
Compositionality and Refinement in
Model-Driven Engineering

Jim Davies, Jeremy Gibbons, David Milward, and James Welch

Department of Computer Science, University of Oxford, Oxford OX1 3QD, UK
{firstname.lastname}@cs.ox.ac.uk

Abstract. Model-driven engineering involves the automatic generation
of software artifacts from models of structure and functionality. The use
of models as ‘source code’ has implications for the notions of compo-
sition and refinement employed in the modelling language. This paper
explores those implications in the context of object-oriented design: es-
tablishing a necessary and sufficient condition for a collection of classes
to be treated as a component, identifying an appropriate notion of re-
finement for the generation process, and investigating the applicability
of data and process refinement to object models.

Keywords: formal methods, model-driven, object orientation, compo-
sitionality, refinement, inheritance

1 Introduction

Compositionality is a fundamental notion in software engineering, and an im-
portant property of design methods and modelling languages. A language is
compositional for a notion of meaning M when the meaning of a compound
expression is determined by the meanings of its components. That is, for every
means of composition ⊕ in the language, there is a function f⊕ such that

M [[A⊕B]] = f⊕ (M [[A]],M [[B]])

This is an essential tool for tackling complexity: a system may be designed,
implemented, and analysed as a collection of smaller components.

Refinement describes the intended relationship between specification and im-
plementation, or between a given component and a suitable replacement; the in-
tention being that the meaning of the implementation should be consistent with
that of the specification. In this context, meaning is often described in terms of
the range of possible behaviours or effects, and B is a refinement of A, written
A v B , if and only if every behaviour of B is also a behaviour of A: that is

A v B ⇔ M [[A]] ⊇ M [[B]]

Refinement is another essential tool for tackling complexity, allowing the com-
parison of descriptions at different levels of abstraction, and checking that one
component may be safely replaced with another.

Model-driven engineering is the automatic generation of software artifacts
from models of structure and functionality. Where the artifacts in question are
at a lower level of abstraction than the models then this may be seen as a pro-
cess of automatic refinement. The additional information needed is introduced
by transformations that provide context or describe implementation strategies
within a particular domain. This affords a significant factorisation of effort: the
same transformations can be used in the development of many different systems,
or many different versions of the same system.

A model-driven approach allows the developer to work at a higher level of
abstraction, with concepts and structures that are closer to the users, or the
processes, that the software is intended to support. The model-driven architecture
(MDA) proposed for object-oriented development [1] has been characterised as
“using modeling languages as programming languages” [2]. For such an approach
to work, the concepts and structures of the modeling language must admit a
precise, formal interpretation within the chosen domain, even if this is expressed
only in terms of the transformation and the generated code.

A considerable amount of research has been published concerning the formal
interpretation of the most widely-used object-oriented modelling language, the
Unified Modeling Language (UML). However, code generation from UML models
is typically limited to the production of data structures and default, primitive
methods for structures such as JavaBeans [3], and the implementation of more
complex, user-defined methods remains a manual task—error-prone, and time-
consuming. The principal reason for this is the lack of any suitably-abstract
means of describing intended behaviour: in most cases, it is easier to express
and understand design intentions directly in terms of executable code.

In a sequential context, behaviour can be described in the transformational
or state-based style characteristic of formal techniques such as Z [4], and the
Refinement Calculus [5], and adopted in more recent developments such as the
Object Constraint Language (OCL) [6]. Here, operations are specified in terms
of the relationship between the state of the system before and after the oper-
ation has been performed, together with the values of any inputs and outputs.
The specification is usually given as a pair of constraints: a precondition and a
postcondition. The Z notation differs, notably, in regarding the precondition as
a derived property, calculated as the domain of the resulting relation.

Where formal techniques are used in the design of novel programs or algo-
rithms, the specifications may describe precisely what is to be achieved, but
are unlikely to support the automatic generation of a suitable implementation.
Within a specific domain, however, it is entirely possible to establish a useful
set of heuristics, transformations, or strategies for translating abstract spec-
ifications into program implementations: this is formally-based, model-driven
engineering in practice. For the domain of information systems, in particular,
most postconditions are readily translated into combinations of guarded assign-
ments: for example, the constraint that a ∈ S could be translated to the action
S.insert(a).

In earlier work [7, 8], we presented a formal language for the model-driven
development of information systems; we have applied this language, and the
corresponding model transformation techniques, to the production of several,
large systems, including a secure, online patient monitoring system. In the course
of this work, it became clear that the original characterisation of the generation
process in terms of data refinement, presented in [8], was problematic. It became
clear also that a suitable notion of composition was required for models, in order
that a large system might be designed and maintained in several parts.

In this paper, we identify a suitable notion of composition for object models in
this context. We revisit our characterisation of the generation process, concluding
that data refinement is an unrealistic expectation, and arriving at an improved
characterisation in terms of trace refinement or partial correctness. We consider
the question of when one object model might usefully refine another in this
context, and the related question of when a class might usefully be defined as a
subclass of another. These points are illustrated using a small example model,
and placed in the context of related work.

2 Object models and abstract data types

In object-oriented programming, a class may be seen as “an implementation of
an abstract data type” [9]. In object-oriented modelling, the situation is not so
straightforward: the interpretation of a particular class may depend upon infor-
mation presented elsewhere in the model; consideration of the class declaration
itself may not be enough. For example, consider the two classes, described using
the notation of UML and OCL, shown in Figure 1. The operation increment on
A should increase the value of attribute m by 1; however, its applicability may
be constrained by the value of n in any corresponding instance of class B.

0..1

aA
m : Number

+ increment ()

context A::increment ()
post m = m@pre + 1

B
n : Number

context B
inv n > a.m

b

1

Fig. 1. A constraint between associated classes

A mapping of A and B to separate abstract data types may not admit an
adequate interpretation of operation increment. Instead, the operation increment
should be considered as an operation on a component whose state encompasses
both A and B objects, and this component should be mapped to a single abstract
data type, whose state is an indexed collection of A and B objects.

We may use the schema notation of Z [4] to describe the corresponding data
type. In this description, the given set I denotes the set of object references,

and [0 . . 1] a postfix, generic abbreviation for sets of cardinality at most one—in
combination with the unique selection operator µ, a simple way of representing
optionality. The state of the data type is described by the schema System State,
in combination with the local schemas A State and B State, and the single data
type operation by the schema A Increment .

A State
m : N
b : I [0 . . 1]

B State
n : N
a : I

System State
as : I 7→ A State
bs : I 7→ B State

∀ b : ran bs • (as b.a).m < b.n

A Increment
∆System State
this : I

this ∈ dom as
(as ′ this).m = (as this).m + 1

In this description, the constraint upon the applicability of the operation is cap-
tured implicitly within the global state schema. We could make it explicit by
adding the conjunct (as this).b 6= ∅ ⇒ (as this).m < (bs (µ ((as this).b))).n to
the operation schema. The complexity of this conjunct, even in such a simple ex-
ample, is representative of the difficulty posed by constraints that extend across
associations.

Nevertheless, we should expect to find this kind of constraint in object mod-
els. For example, the opposite property for “mutually-constrained attributes”
is part of the core UML language definition; the principal reference texts for
OCL, including that for OCL in MDA [6], include many examples of constraints
upon attributes of associated classes; and the class-responsibility-collaboration
approach developed by Beck and Cunningham [10] insists that “objects do not
exist in isolation” [11].

As a consequence, we should expect specifications of operations, given in the
context of individual classes, to be less applicable than their precondition part
would suggest. In the above example, the specification post m = m@pre + 1 does
not tell the whole story; the given constraint cannot apply when the resulting
value of m would be equal to or greater than the value of n in an associated
object of class B. Although the object-oriented approach affords the convenience
of defining operations within classes—within the context of the most relevant
data, or the most obvious reference point—a complete understanding of the
operation may require a consideration of other parts of the model.

It should be clear that the ADT corresponding to the model containing both
A and B cannot be derived from the ADTs corresponding to A and B: for our
implicit mapping M from models to data types, there is no function f⊕ such that

M (A⊕ B) = f⊕(M (A),M (B))

where ⊕ denotes the combination of class declarations within a model.

Observation 1 Classes are not necessarily components in the context of
model-driven development. In particular, they may not be an appropriate unit
of composition for behavioural information.

3 Model-driven development

Where the model is to be used as source code, as the basis for the automatic
generation of a working system, the specification provided for each operation is
final : the constraint information provided in the model is all that the compiler
has to work with. In particular, then the compiler will need to determine what is
to happen if the operation is called in circumstances where the constraint is not
applicable: that is, for combinations of state and input values that lie outside
the calculated precondition.

If the generated system holds data of any value, then it would not seem sen-
sible to allow an arbitrary update to the state: in the absence of any default
action, the effect of calling an operation outside its precondition should leave
the state of the system unchanged. Further, if we wish to adopt a compositional
approach, in the sense that a composite operation should be inapplicable when-
ever one or more of its components is inapplicable, then it is not enough for
the operation to leave the state unchanged; instead, its inapplicability must be
recorded or communicated.

Within the precondition, the specification is applicable, and the intended
effect of the operation is known. However, it may be that the compiler does
not know how to achieve this effect: that is, part of the constraint information
may lie outside the domain of the model transformation rules that are used to
generate the implementation. For example, the constraint

x = y − 1 ∧ y = 2x − 3

describes a condition achievable by the assignment x , y := 4, 5, but it is quite
possible that the model transformations used in the compiler do not address the
solution of such a system of simultaneous equations.

Where this is the case, then the intended effect of the operation is known,
but is not achievable; in the generated implementation, the operation should not
be allowed to proceed—unless, of course, the desired condition already holds,
in which case the effect can be achieved simply by doing nothing. Again, the
inapplicability of the specification should be reflected by the exceptional, or
blocking, behaviour of the implementation.

In practice, we are more likely to encounter a constraint that readily admits
two or more different implementations, any of which could be easily generated,
but for which the intention behind the specification is unclear. That is, although
an implementation could be generated that would satisfy the constraint, it seems
more likely that the user would prefer to extend or qualify the specification,
rather than accept—or be surprised by the behaviour of—the generated imple-
mentation.

Consider, for example, the situation illustrated by the class diagram of Fig-
ure 2, in which the operation cleanUp has the effect of ensuring that the two
associations d1 and d2 are disjoint. If an object d is present in both associations
when the operation cleanUp() is called, the intention in the model is unclear:
should we remove d from d1 or from d2?

C

context C :: cleanUp ()
post d1->intersection(d2)->isEmpty()

D
d1

d2

Fig. 2. A postcondition admitting multiple implementations

While it could be the case that either alternative is equally acceptable, it is
more likely that the designer has failed to make their intentions clear. Deleting
one of these links may have consequences for other data: it may even be that, to
achieve a new state in which the model constraints are satisified, deletions need
to be propagated across the whole system. Is this what the designer intends?
For information systems, where the data may be of considerable value, it may
be better to generate an implementation that blocks when intentions are unclear,
instead of making unexpected or unintended modifications.

The nature of refinement associated with code generation for model-driven
engineering should now be clear: it is neither failures refinement, where the
concurrent availability of interactions is preserved; nor is it data refinement,
where sequential availability is preserved. We argue instead that it should be
trace refinement : if the implementation is able to perform an operation, then its
postcondition is achieved; however, it may be that the implementation blocks in
some, or even all, circumstances where the precondition applies.

Model
M

Abstract Data Type
A

Implementation
I

Abstract Data Type
C

RA

RC

T

Fig. 3. Abstract data type semantics of model and implementation

To see this, consider the commuting diagram of Figure 3, in which T denotes
the code-generating transformation, and A and C denote the representation of

the model and the implementation, respectively, as abstract data types. As the
model is intended as source code for system generation, it is reasonable to assume
that the data model contained within it will be reflected in the implementation,
to the extent that data types A and C have equivalent state components and
initialisations. It is reasonable to assume also that the model and implementation
present the same interface in terms of operation names, inputs, and outputs.

We will write RA to denote the mapping from a model operation to the
corresponding operation on an abstract data type, and RC to denote a similar
mapping for implementation-level operations, then the correctness constraint
upon our model transformation is simply that

RC [[T (op)]] ⊆ RA [[op]]

for every operation op: the transformation should respect the precondition and
postcondition, along with any related model constraints. There is no requirement
that dom RA [[op]] should be contained within dom RC [[T (op)]], and hence no
guarantee that C is a data refinement of A [4, 5].

However, if we consider the processes PA and PC , defined using the notation
of Communicating Sequential Processes (CSP) as follows:

PA(s) =

2 op : Op •
s ∈ dom RA [[op]] & op → u s ′ : RA [[op]](|{s}|) • PA(s ′)

PC (s) =

2 op : Op •
s ∈ dom RC [[T (op)]] & op → u s ′ : RC [[T (op)]](|{s}|) • PC (s ′)

where the event op represents a successful, completed execution of the operation
op, chosen from the set of all operations Op defined in the model, and & denotes
the guard operator: in the expression g & P , the actions of process P are available
only if g is true. For any code-generating model transformation T satisfying the
correctness constraint above, it should be clear that

PA(init) vT PC (init)

where init represents the initial state of the system, and vT denotes trace re-
finement.

Observation 2 The correctness of a code-generating model transformation
may be characterised as trace refinement between specification and
implementation: guaranteeing safety, but not liveness.

4 Model refinement

In model-driven development, improvements are made to an implementation by
updating the model used to generate it. Some updates can be characterised as

formal refinements, in the sense that data type corresponding to the new model
is a refinement of the data type corresponding to the old. In this case, it would be
useful to know whether the old and new implementations are related in the same
way: if they are, then any testing, integration, or further development based upon
the generated code, rather than the model, need not be repeated. (Of course,
we would prefer an approach to development in which any such activity is based
solely upon the model, but this is not always possible.)

In a sequential context, the notion of model refinement that we will consider
is based upon data refinement of the corresponding abstract data types. A model
M2 will refine another model M1 precisely when the effect of any sequence of op-
erations upon the corresponding data type A2, in terms of the possible changes
in state and outputs generated, is contained within the effect of the same se-
quence upon the corresponding data type A1. The fact that such a refinement
relationship exists is shown most often by exhibiting a forward simulation.

If schema s1 denotes the set of all states—the state space—of data type A1,
s2 denotes the state space of A2, and i1 and i2 are subsets representing the initial
configurations of each data type, then f is a forwards simulation precisely when
i2 ⊆ i1 o

9 f and

dom RA [[Op1]] C (f o
9 RA [[Op2]]) ⊆ RA [[Op1]] o

9 f

ran(dom RA [[Op1]] C f) ⊆ dom RA [[Op2]]

for every corresponding pair of operations Op1 and Op2, where RA denotes
the relational semantics of the operation at the model level, C denotes domain
restriction, and o

9 denotes forward relational composition. This is the character-
isation of [4], with the omission of the identity relation for input and output.

In the case where the two models have precisely the same classes, attributes,
associations, and initialisation, this reduces to a constraint upon the updates
made to the specification of each operation:

dom RA [[Op1]] C RA [[Op2]] ⊆ RA [[Op1]]

dom RA [[Op1]] ⊆ dom RA [[Op2]]

where Op2 represents the updated version of Op1. Thus we may produce a re-
finement of the model by weakening the precondition of an operation—that is,
extending the domain of the corresponding relation—while strengthening the
postcondition. To guarantee that the generated implementation is refined in the
same way, we need to know also that

dom RC [[T (Op1)]] C RC [[T (Op2)]] ⊆ RC [[T (Op1)]]

dom RC [[T (Op1)]] ⊆ dom RC [[T (Op2)]]

where RC denotes the semantics of the operation at the implementation level.
The argument of the previous section tells us that any suitable code-generating

model transformation T will guarantee that

RC [[T (Op)]] ⊆ RA [[Op]]

for any operation Op, but this is not enough. The following monotonicity prop-
erty of T would suffice:

RA [[Op]] ⊆ RA [[Op′]]⇒ RC [[T (Op)]] ⊆ RC [[T (Op′)]]

for any pair of operations Op and Op′. However, this property is unlikely to hold
in practice: it requires that the refinement proposed by the designer is one that
is performed automatically in the course of code generation. While this would
produce a model in which more of the corresponding implementation is made
explicit, it seems unlikely that we would wish to propose such a refinement in
the context of model-driven engineering.

To see why, consider the definitions of Op1 and Op2 presented as opera-
tion schemas upon a state State =̂ [x : N], with their implementations T (Op1)
and T (Op2) written in an extended language of guarded commands. In a data
type with state State, and attribute x accessible, replacing Op1 with Op2 would
produce a data refinement.

Op1

∆State

x = 0 ∧ x ′ ∈ {0, 1}

Op2

∆State

x = 0 ∧ x ′ = 1

T (Op1) =̂ x = 0→ skip T (Op2) =̂ x = 0→ x := 1

Here, T represents a plausible implementation strategy. If Op1 is called when
x = 0, then the subsequent value of x should be 0 or 1: the implementation
T (Op1) might quite sensibly leave the value of a variable unchanged when the
current value would satisfy the postcondition. In the new specification, Op2,
this nondeterminism in Op1 has been resolved, and T (Op2) must change the
value of x when x is initially zero. The data type corresponding to the second
implementation is not a refinement of the one corresponding to the first.

Observation 3 A model refinement in which postconditions are strengthened
may lead to the generation of a system that is different to, and not a
refinement of, the current implementation.

There is however a circumstance in which refinement at the model level can
be guaranteed to produce refinement in the implementation: when the domain
or precondition of an operation is extended, but the applicable postconditions
are left unchanged. Such a circumstance is quite likely to arise in the course
of iterative development. Having specified an operation, a designer may find
that the specification is less applicable than they had expected: that there are
cases that have not been considered. If they then extend the specification to
cover these cases, then they might reasonably expect that the behaviour of the
implementation would remain the same for those cases already covered: that is,
those within the domain of the existing specification.

For this to be the case, the following property must hold of transformation
T : for any set of states S ,

S C RA [[Op]] = S C RA [[Op′]]⇒ S C RC [[T (Op)]] = S C RC [[T (Op′)]]

That is, if Op and Op′ have the same relational semantics for that region of
the state space, then so do their respective implementations. For any pair of
operations for which the specifications agree within the domain of the first:

dom RA [[Op1]] C RA [[Op2]] = RA [[Op1]]

[specifications agree where Op1 defined]

⇒ dom RA [[Op1]] C RA [[Op2]] = dom RA [[Op1]] C RA [[Op1]]

[domain restriction]

⇒ dom RA [[Op1]] C RC [[T (Op2)]] = dom RA [[Op1]] C RC [[T (Op1)]]

[property above]

⇒ dom RA [[Op1]] C RC [[T (Op2)]] ⊆ RC [[T (Op1)]]

[domain restriction]

⇒ dom RC [[T (Op1)]] C RC [[T (Op2)]] ⊆ RC [[T (Op1)]]

[partial correctness of T , domain restriction]

The second condition for refinement, that the domain of the operation is pre-
served, follows from the same condition. The correctness of transformation T
guarantees that dom RC [[T (Op1)]] ⊆ dom RA [[Op1]] and hence

dom RA [[Op1]] C RC [[T (Op2)]] = dom RA [[Op1]] C RC [[T (Op1)]]

[third line of argument above]

⇒ dom RA [[Op1]] C RC [[T (Op2)]] = RC [[T (Op1)]]

[partial correctness of T , domain restriction]

⇒ dom(dom RA [[Op1]] C RC [[T (Op2)]]) = dom RC [[T (Op1)]]

[property of domain operator dom]

⇒ dom RA [[Op1]] ∩ dom(RC [[T (Op2)]]) = dom RC [[T (Op1)]]

[domain restriction]

⇒ dom RC [[T (Op1)]] ⊆ dom RC [[T (Op2)]]

Observation 4 A model refinement in which preconditions are weakened, but
already-applicable postconditions are left unchanged, will produce a
corresponding refinement of the implementation.

The condition that T should produce the same implementation from Op1 and
Op2, when restricted to the domain of Op1, can be translated into a constraint
upon the interaction of T and the grammar of our modelling language. As we
suggested above, the constraints

x = 4 ∧ y = 5 and x = y − 1 ∧ y = 2x − 3

may produce the same relational semantics, but it may be that only the first of
them is successfully translated into an implementation. To guarantee a refine-
ment at the implementation level, we need to know that the constraints of Op1

and Op2 will be treated in the same way by transformation T .
In practice, the easiest way to ensure this is to have an operator “or” within

the modelling language that corresponds to disjoint union in the relational se-
mantics, and extend the precondition of the specification so that

Op2 =̂ Op1 or Ope

where Ope describes the intended behaviour of the operation in circumstances
left uncovered by Op1, so that dom RA [[Op1]] ∩ dom RA [[Ope]] = ∅.

The suitability of a data refinement will depend upon our interpretation of
preconditions at the implementation level. In Section 3, we argued that—where
data is important—we should interpret preconditions as guards. Weakening a
precondition may make an operation available in some circumstance where it is
currently blocked, perhaps with good reason. For example, if the precondition
for an edit() operation includes the constraint that the current value of user
matches the value of owner, then weakening this condition might not constitute
an improvement in the design.

The difficulty here is that we are not distinguishing between a constraint that
has been included deliberately—and is intended as a restriction upon availability—
and one that appears as a consequence of “underspecification”. A simple solution
is to include a description of the intended availability of an operation, or of a
sequence of operations, as part of the model. If we treat this as part of the pre-
condition for the purposes of code generation, then we can guarantee that it will
be respected in the implementation. However, as a separate, distinguished part
of the specification, it can be excluded from consideration in any subsequent,
manual refinements.

The same approach allows us to address the issue of liveness in the implemen-
tation. Since the correctness of the code generation process is characterised as
trace refinement, we have no guarantee that the implementation will do anything
at all. If we have an indication A of the intended availability of an operation, or
sequence of operations, then we may compare this with the precondition P of
the generated implementation: if A 6= P , then the operation is less available than
A would suggest. As the comparison involves determining the semantic equiva-
lence of two different predicates, we would not in general be able to rely upon
fully-automatic verification. However, restrictions upon the form of the specifica-
tions, coupled with the expected regularity of preconditions for implementations,
should mean that automation is a perfectly feasible proposition.

Observation 5 In the model-driven engineering of information systems, we
can establish “safety properties”, or partial correctness, automatically. Liveness
or availability properties may require manual intervention, through
semi-supervised testing or proof.

5 Generalisation and Inheritance

In object-oriented design, a distinction is often drawn between generalisation
and inheritance. For example, the UML reference manual [12] states that:

Generalisation is a taxonomic relationship among elements. It describes
what an element is. Inheritance is a mechanism for combining shared
incremental descriptions to form a full description of an element. They
are not the same thing, although they are closely related.

In this view, generalisation is a modelling concept and inheritance a program-
ming concept. This begs a question: in the context of model-driven engineering,
where we are using a modelling language as a programming language, which of
these concepts is applicable?

If we define one class B as a specialisation of another class A—being the
inverse of generalisation—then we expect everything that we know about A to
remain true of B . Any class invariant should be strengthened, and so too should
any operation specifications. This means that an operation specification declared
in the context of A may be less applicable when considered in the context of B .
As an example, consider the classes shown in Figure 4, where the operation
setWidth(w:Number) should have the effect of setting the width of the current
figure to w.

Square

Rectangle
width : Number
height : Number

+ setwidth(w : Number)

context Square
inv width = height

context Rectangle :: setwidth(w : Number)
post width = w

Fig. 4. Square and Rectangle

We would argue that the most appropriate strategy for code generation,
in the face of such a specification, is to produce an assignment to the attribute
width and—in the context of Rectangle—to leave the value of all other attributes
unchanged. Any other approach might come as something of a surprise to the
user, and thus reduce the utility of the notation as a programming language.
However, when we consider setWidth in the context of Square, we find that it
has the implicit precondition w = height.

It should be immediately apparent that we cannot simply use an instance
of Square whenever we might have used an instance of Rectangle: a setWidth
operation in which the width is set to anything other than the current height
would fail for an instance of Square, when it would have succeeded for an instance
of Rectangle. Whether this amounts to a violation of the substitivity condition
of Liskov and Wing [13]—

Let P(x) be a property provable about objects x of type T . Then P(y)
should be true for objects y of type S where S is a subtype of T .

—depends upon the notion of properties involved. Certainly, if setWidth is per-
formed on an instance of Square, then we know at least as much about the states
of the object before and after the operation as we would if it had been performed
on an instance of Rectangle. However, if we were to consider the availability of the
operation as a property of interest, then the condition would indeed be violated.

As was the case with code-generating model transformations, the fact that
preconditions are strengthened rather than weakened means that specialisation
may not characterised simply as data refinement. Instead, a more appropriate
characterisation may be that of trace refinement, under the assumption that no
new operations are introduced—or, at least, that no new operations are intro-
duced that may update the state in such a way as to affect the availability or
effect of one or more of the existing operations.

Observation 6 In the context of model-driven development, specialisation
need not correspond to subtyping in the programming sense; for
transformational specifications, trace refinement may be a more appropriate
notion.

Of course, in the design of an object-oriented program, the relationship of
Figure 4 may well have been reversed. The class Rectangle might have been
introduced as an extension of Square, with the addition of a distinct height
property. Consider the two fragments of Java code shown below

class Square{ class Rectangle extends Square{

float width; float height;

float getArea(){ ... } float getArea(){ ... }

} }

Here, Rectangle will inherit the attributes of class Square, and will redefine the
method getArea()—to use both width and height. This form of inheritance
represents code re-use, and it is certainly possible to exhibit specifications in
which Rectangle is a refinement of Square, in terms of corresponding abstract
data types. For example, we might imagine a specification for Square.getArea()
that stated

post (self.oclIsKindOf(Rectangle) and result = width ∗ height)
or
(self.oclIsKindOf(Square) and result = width ∗ width)

If Rectangle.getArea() were assigned the same specification, or merely the
first disjunct above, then we could exhibit a forward simulation between the two
corresponding data types.

Such specifications might be produced in the course of a post-hoc activity in
which existing Java code is annotated with specifications that take account of
any inheritance hierarchy. However, in a model-driven context, our purpose in
supplying specifications is to enable the generation of an implementation: a suit-
able specification for Square.getArea() would be post result = width ∗ width,
and one for Rectangle.getArea() would be post result = width ∗ height. These
specifications would not produce a forward simulation, or a data refinement, in
the corresponding abstract data types.

Furthermore, in model-driven development the emphasis is upon specifica-
tion re-use, rather than the specification of code re-use. In this example, the
potential for re-use is in the other direction: Square should be seen as a speciali-
sation of Rectangle, inheriting the constraints as additional conjuncts alongside
any new specification provided. This will also support the expected refinement
relationship—trace refinement—between classes in an inheritance hierarchy.

Observation 7 In model-driven development, re-use is afforded by
specialisation rather than inheritance.

6 Discussion

In this paper, we have argued that classes are not a suitable basis for behavioural
composition in the context of model-driven engineering. For the purposes of code
generation, a component is a closed collection of associated classes: closed in the
sense that every constraint refers only to attributes declared in classes within
the collection. This applies whether the component is implemented as a separate
system, communicating by means of a messaging protocol, or whether it is used
to generate part of the applications programming interface for a larger system.

We have argued also that the notion of correctness associated with code gen-
eration, and with specification re-use, should be that of trace refinement. This
reflects our understanding that the model transformations used to generate the
code may not be able to resolve all of the nondeterminism within the specifi-
cations supplied: either because the specification ‘problem’ cannot be solved, or
because it is unclear which of the possible solutions corresponds to the inten-
tions of the designer. Our strategy for the verification of liveness properties is
to provide a separate constraint specifying the intended availability of a given
operation, or a given sequence of operations. This can be compared with the gen-
erated guard or availability constraint in the implementation: if it is stronger,
then we may wish to modify the model and repeat the generation process.

Finally, we have argued that refinements to the model need not correspond
to refinements of the implementation. We identified a necessary and sufficient
condition for this to be the case, but argued that this would be an unrealistic
objective in practice. We then identified a necessary condition that would be
eminently achievable in the iterative development of operation specifications.

If the existing description is correct, but fails to address all of the relevant
combinations of state and input values, then we may extend the specification
with an appropriate alternation operator, and repeat the generation process,
without the need to repeat any testing or development based on the previous,
generated implementation.

The question of whether classes can be treated as components has been ad-
dressed before, although not in this context. Most relevant is the work of Szyper-
ski [14], who characterises a component as a unit of independent deployment
and of composition, with no externally observable state, and an object as a unit
of instantiation that may have an externally observable state. If we interpret
‘observability’ as the ability to refer to an attribute in an externally-declared
constraint, then his argument that components are collections of classes, rather
than individual classes, is in line with that presented in this paper. In the area
of formal techniques, Barnett and Naumann [15] come to the same conclusion
about association constraints in ‘real-life situations’, and provide a mechanism
for working with collections of ‘cooperating classes’.

The formal technique Object-Z [16] allows the definition of object references,
and constraints can mention attributes of other classes. Such object coupling
induces additional conditions upon the constraint information in a model in order
to achieve individual class refinement [5]: in object-oriented design, as we have
argued, these conditions may not be fulfilled. Some authors [17, 18] rule out such
constraints, insisting that read access to attributes is through accessor methods
only, or aligning preconditions of component methods by introducing derived
input attributes. A similar approach is taken in OhCircus [19]. The result is a
semantics that aligns closely with that of CSP: each class is a separate process,
with no externally observable state.

CSP-OZ [20] and TCOZ [21], building upon earlier work on action sys-
tems [22], allow the definition of a separate guard, as well as a precondition,
for each operation. In these methods, the guard and the precondition together
define the operation. Our approach is different in that the user-supplied precon-
dition is treated as an upper bound on availability: if it does not hold, then the
operation should be blocked. In the code generation process, our preconditions
are treated as (partial) guards. There is value in providing a second, separate
piece of information, analogous to a guard, that corresponds to a lower bound
upon the intended availability: a liveness constraint. This could be used as the
basis for the generation of a suite of tests, or as a property to be checked using
a theorem prover.

Our objective is to add useful, formal support for model-driven, object-
oriented development. In doing so, we have identified a need for two different
notions of composition: one in which classes are combined to produce a complete
description of a sequential component, and one in which sequential components
are combined to produce a complete working system. In this paper, we have
focussed our attention on the first of these, where the notion of composition
is purely static: the behaviours of the sequential component cannot be derived
from the behaviours of the individual classes; instead they emerge as the result
of the combination of classes and associations.

References

1. Kleppe, A., Warmer, J., Bast, W.: MDA Explained, The Model Driven
Architecture: Practice and Promise. Addison-Wesley (2003)

2. Frankel, D.: Model Driven Architecture: applying MDA to enterprise computing.
OMG Series. Wiley (2003)

3. Matena, V., Stearns, B., Demichiel, L.: Applying Enterprise JavaBeans:
Component-Based Development for J2EE. Pearson (2003)

4. Woodcock, J., Davies, J.: Using Z. Prentice Hall (1996) www.usingz.com.
5. Derrick, J., Boiten, E.: Refinement in Z and Object-Z: foundations and advanced

applications. Springer (2001)
6. Warmer, J., Kleppe, A.: The Object Constraint Language: Getting Your Models

Ready for MDA. Addison-Wesley (2003)
7. Faitelson, D., Welch, J., Davies, J.: From predicates to programs. In: Proceedings

of SBMF 2005. Volume 184. (2007)
8. Davies, J., Faitelson, D., Welch, J.: Domain-specific semantics and data

refinement of object models. ENTCS 195 (2008)
9. Meyer, B.: Object-Oriented Software Construction. Prentice Hall (2000)

10. Beck, K., Cunningham, W.: A laboratory for teaching object oriented thinking.
SIGPLAN Not. 24(10) (September 1989)

11. Wirfs-Brock, R.: Responsibility-driven design. The Smalltalk Report (1991)
12. Rumbaugh, J., Jacobson, I., Booch, G.: The Unified Modeling Language

Reference Manual. Addison-Wesley Professional (2004)
13. Liskov, B., Wing, J.: A behavioral notion of subtyping. ACM Transactions on

Programming Languages and Systems 16(6) (1994)
14. Szyperski, C.: Component Software: Beyond Object-Oriented Programming. 2nd

edn. Addison-Wesley (2002)
15. Barnett, M., Naumann, D.A.: Friends need a bit more: Maintaining invariants

over shared state. In: MPC, volume 3125 of LNCS, Springer (2004) 54–84
16. Smith, G.: The Object-Z Specification Language. Kluwer (2000)
17. McComb, T., Smith, G.: Compositional class refinement in Object-Z. In:

Proceedings of FM 2006. LNCS, Springer (2006)
18. Smith, G.: A fully abstract semantics of classes for Object-Z. Formal Aspects of

Computing 7 (1995)
19. Cavalcanti, A., Sampaio, A., Woodcock, J.: Unifying classes and processes.

Software and Systems Modeling 4 (2005)
20. Fischer, C.: How to combine Z with a process algebra. In: Proceedings of ZUM

98. Volume 1493 of LNCS. Springer (1998)
21. Mahony, B., Dong, J.S.: Blending Object-Z and Timed CSP: An introduction to

TCOZ. In: Proceedings of ICSE98, IEEE Press (1998)
22. Back, R.J.R., von Wright, J.: Trace refinement of action systems. In: Structured

Programming, Springer-Verlag (1994)

