {>,≥,=} {<,≤,=}
NDR3 Z {<,≤,=} {>,≥,=}
NDR4 R, Q {<,>,≥,=} {<,≤,=}
NDR5 R, Q {<,≤, >,=} {>,≥,=}
NDR6 Z {<,≤, >,≥,=} {=}
NDR7 R, Q {<,≤, >,≥,=} {≤,=}
NDR8 R, Q {<,≤, >,≥,=} {≥,=}
NDR9 N, Z, R, Q {<,≤, >,≥,=} {<,≤}
NDR10 N, Z, R, Q {<,≤, >,≥,=} {>,≥}

Table 4. Transformations C1 ⇒ C2 preserving constraints and their satisfiability for
N, where S−, S+ and S are sets of datatype restrictions and y1 ≤ y2, z1 ≤ z2

C1 = (S ∪ S1
+, S−), C2 = (S ∪ S2

+, S−) C1 = (S+, S ∪ S1
−), C2 = (S+, S ∪ S2

−)

S1
+ S2

+ S1
− S2

−
{(<, y)} {(≤, y − 1)} {(<, z)} {(≤, z − 1)}
{(>, y)} {(≥, y + 1)} {(>, z)} {(≥, z + 1)}

{(≤, y1), (≤, y2)} {(≤, y1)} {(≤, z1), (≤, z2)} {(≤, z2)}
{(≥, y1), (≥, y2)} {(≥, y2)} {(≥, z1), (≥, z2)} {(≥, z1)}
{(=, y1), (≤, y2)} {(=, y1)} {(=, z1), (≤, z2)} {(≤, z2)}
{(≥, y1), (=, y2)} {(=, y2)} {(≥, z1), (=, z2)} {(≥, z1)}

{(<, 0)} ∅

Lemma 2. Let C1 and C2 be as defined in Table 4 and (N, O+, O−) be an
NDR. Then (i) C1 is a constraint over (N, O+, O−) iff C2 is a constraint over
(N, O+, O−) and (ii) if C1 and C2 are both constraints over (N, O+, O−), then
C1 is satisfiable iff C2 is satisfiable.

Corollary 1. For N, let NDRi with i = 1, 2, 9, 10. For every C1 = (S1
+, S

1
−)

over NDRi there exists a constraint C2 = (S2
+, S

2
−) over NDRi, y1, . . . , yn ∈ N

and z1, . . . , zm ∈ N with m, n ≥ 0 such that:

S2
+ ⊆ {(≤, y1), (=, y2), . . . , (=, yn−1), (≥, yn)}
S2
− ⊆ {(≤, z1), (=, z2), . . . , (=, zm−1), (≥, zm)}

where z1 < y1 < . . . < yn < zm, z1 < . . . < zm, yi 6= zj (2 ≤ i ≤ n − 1,
2 ≤ j ≤ m− 1) and C1 over NDRi is satisfiable iff C2 over NDRi is satisfiable.

Lemma 3. NDR1, NDR2, NDR9 and NDR10 (all for N) are safe.

Proof. We prove safety by building a solution V for every (S+, S−) over the
NDRs; by Corollary 1 we can assume w.l.o.g. the following restrictions:



NDR1: For S+ we have that S+ ⊆ {(=, y1), . . . , (=, yn)} and for S− that
S− ⊆ {(≤, z1), (=, z2), . . . , (=, zm−1), (≥, zm)} with z1 < y1 < . . . < yn < zm,
z1 < . . . < zm and yi 6= zj (1 ≤ i ≤ n, 2 ≤ j ≤ m− 1). V = {y1, . . . , yn}.

NDR2: For S+ we have that S+ ⊆ {(=, y1), . . . , (=, yn−1), (≥, yn)} and for S−
that S− ⊆ {(≤, z1), (=, z2), . . . , (=, zm)} with z1 < y1 < . . . < yn, z1 < . . . < zm

and yi 6= zj (1 ≤ i ≤ n − 1, 2 ≤ j ≤ m). V = {y1, . . . , yn−1, y
′
n}, where

y′n = max(yn, zm) + 1.
NDR9: For S+ we have that S+ ⊆ {(≤, y1), (=, y2), . . . , (=, yn−1), (≥, yn)}

and for S− that S− ⊆ {(≤, z1)} with z1 < y1 < . . . < yn. V = {y1, . . . , yn}.
NDR10: For S+ we have that S+ ⊆ {(≤, y1), (=, y2), . . . , (=, yn−1), (≥, yn)}

and for S− that S− ⊆ {(≥, z1)} with y1 < . . . < yn < z1. V = {y1, . . . , yn}. ut

Lemma 4. Let NDR = (N, O+, O−). If (a), (b) or (c), then NDR is non-safe.

(a) O+ ∩ {<,≤, >,≥} 6= ∅, O− ∩ {<,≤} 6= ∅ and O− ∩ {>,≥} 6= ∅.
(b) O+ ∩ {>,≥} 6= ∅, O− ∩ {>,≥} 6= ∅ and {=} ⊆ O−.
(c) O+ ∩ {<,≤} 6= ∅ and {=} ⊆ O−.

Proof. For every of the cases (a)-(c) we provide a counterexample that violates
the weak convexity condition and, thus by Lemma 1, safety:
(a): (<, 3)→N (<, 1) ∨ (≥, 1) but (<, 3) 9N (<, 1) and (<, 3) 9N (≥, 1). The
same counterexample applies when O+ ∩ {<,≤} 6= ∅, {≤, >} ⊆ O− and when
O+ ∩ {<,≤} 6= ∅, {≤,≥} ⊆ O−. For O+ ∩ {<,≤} 6= ∅, {<,>} ⊆ O− it is
(<, 3)→N (<, 2) ∨ (>, 1) but (<, 3) 9N (<, 2) and (<, 3) 9N (>, 1). A similar
example can be given for the the cases when O+ ∩ {>,≥} 6= ∅.
(b): (>, 1)→N (=, 2) ∨ (≥, 3) but (>, 1) 9N (=, 2) and (>, 1) 9N (≥, 3)

(>, 1)→N (=, 2) ∨ (>, 2) but (>, 1) 9N (=, 2) and (>, 1) 9N (>, 2)
(≥, 1)→N (=, 1) ∨ (≥, 2) but (≥, 1) 9N (=, 1) and (≥, 1) 9N (≥, 2)
(≥, 1)→N (=, 1) ∨ (>, 1) but (≥, 1) 9N (=, 1) and (≥, 1) 9N (>, 1)

(c): (<, 3)→N (=, 1) ∨ (=, 2) but (<, 3) 9N (=, 1) and (<, 3) 9N (= 2)
(≤, 2)→N (=, 1) ∨ (=, 2) but (≤, 2) 9N (=, 1) and (≤, 2) 9N (= 2) ut

Lemma 5. NDR1, NDR2, NDR9 and NDR10 (all for N) are maximal safe, that
is if any relation is added to O+ or O− they become non-safe.

Proof. We examine all cases of adding a new relation:
NDR1: If any of the <, ≤, >, ≥ is added to O+, then NDR1 becomes non-safe

due to Lemma 4(a).
NDR2: If > or ≥ is added to O−, then non-safety is due to Lemma 4(b). For

adding < or ≤ to O+, non-safety is due to Lemma 4(c).
NDR9: If > or ≥ is added to O−, then non-safety is due to Lemma 4(a). When

= is added to O− then NDR9 becomes non-safe due to Lemma 4(c).
NDR10: If < or ≤ is added to O−, then non-safety is due to Lemma 4(a). When

= is added to O− then NDR10 becomes non-safe due to Lemma 4(c). ut

It remains to demonstrate that every safe NDR for N is contained in one of the
NDR1, NDR2, NDR9 or NDR10. In the following, we assume that Oi

+ and Oi
− are

defined such that NDRi = (N, Oi
+, O

i
−) with i = 1, 2, 9, 10.



Lemma 6. If (N, O+, O−) is a safe NDR, then O+ ⊆ Oi
+ and O− ⊆ Oi

− for
i = 1, 2, 9 or 10.

Proof. The proof is by case analysis of possible relations in O+ and O−.
Case 1: O+ ∩ {<,≤, >,≥} = ∅. In this case, O+ ⊆ O1

+ and O− ⊆ O1
−.

Case 2: O+ ∩ {<,≤, >,≥} 6= ∅. If O− ∩ {<,≤} 6= ∅ and O− ∩ {>,≥} 6= ∅ at the
same time, then from Lemma 4(a), the NDR is non-safe. Therefore, we examine
two cases: either O− ⊆ {>,≥,=} or O− ⊆ {<,≤,=}.
Case 2.1: O− ⊆ {>,≥,=}. We distinguish either O− ⊆ {>,≥} or {=} ⊆ O−.
Case 2.1.1: O− ⊆ {>,≥} = O10

− and O+ ⊆ O10
+ .

Case 2.1.2: {=} ⊆ O−. By Lemma 4(c) it should be O+ ⊆ {>,≥,=} = O2
+

otherwise the NDR is non-safe. If O− ∩ {>,≥} 6= ∅ then the NDR is non-safe by
Lemma 4(b); otherwise O− = {=} ⊆ O2

−.
Case 2.2: O− ⊆ {<,≤,=} = O2

−. If O+ ⊆ {>,≥,=}, then O+ ⊆ O2
+. Otherwise,

O+ ∩ {<,≤} 6= ∅ and we distinguish whether O− ⊆ {<,≤} or {=} ∈ O−.
Case 2.2.1: O− ⊆ {<,≤} = O9

− and O+ ⊆ O9
+.

Case 2.2.2: {=} ∈ O−. In this case, the NDR is non-safe by Lemma 4(c). ut

For the cases of integers, reals and rationals the proofs are analogous to the
case of natural numbers. The interested reader can find details in the technical
report [7]. In the following, we provide a brief explanation for the results. We
notice two new maximal safe NDRs w.r.t. Z, namely NDR3 and NDR6. The reason
is that integers do not have a minimal element such as 0 in the case of naturals.
In particular positive occurrences of < (or ≤) and negative occurrence of = are
no longer dangerous (e.g. (≤, 1) 9Z (=, 1) ∨ (=, 0) does not hold anymore).
Reals and rationals are examples of dense domains: between every two different
numbers there always exists a third one. This property is responsible for new
safe NDRs. Specifically, O+ of NDR2 and NDR3 can be extended with < and >
respectively because the weak convexity property which did not apply for Z now
applies for R (e.g. (<, 5) 9R (=, 4) ∨ (≤, 3)). For the same reason, either ≤ or
≥ can be added to O− of NDR6 (e.g. (≤, 5) 9R (=, 5) ∨ (≤, 4)).

5 Related Work and Conclusions

Datatypes have been extensively studied in the context of DLs [3, 6, 8]. Exten-
sions of expressive DLs with datatypes have been examined in depth [6] with
the main focus on decidability. Baader, Brandt and Lutz [3] formulated tractable
extensions of EL with datatypes using a p-admissibility restriction for datatypes.
A datatype D is p-admissible if (i) satisfiability and implication of conjunctions
of datatype restrictions can be decided in polynomial time, and (ii) D is convex:
if a conjunction of datatype restrictions implies a disjunction of datatype restric-
tions then it also implies one of its disjuncts [3]. In our case instead of condition
(i) we require that implication and satisfiability of just datatype restrictions (not
conjunctions) is decidable in polynomial time since we do not consider functional
features. Condition (ii) is relaxed to the requirement of safety for NDRs since
we take into account not only the domain of the datatypes and the types of



restrictions but also the polarity of their occurrences. The relaxed restrictions
allow for more expressive usage of datatypes in tractable languages, as demon-
strated by the example given in the introduction. Furthermore, Baader, Brandt
and Lutz did not provide a classification of datatypes that are p-admissible; in
our case we provide such a classification for natural numbers, integers, rationals
and reals. The EL Profile of OWL 2 [2] is inspired by EL++ and restricts all
OWL 2 datatypes to satisfy p-admissibility in such a way that only equality can
be used. Our result can allow for a significant extension of datatypes in the OWL
2 EL Profile, where in addition inequalities can be used negatively.

Our work is not the only one where the convexity property is relaxed without
losing tractability. It has been shown [8] that the convexity requirement is not
necessary provided that (i) the ontology contains only concept definitions of the
form A ≡ C, where A is a concept name, and (ii) every concept name occurs
at most once in the left-hand side of the definition. In some applications this
requirement can be too restrictive since it disallows the usage of general concept
inclusion axioms (GCIs), such as the axiom (2) given in the introduction, which
do not cause any problem in our case.

In this work we made a fine-grained analysis of extensions of EL with nu-
merical datatypes, focusing not only on the types of relations but also on the
polarities of their occurrences in axioms. We made a full classification of cases
where these restrictions result in a tractable extension for natural numbers, in-
tegers, rationals and reals. One practically relevant case for these datatypes is
when positive occurrences of datatype expressions can only use equality and
negative occurrences can use any of the numerical relations considered. This
case was motivated by an example of a pharmacy-related ontology and can be
proposed as a candidate for a future extension of the OWL 2 EL Profile. For
the cases where the extension is tractable, we provided a polynomial sound and
complete consequence-based reasoning procedure, which can be seen as an ex-
tension of the completion-based procedure for EL. We think that the procedure
can be straightforwardly extended to accommodate other constructors in EL++

such as (complex) role inclusions, nominals, domain and range restrictions and
assertions since these constructors do not interact with datatypes [9]. We hope
to investigate these extensions in future works.

In future work we also plan to consider other OWL datatypes, such as strings,
binary data or date and time, functional features, and to try to extend the
consequence-based procedure for Horn SHIQ [10] with our rules for datatypes.
For example, to extend the procedure with functional features, we probably need
a notion of “functional safety” for an NDR that corresponds to the strong con-
vexity property (see Definition 4). In order to achieve even higher expressivity for
datatypes we shall study how to combine different restrictions on the datatypes
occurring in an ontology so that tractability is preserved. For example, using
two safe NDRs in a single ontology may result in intractability, as is the case for
NDR1 and NDR6 for integers (see Table 3). One possible solution to this problem
is to specify explicitly which features can be used with which NDRs in order to
separate their usage in ontologies.
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