
1

The Partner Units Problem
A Constraint Programming Case Study

Conrad Drescher, Department of Computer Science, University of Oxford

Abstract—The Partner Units Problem is a challenging combi-
natorial search problem that originates in the domain of security
and surveillance. Technically it consists of partitioning a bipartite
graph under side conditions. In this work we describe how
constraint programming technology can be leveraged to tackle
the problem. We address problem modelling, symmetry breaking
and problem-specific search strategies. We introduce the best
search strategy known to date as well as a powerful new implied
constraint for pruning the search space. Finally, we present
implementations in ECLiPSe Prolog and the MINION constraint
solver and compare these to a state-of-the-art dedicated algo-
rithm.

I. THE PARTNER UNITS PROBLEM

Consider a museum where we want to keep track of the
number of visitors occupying certain parts of the building. To
this end we divide the rooms into a set of (possibly overlapping
and non-contiguous) zones Z and place a set of sensors S on
the doors between different zones. The Partner Units Problem
(PUP) [1] now consists of connecting the sensors and zones
to control units, where each control unit can be connected
to the same fixed maximum number UnitCap of zones and
sensors. Moreover, if a sensor is attached to a zone, but the
sensor and the zone are assigned to different control units,
then the two control units in question have to be directly
connected. However, a control unit cannot be connected to
more than InterUnitCap other control units (the partner units).
See Figure 1 for an illustration.

Fig. 1. A floor plan is divided into zones with sensors on the doors between
zones (left). In the bipartite graph (right) zones are connected to the respective
sensors. Zones are named after the rooms covered and sensors after the
zones connected. The graph partitioning shown (U1-U4) constitutes an optimal
solution for InterUnitCap = UnitCap = 2.

Clearly the PUP is not limited to the museum domain, but
may arise in manifold security and surveillance applications.
See [2] for a description of how the PUP arises in traffic
monitoring for railways or in peer-to-peer networks.

Work and cooperation with Siemens Austria funded by EPSRC Grant
EP/G055114/1.

In this work we show how constraint programming technol-
ogy can be leveraged to tackle the PUP. Constraint program-
ming (CP) [3] is a powerful tool for solving combinatorial
search problems that has its roots in fundamental AI research.
Today CP together with integer programming and Boolean
satisfiability solving (SAT) constitutes the standard in com-
binatorial optimisation [4]. Contrary to SAT and integer pro-
gramming, where search is typically conducted autonomously,
in a typical CP toolkit problem-specific search strategies can
be programmed by hand.

The remainder of this paper is organised as follows: After
introducing the formal basics in Section II we review the
literature on the problem in Section III. We then present
our CP model, including search strategies, techniques for
symmetry breaking and a novel implied constraint. For the
empirical evaluation in Section V we consider problem models
in ECLiPSe Prolog and the MINION constraint solver as well
as a state-of-the-art dedicated algorithm. Finally, in Section VI
we conclude with a short discussion.

II. PRELIMINARIES

A. The Partner Units Problem

Formally the Partner Units Problem is defined as follows:

Definition 1 (Partner Units Problem). Given a connected bi-
partite instance graph G = (S,Z, E) on sensors S and zones
Z as well as concrete values for the parameters UnitCap1

and InterUnitCap, a solution to the Partner Units Problem is
a partitioning of the graph into a set U of non-empty bags
such that each bag
• contains at most UnitCap vertices from S and Z each;

and
• has at most InterUnitCap adjacent bags, where the bags

U1 and U2 are adjacent whenever s ∈ U1 and z ∈ U2

and (s, z) ∈ E .

To every solution of the PUP we associate a solution graph:
The nodes are the bags of the solution and the edges represent
the adjacency relation between bags.

We are especially interested in finding optimal solutions;
that is, solutions that use a minimum number of units. The
minimum number of units needed for a solution is lb =
dmax (|S|,|Z|)

UnitCap e; unless there are empty units the number of
units used cannot be greater than |S|+ |Z| [5].

Let us recapitulate the known complexity results [5] for
deciding whether there is a solution using at most k units. The

1For ease of presentation and without loss of generality we assume that
UnitCap is the same for zones and sensors.

2

problem is NP-complete if InterUnitCap = 0 and UnitCap is
a parameter. The case where InterUnitCap = 2 is tractable for
fixed UnitCap. Intuitively, this case is easier because, w.l.o.g.,
on a given number of units the solution graph can be fixed
to a simple cycle. The complexity for the case of a fixed
InterUnitCap > 2 is still open. Here, however, the number of
different possible solution layouts grows exponentially with
the number of units: Recall that a graph is k-regular if each
vertex has exactly k neighbours: Hence InterUnitCap-regular
graphs are most general solution topologies [6].

B. Constraint Programming

We briefly recall the basic ideas of constraint programming
over finite domains; for an in-depth treatment we refer the
reader to [3]. In CP we consider a finite set of variables,
where each variable is associated with a finite domain of
admissible values. A constraint is a relation on a subset of the
variables that specifies the admissible combinations of values.
A simple constraint is e.g. the equality constraint x = y. So-
called global constraints accept an arbitrary finite number of
variables. An example is alldifferent(~x) which constrains all
the variables in ~x to take different values. A CP solver finds
values for all variables such that all constraints hold.

The fundamental concept in CP is constraint propagation.
This can very roughly be described as follows: Given a change
to the domain of one of the variables constraint propagation
tries to reduce the domains of the other variables. E.g. in
the case of alldifferent after setting one of the ~x to a value
V this value V can be removed from the domain of all the
other variables. The propagation algorithm actually employed
depends on the constraint’s semantics, but typically has a low
polynomial runtime. Nevertheless there is a trade-off between
the cost for constraint propagation and its benefit in the form of
a pruned search space. As propagation alone does not suffice to
find solutions CP tool-kits interleave it with a search procedure
that instantiates variables.

The two CP solvers considered in this work, ECLiPSe and
MINION, both use a standard backtracking search procedure.
In ECLiPSe the constraint solving is embedded into Prolog as
a host language [7], [8]. The platform comes with a plethora
of libraries e.g. for real-valued arithmetic or hybrids of CP and
integer programming and is very good for rapid prototyping.
ECLiPSe adopts a “glass-box” model: It is relatively easy to
implement new custom propagators or to modify propagator
behaviour. MINION on the other hand is a pure constraint
solver and adopts a “black box” model for constraint solving
[9]. This means the user is not supposed to extend the solver
and has access to only a limited number of search strategies.
However, MINION is carefully engineered to offer scalable
constraint solving by sheer speed of propagation. For example,
it can detect and avoid attempts at constraint propagation that
cannot result in new information [10].

III. PREVIOUS WORK

A first set of encodings for the PUP in different formalisms
such as SAT or constraint handling rules as well as heuristic
search methods have been presented in [1]. Better, albeit

still basic, encodings as SAT and as a constraint, integer
and answer set program have then been presented in [6],
together with experimental results on the polynomial algorithm
for the case of InterUnitCap = 2 from [5]. Here, for the
case of InterUnitCap > 2, the conflict-driven clause learning
solvers used for the SAT encoding and the answer set program
performed best. However, some instances were still beyond
the reach of these methods. Interestingly, for the case of
InterUnitCap = 2, the polynomial algorithm performed only
poorly; it was the CP model that performed best.

Due to space constraints no explicit CP model was given
in [6]. The models described in the present work are improved
and extended versions thereof.

Next the recent QUICKPUP and QUICKPUP∗ algorithms
from [2] constituted a real breakthrough, capable of quickly
finding solutions for all our instances. Let us briefly reca-
pitulate here what these algorithm do: Prior to search the
sensors and zones are ordered via a breadth-first traversal
of the instance graph starting from some zone. The sen-
sors and zones are assigned in that order. For example,
on the instance graph from Figure 1 we obtain the order-
ing 〈Z1, D01, D12, Z0, Z2345678, Z2367, Z2378, D26, D34, D36,
D56, D67, D78, Z45, Z456, Z6〉, starting at zone Z1 and break-
ing ties lexicographically. This ordering has first been used in
[6].

Next, both algorithms employ restarts: The available compu-
tation time is distributed evenly between the vertex orderings
obtained by starting from different zones.

Now, whenever QUICKPUP tries to assign a sensor or a zone
to a unit it first tries a fresh unit; only if that fails all previously
used units are tried successively (in decreasing order). Finally,
after having constructed a large solution, QUICKPUP tries to
contract this into a smaller one in a simple greedy fashion.
In the QUICKPUP∗ variant the previously used units are tried
first before finally a fresh unit is used. Contrary to QUICKPUP
the solutions found by QUICKPUP∗ are always optimal.

The PUP constraints are enforced as follows: An object-
oriented representation of the current partial solution is main-
tained throughout search.2 There is no constraint propagation:
For example, attempts to place sensors or zones on already
full units are not precluded — they simply fail. This makes
for an interesting comparison with CP: The respective search
strategies are easily emulated, but constraint propagation may
offer some benefit.

IV. THE CP MODEL

We next describe the CP model. We address modelling,
search strategies and symmetry breaking as well as the re-
spective implementation techniques in ECLiPSe. Finally we
discuss how to port this implementation to MINION.

A. The Instances

Let us first describe our benchmark instances. Most have
been provided by our partners in industry; some have been
crafted to highlight model properties. For all our instances

2QUICKPUP is implemented in JAVA.

3

InterUnitCap ∈ {2, 4} and UnitCap = 2. The industrial
instances are built from an underlying grid of rooms, where
each room is a zone. There are sensors on all doors and there
may be larger zones covering multiple rooms.

1) InterUnitCap = 2: We use the same industrial instances
as in [6], [2]. The “triple” instances are similar to the grid
instance depicted below in Figure 3. As the grids or the over-
lapping zones grow larger these instances become unsolvable
for InterUnitCap = 2. The “double” instances consist of two
rows of rooms stacked on top of each other; cf. Figure 2. In
the “doublev” instances the columns form overlapping zones.

Fig. 2. The layout of the “double”- and “doublev”-instances.

2) InterUnitCap > 2: Here we use two sets of solvable
instances, Old and New. A typical example is depicted in
Figure 3. Instances may contain multiple such blocks stacked
on top of each other.

Fig. 3. A typical instance with overlapping zones (dotted).

a) Old: These are the instances also used in [6], [2].
All twenty instances are built atop a grid of rooms, with some
doors blocked and some overlapping zones. All these instances
have solutions using a maximum number of units.

b) New: On the one hand, these also contain grid-like
problems, but with more and larger overlapping zones. On
the other hand, we include some hand-crafted instances that
admit only solutions of minimum size. For this we use the
construction for enforcing arbitrary solution topologies from
[6].

B. A Basic ECLiPSe Model for InterUnitCap = 2
We next describe a specialised model for the case of

InterUnitCap = 2, which is of some interest for our industrial
partners. The case of InterUnitCap = 2 deserves a separate
treatment because of the following: For a fixed number n of
units we may assume without loss of generality that the units
form a cycle 〈U1, U2, . . . , Un〉; the solution topology does not
have to be inferred. The CP model is shown in Figure 4.

Assuming we use n units for each sensor s (or zone z)
we introduce a variable sv (or zv) with domain 1..n; if sv is

|Sv| = |S|, |Zv| = |Z|
sv ∈ {1, . . . , n}, all sv ∈ Sv

zv ∈ {1, . . . , n}, all zv ∈ Zv

atmost(UnitCap,Sv, i), all 1 ≤ i ≤ n

atmost(UnitCap,Zv, i), all 1 ≤ i ≤ n

pu(sv, zv), all (s, z) ∈ E

Fig. 4. The CP model for n units and an instance graph G = (S,Z, E).

assigned to i this means that s is to be placed on the i-th unit.
A constraint of the form atmost(UnitCap,Sv, i) enforces that
the value i occurs at most UnitCap times in the set of variable
Sv [11]. Repeat for all i and for the zones Zv . For the “partner
units” constraint pu(sv, zv) we use the following observation:
If for an edge (s, z) ∈ E sensor s is assigned to unit Ui there
are at most three possible units for zone z (and vice versa).
We have considered two models:
• Using a custom propagator that (1) waits until either

sv or zv are instantiated and (2) then restricts the other
variable’s domain [6].

• Using an arithmetic constraint with a variable szdiff for
the expressing the distance between s and z:

|SZdiff| = |E|
szdiff ∈ {−(n− 1),−1, 0, 1, (n− 1)}, all szdiff ∈ SZdiff

sv − zv = szdiff, all (s, z) ∈ E

This model will react to any change to the domain of sv

or zv , not just to instantiation.
The atmost constraints on the sensors (or the zones) can be

combined into a single global cardinality constraint [12]: For
two vectors vals and cvars of variables of the same length, the
constraint gcc(vars, vals, cvars) enforces that each val occurs
cvar times in vars. Here val is fixed, but cvar may be a domain
variable. In our case we have e.g. gcc(Sv, [1, . . . , n], cvars),
with each cvar’s domain set to {0, . . . , UnitCap}.

C. A Basic ECLiPSe Model for InterUnitCap > 2

In this setting we have to infer the layout of the solution.
For the respective parts of the ECLiPSe model used in [6] see
Figure 5; the remainder of the model is as in Figure 4.

|UU| = n2

uui,j ∈ {0, 1}, all uui,j ∈ UU , i, j ∈ {1, . . . , n}
uui,i = 1, uui,j = uuj,i, all i, j ∈ {1, . . . , n}
atmost(InterUnitCap + 1,UU [i,], 1) all 1 ≤ i ≤ n

pu(sv, zv,UU), all (s, z) ∈ E

Fig. 5. The CP model for n units and an instance graph G = (S,Z, E).

Connections between units are modelled via a symmetric
n× n matrix UU of Boolean variables uuij corresponding to

4

a connection from unit i to unit j. We set the diagonal UUii

to “one”. The InterUnitCap constraints are then enforced as
atmost(InterUnitCap + 1,UU [i], 1), were UU [i,] denotes the
i-th column of the matrix.

Finally, we need to propagate the “Partner Units” con-
straint. To this end we have written a custom propagator
pu(sv, zv,UU) that operationally behaves as follows: (1) If
either s or z is assigned to unit ui (say s is) then we add the
constraint uuiv = 0⇒ z 6= v for every value v in the current
domain of z. (2) This implicational constraint is checked only
when uuiv is instantiated — ignoring all changes to the domain
of z. (3) If both s and z are assigned the respective Boolean
is set to “one”.

Note that we can safely set an inter-unit-connection Boolean
UUij to “zero” only when for all pairs of variables sv, zv ,
(s, z) ∈ E , the combination i, j does not appear in the
respective domains. We consider this not worth detecting.

Let us describe two model variants:
(M1) The matrix can be folded along the diagonal, removing

the redundant variables.
(M2) The “partner units” constraint can also be modelled

via an element(UU , i, 1) constraint: On a list representation
of UU this constraint enforces that the i-th element is a
“one”, where i is a domain variable ranging over the list
indices [13]. For constraining the index variable i we have
considered two models: (a) We can post the arithmetic con-
straint ((sv − 1) ∗ n) + zv = i for each edge (s, z) ∈ E in the
instance graph. (b) We can precompute all possible solutions to
the above arithmetic constraint, that is, the tuples 〈j, k, l〉 such
that ((j − 1) ∗ n) + k = l for all j, k ∈ {1, . . . , n}. Storing
these extensionally we can post a so-called table constraint
table(sv, zv, i) for all (s, z) ∈ E , ensuring that the tuple of
variables 〈sv, zv, i〉 is instantiated to one of the tuples listed.
In both approaches the constraint will be checked whenever the
domain of one of the variables changes. The element constraint
will also be checked whenever the domain of i changes.

D. Variable and Value Orderings

The order in which variables and values are selected for
instantiation is well known to have dramatic impact on the
performance of CP solvers.

1) Variable Orderings: The variables uu for the inter-unit-
connections always come last in our variable orderings. Once
all sensor and zone variables are instantiated the remaining
uninstantiated uu variables can all be set to “zero”. This means
in our CP model a variable uui,j will only be set to
• “one” if there are sv, zv on units i, j such that (s, z) ∈ E ;
• “zero” if the maximum number of “ones” has been

reached in row i or column j.
For InterUnitCap = 2 the breadth-first ordering of the

sensor and zone variables3 resulted in good runtimes for
the CP model in [6]. However, a closer look revealed the
following: All the results were obtained by variable orderings
starting from a corner of the underlying grid (zone one).
Redoing the experiments we observed that with other orderings
(starting zones) the same model frequently timed out.

3Below we will simply speak of “variables”.

This observation led to the following idea: Consider e.g. a
large “double” instance as depicted in Figure 2. If we order the
variables in a breadth first manner starting from somewhere in
the middle of the instance then the instance is decomposed into
two large remaining connected components. But the sensor
and zone variables from these connected components will
be interleaved in the ordering and they will share the same
possible values/units. The solver has to discover the graph
decomposition by costly trial and error.

As all our instances are built from an underlying grid (pos-
sibly containing overlapping zones) we can use the following
idea for a variable ordering:
(1) Walk the underlying grid in such a way that it is not

decomposed.
(2) Add in the overlapping zones as soon as all their neigh-

bours are covered.
In such a variable ordering the remainder of the graph will

consist of one large component (the remainder of the under-
lying grid) and possibly singleton vertices (overlapping zones
with their neighbours covered). Call such a variable ordering
almost-non-decomposing. Let us point out that depending on
the entry point a breadth first ordering can be almost-non-
decomposing, too. Note that for general bipartite PUP instance
graphs such orderings do not always exist.

2) Value Orderings: For the old CP-model from [6] the
default increasing value ordering of most CP solvers was used.
The search strategies of QUICKPUP and QUICKPUP∗ can be
captured by value orderings (1) and (2), respectively, where
we remember throughout search the current “fresh” unit:
(1) Try the “fresh” unit first, then try the preceding units.
(2) Try the preceding units first before trying the fresh unit.

Values other than the fresh unit are tried in decreasing
order (more recent units are preferred). The respective value
orderings are computed from a variable’s domain prior to
instantiating it for the first time.

Next we propose a new search strategy (PRED):
(3) For each variable remember which units those variables

preceding it in the ordering were assigned to; but do this
only for variables which are up to two edges away in the
instance graph. Try these units first. If that fails, try the
fresh unit. If that fails, try the remaining preceding units.

The idea is to place sensors and zones on the same units
as those neighbours in the instance graph that precede them
in the ordering; this should require fewer new connections
between units to be made. If that fails a fresh unit may be
more promising than more distant predecessors. In order to
implement (3) prior to search we compute for each variable
the set of its successors in the ordering that are at most two
edges away in the instance graph. We then maintain throughout
search for each variable the set of units that its predecessors
have been assigned to: Whenever a variable is instantiated,
we update this set for each of its successors. We compute
the PRED value ordering from the variable’s current domain
whenever a variable is instantiated for the first time.

Observe that these value orderings are not compatible with
the CP model for the case InterUnitCap = 2: With the solution
topology fixed in this model for a neighbour of the first

5

variable we have to consider the first, the second and the last
unit, two of which are “fresh”. In this setting we simply use
the default ascending value ordering.

E. Restarts

Restarts of the search have been employed with great
success in [2], where up to |Z| restarts have been used, i.e.
one per zone. A new variable ordering is computed at every
restart, starting from the respective zone. The idea is that each
potential “bottleneck” zone is located at the top of the search
tree once. Here we adopt the same restart model.

F. Finding Optimal Solutions

In [6] two basic strategies for finding optimal solutions have
been proposed:

(1) Make a model that contains upper bound many units
and try to maximise the number of empty units (real
optimisation in a single CSP).

(2) Start with lower bound many units; if no solution can
be found increase the number of units by one (iterative
deepening search on a sequence of CSPs).

Strategy (2) has been very successful. Almost all our
instances are solvable and the solvable ones can all be solved
using just lower bound many units: We only have artificially
created instances where this does not hold; cf. Figure 6.
Moreover, the strongest upper bound on the number of units
required for a solution that is currently known (|S|+|Z|) must
be considered weak as it does not depend on UnitCap. Strate-
gies (1) and (2) are implemented by adjusting the sensors’
and zones’ domain size. QUICKPUP is similar to (1), whereas
QUICKPUP∗ and PRED also work well with (2).

Fig. 6. A PUP instance (top) that forces a solution with two units not filled to
the maximum (UnitCap = InterUnitCap = 2): The K1,(InterUnitCap+1)∗UnitCap
subgraphs in the instance admit only solutions with InterUnitCap + 1 units.
We can then trap single vertices between these K1,6 subgraphs. Clearly the
pattern can be extended to the right or to InterUnitCap > 2. The construction
shown is the core of the non-minimal constructions we know to date.

G. Symmetry Breaking

The PUP exhibits a lot of symmetry. Breaking (some of)
these symmetries allows to avoid the repeated exploration of
identical subtrees of the search tree containing no solution.

1) InterUnitCap = 2: There are two types of rotational
symmetry: Rotating a cyclic solution like a wheel gives a new
solution as does flipping it like a coin. These symmetries are
broken as follows: (1) Fix some sensor or zone to the first unit
and (2) require that some other sensor or zone appears on the
first half of the cycle formed by the units [5].

2) InterUnitCap > 2: In [6] the following two basic ideas
for symmetry breaking have been proposed:
(1) For some ordering of the sensor and zone variables,

variable v1 has to be on some unit, say unit one; variable
v2 might be on the same unit or on a fresh one, say unit
two; and so on.

(2) For some ordering of the units, if unit j is non-empty
then unit i must not be empty for all i < j. This only
applies if there are more units than the bare minimum.

Part (2) is particularly important because of the following:
Assume we have a partial solution using units U1, . . . , Un, and
that extending this solution by using the fresh unit Un+1 fails.
Now, in the absence of (2), trying to extend the solution using
unit Um will fail, too, all m > n + 1, leading to so-called
thrashing of the search engine.

Here we make the observation that (1) and (2) together
enforce precedence(Ui, Uj , ~v) constraints in the sense of [14]
on the sensor and zone variables for all Ui < Uj :4 Let ~v be
the sequence of ordered sensor and zone variables and let the
units be numbered 1..n. Then in any assignment to ~v we have
that, whenever unit j occurs in the assignment, then there is
an earlier occurrence of unit i.

Originally, we have implemented (1) via statically restrict-
ing the variables’ domains, and (2) via reified constraints,
similar to the “if-then” constraints described in [14], as the
precedence constraint is not available in ECLiPSe: Assume
that vars = 〈v1, v2, . . . , vn〉 is an ordering of the sensor and
zone variables and that the units are ordered 〈U1, U2, . . . , Um〉.
For each pair Ui, Ui+1 we post constraints

vk = Ui+1 ⇒
∨
l<k

vl = Ui,

for every k such that d i+1
UnitCape ≤ k ≤ i+1. This was found to

be computationally even more expensive than not using sym-
metry breaking at all [6]. Here we observe that a precedence
constraint on the sensor and zone variables is also enforced
if we use one of the QUICKPUP, QUICKPUP∗ or PRED value
orderings: The value orderings achieve the symmetry breaking,
there is no need to post additional constraints.

Symmetry breaking can also be done by restricting the pos-
sible inter-connections between units instead of the possible
assignments from sensors and zones to units. In its simplest
form symmetry breaking on Boolean matrices like the one for
the inter-unit-connections is done via lexicographic ordering
constraints Rowi >=lex Rowj , i < j; more advanced methods
are described in [15], [16]. All these methods, however, are
not compatible with restricting the potential assignments from
sensors and zones to units.

H. Checking Maximum Joint Vertex Degree

We next describe a novel condition that can be exploited to
detect dead-ends earlier during search. Instances that contain
a vertex of degree d > (InterUnitCap + 1) ∗ UnitCap are
unsolvable [5]: The neighbours require more neighbouring
units than allowed. Now assume that during search we have

4We assume (1) and (2) use the same ordering of the units.

6

assigned two sensors to some unit that together have more than
(InterUnitCap + 1) ∗ UnitCap adjacent zones: Such a partial
solution can also never be extended to a full solution. We refer
to this condition as a violation of the Maximum Joint Vertex
Degree (MJVD). Such a violation can either be detected by
exhaustively trying all possibilities for placing the respective
neighbours on units, or by simple counting.

In ECLiPSe we have implemented the counting check as
follows: For every unit we keep track of those sensors/zones
that have to be assigned to this unit or one of its neighbours,
using two duplicate-free lists. We update the respective list
whenever we assign a sensor/zone; we fail as soon as some list
grows too long. Alternatively, instead of lists we can introduce
vectors of Booleans of length |S| and |Z|, respectively. An
entry i in the vector is set to one if vertex i has to be on this
unit or on one of its direct neighbours. Finally we constrain
the vectors to contain at most (InterUnitCap + 1) ∗ UnitCap
“ones”; cf. Figure 7. The advantage of using lists is that their
length is bounded by a constant.

|U i
S | = |S|, |U i

Z | = |Z|, all U i ∈ U
U i
S , U

i
Z ∈ {0, 1}, all U i ∈ U

sj = i⇒
∧
k

U i
Z [k] = 1, all sj ∈ S, (sj , zk) ∈ E

zj = i⇒
∧
k

U i
S [k] = 1, all zj ∈ Z, (sk, zj) ∈ E

atmost((InterUnitCap + 1) ∗ UnitCap, U i
S , 1), all 1 ≤ i ≤ n

atmost((InterUnitCap + 1) ∗ UnitCap, U i
Z , 1), all 1 ≤ i ≤ n

Fig. 7. A pure CP model for checking the MJVD.

I. Porting the ECLiPSe Model to MINION

Next we describe issues arising when porting the ECLiPSe

model to MINION. MINION employs specialised algorithms
for variables of different types. We use DISCRETE variables
for S and Z .

1) InterUnitCap = 2: The ECLiPSe model from Figure 4 is
fully supported by MINION. For the “partner units” constraint
in MINION we use the arithmetic formulation as MINION does
not support custom propagators.

2) InterUnitCap > 2: Here we also use DISCRETE vari-
ables for the index variables for the element constraint and
BOOL for the Booleans for the inter-unit-connections.

Next, like ECLiPSe MINION does not support the prece-
dence constraint. However, it also does not allow the user
to program value orderings like QUICKPUP or PRED. Hence
the precedence constraints have to be encoded using logical
combinations of (in-)equalities.

For checking the MJVD in MINION we use the pure CP
model from Figure 7. Folding the matrix for the inter-unit-
connections in MINION cuts run times in half.

V. EXPERIMENTAL RESULTS

All experiments were done on the same 3 GHz dual core
machine with 4 GB RAM running Fedora Linux as in [6].

A. Comparing Search Strategies

For search strategies with restarts we use a fixed timeout
per zone (ordering): If the timeout is one second an instance
with ten zones gets a maximum of ten seconds computation
time. We start from a timeout of one second, with gradual
increases in steps of half a second. The maximum time
considered per zone/ordering is ten seconds. The time-outs
given below are the smallest such that a given number of
instances can be solved. Note that higher time-outs may lead
to smaller overall runtimes. By tuning the time-out parameter
to properties of the instances as described in [17] better results
should be attainable. For QUICKPUP we haven’t implemented
the minimising of solutions; the times reported are just for
finding (usually very large) solutions.

Table I contains results for instances with InterUnitCap = 4.
An entry of the form x@y reads: “x instances solved in y
seconds”. Three instances of the Old instance set could not
be solved using a timeout of at most ten seconds — which
means up to 1460 s total computation time per instance. The
PRED strategy generally does best. QUICKPUP struggles the
most on the New instances that do not allow large solutions.

Instances Timeout QP QP∗ PRED PRED−

Old (20) 1 s 3@1511 5@1307 13@780 13@775
2 s 3@3021 7@2262 17@1026

4.5 s 17@2465
6.5 s 17@2395

New (9) 1 s 4@195 5@211 9@65
4 s 9@83 8@231

New (6) 2 s 3@472 6@65 6@25 1@529
5 s 4@860

TABLE I
STRUCTURED PROBLEMS WITH InterUnitCap = 4 AND UnitCap = 2

As explained above in Section IV-D2 for InterUnitCap = 2
we only consider the default increasing value ordering.

B. Checking MJVD

In Table I above PRED− denotes a model with the check
for violations of the MJVD turned off. On the Old instances
these never occur as there are no vertices of sufficiently high
degree. On the crafted New(6) instances, however, they occur
frequently. The overhead incurred by the check appears to be
negligible, while the potential benefits are big.

C. Variable Orderings and Restarts

The instance-specific idea of almost-non-decomposing vari-
able orderings work very well on the “double” and “doublev”
instances for InterUnitCap = 2. Figure 8 shows typical results.
On these instance families restarts are not needed.

On less simply structured instances, however, running times
are less predictable; cf. Figure 9. In particular, almost-non-
decomposing orderings can not be seen to be superior. Hence
restarts will remain a powerful tool until we gain a better
understanding of the relationship between the instance graph
and good variable orderings.

7

Fig. 8. The running times obtained by different entry points for the bfs
ordering on “double-20”. Nodes coloured from 0 s (white) to 30 s (black).
Only zones are shown; there are doors/sensors on all edges.

Fig. 9. The running times obtained by different entry points for the bfs
ordering on “triple-60”. Nodes coloured from 0 s (white) to 10 s (black). The
left figure is for InterUnitCap = 2, the right for InterUnitCap = 4.

D. Symmetry Breaking

For InterUnitCap > 2 we have also built a model where we
lexicographically order the matrix for inter-unit-connections,
using Rowi >=lex Rowj , i < j. Hence no precedence
constraint on the sensor/zone variables can be used. On our
instances this model was almost three times slower than a
model with no symmetry breaking at all. The latter model
could solve five instances in 4130 s with a time-out of 3.5 s
per zone; with a time-out of 10 s it couldn’t solve more than
those five instances.

E. Model Variants

ECLiPSe features a prototypical implementation of Régin’s
algorithm for the gcc constraint [18], where the cvar variables
are represented by lower and upper bounds, i.e. their domain
may not contain holes. Using gcc constraints instead of atmost
contraints increases the running times by more than one order
of magnitude in ECLiPSe.

1) InterUnitCap = 2: We have first compared the two
different models of the “partner units” constraint. In Table II
ECLiPSe I denotes the custom propagator and ECLiPSe II
the arithmetic constraint: ECLiPSe II does much better. All
running times are for almost-non-decomposing bfs variable
orderings starting from “zone one” without restarts. We have
also run our general model with the PRED search strategy
on the same instances. Here an entry x@y reads: Solved the
instance in x seconds using a timeout of y seconds per variable
ordering. A “–” denotes a timeout. The variable orderings and
the order in which they are considered are the same in all
three models. Fixing the solution topology as in the specialised
model clearly performs better.

2) InterUnitCap > 2: Here we consider the model variants
(M1) and (M2) from Section IV-C:

Instance |U| ECLiPSe I ECLiPSe II PRED
double-20 14 0.47 0.02 2.8@0.5s

double-200 149 14.40 2.36 –@10s
doublev-30 15 0.03 0.03 1.1@1.5s

doublev-180 90 3.77 3.02 –@10s
triple-30 20 0.54 0.03 –@10s
triple-60 40 45.98 0.37 –@10s

TABLE II
ECLiPSe RESULTS FOR InterUnitCap = UnitCap = 2

(M1) Folding the matrix has no significant impact on
performance in ECLiPSe.

(M2) The element(list, i, value) constraint in ECLiPSe does
not allow variables in list; hence we have developed an appro-
priate version ourselves. It (1) removes from index’s domain
those values corresponding to elements of list such that value
is not in the element’s domain; and (2) sets the respective
list entry to value when index gets instantiated. When the
domain of one of the list values is modified it repeats (1).
This could be done much more efficiently if ECLiPSe reported
which values were removed from the respective domains. The
combination of element and arithmetic constraints is orders
of magnitude slower than using our custom propagator. Using
a timeout of two seconds per variable ordering PRED solves
only three instances in 2807 seconds.

F. Comparing ECLiPSe and MINION

In Table III we report runtimes for MINION and ECLiPSe

on a representative instance for InterUnitCap = 4, using
identical variable orderings, but no restarts or precedence con-
straints. In the absence of a custom propagator for the “partner
units” constraint MINION is slightly slower than ECLiPSe. It
is better to constrain the index of the element constraint via
table constraints than via arithmetic ones (MINION +), which
timed out after ten minutes. Just like in ECLiPSe encoding
the precedence constraint on the sensor and zone variables
via Boolean combinations of (dis-)equalities increases running
times by orders of magnitude (results not shown).

It can also be seen that interestingly in MINION for
InterUnitCap = 4 using single gcc constraints is superior to
using multiple atmost constraints,5 with the gccweak variant
having slightly the edge. MINION’s highly optimised imple-
mentation of the gcc constraints [19] here makes all the
difference to ECLiPSe’s prototypical implementation.

ECLiPSe MINION MINION g MINION gw MINION +

1.50 19.83 6.55 6.39 –

TABLE III
RUNNING TIMES FOR “TRIPLE-90” WITH InterUnitCap = 4.

As illustrated by Figure 10 for InterUnitCap = 2 MINION
is much faster than ECLiPSe. It can also be seen that now in
MINION using multiple atmost constraints is superior to single
gcc or gccweak constraints. The overhead incurred by the pure
CP check for the MJVD in MINION is so big that even on the
New(6) instances we obtain no gain.

5The latter are called occurrencesleq in MINION.

8

G. Comparison with the QUICKPUP Implementation
For InterUnitCap = 4 we have run the JAVA implementation

of QUICKPUP∗ on the Old and New instance sets. It takes
about seven seconds for each set, at a timeout of one second
per variable ordering. For InterUnitCap = 2 in Figure 10 we
report results on larger “double”-instances that show how all
the different approaches scale. ECLiPSe here denotes the CP
model with the PRED search strategy.

Fig. 10. Running times for larger “double” instances.

We can see that — at least in the proposed model/solver
combinations — the CP models can not yet compete with the
dedicated implementation of the QUICKPUP∗ algorithm.

VI. DISCUSSION

We believe that the somewhat disappointing runtimes of
the CP models stem from different sources: In the case
of ECLiPSe employing propagation-avoiding techniques like
those used in MINION should prove beneficial. MINION on
the other hand does not admit a lightweight propagator of
the “partner units” constraint for InterUnitCap = 4. In the
case of InterUnitCap = 2 it is almost on a par with the
JAVA implementation of QUICKPUP∗. Our work shows that
for a CP solver to be truly competitive both is needed:
Carefully implemented propagators that avoid futile attempts
at propagation and the support for user-defined lightweight
propagators. We have also seen that the choice of propagator
depends on implementation details in the solver.

Our work also provides a better understanding of the good
performance of QUICKPUP and QUICKPUP∗: This has to be
attributed foremost to (1) powerful yet inexpensive symmetry
breaking via value orderings that enforce precedence con-
straints and (2) a highly efficient implementation for checking
the PUP constraints.

On the positive side this paper has contributed the best
search strategy known to date for the PUP in the case of
InterUnitCap > 2. We note that by considering neighbours
more than two edges away the PRED strategy can gradually
be turned into the QUICKPUP∗ strategy. Finally, the previously
unknown MJVD condition provides an inexpensive and poten-
tially very useful check for pruning the search space. The cur-
rent state-of-the-art, the QUICKPUP∗ implementation in JAVA,
should benefit from incorporating both these contributions.

Thanks We wish to thank Andreas Falkner, Gerhard
Friedrich and Erich Teppan for providing us with their paper
on, and implementation of, the QUICKPUP and QUICKPUP∗

algorithms. Special thanks also for making the paper available
to the reviewers. We also wish to thank Chris Jefferson for
helpful comments on MINION.

REFERENCES

[1] A. Falkner, A. Haselböck, and G. Schenner, “Modeling Technical
Product Configuration Problems,” in Workshop on Configuration at the
19th European Conference on Artificial Intelligence ECAI 2010, Lisbon,
Portugal, L. Hotz and A. Haselböck, Eds., 2010.

[2] E. Teppan, A. Falkner, and G. Friedrich, “QuickPup: A Heuristic
Backtracking Algorithm for the Partner Units Configuration Problem,”
in Proceedings of the 24th Conference on Innovative Applications
of Artificial Intelligence, IAAI 2012, Toronto, Canada, M. Fromherz
and H. Munoz-Avila, Eds. AAAI press, 2012, Preprint available
at http://proserver3-iwas.uni-klu.ac.at/restricted/iaai.pdf. User: restricted,
Pwd: D0wnL04d. Please treat confidentially (patent pending).

[3] F. Rossi, P. van Beek, and T. Walsh, Eds., The Handbook of Constraint
Programming. Elsevier, 2006.

[4] J. N. Hooker, Integrated Methods for Optimization. New York: Springer,
2006.

[5] M. Aschinger, C. Drescher, G. Gottlob, P. Jeavons, and E. Thorstensen,
“Tackling the Partner Units Configuration Problem,” in Proceedings of
the 22nd International Joint Conference on Artificial Intelligence, IJCAI
2011, Barcelona, Catalonia, Spain, T. Walsh, Ed. AAAI press, 2011,
pp. 497–503.

[6] M. Aschinger, C. Drescher, G. Friedrich, G. Gottlob, P. Jeavons,
A. Ryabokon, and E. Thorstensen, “Optimization Methods for the
Partner Units Problem,” in Proceedings of the 8th International Con-
ference on the Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems, CPAIOR 2011,
Berlin, Germany, ser. Lecture Notes in Computer Science, T. Achterberg
and J. C. Beck, Eds., vol. 6697. Springer, 2011, pp. 4–19.

[7] M. Wallace, J. Schimpf, and S. Novello, “ECLiPSe: A Platform for
Constraint Logic Programming,” ICL Systems Journal, vol. 12, pp. 159–
200, 1997.

[8] J. Schimpf and K. Shen, “ECLiPSe - From LP to CLP,” Theory and
Practice of Logic Programming, vol. 12 (1-2), pp. 127–156, 2012,
http://eclipseclp.org/.

[9] I. P. Gent, C. Jefferson, and I. Miguel, “Minion: A Fast Scalable
Constraint Solver,” in Proceedings of the 17th European Conference
on Artificial Intelligence, ECAI’06, Riva del Garda, Italy, ser. Fron-
tiers in Artificial Intelligence and Applications, 2006, pp. 98–102,
http://minion.sourceforge.net/.

[10] ——, “Watched Literals for Constraint Propagation in Minion,” in Pro-
ceedings of the 12th International Conference on Principles and Practice
of Constraint Programming, CP’06, Nantes, France, ser. Lecture Notes
in Computer Science, F. Benhamou, Ed., vol. 4204. Springer, 2006,
pp. 182–197.

[11] “The atmost constraint,”
http://www.emn.fr/z-info/sdemasse/gccat/Catmost.html.

[12] “The global cardinality constraint,”
http://www.emn.fr/z-info/sdemasse/gccat/Cglobal cardinality.html.

[13] “The element constraint,”
http://www.emn.fr/z-info/sdemasse/gccat/Celement.html.

[14] Y. C. Law and J. H.-M. Lee, “Global Constraints for Integer and Set
Value Precedence,” in Proceedings of the 10th International Conference
on Principles and Practice of Constraint Programming, CP 2004,
Toronto, Canada, ser. Lecture Notes in Computer Science, M. Wallace,
Ed., vol. 3258. Springer, 2004, pp. 362–376.

[15] P. Flener, A. M. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, J. Pearson, and
T. Walsh, “Breaking Row and Column Symmetries in Matrix Models,”
in Proceedings of the 8th International Conference on Principles and
Practice of Constraint Programming, CP 2002, Ithaca, NY, USA, ser.
Lecture Notes in Computer Science, P. van Hentenryck, Ed., vol. 2470.
Springer, 2002, pp. 462–476.

[16] G. Katsirelos, N. Narodytska, and T. Walsh, “On the Complexity and
Completeness of Static Constraints for Breaking Row and Column
Symmetry,” in Proceedings of the 16th International Conference on
Principles and Practice of Constraint Programming, CP 2010, St. An-
drews, Scotland, UK, ser. Lecture Notes in Computer Science, D. Cohen,
Ed., vol. 6308. Springer, 2010, pp. 305–320.

[17] F. Hutter, H. Hoos, K. Leyton-Brown, and T. Stützle, “ParamILS: An
Automatic Algorithm Configuration Framework,” Journal of Artificial
Intelligence Research (JAIR), vol. 36, pp. 267–306, 2009.

[18] J.-C. Régin, “Generalized Arc Consistency for Global Cardinality Con-
straint,” in Proceedings of the 13th National Conference on Artificial
Intelligence, AAAI 96, Portland, Oregon, W. J. Clancey and D. S. Weld,
Eds. AAAI Press, 1996, pp. 209–215.

[19] P. Nightingale, “The Extended Global Cardinality Constraint: An Empir-
ical Survey,” Artificial Intelligence, vol. 175, no. 2, pp. 586–614, 2011.

