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The Need for Information Erasure in the Context of
Information Release

We want to process sensitive information but not necessarily propagate
(some parts of) the information.

Statistical Databases
May release sufficient information to be useful for statistical purposes,
but must erase sufficient information not to violate privacy

E-commerce
There are regulations on what information can be displayed by a
merchant on receipts and screens, and what must be masked (erased)

E-voting
We want to release result of election but not individual votes

⋯
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E-commerce

PCI stipulates that payment processing systems may display, on
receipts and screens, at most first six and last four digits of CC
Primary Account Number – other digits must be masked (erased)

Desired erasure policy is all ^ R, where ∀c , c ′ ∈ CC .(c , c ′) ∈ R ⇐⇒
c[1 ∶ 6] = c ′[1 ∶ 6] ∧ c[13 ∶ 16] = c ′[13 ∶ 16].
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System and Attack Model

fX Y

We consider deterministic systems

Modelled as functions: f ∶ X → Y
System’s input domain (contains secrets): X
System’s output domain (the public observables): Y

Attacker can observe Y but not necessarily X

Attacker knows the system model f

How much of X is erased in Y ?
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Information Erasure: An Extreme

System modelled by f ∶ X → Y erases all information (is noninterferring) if
∀x1, x2, f (x1) = f (x2)

X Y
f

x1
x2
x3
x4
⋮

y1
y2
y3
y4

⋮

The observation at Y is independent of the choice of input x ∈ X
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Intuition about Information Erasure: The Extremes

X Y
f

x1
x2
x3
x4
⋮

y1
y2
y3
y4

⋮

(a) Total Information Erasure

⋯

X Y
g

x1
x2
x3
x4
⋮

y1
y2
y3
y4

⋮

(b) No Erasure

Figure: Extreme cases of Information Erasure

The level of erasure can be characterised by kernels of f ,g ,⋯ (or ERs)

(a) ∀x , x ′ ∈ X , x all x ′ (total erasure of information in X )
(b) ∀x , x ′ ∈ X , x id x ′ ⇐⇒ x = x ′ (Input can be precisely determined from

g and Y )

Various other intermediate levels of information exist
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Example: Knowledge of Colour

all col

Figure: Information about colour

∀b,b′ ∈ Balls. b col b′ ⇐⇒ b.colour = b′.colour
∀b,b′ ∈ Balls. b all b′
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The ER model of information

all col

Figure: Information about colour

all, col ∈ ER(Balls) are ERs over the set of Balls.

A ER (R ∈ ER(X )) represents information by its ability to distinguish,
or not, a pair of elements (x , x ′ ∈ X ):

(x , x ′) ∈ R means indistinguishability of pair: lack of knowledge
(x , x ′) ∉ R means distinguishability of pair: knowledge
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Erasure Policies

Suppose R,R ′ ∈ ER(X )
1 Release Policy: R _ R ′

Given initial knowledge R, agent may not learn more than R ⊔ R ′

Release because R ⊑ R ⊔ R ′

2 Erasure Policy: R ^ R ′

Given some reference information R ′, then R ⊓ R ′ is the maximum
allowed to be propagated
Or, if a system conforms to R ^ R ′ then it ensures that no more than
R ⊓ R ′ may be learnt from its output.
Erasure because R ⊓ R ′ ⊑ R ′
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Erasure Policy Satisfaction

A system modelled by f satisfies the erasure policy R ^ R ′, written
f ⊧ R ^ R ′, if κf ⊑ R ⊓ R ′.
Similarly, a system modelled by f satisfies the release policy R _ R ′,
written f ⊧ R _ R ′, if κf ⊑ R ⊔ R ′.
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Quantifying Erasure

Suppose R ∈ ER(X ) and µ is a probability measure over X .

The information content of X subject to its partitioning by R is
H(µ∣R) ≜ − ∑

X ′∈[X ]R
µ(X ′) logµ(X ′)

A generalisation of the standard Shannon’s entropy definition
H(µ) =H(µ∣idX ) = −∑

x∈X
µ(x) logµ(x)

Erasure and Release Quantification

H(µ∣R ^ R ′) ≜ H(µ∣R ′) −H(µ∣R ⊓ R ′)

H(µ∣R _ R ′) ≜ H(µ∣R ′ ⊔ R) −H(µ∣R)
(1)
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Illustration (Uniform µ)
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Figure: Information Erasure and Release
Policies

Consider four systems
modelled by the following
functions:

1 f1(x) = x

2 f2(x) = ∣x ∣
3 f3(x) = x mod 2

4 f4(x) = 0
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Properties of Quantitative Erasure

Duality of Erasure and Release

Theorem

For any chain of equivalence relations R1,R2,R3 ∈ ER(X ) such that
R1 ⊑ R2 ⊑ R3 we have that
H(µ∣R1 _ R2) +H(µ∣R2 ^ R3) =H(µ∣R1 _ R3) =H(µ∣R1 ^ R3).

Corollary

For any set X , equivalence relation R over X , and probability measure µ
over X , we have that H(µ∣allX _ R) +H(µ∣R ^ idX ) =H(µ).
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Properties of Quantitative Erasure (Contd.)

Agrees with existing definitions

Theorem (H(µ∣allX _ κf ) equals mutual information)

Let κf be the kernel of the function f ∶ X → Y , then
H(µ∣allX _ κf ) = I(X ;Y ).
Furthermore, H(µ∣κf ^ idX ) = I(X ) − I(X ;Y ).

Lemma (Erasure and Release between two comparable levels are identical)

Let R,R ′ ∈ ER(X ) such that R ⊑ R ′, and let µ be a probability measure
over X . Then, H(µ∣R _ R ′) =H(µ∣R ^ R ′).
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Caveat!

Analysis requires µ, what of if we don’t know it?

Even with µ, what does the measure mean?
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Release/Erasure Occlusion

Suppose µ(n) = 1
4 for all n.

all

H(µ∣all) = 2

Par

H(µ∣Par) = 1

R

H(µ∣R) = 1

id

H(µ∣id) = 0

0 1

2 3

0 1

2 3

0 1

2 3

0 1

2 3

Figure: Probability Permutation Problem of Quantitative Policies
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Occlusion due to µ effectively restricting the function
domain

Suppose µ(−2) = µ(2) = µ(−1) = µ(1) = 1
4 and

µ(−4) = µ(4) = µ(−3) = µ(3) = 0

κg where g(x) = ∣x ∣

H(µ∣κg) = 1

κf where f (x) = x mod 2

H(µ∣κf ) = 1

-1 1 -3 3

-2 2 -4 4

-1 1 -3 3

-2 2 -4 4

Figure: Information Erasure and Release Policies
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Conclusion

Information erasure is important in practice

We can model what information is erased in systems

Care should be taken with the interpretation of quantitative measures:
what impact does prob (or our assumption about it) have on risk to
information vis-a-vis the quantitative measure?

We may be able to constrain, via policies on µ, the probabilistic
behaviour of systems and their environments as a statement of
required system security to guarantee desired assurance

Many more interesting open issues: Hybrid Qualitative +
Quantitative Policies, Reasoning about erasure of components of
structured inputs, nondeterminism, system composition and
structuring ...
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Last Slide!

Thank You!

Questions?
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