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Abstract. We define a quantitative measure of information erasure as a dual
of the well-understood notion of quantitative information release. Our journey
begins from a qualitative, equivalence relations-based, definition of information
erasure and release, which we show to be tightly linked to the quantitative mea-
sures of these notions. In particular, given the necessary probability distribution
over the inputs of a deterministic system, we show that the quantitative measures
of erasure and release are directly derivable from the equivalence relations-based
definitions. However, we observe that the quantitative definitions, unlike the qual-
itative ones, are less expressive and may suffer from practical problems such as
erasure and release occlusion – a problem, which at its core is attributable to the
symmetry of the information-theoretic entropy definition.

1 Information Erasure and Release

There is often a need to erase information in real systems. In particular, a system that
processes confidential data may be expected to remove pieces of sensitive information
from the body of information that it propagates. For example, statistical databases may
not propagate sensitive information, which must be erased; but the database must re-
lease sufficient non-sensitive information to be useful for statistical purposes. A more
everyday example requiring information erasure is e-commerce, where various pieces
of data on a credit card used must not be stored by the merchant. The Payment Card
Industry [18], which specifies standards for payment processing, stipulates which data
must not be retained by a merchant, even though the data may be required to complete a
transaction. For example, the card verification code, which is used to prevent card-not-
present frauds, must not be stored by the merchant [18]. There are also restrictions on
the display of the primary account number (PAN) on screens or receipts, e.g. the first
six and the last four digits are the maximum allowed to be displayed – the other digits
must be masked (erased).

Note that in these examples, as with other situations where information erasure is
desired, erasure often goes hand-in-hand with information release: e.g. some PAN dig-
its may be released whereas others must be erased. So, it is reasonable to study erasure
in the context of information release. It is even better if the two can be accommodated
under a single uniform policy model, as we propose. As a general observation, it is de-
sirable to be able describe security requirements as an extensional policy statement in-
dependently of the operational properties or implementation of the system that satisfies



the requirement. This separation of concerns is a well-understood good design principle
of allowing policies and systems to be separately developed. A verification mechanism
then ensures that the implementation conforms to the desired policy. The policy model
proposed in this paper is extensional and describes the information security require-
ments directly as constraints on information release and erasure independently of an
enforcement mechanism.

1.1 Partial Erasure Requirements

We consider partial erasure requirements as a generalisation of erasure policies and
a dual of partial information-release policies. In a technical sense that will be made
clear by Corollary 1 to Theorem 1, partial erasure goes in tandem with partial release,
and the totality of one excludes the other for a given unit of information. To illustrate
this observation, consider a credit card PAN made up of 16 digits, where we intend to
completely erase the first 12 and release the last four. We may thus view the PAN as
being made up of two conceptual units of information or fields: the first 12 digits and
the last four digits. Even when we completely delete the first field, it is a total erasure
of that field, but a partial erasure of the whole body of information since we release the
second field. However, we may also have partial erasure of a unit of information, e.g. we
may wish to erase all, but the parity of the first field. Total erasure, where we delete all
the information, is merely a special case of information erasure that is symmetric to the
information-flow notion of noninterference [10] because they both prevent or disallow
any information release.

Now suppose that the 16-digit credit card PAN above is a pair taken from the set
X1 ×X2, where X1 = {n1n2 . . . n12 ∣ ∀i.ni ∈ D}, X2 = {n13n14n15n16 ∣ ∀i.ni ∈ D}, and
D = {0, 1, . . . , 9}; and that the payment processing application, which must erase the
first 12 digits is modelled by a function f ∶ X1 ×X2 → X2 defined as f ((x1, x2)) = x2.
The function erases or suppresses information about X1 inputs from the output so that
an observer which sees only the output x2 (say, on the receipt generated by the payment
processing application) cannot learn anything about x1 (if it is independent of x2), or
at best can only learn as much as can be inferred from x2. In the second scenario,
where we wish to erase all but the parity information of the first 12 digits, one may
imagine a payment processor whose output is modelled by the function g((x1, x2)) =
(x1 mod 2, x2), which does that.

This example already alludes to some basic assumptions that we make concern-
ing information erasing systems and the attack model, where we represent systems by
functions. They are the following:

1. The attacker can observe the function result (corresponding to the relevant system
output), but not (necessarily1) the input. Since our primary concern in this paper
is to characterise what information is erased and/or released, we do not care about
from whom or where the information comes from. Of course the who and where
dimensions matter in specific applications to information security and integrity, but

1 Note that, if required, the model can capture situations where the attacker contributes to the
input or can observe portions of the inputs.



these are orthogonal concerns to the characterisation of what is erased or released:
the same degree of input erasure may be judged bad in the context of integrity, but
good in the context of secure release, for example.

2. The attacker knows the system model, algorithm(s) employed, or, conceptually, the
function f , g, . . .. This is a reasonable assumption for systems that implement stan-
dard algorithms and protocols (the majority of standard security-sensitive software
systems), or software that might have been potentially implemented or tampered
with by a malicious author (as in Internet-downloaded software). In other words,
we do not factor in system obscurity as a defence mechanism within the model.

Our goal is to characterise the degree of erasure that a system achieves over its
input domain X (which may or may not be structured) given some functional model
f ∶ X → Y of how the system transforms its inputs to relevant outputs in the domain Y.

2 Modelling Information Erasure in Computational Systems

We consider deterministic computational systems which process inputs from some input
set X and produce outputs in some set Y. Being deterministic, we may model such
computational systems as functions of the form f ∶ X → Y, such that for any given input
x ∈ X supplied to the system modelled by f , the observed output of the system is f (x) ∈
Y. Whenever this property holds for a function f and a system, we say that the system
is modelled by f . Note that the functional model only relies on the determinism of the
system, and may be applied to both batch-processing and interactive computational
systems. The difference between the two being that, as opposed to batch-processing
systems, input and output may be interleaved in a single execution of an interactive
system. Interaction between the system and its environment may have consequences
for information erasure/flow because it provides an opportunity for the environment to
revise its behaviour based on the output observed so far. However, due to determinism,
any particular strategy of the system and its environment may be encoded as an input
sequence x ∈ X, which will always produce the same observation f (x) ∈ Y on any run.
Thus, interaction, in particular, does not affect our definitions and analyses.

Now, when an output y ∈ Y is observed in a system modelled by f ∶ X → Y, this
tells us that the input must have been taken from the set f−1(y), and any x, x′ ∈ f−1(y)
may have produced the observed output y. Without further information, there is no
justification for preferring x over x′ as the actual input that produced the output y. But
we can confidently rule out any x′′ ∈ X as a possible input when we observe the output
y and x′′ ∉ f−1(y). We thus gain information about inputs by being able to distinguish
between possible inputs and those that are not, based on the observed output. We say
that, based only on the observation of the output y, x is indistinguishable from x′ as
the actual input that produced the output y whenever x, x′ ∈ f−1(y). Alternatively,
we say that the system modelled by f erases the distinction between x and x′. This
gives us a way to qualitatively characterise the information released/erased by a system
modelled by f , namely, through the kernel κ f of the function f , which is an equivalence
relation over the input space X, whose equivalence classes correspond exactly to the
sets of inputs that are indistinguishable based on some observed output in Y. Recall



that the kernel of a function f ∶ X → Y is the equivalence relation κ f over X, where
∀x, x′ ∈ X, (x, x′) ∈ κ f ⇐⇒ f (x) = f (x′).

An equivalence relation (ER) is a reflexive, symmetric and transitive binary rela-
tion over a set. We denote the set of all ERs over the set X by ER(X). An ER parti-
tions its domain to blocks referred to as its equivalence classes, where for any x ∈ X
and R ∈ ER(X), the equivalence class of x is given by [x]R ≜ {x′ ∣ (x, x′) ∈ R}.
The partitioning of X by R is given by the set of equivalence classes of R defined
as [X]R ≜ {[x]R ∣ x ∈ X}.

By considering their ability to distinguish elements of a set, ERs over that set can
be arranged based on their information content. For any R, R′ ∈ ER(X), we say that
R′ contains more information than R, written R ⊑ R′, iff for all x, x′ ∈ X, (x, x′) ∈
R′ ⇒ (x, x′) ∈ R. In other words, if x and x′ are related by (belonging to the same
equivalence class of) R′, and are thus indistinguishable by R′, then neither are they
distinguishable by R because they are related by R. By the contrapositive, whatever
pair R can distinguish (by not relating them), R′ can also distinguish. The relation ⊑ is
a partial order on ERs, and the partially-ordered set ⟨ER(X),⊑⟩ is a complete lattice,
whose greatest (most informative) element is idX and the least element (least informa-
tive) is allX , which are defined such that ∀x, x′ ∈ X, (x, x′) ∈ idX ⇐⇒ x = x′, and
∀x, x′ ∈ X, (x, x′) ∈ allX . Since idX only relates an element to itself, distinguishing
every element in X from others, idX contains the greatest information over X. But allX
contains no information since it relates all elements of X and cannot distinguish any pair
of elements. The lattice join operation ⊔ on ERs models information combination, and
is defined for any R, R′ ∈ ER(X) such that ∀x, x′ ∈ X.(x, x′) ∈ R ⊔ R′ ⇐⇒ (x, x′) ∈
R∧ (x, x′) ∈ R′. The join generalises to sets of ERs, so that for anyR ⊆ ER(X) we have
that, ∀x, x′ ∈ X.(x, x′) ∈ ⊔R ⇐⇒ ∀R ∈ R.(x, x′) ∈ R. We shall define information
erasure between a pair of ERs with respect to the greatest lower bound of the pair. The
associated operation is the lattice meet, ⊓, a dual of the information combination opera-
tor, ⊔, that may be defined in terms of the join such that for any R, R′ ∈ ER(X) we have
that ∀x, x′ ∈ X.(x, x′) ∈ R ⊓ R′ ⇐⇒ (x, x′) ∈ ⊔{R′′ ∈ ER(X) ∣ R′′ ⊑ R ∧ R′′ ⊑ R′}.

2.1 Qualitative Policies for Information Release and Erasure

We consider two information flow modes under the what dimension [22] of declassi-
fication: release (_) and erasure (^). For any two ERs R, R′ ∈ ER(X), we say that
R _ R′ is an information release over the domain X whereby an agent with prior
knowledge R is allowed to gain at most the information modelled by R ⊔ R′. Since
R ⊑ R ⊔ R′, R ⊔ R′ is an upper bound on the maximal information that the agent may
gain, and thus R _ R′ constrains information release. If R = R′, then the release pol-
icy is analogous to noninterference at the information level R, since R _ R prevents
an agent from refining its prior knowledge R. Note that R _ R is stronger than the
standard notion of noninterference as the definition of noninterference does not take the
agent’s prior knowledge into account. However, R ^ R′ is an erasure policy, whereby
given some reference information R′ contained in a body of data X, R ⊓ R′ is the max-
imal information that is allowed to be propagated. We may think of a system that con-
forms to the policy R ^ R′ as an information eraser, which ensures that when it copies
data from X, erases sufficient information that no more than R⊓R′ may be learnt from



the result. Thus, R⊓R′ is an upper bound on information that may be propagated to the
destination, and since our reference R′ is greater: R′ ⊒ R⊓R′, the propagation exhibits
an information loss. In terms of an agent’s knowledge, an agent that is observing a sys-
tem that conforms to the erasure policy R ^ R′ may not gain more than the information
R ⊓ R′.

Definition 1 (Release and Erasure Policy Satisfaction). Let R, R′ ∈ ER(X). We say
that a system that is modelled by the function f ∶ X → Y, for some Y, satisfies (conforms
to) the information flow policy R _ R′, written f ⊧ R _ R′, if ∀x, x′ ∈ X, (x, x′) ∈
R ⊔ R′ ⇒ f (x) = f (x′). Similarly, we say that the system satisfies the erasure policy
R ^ R′, written f ⊧ R ^ R′, if ∀x, x′ ∈ X, (x, x′) ∈ R ⊓ R′ ⇒ f (x) = f (x′).

We can describe the satisfaction of release and erasure policies by a system in terms
of the kernel of a function f that models the system. Observe that from the definition
of the kernel κ f of f , we have f (x) = f (x′) ⇒ (x, x′) ∈ κ f . By substituting this into
Definition 1, we obtain f ⊧ R _ R′ ⇒ κ f ⊑ R ⊔ R′ and f ⊧ R ^ R′ ⇒ κ f ⊑ R ⊓ R′.

2.2 Quantifying Information Erasure Policies

There is a natural underlying relationship between the partitioning of a set and quan-
titative information erasure (as well as release). In this section we show more directly
this relationship and how it applies to erasure and release policies. We start again from
a function f ∶ X → Y, which models a system of interest. Now let µ be a probability
measure2 over X. In conjunction with the probability measure µ, X may be regarded as
a random variable that takes on various values according to the measure assigned by µ.
Now, since Y is a function of X via f , f induces a probability measure over Y from µ.
We abuse notations. Let x ∈ X and y ∈ Y, we write µ(x) to represent the probability of
selecting x as the input to the system, and write µ(y) = ∑x∈ f−1(y) µ(x) to be the prob-
ability of generating the output y. Similarly, µ(x∣y) is the conditional probability that
the input x was selected given the observation of output y, and µ(y∣x) is the conditional
probability that the output y will be produced, given the selection of input x. Since f is
a function, we know that µ(y∣x) = 1 if y = f (x), but µ(y∣x) = 0 otherwise.

Now given any R ∈ ER(X), we say that R releases information about the domain X
by partitioning it. Thus, given a probability measure µ over X, we define the quantitative
information released from the space X, subject to its partitioning by R, to be H(µ∣R),
defined as:

H(µ∣R) ≜ − ∑
X′∈[X]R

µ(X′) log(µ(X′)) (1)

The logarithm in (1) is to the base 2, and the definition ofH(µ∣R) is a generalisation of
the standard Shannon entropy [23], but defined over the equivalence classes of R. The
standard Shannon entropy definition: H(µ) = −∑x∈X µ(x) log(µ(x)) = H(µ∣idX), is
a special case of (1) where we condition by the identity equivalence relation idX over X.
It is easy to see that for any R ∈ ER(X) and probability measure µ over X,H(µ∣R) ≥ 0.

2 We may view µ as assigning probabilities to each element of X in accordance with its likeli-
hood of being selected as an input.



Now, given R, R′ ∈ ER(X) and a probability measure µ over X, we can now define
the information-theoretic quantification of the information release and erasure policies
under the assumption µ as:

H(µ∣R _ R′) ≜ H(µ∣R′ ⊔ R)−H(µ∣R)
H(µ∣R ^ R′) ≜ H(µ∣R′)−H(µ∣R ⊓ R′) (2)

2.3 Illustrative Examples

Let us now illustrate by examples the use of the definitions of erasure and release
presented above. Consider four systems which accept inputs from the domain X =
{n ∈ Z ∣ −8 ≤ n ≤ 8, n ≠ 0} of integers, where the selection of inputs follows a uni-
form distribution, that is, ∀x ∈ X, µ(x) = 1

16 . Suppose the first system, modelled by
f1(x) = x, echoes its input, releasing all the information; the second system, modelled
by f2(x) = ∣x∣, erases the sign of its input; the third system releases the parity (or, erases
everything but the parity), and is modelled by f3(x) = x mod 2; and the fourth erases
all information (releases nothing), and is modelled by the constant function f4(x) = 0.

The kernel of f1, is κ f1
= idX , the identity relation over X. Since the observer

of the output of that system can completely determine the input to the system, the
observer gains all the information about the input. This information release corre-
sponds to the policy allX _ idX , which the system satisfies, and which allows the
observer with no prior knowledge (allX) to gain all information about inputs. Quan-
titatively, the information release that the policy allX _ idX permits is calculated as
H(µ∣allX _ idX) = 16( 1

16 log(16))− 1 log(1) = 4. It is not surprising that the quanti-
tative measure of the policy allX _ idX is the total information contained in the input
space X, and this fact holds for any assumption µ of the probability distribution of X.
Since, the system modelled by f1 releases all information, it cannot satisfy any non-
trivial erasure policy. It only satisfies the trivial erasure policy idX ^ idX , which erases
no information becauseH(µ∣R ^ R) = 0 under any ER R and distribution µ. Which is
just as well, because the system modelled by f1 exhibits no erasure. The other extreme
case is the system modelled by f4, where f4(x) = 0 for all input x. Thus, κ f4

= allX ,
and the relevant policy that the system satisfies is allX _ allX , which releases no infor-
mation sinceH(µ∣allX _ allX) = 0. However, the system exhibits total erasure over X
since it satisfies the erasure policy allX ^ idX , because H(µ∣allX ^ idX) = 4 is the
total erasure of the information content of X.

Now the system modelled by f2 erases only the sign of its input, which is a 1 bit
information under the uniform distribution µ. The kernel of f2 is κ f2 defined such that
∀x1, x2 ∈ X, (x1, x2) ∈ κ f2 ⇐⇒ ∣x1∣ = ∣x2∣. Hence the system modelled by f2 satisfies
both the information release policy allX _ κ f2 and the erasure policy κ f2 ^ idX .
These are quantified under µ as H(µ∣allX _ κ f2) = 3 and H(µ∣κ f2 ^ idX) = 1 as we
suspected: the system erases the 1 bit sign information, releasing the remaining 3 bits.

For f3 we have the kernel κ f3 defined such that ∀x1, x2 ∈ X, (x1, x2) ∈ κ f3 ⇐⇒
x1 ≡ x2(mod 2), releasing the 1 bit parity information and erasing all other informa-
tion. As expected H(µ∣allX _ κ f3) = 1 and H(µ∣κ f3 ^ idX) = 3. Fig. 1 demonstrates
the partitioning of the input domain by the various function kernels, and some of the
corresponding erasure and release policies.
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Fig. 1. Information Erasure and Release Policies (Uniform µ)

3 Some Properties of Quantified Information Erasure

The definitions in (2) of the quantification of release and erasure policies over a given
space suggests that there is a duality between the erasure and release quantities with
respect to the total information content over that space. More specifically the sum of
the erasure and release quantities equals the total information content as Corollary 1 to
Theorem 1 below shows. More generally, for any three ERs arranged on a chain, the
sum of the quantified release between the bottom ER and the middle one and the erasure
from the top ER to the middle is equal to the release (as well as the erasure) between
the two extreme ERs as shown by Theorem 1.

Theorem 1. For any chain of equivalence relations R1, R2, R3 ∈ ER(X) such that
R1 ⊑ R2 ⊑ R3 we have that H(µ∣R1 _ R2) +H(µ∣R2 ^ R3) = H(µ∣R1 _ R3) =
H(µ∣R1 ^ R3).

A specialisation of Theorem 1 shows that for any R ∈ ER(X), there is an associated
maximum release and erasure policy with respect to R, which are allX _ R and
R ^ idX respectively. These complementary policies capture the release of at most
information R about the domain X, when the observer is assumed to have no prior
knowledge; or, dually, the deletion of all information in X, with the exception of R.



Corollary 1. For any set X, equivalence relation R over X, and probability measure µ
over X, we have thatH(µ∣allX _ R)+H(µ∣R ^ idX) =H(µ).

Now suppose that R is the kernel of a function f ∶ X → Y, which models a system of
interest, then allX _ R is the information released by the system, and the quantification
of this release is exactly the mutual information I(X; Y) = H(X) −H(X∣Y) between
random variables X and Y induced by some given probability measure over X. Thus,
our definition of the quantitative measure of the release policy allX _ R coincides
exactly with the standard measure of quantitative information release, establishing the
utility of our definition. This relationship is shown in Theorem 2.

Theorem 2. Let κ f be the kernel of the function f ∶ X → Y, then H(µ∣allX _ κ f ) =
I(X; Y). Furthermore,H(µ∣κ f ^ idX) = I(X)− I(X; Y).

Theorem 2 establishes a tight link between the partitioning of a function’s domain by
its kernel, the quantitative information flow, and the quantitative information erasure in
any system modelled by that function. Note that the standard measure of quantitative
information flow (see [5], for example) is the mutual information I(X; Y) between the
domain and codomain of f . Furthermore, we observe that for a pair of comparable
equivalence relations, erasure and release between them is identical.

Lemma 1. Let R, R′ ∈ ER(X) such that R ⊑ R′, and let µ be a probability measure
over X. Then,H(µ∣R _ R′) =H(µ∣R ^ R′).

Proof. Since R ⊑ R′, it follows easily from the definition thatH(µ∣R ^ R′) =H(µ∣R′)−
H(µ∣R ⊓ R′) =H(µ∣R′)−H(µ∣R) =H(µ∣R ⊔ R′)−H(µ∣R) =H(µ∣R _ R′).

4 Some Limitations of Quantified Release and Erasure

A quantitative statement of security such as “this system leaks at most c bits of infor-
mation” is quite appealing, but it has some practical limitations. For example, there is
no way to characterise what sort of information the c bits refer to, leading to a problem
referred to as information release occlusion [22], whereby the deliberate declassifica-
tion of one piece information may mask another. To illustrate this problem, consider a
simple example where input values are taken from a set X = {−4,−3,−2,−1, 1, 2, 3, 4}
where we desire to release no more than the parity information of the input, correspond-
ing to the release policy allX _ R, where ∀x, x′ ∈ X.(x, x′) ∈ R ⇐⇒ x ≡ x′ mod 2.
Now suppose the input probability distribution is such that µ(−2) = µ(2) = µ(−1) =
µ(1) = 1

4 and µ(−4) = µ(4) = µ(−3) = µ(3) = 0. We cannot capture the desired
release requirement as a purely quantitative policy, because we must approximate by
saying that the system may leak at most 1 bit of information. A system modelled by
f (x) = x mod 2 satisfies both the original qualitative requirement (allX _ R) and the
quantitative approximation of “at most 1 bit release”, and is perhaps the sort of system
that the policy writer had in mind. But then, there are other systems that release other
information (possibly including the parity), that also qualify as not releasing more than
1 bit of information, for example g(x) = ∣x∣. Clearly, g reveals both the parity of the



input, as well as its absolute value, and therefore does not satisfy the requirement to
release at most the parity. However, the quantitative information released by g is 1 bit
under µ. So, g satisfies the quantitative release requirement. This is a release-occlusion
problem. We call the erasure analogue to this problem erasure-occlusion, whereby the
erasure of one information masks another. These occlusion problems do not affect the
ER policy model, which is rich enough to distinguish implementations such as those
modelled by g from those modelled by f (since g /⊧ allX _ R, but f ⊧ allX _ R).

At the heart of the occlusion problem for the quantitative policy is the fact that the
entropy definition is not sensitive to permutation of probabilities, because simply per-
muting the probabilities of the equivalence classes of a function’s kernel does not affect
the entropy (and thus information flow/erasure): the entropy definition is symmetric
with respect to the permutation of labels. Furthermore, being numbers, the quantitative
information measures do not have sufficient structure other than the total ordering of
numbers to distinguish various release scenarios as the ER model can. So, quantitative
policies alone may not be sufficient in practice. This limitation applies to all purely
quantitative information flow models.

Problems also arise from the requirement to have (or assume) probability distribu-
tions in order to carry out quantitative analyses. One may simply not know the proba-
bility distribution of inputs, especially those about inputs from system attackers. Even
when considering data under the control of the system owner, the actual probability dis-
tribution of the user-generated data is often unknown, and may have to be approximated
or guessed. Such approximations and guessworks call into question the meaning of the
quantitative results obtained during analysis, and whether the results paint the correct
security picture. The belief-based approach of [6] may ameliorate this problem by con-
sidering assumed probability measures as beliefs about the actual system probabilities,
and hence that the analysis result is correct modulo the difference between the actual
system probability distribution and the analyst’s assumption about it.

5 Related Work and Conclusion

The notion of partial information release has been extensively studied in language-
based security [20] as a practical alternative to the traditional non-interference [10]
policies. The problem is that noninterference is too restrictive for most practical pur-
poses [19]. A common methodology for modelling partial information release is based
on its quantification (typically via information theory) [1, 5, 15, 11, 24]. However as we
noted earlier, quantitative approaches may suffer from the release occlusion problem.
Qualitative approaches to modelling partial information release include [8, 14, 13, 21,
9]. The aforementioned quantitative and qualitative approaches all fall under the what
dimension of declassification of the taxonomy proposed in [22], which considers four
dimensions of information release and integrity; namely, what information is released,
where the information is released, who releases information, and when information is
released.

Qualitative models tend to be more precise in describing information flow and era-
sure as our approach demonstrates. In fact, as we have shown, given the relevant proba-
bility distributions, all the quantitative results in this paper are derivable from our quali-



tative definitions. However, we conjecture that the quantitative measure captures a prob-
abilistic aspect of the input selection process in ways that the qualitative model cannot,
and we suspect that this may serve as a useful policy point for specifying desirable prob-
abilistic behaviour of the system and its environment. We are currently investigating this
possibility. With respect to the interplay between qualitative and quantitative definitions
of information security, one of our main results in this paper is a tighter link between
the two. We have presented a model that captures, qualitatively and quantitatively, both
partial release and partial erasure at the same time. We belief that combinations of
both qualitative and quantitative models will begin to emerge, taking advantage of the
strengths of each approach. In fact, new results [11, 15, 2] in quantitative information
flow already use qualitative arguments such as “partitioning” and “families of disjoint
sets” to develop the quantitative theory – alluding to some of the links that we show
more directly in this paper. Indeed, the relationship between qualitative representation
of information with equivalence relation (partition of a set) and information-theoretic
quantitative representation has been studied recently in the context of information flow
by [11, 15], but this is a relatively old mathematical idea [3, 16]. To our knowledge, we
are the first to relate equivalence relations to erasure, quantifying this relationship.

Now, compared to information release in language-based settings, information era-
sure has only just begun to receive research attention [4, 12, 17, 25]. However, similarly
to the research in the early days of language-based information-flow security that fo-
cussed on noninterference, the state of the art in information erasure is still at the level
of total erasure, but there is already a recognition for the necessity of partial erasure in
practice [25]. We tackle the more general problem of partial erasure in this paper, spec-
ifying qualitative and quantitative models for it. The authors of [12] observe that erasure
should be studied in conjunction with noninterference in interactive systems, and [25]
has begun to identify practical erasure patterns. This paper studies what information is
erased, defining the end-to-end erasure achieved by a system. This is as opposed to, say,
[4] or [12], which respectively study when and where information erasure takes place.

Quantitative notions of contamination and suppression are defined in [7] as facets
of information integrity. The direct correspondence between the integrity notion of con-
tamination, which measures the amount of untrusted input present in trusted output, and
the confidentiality problem of determining the flow of information from sensitive input
to public output as studied in quantitative information-flow, is well-known. In fact, the
quantitative definition of contamination in [7] and the definition of leakage in [5] is the
same, modulo labelling (untrusted vs. confidential, and trusted vs. public), suggesting
that the difference is only cosmetic: specifically how the inputs and outputs are typed.
Thus the difference is mainly the emphasis on the who dimension, i.e. whether they
are trusted or not, or whether they are classified as “secret” or “public”. Theorem 2
shows that the quantitative measure of contamination can be derived from our defini-
tion, which demonstrates its utility. Furthermore, the special case of Corollary 1 relating
erasure and information release to the total information content derives the conclusion
of Proposition 1 of [7] that the sum of leakage and suppression is constant. However,
we suggest that the suppression measure as defined in [7] is the integrity analogue of in-
formation erasure with respect to the what dimension of information flow. Two sources
of suppression are discussed in [7]: namely those that originate from a program’s prob-



abilistic behaviour (that is, not necessarily untrusted) and those that originate directly
from untrusted input (possibly from an attacker). We argue that this distinction is a
where3 versus who4 dimension of information flow, which we do not study.

5.1 Conclusion

We have presented an extensional qualitative information security policy model that
brings together partial information erasure and partial information release under a sim-
ple unified framework. We showed a tight link between the policy model and the stan-
dard information-theoretic definition of quantitative information flow. While the indi-
vidual study of information release or erasure is not new, we believe that we present a
compelling justification for their study under a single model. This is appealing because
by incorporating partial information release and partial erasure under a single umbrella,
the same analysis can be used to characterise both the information flow and erasure
of a system in one go: we have shown that the what dimension of these concepts are
duals. In other words, you buy one and get the other free. Specifically, given the func-
tional model f ∶ X → Y of a system (perhaps derived from a given attacker’s interaction
model), computing the information release and erasure is a matter of calculating the
kernel κ f of the function f ; and these are given by allX _ κ f and κ f ^ idX respec-
tively. The corresponding measures H(µ∣allX _ κ f ) and H(µ∣κ f ^ idX) then allow
us to quantify information release and erasure under an input distribution µ.

Our definitions consider a foundational issue which makes clearer the extensional
relationship between partial erasure and partial release. These definitions will enable
the development of policies for secure information erasure and release, with potential
applications to existing and new problem areas. We have however not defined verifica-
tion or enforcement mechanisms for information erasure and release in systems. These
are areas of future work. In particular, an avenue for further research is the design of
frameworks to derive relevant system models from system specifications such as pro-
cess calculi, or from software source and binary code; and the static analysis of the
same for conformance to erasure policies.
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