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Foreword
It is my great pleasure to welcome you to IFL 2012, the 24th Symposium

on Implementation and Application of Functional Languages — held in Oxford,
UK, during 30 August – 1 September, 2012. The goal of the IFL symposia is to
bring together researchers actively engaged in the implementation and applica-
tion of functional and function-based programming languages. IFL is a venue for
researchers to present and discuss new ideas and concepts, work in progress, and
publication-ripe results related to the implementation and application of functional
languages and function-based programming.

The call for papers generated 37 submissions, all of which were accepted for
presentation and are contained in these draft proceedings. The submissions were
screened by the programme committee chair to make sure they are within the
scope of IFL. It should be stressed, however, that these contributions are not
peer-reviewed publications. Following the IFL tradition, IFL 2012 will use a post-
symposium review process to produce formal proceedings, which will be published
by Springer Verlag in the Lecture Notes in Computer Science series. After the
symposium, authors will be given the opportunity to incorporate the feedback from
discussions at the symposium and will be invited to submit a revised paper for the
formal review process. From the revised submissions, the programme committee
will select papers for the formal proceedings considering their correctness, novelty,
originality, relevance, significance, and clarity.

The programme consists of 37 presentations and one invited talk. Fritz Henglein,
from the Department of Computer Science at the University of Copenhagen, is the
invited speaker of IFL 2012. He will talk about generic sorting and partitioning
in linear time and fully abstractly.

Putting together IFL 2012 was truly a team effort. I am grateful to the
Department of Computer Science, Elizabeth Walsh in particular, for administra-
tive support and to St Anne’s college for hosting the event. I would like to thank
the members of the programme committee for accepting my invitation and for
their work in putting together the programme. Last but not least I would like to
thank Kwok-Ho Cheung, Tom Harper, Daniel James, José Pedro Magalhães and
Nicolas Wu, for their help with organizing the symposium and for distributing the
call for papers.

Ralf Hinze
Chair of IFL 2012
University of Oxford
Oxford, UK, August 2012
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Modular Monadic Reasoning, a (Co-)Routine

Steven Keuchel and Tom Schrijvers

Universiteit Gent, Belgium,
{steven.keuchel,tom.schrijvers}@ugent.be

Abstract. Higher-order functions that are polymorphic in a monad
make highly flexible modular components. Unfortunately, the combina-
tion of an unknown function parameter and a polymorphic monad are
detrimental to reasoning. This paper shows how to eliminate both the
function parameter and the polymorphism. The resulting characteriza-
tion is amenable to reasoning.

The approach is based on a judicious combination of the coroutine monad
transformer and monad morphisms.

1 Introduction

Modularity is one of the holy grails of software engineering. The dream is to be
able build new software systems entirely from reusable components, that have
been written independently and can (potentially) be reused in many different
configurations for different applications. Increasingly more modularity demands
are being made: without modifying components, it must be possible to aug-
ment or modify their behavior. At the same time, unprincipled copy-&-paste
approaches, even performed by automated tools, are not acceptable. Compo-
nents must have a meaning beyond their textual form and independently of a
particular composition; they must support modular reasoning.

This paper considers modular reasoning in the purely functional setting of
polymorphic monadic mixin components. Mixin components [4] employ a form
of dynamic inheritance, called open recursion, to make a function’s behavior
modifiable. Monads [17] enable components to have side effects. Polymorphic
monads do not fix the side effects up front, but enable different components in
a composition to contribute their own side effects to the whole.

These polymorphic monadic mixin components are extremely flexible in their
use. Yet, they prove to be highly challenging with respect to modular reasoning.
Oliveira et al. [11] show how to do reasoning about non-interference of such com-
ponents based on parametricity, i.e., based on the types of the components alone.
However, modular reasoning about more involved, implementation-dependent
properties is still an open problem.

Modular reasoning is difficult in this setting, because it combines two pro-
gramming features that are independently difficult to reason about, but abso-
lutely fiendish together: higher-order functions and polymorphic monads. Inde-
pendently, they can be tackled with equational reasoning, free theorems and

6



monad laws, but these tools have only limited traction on higher-order functions
over polymorphic monads.

Inspired by Hofmann et al.’s work [6,2] on characterizing pure monadic
higher-order functions, this paper shows how to eliminate the polymorphism
and the higher-order parameter for a range of side effects. Hence, we character-
ize polymorphic monadic mixin components with monomorphically-typed first-
order representations. We believe that these representations are inherently more
convenient for reasoning.

As this is work in progress, and deriving the first order representation is
challenging in its own right, modular reasoning is not covered.

2 Motivating Example

This is the core infrastructure for mixin components:

type Open s = s→ s

new :: Open s→ s
new a = a (new a)

(⊕) :: Open s→ Open s→ Open s
a1⊕ a2 = a1 ◦ a2

A mixin component of type Open s has a hole of type s for the recursive occur-
rences. This hole is closed with fixpoint combinator new. Two mixin components
are composed with ⊕.

Here is an example, the Fibonacci function rendered as a polymorphic monadic
mixin component:

fib :: Monad m⇒ Open (Int→ m Int)
fib rec n | n< 2 = return n
fib rec n | otherwise = do x← rec (n − 1)

y← rec (n − 2)
return (x + y)

As m can be any monad, fib does not rely on any side effect. We say that fib is a
pure component. The (slow) Fibonacci function is recovered by closing the open
component and instantiating m to the identity monad:

slowfib n = runId (new fib n)

Note that this paper uses the Monatron library [8] for monads and monad
transformers. Monatron provides superior lifting capabilities compared to other
monad transformer libraries that we will use later in this paper.

A faster implementation of the Fibonacci function is obtained with the help
of memoization. The memoization functionality can be captured orthogonally in
its own component:
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memo :: (Eq k,StateM [(k, v)] m)⇒ Open (k→ m v)
memo super n =
do t← get

case lookup n t of
Just v → return v
Nothing→ do v← super n

modify ((n, v):)
return v

This component uses the state side effect, which is documented in the constraint
StateM [(k, v)] m. We obtain an O(n2)-time Fibonacci function by composing
memo with fib, closing the open recursion and running the resulting function in
the State monad.

fastfib n = evalState [ ] (new (memo⊕ fib) n)

2.1 Modular Reasoning

To show the validity of applying memoization, the following property must be
established:

slowfib ≡ fastfib

Oliveira et al. [14] prove this property in a non-modular fashion: they consider the
composition memo⊕fib as a whole. Our goal is to reason about this composition
modularly: We want to 1) establish properties about memo and fib based on
their respective implementations but independent of one another, and 2) combine
these properties to establish the above property without further reliance on the
implementations.

The individual properties should be reusable for a establishing a range of
properties:

1. The memo mixin is non-interfering for any pure component f :: Monad m⇒
Open (i→ m o):

evalState [ ] (new (memo⊕ f) n) ≡ runId (new f n)

2. The application of other mixins to fib, that implement alternative memoiza-
tion techniques, is correct.

3. Adding particular additional effects, e.g., logging, does not affect the cor-
rectness of memoization:

fst $ evalState [ ] $ runWriterT (new (log ⊕memo⊕ fib) n) ≡ slowfib n

This is very challenging, because different uses require different instantiations
of the monad type parameter m, and the implementation-dependent property
must cater to all at once. This rules out expanding the definitions of the monadic
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operations for any particular instance. A second complicating factor is the func-
tion parameter for recursive or super calls. Its particular behavior (side-effects
and returned value) depend on the composition. In the non-monadic setting,
we can formulate preconditions on the input-output behavior of the parame-
ter function. However, in this monadic setting, and due to the polymorphism,
the function parameter may have access to more or other side-effects than the
mixin itself. It is not clear how to impose any preconditions on these unknown
side-effects or how to factor them into the overall behavior of the mixin.

3 Strategy Trees for Pure Functionals

The starting point of this paper are the results of Bauer et al. [2], who have
studied the characterization of pure functionals of type Func i o a:

type Func i o a = ∀m.Monad m⇒ (i→ m o)→ m a

They show that such functionals “can be seen as strategies in a question-answer
game leading to the computation of” the result. These strategies are reified in
strategy trees:

data Tree i o a where
Ans :: a→ Tree i o a
Que :: i→ (o→ Tree i o a)→ Tree i o a

A strategy tree Tree i o a for a pure functional of type Func i o a is a sequence
of queries Que resulting in an answer Ans. Bauer et al. show that there exists a
strategy tree for every functional, and that it is constructed by fun2tree:

fun2tree :: Func i o a→ Tree i o a
fun2tree f = runCont Ans (f (λi→ cont (λk→ Que i k)))

Moreover, tree2fun recovers the functional.

tree2fun :: Tree i o a→ Func i o a
tree2fun t f = go t where

go (Ans a) = return a
go (Que i k) = f i>>= (go ◦ k)

Note that the fun2tree and tree2fun functions are each other’s inverses:

tree2fun ◦ fun2tree ≡ id

fun2tree ◦ tree2fun ≡ id
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3.1 Strategy Trees for Monadic Mixins

It turns out that strategy trees are not restricted to functionals of type Func i o a,
but are also suitable for encoding monadic mixins. For instance, fibt defines
strategy tree of fib.

fibt :: Int→ Tree Int Int Int
fibt n | n< 2 = Ans n
fibt n = Que (n − 1) (λf1 →

Que (n − 2) (λf2 →
Ans (f1 + f2)))

More formally, we can state the following equivalence:

fib ≡ tree2open fibt

where tree2open is a variant of tree2fun that is more convenient for open
components:

tree2open :: Monad m⇒ (i→ Tree i o o)→ Open (i→ m o)
tree2open f super i = tree2fun (f i) super

More generally, any pure monadic mixin component of type ∀m.Monad m ⇒
Open (i→ m o) can be encoded by a strategy tree of type Tree i o o:

open2tree :: (∀m.Monad m⇒ Open (i→ m o))→ (i→ Tree i o o)
open2tree h i = fun2tree (flip h i)

This is great for reasoning, because the latter type is monomorphic, while the
former is not.

Unfortunately, this observation far from solves our problems as it does not
cover monadic mixins like memo. Unlike fib, memo is not a pure monadic com-
ponent. On the contrary, it explicitly relies on state to implement its behavior.
Thus it cannot be encoded as a strategy tree, and we are no step further to
modularly reasoning about components with side effects.

4 Stateful Strategy Trees

In order to make progress on reasoning about memo, this section explores a
variant of Bauer’s pure strategy trees that caters for functionals of type:

type FuncS s i o a = ∀m.StateM s m⇒ (i→ m o)→ m a

This stateful strategy tree type is:

data TreeS s i o a where
AnsS :: a→ s→ TreeS s i o a
QueS :: i→ s→ (o→ s→ TreeS s i o a)→ TreeS s i o a
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A strategy is either an answer AnsS or a query QueS . The constructor AnsS
captures the final state alongside the answer. Similarly, QueS exposes the inter-
mediate state and its continuation takes an updated state. The stateful strategy
tree for memo is:

memot :: Eq k⇒ k→ [(k, v)]→ TreeS [(k, v)] k v v
memot n t = case lookup n t of

Just v → AnsS v t
Nothing→ QueS n t (λv t′ → AnsS v ((n, v) : t′))

The function stree2fun recovers the functional from its strategy tree representa-
tion.

stree2fun :: (s→ TreeS s i o a)→ FuncS s i o a
stree2fun t f = get>>= go ◦ t where

go (AnsS a s) = put s>> return a
go (QueS i s k) = put s>> f i>>= (λo→ get>>= go ◦ k o)

stree2open :: StateM s m⇒ (i→ s→ TreeS s i o o)→ Open (i→ m o)
stree2open f super i = stree2fun (f i) super

For instance, we have the following relation between memo and memot:

memo ≡ stree2open memot

Unfortunately, this section’s approach is far too ad-hoc. It is unclear how
the stateful variants of Tree and tree2fun are actually derived, let alone how to
do so for the stree2fun’s inverse or to adapt the definitions to other kinds of
effects. Clearly, we need a more systematic and structured way to derive stateful
variants of Bauer et al.’s pure definitions.

5 Strategy Trees as Coroutines

The first step towards a more structured approach is the observation that strat-
egy trees are effectively coroutines. In functional programming, they are better
known as the coroutine monad, aka the resumption monad.

instance Monad (Tree i o) where
return = Ans
Ans x >>= f = f x
Que i k>>= f = Que i (λo→ k o>>= f)

In the co-routine interpretation, the Ans constructor denotes a completed com-
putation, while the Que constructor denotes a suspended computation that can
be resumed. A useful primitive operation is suspension:

suspend :: i→ Tree i a a
suspend i = Que i Ans
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which enables a very concise conversion from a pure functional to its strategy
tree:

fun2tree′ :: Func i o a→ Tree i o a
fun2tree′ f = f suspend

In words, the functional’s monad type parameter m is instantiated to the corou-
tine monad and the function parameter is instantiated to the suspend primitive.

For example, the strategy tree for fib, derived as fun2tree′ fib, can be written
in monadic style:

fibt′ :: Int→ Tree Int Int Int
fibt′ n | n< 2 = return n
fibt′ n = do f1 ← suspend (n − 1)

f2 ← suspend (n − 2)
return (f1 + f2)

6 Coroutines with Effects

The next step in our structured approach is to reconcile the coroutine monad
with other side effects, like state for memo. The solution to combine two effects,
co-routines and another one, is entirely standard: monad transformers.

Thus, the coroutine monad transformer replaces the coroutine monad. It is
defined as follows:

newtype CorT i o m a = CorT {runCorT :: m (C i o m a)}
data C i o m a

= Done a
| Suspend i (o→ CorT i o m a)

instance MonadT (CorT i o) where
lift = CorT ◦ liftM Done
tbind m f =

CorT (do x← runCorT m
case x of

Done y → runCorT $ f y
Suspend i k→ return (Suspend i (λo→ k o ‘tbind‘ f)))

susp :: Monad m⇒ i→ CorT i o m o
susp i = CorT $ return (Suspend i return)

From Polymorphic to Monomorphic Form We proceed in a two steps:

1. Use the coroutine transformer to transform a higher-order monadic function
into a first-order one. This happens by partially instantiating the monad
type parameter m to CorT n, where n takes care of other side effects.1

1 Every Monad is also a Functor, though this is not explicit at the type class level. The
Functor constraint is needed shortly.
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step1 :: (∀m.(Functor m,Monad m)⇒ (i→ m o)→ m a)
→ (∀n.Monad n⇒ CorT i o n a)

step1 f = f susp

2. Eliminate the polymorphic type variable n by instantiating it to a concrete
implementation. In the case the constraint on n is just Monad n, like for fib,
the canonical instantiation is the identity monad – there are no side effects.

step2 :: (∀n.Monad n⇒ CorT i o n a)→ CorT i o Id a
step2 m = m

In summary, we obtain a monomorphic characterization as follows:

poly2mono :: (∀m.(Functor m,Monad m)⇒ (i→ m o)→ m a)
→ CorT i o Id a

poly2mono m = step2 (step1 m)

For instance, here is the monomorphic characterization of the Fibonacci function:

fibt′′ :: Int→ CorT Int Int Id Int
fibt′′ n = poly2mono (flip fib n)

From Monomoprhic to Polymorphic Form The opposite transformation is simi-
lar two step process.

1. Replace the concrete monad implementation by a type parameter, by means
of a monad morphism. In the example, the monad morphism id2any does
this:

type m n = ∀a.m a→ n a

id2any :: ∀n.Monad n⇒ Id n
id2any = return ◦ runId

The morphism is applied through the CorT transformer by means of Mona-
tron’s library function:

tmap :: (FMonadT t,Functor m,Functor n)⇒ (m n)→ t m a→ t n a

In summary, this step consists of:

step3 :: CorT i o Id a→ (∀n.(Functor n,Monad n)⇒ CorT i o n a)
step3 m = tmap id2any m

2. Eliminate the suspension transformer again, by means of:

step4 :: (∀m.(Functor m,Monad m)⇒ CorT i o m a)
→ (∀m.(Functor m,Monad m)⇒ (i→ m o)→ m a)

13



step4 m f = go m where
go m = do x← runCorT m

case x of
Done y → return y
Suspend i k→ f i>>= go ◦ k

Hence, the reverse process is:

mono2poly :: CorT i o Id a→ (∀m.(Functor m,Monad m)⇒ (i→ m o)→ m a)
mono2poly m = step4 (step3 m)

Bringing everything together, we claim that poly2mono and mono2poly are
each other’s inverses:

mono2poly ◦ poly2mono ≡ id

poly2mono ◦mono2poly ≡ id

which means that the monomorphic representation is isomorphic to the poly-
morphic one, and thus a useful characterization.

7 Coroutines with Algebraic Effects

This section adapts the two-step approach to two different side effects, state
and non-determinism, that expose only algebraic operations. Jaskelioff [8] calls a
monadic operation op algebraic if its type has the form ∀a.F a→ M a, where F is
some functor. Algebraic operations are easily lifted with lift◦op::∀a.F a→ T M a.

7.1 Stateful Coroutines

The only changes in step1 and step2 are the replacement of Monad by StateM s,
and of Id by State s:

step1,S :: (∀m.(Functor m,StateM s m)⇒ (i→ m o)→ m a)

→ (∀n.StateM s n⇒ CorT i o n a)
step1,S f = f susp

step2,S :: (∀n.StateM s n⇒ CorT i o n a)→ CorT i o (State s) a

step2,S m = m

poly2monoS :: (∀m.(Functor m,StateM s m)⇒ (i→ m o)→ m a)
→ CorT i o (State s) a

poly2monoS m = step2,S (step1,S m)

Note that step1,S works because Monatron’s infrastructure lifts the get and put
operations from n to CorT i o n.

Now poly2monoS yields a monomorphically typed variant of memo:

14



memot′′ :: Eq k⇒ k→ CorT k v (State [(k, v)]) v
memot′′ k = poly2monoS (flip memo k)

Note that if we specialize the type CorT i o (State s) a, we indeed obtain s →
TreeS i o a, i.e., the ad-hoc stateful strategy tree we postulated earlier.

In the other direction, memo is recovered from memo′′ by means of step3,S

and step4,S , of which the former uses the state2any morphism and the latter
differs from step4 merely in its signature.

state2any :: StateM s m⇒ State s m
state2any m = do s0 ← get

let (x, s1) = runState s0 m
put s1
return x

step3,S :: CorT i o (State s) a→ (∀n.(Functor n,StateM s n)⇒ CorT i o n a)

step3,S m = tmap state2any m

step4,S :: (∀m.(Functor m,StateM s m)⇒ CorT i o m a)

→ (∀m.(Functor m,StateM s m)⇒ (i→ m o)→ m a)
step4,S m f = go m where

go m = do x← runCorT m
case x of

Done y → return y
Suspend i k→ f i>>= go ◦ k

mono2polyS :: CorT i o (State s) a
→ (∀m.(Functor m,StateM s m)⇒ (i→ m o)→ m a)

mono2polyS m = step4,S (step3,S m)

We claim again that poly2monoS and mono2polyS are each other’s inverses:

mono2polyS ◦ poly2monoS ≡ id

poly2monoS ◦mono2polyS ≡ id

The WriterM and ReaderM effects with their respective algebraic operations
tell and ask are treated in a similar fashion.

7.2 Non-Deterministic Coroutines

Another interesting effect with algebraic operations is non-determinism, a control-
flow effect. Monatron’s type class for non-deterministic effects is ListM, which
supplies operations mZero :: ListM m ⇒ m a and mPlus :: ListM m ⇒ m a →
m a → m a for respectively no solutions and merging of solutions. The key in-
gredients we need for the approach are a canonical implementation of ListM, the
list monad [ ], and a morphism:

list2any :: ListM m⇒ [ ] m
list2any [ ] = mZero
list2any (x : xs) = return x ‘mPlus‘ list2any xs
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Following the two-step approach we obtain again two transformations poly2monoL

and mono2polyL, which we claim are each other’s inverses.

8 Non-Algebraic Operations

Unfortunately, our two-step approach based on CorT breaks down when handling
non-algebraic operations. As an example we study exceptions, with type class
ExcM x and operations throw :: ExcM m ⇒ x → m a and handle :: ExcM x ⇒
m a→ (x→ m a)→ m a for throwing and handling exceptions. While the throw
operation is algebraic, the handle operation is not: it has a type of the form
∀a.F (M a)→ M a rather than ∀a.F a→ M a.

8.1 The Problem of Exceptions and Coroutines

Following the approach, Exception x2 serves as the canonical implementation of
ExcM x with the following morphism:

exc2any :: ∀x m.ExcM x m⇒ Exception x m
exc2any m = either2any (runException m)

either2any :: ∀x m.ExcM x m⇒ Either x m
either2any m = case m of

Left x → throw x
Right a→ return a

This results in the two operations:

poly2monoX :: (∀m.ExcM x m⇒ (i→ m o)→ m a)
→ CorT i o (Exception x) a

mono2polyX :: CorT i o (Exception x a)
→ (∀m.ExcM x m⇒ (i→ m o)→ m a)

which turn out not to be inverses because they do not preserve the semantics of
handle. The following minimal example illustrates the issue:

f :: ∀m.ExcM () m⇒ (()→ m ())→ m ()
f g = g () ‘handle‘ return

test1 = runException $ f (\ → throw ())
test2 = runException $ mono2polyX (poly2monoX f) (\ → throw ())

> test1
Right ()

> test2
Left ()

The reason is twofold:
2 isomorphic to Either x
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1. CorT externalizes the call to the function parameter g, which now happens in
mono2polyX . When an exception is raised during a call, mono2polyX aborts
and does not communicate it to the functional.

2. The definition of handle, uniformly lifted by Monatron from Exception x to
CorT i o (Exception x), exhibits the following property:

handle (m>>= (λx→ susp i>>= f x)) h ≡ (handle m h)>>= (λx→ susp i>>= f x)

In words, susp extracts itself and any subsequent computations from under
handle. Hence, any exceptions that arise in susp or later, cannot be caught.

Of the two problems, the latter might be amended by customizing the lifting of
handle for CorT. However, the former problem is more fundamental: CorT leaves
no room for communicating errors back, which makes it altogether usesless for
our purpose.

8.2 Ad-hoc Solution

Fortunately, we can resort to a more ad-hoc solution again, and directly formu-
late a suitable monad that externalizes function calls, but preserves the desired
semantics of handle.

data TreeX x i o a
= ReturnX a
| SuspendX i (Either x o→ TreeX x i o a)
| Raise x

This datatype has the two conventional constructors for: ReturnX for returning
an answer immediatly and SuspendX for suspending the computation. Note that
SuspendX ’s continuation has a parameter of type Either x o rather than o. This
way the external call can communicate its possible failure to the continuation.
The reifyX function enables any external monad to reify its exception as an
Either x o value

reifyX :: ExcM x m⇒ m a→ m (Either x a)
reifyX m = handle (m>>= return ◦ Right) (return ◦ Left)

and suspX translates this communicated exception to the appropriate internal
form:

suspX :: i→ TreeX x i o o
suspX i = SuspendX i either2any

Raise x denotes throw x, a computation that results in exception x.

instance Monad (TreeX x i o) where
return = ReturnX

ReturnX a >>= f = f a
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SuspendX i k>>= f = SuspendX i (λo→ k o>>= f)
Raise x >>= f = Raise x

We spare the reader the particular infrastructure-related details of ExcM in
Monatron and summarize TreeX x i o’s implementations of throw and handle.

As indicated above, throw is represented by Raise:

throw x = Raise x

The following two laws cover the ReturnX and Raise cases of handle:

handle (return a) h ≡ return a

handle (throw x) h ≡ h x

while SuspendX defers handle to its continuation. Combined, we obtain the fol-
lowing definition of handle:

handle (ReturnX a) h = ReturnX a
handle (SuspendX i k) h = SuspendX i (λo→ handle (k o) h)
handle (Raise x) h = h x

Now, the conversion from a functional to TreeX is essentially the same as
before:

fun2treeX :: (∀m.ExcM x m⇒ (i→ m o)→ m a)
→ TreeX x i o a

fun2treeX f = f suspX

However, the inverse is more involved, interpreting the TreeX constructors in the
target monad:

tree2funX :: ∀m x i o a.ExcM x m⇒ TreeX x i o a→ ((i→ m o)→ m a)
tree2funX m f = go m where

go :: ∀c.TreeX x i o c→ m c
go (ReturnX a) = return a
go (SuspendX i k) = reifyX (f i)>>= go ◦ k
go (Raise x) = throw x

This approach does preserve the semantics, as we can observe in the following
example:

test2,X = runException (tree2funX (fun2treeX f) (\ → throw ()))

and, in contrast to test2, we have:

> test2,X
Right ()

Generally, we claim that fun2treeX and tree2funX are inverses.
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9 Related Work

Monadic Reasoning Hutton [7] advises to remove the abstraction layer of oper-
ations like >>=, get and handle, and to reason in terms of their concrete imple-
mentations. Unfortunately, when the monad is a polymorphic type variable, we
cannot apply this approach directly. However, the aim in this paper is to obtain
a monomorphic characterization of the monadic code first, in order to be able
to reason about its concrete implementation.

Both of parametricity [13,16] and algebraic laws of monadic operations en-
able reasoning about polymorphic monads. Voigtländer [15] shows how to derive
parametricity theorems for type constructor classes such as Monad. Many peo-
ple [10,5] introduced and studied various algebraic laws to enable reasoning about
monadic operations directly. Oliveira et al. [11] even combine parametricity and
algebraic laws to reason about the non-interference of polymorphic monadic
mixin components. However, their approach is not strong enough to establish
the correctness of memoization, which relies on non-trivial invariants, in a mod-
ular fashion.

Unfortunately, the standard form of parametricity and algebraic laws are not
powerful enough for our purpose due to the presence of the unknown function
parameter. Hofmann et al. [6,2] perform custom logical relations reasoning to
characterize pure higher-order functions in terms of strategy trees. This paper
extends their work to impure higher-order functions in order to enable reasoning
about polymorphic monadic mixin components.

The Coroutine Monad Different variants of the coroutine monad (transformer) [3]
have been studied under different names: resumption monad [12], free monad [1]
and step monad [9]. For our purposes the name coroutine is most suitable be-
cause it emphasizes that the computation is split into two parts, the internal
part of the mixin component and the external part of the function parameter.

10 Conclusion

We have shown how to characterize polymorphic monadic mixin components as
monomorphically typed first order definitions for a range of different side effects.
For effects with only algebraic operations we provide a particularly systematic
two-step approach based on the coroutine monad transformer. In future work, we
aim to show how the monomorphic characterizations facilitate modular reasoning
and reuse of proofs. Moreover, we will investigate how to extend the systematic
approach to non-algebraic operation like exception handling.
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A Notation for Comonads

Dominic Orchard and Alan Mycroft

Computer Laboratory, University of Cambridge
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Abstract. The category-theoretic concept of a monad is applied widely
as a design pattern for functional programs involving effects. The utility
and ubiquity of monads is such that some languages provide syntax to
simplify use of this pattern. Comonads, the dual of monads, can be sim-
ilarly used as a design pattern in functional programming, yet remain
relatively under-utilised compared with monads. There are several use-
ful examples of comonads but a lack of syntactic sugar prevents wider
adoption and indeed further understanding of comonads as an abstrac-
tion mechanism. We propose a lightweight syntax for programming with
comonads in Haskell, analogous to the do-notation for monads, accom-
panied by examples of comonads in the notation.

1 Introduction

The flourishing approach of categorical programming applies concepts from cat-
egory theory as design patterns for abstracting and structuring programs. For
example, the category theoretic notion of a monad is widely used to structure
programs with side effects [16, 17]. A monadic data type M a has accompanying
operations which provide composition of functions with structured output, i.e., of
type a→M b, where effects are seen as impure output behaviour of a function,
encapsulated or encoded in the data type M .

Monads are so effective as an abstraction technique that some languages
provide a lightweight syntactic sugar simplifying programming with monads,
such as the do-notation in Haskell and the let! notation in F# [12].

Comonads are the dual structure to monads and can be used to abstract
context dependence in programs [14]. A comonadic data type C a has accompa-
nying operations for the composition of functions with structured input, i.e., of
type C a→ b, where context-dependence is seen as impure input behaviour of a
function, encapsulated/encoded in the data type C. There are various examples
of comonads in programming in the literature, for dataflow programming with
streams [15], attribute evaluation [13], array computations [11], and more [6].
However, despite these example, comonads are less widely used than monads.

One reason for the relative underuse of comonads in programming is that
the known examples appear less diverse compared to monads. Another reason is
that, unlike monads, there is no language support to simplify programming with
comonads, thus the use and experimentation of comonads as a design pattern in
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programming is impeded. To remedy this situation, this paper proposes a syntax
for programming with comonads in Haskell, called the codo-notation.
In Haskell, comonads are defined by the following class:1

class Comonad c where
extract :: c a → a
extend :: (c a → b)→ c a → c b

If c a types context-dependent computations of a value a, then extract defines
the current context, extracting the value at this context; extend defines the range
of all possible contexts, extending a local operation – which computes a value b
from the context of c a – to a global operation by applying it at all contexts.
Thus comonads abstract boilerplate code for the iteration involved in extending
an operation defined at one context to all contexts.

For example, the type of arrays paired with an array index, called the cursor,
is a comonad, where extract accesses the cursor element of the array, thus the
cursor denotes the current context, and extend applies its parameter function
to the parameter array with its cursor set to each index in the domain of the
array, computing an array of results [11]. Thus, an array is a value dependent
upon its position in the array. Many applications in image processing, scientific
computing, cellular automata, and graphics use this pattern of computation.

The codo-notation simplifies programming with operations defined on such
arrays. For example, the following codo-block defines an operation for comput-
ing the contours in a 2D-image using a difference of Gaussians-style approach:

contours :: CArray (Int , Int) Float → Float
contours = codo x ⇒ y ← gauss2D x

z ← gauss2D y
w ← (extract y)− (extract z )
laplace2D w

where CArray i a models the cursored-array comonad, with index type i and
element type a, and gauss2D , laplace2D :: CArray (Int , Int) Float → Float com-
pute, at a particular context, the discrete Gaussian and Laplace operators. A
contour image can thus be computed by applying (extend contours) to an image.

Section 2 introduces the codo-notation in more detail, continuing with arrays
as an example. The notation has a simple translation into the operations of a
comonad (described in Section 4) which provides an equational theory for the
notation following from the laws of a comonad (Section 3).

The codo-notation is analogous to the do-notation for programming with
monads in Haskell, but with some notable differences which will be explained
from the point of view of categorical semantics in Section 5. Comonads and
codo-notation are also related to concepts in natural language semantics, which
will be discussed along with concluding remarks in Section 6.

The codo-notation is currently provided using macros in GHC as a library
available at: http://github.com/dorchard/codo-notation.

1 Available via Kmett’s Control.Comonad package.
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Array example The array example will be used throughout the next section to
introduce codo. It is defined in Haskell by the following data type and instance:

data CArray i a = CA (Array i a) i

instance Ix i ⇒ Comonad (CArray i) where
extract (CA a c) = a ! c
extend f (CA a c) = let es ′ = map (λi → (i , f (CA a i))) (indices a)

in CA (array (bounds a) es ′) c

where extract accesses the cursor element using the array indexing operation !,
and, for every index i of the parameter array, extend applies f to the array with
i as its cursor, returning an index-value pair list from which the result array
is constructed. Note, the return and parameter arrays have the same size and
cursor i.e. extend preserves the incoming context.

Many array operations can be defined as local operations – of type c a → b
(hereafter comonadic operations) – using relative indexing e.g. the laplace2D
operator, for approximating differentiation, can be defined:

laplace2D :: CArray (Int , Int) Float → Float
laplace2D a = a ? (−1, 0) + a ? (1, 0) + a ? (0,−1) + a ? (0, 1)− 4 ∗ a ? (0, 0)

where (?) abstracts relative indexing with bounds checking and default values:2

(?) :: (Ix i ,Num a,Num i)⇒ CArray i a → i → a
(CA a i) ? i ′ = if (inRange (bounds a) (i + i ′)) then a ! (i + i ′) else 0

Whilst laplace2D applied to an image computes the Laplacian operator at a
single context (locally), extend laplace2D applied to an image computes the
Laplacian at every context (globally), returning the resulting image.

2 Introducing codo

The codo-notation provides a form of let-binding for composing comonadic oper-
ations, of the form and type (here p ranges over patterns and e over expressions):

(codo p ⇒ p← e; e) :: Comonad c ⇒ c a → b

Compare this with the general form and type of the monadic do-notation:

(do p← e; e) :: Monad m ⇒ m a

Both comprise zero or more binding statements of the form p← e, preceding a
final result expression. A codo-block however defines a function, with a pattern
for the function’s parameter following the codo keyword. The parameter is es-
sential since comonads describe computations with structured input. A do-block
is instead a (nullary) expression. Section 5 compares the two notations in detail.

2 There are many alternative methods for abstracting boundary checking and values;
our choice here is for simplicity of presentation rather than performance or accuracy.

3
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Comonads and codo-notation for composition Comonadic functions, with struc-
tured input, can be composed using extend :

(◦̂) :: Comonad c ⇒ (c y → z )→ (c x → y)→ c x → z

g ◦̂ f = g ◦ (extend f ) (1)

The laws of a comonad are equivalent to requiring that this composition is
associative and that extract is the identity (discussed further in Section 3).

The codo-notation abstracts use of extend in composition of comonadic op-
erations. For example, we may wish to compose two array operations:

lapGauss2D = (laplace2D ◦ (extend gauss2D)) :: CArray (Int , Int) Float → Float

which can written equivalently in the codo-notation:

lapGauss2D :: CArray (Int , Int) Float → Float
lapGauss2D = codo x ⇒ y ← gauss2D

laplace2D y

where x :: CArray (Int , Int) Float and y :: CArray (Int , Int) Float .
Within a codo-block the context of the computation is set by the context of

the incoming parameter; all subsequent local variables are synchronised at this
incoming context. Thus, inside the above block, y is at the same context as x ,
i.e., they have the same cursor.

For a variable pattern parameter, a codo-block is typed by the rule: (here
typing rules are presented with a single colon : for the typing relation)

[varP]
Γ, x : c t `c e : t′

Γ ` (codo x ⇒ e) : Comonad c ⇒ c t → t ′

where `c types binders of a codo-block, e.g., a variable-pattern binding is typed:

[varB]
Γ `c e : t Γ, x : c t `c e′ : t′

Γ `c x ← e; e ′ : t ′

Variables bound within the codo-block (the local variables) are the inputs of
further expressions in the block. The presence of the top-level parameter means
that every expression in the block has at least one input. The interpretation of
binding an expression is thus the comonadic composition of this expression as a
function from its inputs with the interpretation of the rest of the block. Thus in
[varB] the binding x← e : t implies x : c t in the rest of the block.

The typing rules for codo-notation are collected in Figure 2.

Multi-parameter operations The following defines a pointwise difference between
two comonadic values, which is polymorphic in the comonad:

minus :: (Comonad c,Num a)⇒ c a → c a → a
minus x y = extract x − extract y

4
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Multi-parameter comonadic functions can be composed with other operations
naturally using codo-notation, e.g.:

contours ′ = codo x ⇒ y ← gauss2D x
z ← gauss2D y
w ← minus y z
laplace2D w

(equivalent to contours in the introduction which inlined the definition of minus).
Without codo, multi-parameter comonadic operations are significantly more

difficult to compose. The equivalent program without codo is:

contours ′ x = let y = extend gauss2D x
w = extend (λy ′ → let z = extend gauss2D y ′

in minus y ′ z ) y
in laplace2D w

where y ′ and z have the same cursor, thus minus y ′ z is the pointwise difference.
The following is an incorrect use of minus for the pointwise difference:

contour bad x = let y = extend gauss2D x
z = extend gauss2D y
w = extend (minus y) z

in laplace2D w

Applying the partially-applied minus y to z by extend means minus y is applied
to z at all its contexts whilst the context of y is fixed. Thus w is not the point-
wise difference, but the difference of y at a fixed context with the values of z .
The codo-notation therefore simplifies the use of multi-parameter operations,
avoiding incorrect programs caused by unsynchronised cursors. The unusual be-
haviour of contour bad could be encoded with codo using nested codo-blocks:

contour ′′ = codo x ⇒ y ← gauss2D x
(codo y ′ ⇒ z ← gauss2D y ′

w ← minus y z
laplace2D w) y

where y in minus y z is bound in the outer codo and thus has its cursor
fixed, whilst z is bound in the inner codo and has its cursor varying. Using
a comonadic variable bound outside of the nearest enclosing codo-block means
that the variable is unsynchronised with respect to the variables inside the block.

A codo-block may have multiple parameters via tuple patterns ([tupP], Fig-
ure 2) e.g., the following Laplace-transforms and pointwise-adds two arguments:

lapPlus :: CArray Int (Float ,Float)→ Float
lapPlus = codo (x , y)⇒ a ← laplace2D x

b ← laplace2D y
(extract a) + (extract b)

5
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The type of lapPlus shows that, instead of two parameters, it takes a single
comonadic parameter with tuple elements, of the form c (a, b). However, inside
the block x :: c a and y :: c b as the desugaring of codo unzips the parameter
(see Section 4). The intention is that x and y are synchronised in their cursors.

To apply lapPlus to a pair of arrays, its arguments must first be zipped,
provided by the czip operation:

class ComonadZip c where czip :: (c a, c b)→ c (a, b)

For CArray , czip can be defined:

instance (Eq i , Ix i)⇒ ComonadZip (CArray i) where
czip (CA a c,CA a ′ c′) =
if (c 6≡ c′) then error "Cursors must be equal"

else let es ′′ = map (λi → (i , (a ! i , a ′ ! i))) (indices a)
in CA (array (bounds a) es ′′) c

Thus only arrays of the same shape and cursor can be zipped together. In the
contextual understanding, the two parameter arrays are synchronised in their
contexts. The example of lapPlus can therefore be applied to two array param-
eters x and y by: extend lapPlus (czip (x , y)).

A tuple pattern can also be used in a binding statement, typed by rule [tupB]
(Figure 2). For example, the following is equivalent to lapPlus by exchanging a
parameter binding with a statement binding (see Section 3 for the general law):

lapPlus = codo z ⇒ (x , y)← extract z
a ← laplace2D x
b ← laplace2D y
(extract a) + (extract b)

Example: labelled graphs Many graph algorithms can be structured by a
comonad, particular compiler analyses and transformations on control flow graphs
(CFGs). The following defines a labelled-graph comonad as a list of nodes which
are pairs of a label and a list of their connected vertices:

data LGraph a = LG [(a, [Int ])] Int

instance Comonad LGraph where
extract (LG xs c) = fst (xs !! c)
extend f (LG xs c) = LG (map (λc′ → (f (LG xs c′), snd (xs !! c)))

[0 . . length xs ]) c

The LGraph-comonad resembles the array comonad where contexts are positions
with a cursor denoting the current position. Analyses over CFGs can be defined
using graphs labelled by syntax trees Stmt . For example, a live-variable analysis
can be defined, using the codo-notation, as:

lva = codo g ⇒ lv0 ← (defUse g , [ ]) -- compute definition/use sets, paired
lva ′ lv0 -- with initial empty live-variable set

6
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lva ′ = codo ((def , use), lv)⇒
live out ← foldl union [ ] (successors lv)
live in ← union (extract def ) ((extract live out) \\ (extract use))
lvp ← ((extract def , extract use), extract live in)
lvNext ← lva ′ lvp
if (lv ≡ live in) then (extract lv) else (extract lvNext)

where union and set difference (\\) on lists have type Eq a ⇒ [a ]→ [a ]→ [a ]
and defUse :: LGraph Stmt → ([Var ], [Var ]) computes the sets of variables
defined and used by each block in a CFG. The analysis is recursive, refining the
set of live variables until a fixed-point is reached.

The live variables for every block of a CFG can be computed by extend lva.

Costate, trees, and zippers Arrays were used to introduce comonads and
codo to aid understanding since the notion of context is made clear by the
cursor index. The above graph example has a similar form. Both are instance of
a general comonad, often called the costate comonad, whose data type is a pair
of a function from contexts to values and a particular context: Ca = (s→ a)×s.

For both arrays and labelled graphs the type of contexts is a finite domain
of integer, or integer-tuple, indices. For labelled graphs, the costate comonad is
combined with product comonad (see [14]) pairing the label of a node with the
list of its successors, thus the type is isomorphic to Ca = (s→ (a× [s]))× s.

For costate, the notion of context is explicitly provided by a cursor acting
as a pointer or address. This is not the only way to define a notion of context.
Other data types encode the context structurally rather than using a cursor. For
example, a comonad of labelled binary trees can be defined:

data BTree a = Leaf a | Node a (BTree a) (BTree a)

instance Comonad BTree where
extract (Leaf a) = a
extract (Node a l r) = a

extend f (Leaf a) = Leaf (f (Leaf a))
extend f t@(Node a l r) = Node (f t) (extend f l) (extend f r)

The action of extend is to apply its parameter function f to successive suffix
trees, thus f can only access its children, not its parents. Thus coextend not only
defines what it means for a local (comonadic) operation to be applied globally,
but also which contexts are accessible from each possible context.

A tree comonad that has a structural notion of context but whose comonadic
operations can access any part of the tree can be defined using Huet’s zipper data
type, where trees are split into a path to the current position and the remaining
parts of the tree [5]. For a certain class of data types it has been shown that a
zipper like structure can be automatically derived by differentiation of the data
type [8]. All zippers are comonads, thus any data type with a corresponding
zipper can be turned into a comonad where the notion of context is encoded in
the structure of the type, rather than by a pointer -like cursor.
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Γ ` codo p ⇒ e : Comonad c t → t ′

[varP]
Γ, x : c t `c e : t′

Γ ` (codo x ⇒ e) : c t → t ′

[tupP ]
Γ, x : c t , y : c t ′ `c e : t′′

Γ ` (codo (x , y)⇒ e) : c (t , t ′)→ t ′′

[wildP]
Γ `c e : t

Γ ` (codo ⇒ e) : c a → t

Γ `c p← e; e : t

[varB]
Γ `c e : t Γ, x : c t `c e′ : t′

Γ `c x ← e; e ′ : t ′

[tupB]

Γ `c e : (t1, t2)
Γ, x : c t1, y : c t2 `c e′ : t′

Γ `c (x , y)← e1; e ′ : t ′

[letB]
Γ, `c e : t Γ, x : t `c e′ : t′

Γ `c let x = e; e ′ : t ′

Fig. 1. Typing rules for codo

3 Equational Theory

As shown in Section 2, extend provides composition for comonadic operations
(1). The laws of a comonad are exactly the laws that guarantee this composition
is associative and has a left and right unit, provided by extract, summarised here:

(right unit) f ◦̂ extract ≡ f  extend extract ≡ id [C1]
(left unit) extract ◦̂ f ≡ f  extract ◦ (extend f ) ≡ f [C2]

(associativity) h ◦̂ (g ◦̂ f)  extend g ◦ extend f
≡ (h ◦̂ g) ◦̂ f ≡ extend (g ◦ extend f ) [C3]

As there is no mechanism for enforcing such rules in Haskell the programmer is
expected to verify the laws on their own.

Since codo is desugared into just the operations of a comonad, the comonad
laws therefore imply equational rules on the syntax of codo-notation, shown in
Figure 3(b). Figure 3(a) shows rules for the top-level codo-block which follow
from its translation.

The operation: czip :: (c a, c b) → c (a, b) introduced in Section 2 corre-
sponds to that of a (semi)-monoidal functor which may satisfy various laws
with respect to the comonad (see the discussion of (semi)-monoidal comonads
in [14]). The following property, which we call idempotency of a semi-monoidal
functor, frequently holds of comonad/czip implementations:

czip (x , x ) ≡ cmap (λy → (y , y)) x (2)

This property implies syntactic laws on codo which relate tuple patterns and
czip (Figure 3(c)). For every rule involving a tuple pattern there is an equivalent
rule derived from the parameter/statement exchange rule (Figure 3(a)).

Comonads are functors The category theoretic notion of a functor can be used
to abstract map-like operations on parametric data types. In Haskell, functors
are described by the Functor type class, of which map provides the list instance:

8
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(a) Pure rules

codo x ⇒ f x ≡ f (codo-η)

codo x ⇒ z ← (codo y ⇒ e1) x
e2

≡ codo x ⇒ y ← extract x
z ← e1
e2

(codo-β)

codo z ⇒ (x , y)← extract z
e

≡ codo (x , y)⇒ e (parameter/statement
binding exchange)

(b) Comonad laws

codo x ⇒ y ← extract x
f y

≡ codo x ⇒ f x [C1]

codo x ⇒ y ← f x
extract y

≡ codo x ⇒ f x [C2]

(codo x ⇒ z ← (codo y ⇒ w ← e1
e2) x

e3)

≡ codo x ⇒ y ← extract x
w ← e1
z ← e2
e3

[C3]

(iff x is not free in e1) ≡ codo y ⇒ w ← e1
(codo x ⇒ z ← e2

e3) y

(c) Additional rules – if idempotency (2) holds

codo (b, c)⇒ z ← (extract b, extract c)
f z

≡ codo (b, c)⇒ f (czip (b, c))

codo x ⇒ (a ′, b′)← czip (a, b)
f a ′ b′

≡ codo x ⇒ f a b

Fig. 2. Equational laws for the codo-notation

class Functor f where fmap :: (a → b)→ f a → f b

instance Functor [ ] where fmap = map

All comonads are functors by the following definition using extend and extract:

cmap :: Comonad c ⇒ (a → b)→ c a → c b
cmap f x = extend (f ◦ extract)

While fmap applies its parameter function to a single element, extend ap-
plies its parameter function to a subset (possibly the whole) of the parameter
structure. Thus extend generalises fmap.

Shape preservation An interesting derived property of comonads is shape preser-
vation. The shape of a data type is its structure without any values i.e.

shape = cmap (const ())

where const x = λ → x . For example, the shape of a list is just the cons-cells,
without any values, or in this case unit values ().
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A consequence of the comonad laws is that, for any comonadic function f ,
(extend f ) preserves the shape of the incoming structure in its result. For exam-
ple, with the array comonad, extend preserves the size, cursor, and dimensions
of the parameter array in the result. This shape preservation property is proved
in Appendix A, and stated formally is that, for all f :: c a → b:

shape ◦ (extend f ) ≡ shape (3)

4 Desugaring codo

The translation of codo is based on Uustalu and Vene’s semantics for a context-
dependent λ-calculus [14] and has two parts: translation of binding into compo-
sition via extend , and management of the environment for local variables bound
in a codo-block. The first part is explained by considering a restricted codo-
notation, which only ever has one local variable, bound in the previous statement.

1). Single-variable contexts For some comonad C , consider the codo-block:

foo1 = (codo x ⇒ y ← f x ; g y) :: C x → z

where f :: C x → y , g :: C y → z . The first statement y ← f x can be interpreted
as a function with parameter x and body f x , the second, which is the final result
expression, can be similarly interpreted as a function from y to its expression:

(λx → f x ) :: C x → y (4)

(λy → g y) :: C y → z (5)

Both (4) and (5) are functions with structured input, thus the semantics of foo1
is the comonadic composition of (4) and (5):

Jfoo1 K = (λy → g y) ◦ (extend (λx → f x )) : Cx→ z.

2). Multiple-variable contexts The codo-notation however provides multi-variable
contexts, allowing the following example with binary function h :: Cx→ Cy → z:

foo2 = (codo x ⇒ y ← f x ; h x y) :: C x → z

The first statement cannot be interpreted as before since the second statement
uses both x and y , thus the interpretation must return x with the result of f x :

(λx → (extract x , f x )) :: C x → (x , y) (6)

Applying extract to x means that extend (6), of type C x → C (x , y), returns
the parameter x and the result of f x synchronised in their contexts.

The interpretation of the second statement is a function taking a value
C (x , y) and unzipping it, binding the constituent values to x and y in the
scope of the result expression, where x and y are synchronised at the same
context since cmap preserves the contextual properties of the comonad:

(λenv → let x = cmap fst env

y = cmap snd env in h x y) :: C (x , y)→ z (7)

The translation of foo2 is therefore Jfoo2 K = (7) ◦ (extend (6)).
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4.1 General construction

The translation traverses the list of binding statements in a codo-block, ac-
cumulating a comonadic environment of the local variables bound so far. The
accumulated environment is structured by right-nested two-tuples (pairs) termi-
nated by an empty tuple. Thus, the actual translation of foo2 is:

Jfoo2K = (λenv → let y = cmap fst env
x = cmap (fst ◦ snd) env in h x y)

◦ (extend (λenv → (let x = cmap fst env in f x , extract env)))
◦ (cmap (λenv → (env , ())))

For foo2 , the environment in the first statement contains just x and has type
C (x , ()), and in the second statement contains x and y and has type C (y , (x , ())).

The top-level translation of a codo-block is defined:

Jcodo x ⇒ bK = Jx ` bKc ◦ (cmap (λx → (x , ())))

Jcodo ⇒ bK = J` bKc ◦ (cmap (λx → (x , ())))

Jcodo (x , y)⇒ bK = Jx, y ` bKc ◦ cmap (λp → (fst p, (snd p, ())))

where J∆ ` bKc is the translation for binding statements b within a codo-block
with the context of the local variables ∆.

The top-level translation generalises easily to arbitrary tuple patterns. In
each case, J−Kc is pre-composed with a function converting tuples in the incoming
parameter of the codo-block to right-nested tuples, terminated by the empty
tuple (). Translation of binding statements yields a Haskell function of type:

J∆ ` b ; eKc : Comonad c ⇒ c (t1, (. . . , (tn, ())))→ t

where e : t and ∆ = v1, . . . , vn where vi : ti. The definition of J−Kc is:

J∆ ` eKc = J∆ ` eKexp
J∆ ` x ← e; e ′Kc = Jx,∆ ` e′Kc ◦ extend (λenv → (J∆ ` eKexp env , extract env))

J∆ ` (x , y)← e; e ′Kc = Jx, y,∆ ` e′Kc ◦ extend (λenv → (λ((x , y), ∆)→ (x , (y , ∆)))

(J∆ ` eKexp env , extract env))

where J∆ ` eKexp translates expressions on the right-hand side of a binder or the
last expression of a block. The last case translates binding to tuple patterns where
λ((x , y), ∆) → (x , (y , ∆))) reformats results into the right-nested tuple format
of the environment; this generalises in the obvious way to arbtirary tuples.

The translation of expressions unzips the incoming comonadic environment,
binding the values to the variables in ∆ with a local let-binding:

Jv1, . . . , vn ` eKexp = λenv → let [vi = cmap (fst ◦ snd i−1) env ]n1 in e

where sndk means k compositions of snd and snd0 = id .
Section 5 compares codo-notation with do-notation, and explains why the

translation of codo-notation is relatively more complex.
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5 Comparing do- and codo-notations

While comonads and monads are dual, the codo- and do-notation (for program-
ming with monads) do not appear dual. Both provide let-binding syntax, for
composition of comonadic and monadic operations respectively. However, codo-
blocks are parameterised, of type c a → b for a comonad c, whilst do-blocks are
unparameterised, of type m a for a monad m. Since comonads abstract functions
with structured input the parameter to a codo-block is important. In the do-
notation, expressions have implicit input via their free variables and Haskell’s
scoping mechanism is reused for handling local variables in a do-block.

The codo- and do-notation can be seen as internal domain-specific lan-
guages, for contextual and effectful computations respectively, with their seman-
tics defined by translation to Haskell. This perspective is similar to the approach
of categorical semantics, where typed programs are given a denotation as a mor-
phism,3 in some category, mapping from the inputs of a program to the outputs.
The disparity between codo- and do-notation is illuminated by this approach.

Categorical semantics For the simply-typed λ-calculus, the traditional approach
pioneered by Lambek and Scott recursively maps the type derivation of an ex-
pression to a morphism [7]:

JΓ ` e : τK : (Jτ1K× . . .× JτnK) −→ JτK

where Γ = x1 : τ1, . . . xn : τn. Thus, an expression e : τ with a context of free-
variable typing assumptions Γ is modelled as a morphism from a product of the
types for the free variables, as inputs, to the result type as the output. From
now on, J−K brackets will be elided on types in morphisms for brevity.

Categorical semantics for effectful computations Moggi showed that effectful
computations can be given a semantics in terms of a Kleisli category which has
morphisms with structured output of type a→ m b for a monad m [9, 10], with
denotations (where again Γ = x1 : τ1, . . . xn : τn):

JΓ ` e : τK : (Jτ1K× . . .× JτnK) −→ m JτK

In Moggi’s calculus, let-binding follows the traditional approach of internal-
ising substitution (whether this is call-by-value or call-by-name with respect to
effects depends on the particular monad) corresponding to composition of the
denotations, provided by the bind operation of a monad. However, multi-variable
environments requires a strong monad which has an additional operation called
strength. The effectful semantics for let-binding is:

(where f : a → b is written a
f
// b and composition is expressed by concate-

nation of two arrows)

JΓ ` e : τK = g : Γ → m τ JΓ, x : τ ` e′ : τ ′K = g′ : Γ × τ → m τ ′

JΓ ` let x = e in e′ : τ ′K : Γ
〈id,g〉

// Γ ×mτ
strength

// m (Γ × τ)
bind g′

// mτ ′
(8)

3 Morphisms generalise the notion of function. Readers unfamiliar with category the-
ory may safely replace ‘morphism’ with ‘function’ here.
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where 〈f, g〉 is the function pairing: λx → (f x , g x ), bind is the prefix version
of Haskell’s >>= operator and strength provides distributivity of × over m:

strength : (a×m b)→ m (a× b)
bind : (a→ m b)→ (m a→ m b)

The do-notation does not provide a full semantics for a language with ef-
fects, but instead provides just a semantics for effectful let-binding embedded
in Haskell. The translation is simplified by reusing Haskell’s scoping mechanism
since, in Haskell, all monads are strong with a canonical strength operator:

strength :: Monad m ⇒ (a,m b)→ m (a, b)
strength (a,mb) = mb >>= (λb → return (a, b))

It is straightforwardly proved that this definition of strength satisfies the prop-
erties of a strong monad (see [9] for these properties). The standard translation
of do can be derived from (8) by inlining the above definition of strength and
simplifying according to the monad laws:

Γ ` e : m τ Γ, x : τ ` e′ : m τ ′

Γ ` Jdo x ← e; e ′K : m τ ′ ≡ Γ ` e >>= (λx → e ′) : m τ ′

giving a translation using just the monad operations and Haskell’s scoping mech-
anism to define the semantics of multi-variable contexts for effectful let-binding.
Thus the inputs to effectful computations are handled implicitly and so a do-
block is just an expression of type m a.

Categorical semantics for contextual computations The dual of Moggi’s seman-
tics interprets expressions in a coKleisli category whose morphisms have struc-
tured input (c a→ b for a comonad c). The denotations are given by:

JΓ ` e : τK : c (Jτ1K× . . .× JτnK) −→ JτK

Uustalu and Vene gave a semantics in this form for a context-dependent calculus
[14]. For a comonadic semantics the context of free-variables is therefore not a
product structure, but a comonadic structure over products, unlike the monadic
semantics with just the product structure over the context (matching Haskell’s
semantics). Thus, the scoping mechanism of Haskell cannot be reused as Haskell
does not provide comonadic structuring of the variables in the context. There
is no therefore no general, correct notion of strength for a comonad that can be
defined using just the operations of a comonad and Haskell’s scoping.

Thus, for the codo-notation the multi-variable comonadic contexts must be
modelled explicitly as seen in the translation of codo-notation (Section 4) result-
ing in the relatively more complicated translation of codo-notation compared
with that of do-notation, equivalent to:

JΓ ` e : τK = g : c Γ → τ JΓ, x : τ ` e′ : τ ′K = g′ : c (Γ × τ)→ τ ′

JΓ ` let x = e in e′ : τ ′K : c Γ
extend〈current,g〉

// c (Γ × τ)
g′
// τ ′
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6 Discussion and Conclusion

Comonads, codo-notation, and intensionality In a pure language, let-
binding traditionally internalises substitution, i.e.:

let x = e1 in e2 ≡ {e1/x}e2

In the same way, the let-binding of the codo-notation describes substitution for
context-dependent computations. This substitution has the property, related to
shape preservation, that context-dependent computations are always substituted
at the context determined by the top-most binding (the parameter to codo).

In natural language semantics, similar principles of substitution under con-
text have been studied for centuries by logicians and philosophers. Notably,
Frege’s influential 1892 paper Über Sinn und Bedeutung (On Sense and Mean-
ing), discussed problems of equality between terms that have the same reference
(denotation à la Russell) but different sense, or meaning, for which context af-
fects the validity of substitution for apparently equal terms [4].

Consider the following two true statements (under the ruling of the Interna-
tional Astronomical Union for the official number of planets in our solar system):

(1) The number of planets is 8
(2) Kepler believed that 8 is the third power of two.

In (1), the number of planets and 8 have the same reference. However, substi-
tuting the number of planets for 8 in (2) changes the truth of the statement:4

Kepler believed that the number of planets is the third power of two.

The problem is that the number of planets and 8 differ in meaning; the denota-
tion of the number of planets is altered by the context : Kepler believed that....

Carnap used the terms intension, for the entire sense/meaning of a term,
and extension for a reference or denotation, describing intensions as functions
from states (contexts) to extensions [3]. Carnap’s approach resembles the expo-
nent comonad C a = s → a [14], mapping from contexts to values, where the
operations of a comonad define composition/substitution for intensions.

Consider another statement:

Kepler believed the number of planets equals the number of popes since
Gregory XIII.

Using Carnap’s terminology, both the number of popes since Gregory XIII and
the number of planets are intensional terms affected by the context of Kepler’s
belief at a particular time. In the temporal context of 1596, the sentence is true
since there had been six popes since Gregory XIII (inclusive). Both intensional
terms (number of planets/popes) can be substituted for their extensions at the
same context of Kepler’s beliefs in 1596, preserving the truth of the statement:

4 Kepler’s Mysterium Cosmographicum, published in 1596, describes the six known
planets at the time.
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Kepler believed 6 equals 6.

Substituting intensions at different contexts to the implicit context of Kepler’s
belief in 1596 likely changes the truth value of the statement e.g. substituting
the first in 1596 and the second in 1605 renders the statement false:

Kepler believed 6 equals 7.

Thus the substitution is only valid when both are substituted under the same
context of Kepler’s belief, analogous to the principle of substitution of variables
in the same synchronised context in the codo-notation.

Other applications There are many interesting comonads which have not been
explored here. For example, the semantics of the Lucid dataflow language are
captured by an infinite stream comonad [15], which was used by Uustalu and
Vene to define an interpreter for Lucid in Haskell. Using codo-notation, Lucid
can be embedded directly into Haskell as an internal DSL.

Many comonadic data types are instances of the general concept of contain-
ers. Containers comprise a set of shapes S and, for each shape s ∈ S, a type of
positions Ps, with the data type C a =

∑
s∈S(Ps→ a), i.e., a coproduct of func-

tions from positions to values for each possible shape [1]. Ahman et al. recently
showed that all directed containers (those with notions of sub-shape) are comon-
ads, where positions are contexts and sub-shapes define accessibility between
contexts for the definition of extend [2]. The labelled binary-tree example in Sec-
tion 2 can be described as a directed-container comonad. The costate comonad
can be generalised to cursored containers with type C a =

∑
s∈S(Ps→ a)×Ps.

Whilst the codo-notation was developed here in Haskell, it could be applied
in other languages with further benefits. For example, a codo-notation for ML
could be used to abstract laziness using a delayed-computation comonad with
data type C a = ()→ a, or defining lazy lists using the stream comonad [15].

Concluding remarks Comonads, and the codo-notation, essentially abstract
boilerplate code for iteration, allowing succinct definition of operations defined
locally abstracting their promotion to global operations.

The simple and natural notation provided by codo presented here consider-
ably simplifies programming with comonads. It is our hope that this prompts the
use of comonads as a design pattern and tool for abstraction and that it promotes
further exploration of comonads yielding new and interesting examples.
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A Proof of shape preservation

To prove shape preservation we first prove the following lemma:

cmap g ◦ extend f = extend (g ◦ f ) (9)

cmap g ◦ extend f
≡ extend (g ◦ extract) ◦ extend f definition of cmap
≡ extend (g ◦ extract ◦ extend f ) [C3]
≡ extend (g ◦ f ) � [C2]

The proof of shape preservation (3) is then:

shape ◦ (extend f )
≡ (cmap (const ()) ◦ (extend f ) definition of shape
≡ extend ((const ()) ◦ f ) (9)
≡ extend ((const ()) ◦ extract) (const x ) ◦ f λequiv (const x ) ◦ g
≡ (cmap (const ())) ◦ (extend extract) (9)
≡ cmap (const ()) [C1]
≡ shape � definition of shape
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Abstract. How can one rigorously specify that a given ML-functional,
say, f : (int → int) → int is pure, i.e., f produces no effects (e.g.,
changes in a store, raises of exceptions etc.) except those possibly pro-
duced by its functional argument? In this paper, we introduce a semantic
notion of monadic parametricity (purity) for second-order functionals.
We show that every monadically parametric f admits a question-answer
strategy tree representation. We discuss possible applications of this no-
tion, e.g., to the verification of generic fixpoint algorithms. The results
are presented in two settings: a total set-theoretic setting and a partial
domain-theoretic one. All proofs are formalized by means of the proof
assistant Coq.

1 Introduction

The problem under consideration is: how can one rigorously specify that a given
ML-functional, say, f : (int → int) → int is pure, i.e., f produces no effects
(like changes in a store, raises of exceptions etc.) except those possibly produced
by its functional argument? Second-order functionals of this type may appear as
inputs in different algorithms like generic fixpoint solvers [4,5] or algorithms for
exact integration [12, 18]. Such algorithms may apply a presumably pure input
f to an effectful argument in order to observe the intentional behaviour of f
and/or control the computation process.

In the paper [8], we addressed this question with regard to functionals of the
type ∀S.(A → StateSB) → StateSC polymorphic in states (here State denotes
a state monad). The choice of class of functionals was imposed by our main
application — rigorous verification of a generic fixpoint algorithm RLD [7].
In [8], we found that the standard notion of relational parametricity [15, 16]
was too weak to exclude the snapback functional fsnap : ∀S.(A → StateSB) →
StateSB defined by

fsnap S k s = let (b, s1) = k a0 s in (b, s)

from the class of relationally parametric objects. fsnap invokes k but discards
the resulting state s1 restoring the initial one instead, and only the resulting
value b is kept. We have introduced the extensional notion of monadic relational
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parametricity (purity) and have shown that for every function parametrical in
that sense there exists a question-answer strategy tree representation. Intuitively,
a strategy tree defines a second-order computation that comprises a sequence of
queries to its functional argument resulting in a value while all the effects are
propagated from the functional argument only. The functional fsnap is not pure
in that sense.

Since the strategy tree reflects only a “skeleton” of computation and does not
predefine a type of effects, such representation theorem may exist for other types
of effectful computations. In this paper, we overcome the type limitation of [8]
and prove the theorem for the class of second-order functionals polymorphic in
monads from an arbitrary fixed set Monad (e.g., a set of monads presented in
the programming language) that includes the continuation monad Cont , i.e., we
focus on functionals of type

Func =
∏

T∈Monad

(A→ TB)→ TC

It is known that every monad can be expressed in terms of continuation and
state monads [6], but we do not require State ∈ Monad . Note that the two
representation results are independent and do not imply each other directly. The
interesting corollary from these two theorems is that given a pure functional F
polymorphic in state monads in the sense of [8] there exists an implementation
of F that does not make use of state monad explicitly and is polymorphic in
monads from Monad . Such an implementation is defined by a strategy tree for
F .

One possible application of the representation result is formal verification of
the above mentioned algorithms. For example, when trying to prove correctness
of the local fixpoint solver RLD we assumed without loss of generality that the
input constraint system is given in the form of strategy trees. That allowed us
to formulate sufficient pre- and post-conditions for the algorithm and complete
the proof by induction. The fundamental lemma then allows us to argue that
the functional input is indeed pure if it can be defined in some restricted pro-
gramming language (with recursion) which is often the case in real-life program
analyses.

In section 3, we give a semantical notion of monadic parametricity (purity)
and formulate a fundamental lemma for the call-by-value lambda calculus with
monadic semantics. In section 4, we define a notion of a strategy tree and show
they represent pure functionals of type Func in the total setting. Section 5 pro-
vides a similar result in the partial setting. In section 6, we discuss generaliza-
tions of purity to other types. In section 7, we discuss application of purity to
verification of fixpoint solvers.

All the proofs have been formalized by means of Coq theorem prover [19] and
are available for download at http://www2.in.tum.de/~karbyshev/purity.

zip. We used the development of constructive ω-cpos and inverse-limit con-
struction for solution of recursive domain equations by Benton et al. [3] Our
contribution takes around 1500 lines of Coq code.
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2 Preliminaries

In the paper, we study a notion of purity for the total set-theoretic setting and
the partial domain-theoretic one. We interpret types as sets in the former case
and as cpos in the latter case. We use notations a : X and a ∈ X interchangeably.
For sets (cpos) X and Y we write X × Y for the Cartesian product and X → Y
for a function space of total functions (a cpo of continuous functions). We denote
pairs by (x, y), and projections by fst and snd . We use λ, ◦ and juxtaposition
for function abstraction, composition and applications, correspondingly. For a
family of sets (cpos) (Xi)i∈I we write

∏
i∈I Xi for its Cartesian product. If

F ∈
∏

i∈I Xi then Fi ∈ Xi.

Definition 1. Monad is a triple (T, valT , bindT ) where T is a monad construc-
tor which for every X returns a type TX of computations over X (TX is a cppo
in the partial case), and

valAT : A→ TA

bindA,B
T : TA→ (A→ TB)→ TB

are monadic operators such that the following holds:

– bindA,B
T (valAT a)(f) = f a, for every a ∈ A

– bindA,A
T (t)(valAT ) = t

– bindB,C
T (bindA,B

T (t)(f))(g) = bindA,C
T (t)(λx. bindB,C

T (f x)(g)).

For the partial case, we assume that T is strict, i.e.,

– bindA,B
T ⊥TAf = ⊥TB.

We tend to omit indices A,B,C if they are clear from context.

We denote by ContR the continuation monad with result type R defined by
ContRX = (X → R)→ R and

valContR x = λc.c x ,
bindContR t f = λc.t(λx.f x c) .

Given a type of states S, we denote by StateS the state monad over S with
StateSX = S → X × S, and monadic operations defined by

valStateS
x = λs.(x, s) ,

bindStateS
t f = λs.let (x1, s1)← t s in fx1s1 .

In the following, we assume that A,B,C,Ai, Bi are sets (cpos). Let Monad be
a fixed set of monads such that Cont ∈ Monad . We denote

Func =
∏

T∈Monad

(A→ TB)→ TC .

39



4 Andrej Bauer, Martin Hofmann, and Aleksandr Karbyshev

3 Purity

We introduce the following abbreviations.

Definition 2. If X,X ′ are types then Rel(X,X ′) denotes the type of binary
relations between X and X ′.

– if X is a type then ∆X ∈ Rel(X,X) denotes the equality on X;
– if R ∈ Rel(X,X ′) and S ∈ Rel(Y, Y ′) then R → S ∈ Rel(X → Y,X ′ → Y ′)

is given by

f (R→ S) f ′ iff ∀xx′. xRx′ =⇒ (f x)S (f ′ x′) ;

– if R ∈ Rel(X,X ′) and S ∈ Rel(Y, Y ′) then R×S ∈ Rel(X×Y,X ′×Y ′) is
given by

p (R× S) p′ iff fst(p)R fst(p′) ∧ snd(p)S snd(p′) .

Definition 3. For cpos X,X ′ and R ∈ Rel(X,X ′), R is admissible if for any
chains {ci}i∈N, {c′i}i∈N such that ciRc

′
i, for all i, holds (

⊔
ci)R (

⊔
c′i).

Definition 4. Fix T, T ′ ∈ Monad. For every X,X ′ and Q ∈ Rel(X,X ′) fix
a relation T rel(Q) ∈ Rel(TX, T ′X ′). We say that the mapping (X,X ′, Q) 7→
T rel(Q) is an acceptable monadic relation if

– for all X,X ′, Q ∈ Rel(X,X ′), x ∈ X, x′ ∈ X ′,

xQx′ =⇒ (valT x)T rel(Q) (valT ′ x′) ;

– for all X,X ′, Q ∈ Rel(X,X ′), Y, Y ′, R ∈ Rel(Y, Y ′), t ∈ TX, t′ ∈ T ′X ′,
f : X → TY , f ′ : X ′ → T ′Y ′,

t T rel(Q) t′ ∧ f(Q→ T rel(R))f ′ =⇒ (bindT t f)T rel(R) (bindT ′ t′ f ′) .

In the domain-theoretic setting, we additionally assume that the monadic relation
T rel is

– admissible, i.e., T rel(Q) is admissible for every admissible Q ∈ Rel(X,X ′),
– strict, i.e., (⊥TX ,⊥TX′) ∈ T rel(Q).

Definition 5. A functional F ∈ Func is pure (monadically parametric) for the
set Monad of monads iff

(FT , FT ′) ∈ (∆A → T rel(∆B))→ T rel(∆C)

holds for all monads T, T ′ ∈ Monad and acceptable monadic relations T rel for
T, T ′.
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On monadic parametricity of second-order functionals 5

In the following, we introduce the call by value lambda calculus with monadic
semantics and provide a relational interpretation of types and terms. We estab-
lish the fundamental lemma of logical relations stating that every well-typed
program respects any monadic relation, similar as done in [8].

Define simple types over some set of base types ranged over by o through the
grammar

τ ::= o | τ1 × τ2 | τ1 → τ2 .

Fix an assignment of a set (a cpo, in the partial case) JoKT for each base type o
and monad T ∈ Monad . We extend J−KT to all types by putting

Jτ1 × τ2KT = Jτ1KT × Jτ2KT , Jτ1 → τ2KT = Jτ1KT → T Jτ2KT .

Given a set of constants (ranged over by c) with their types τ c and variables
ranged over by x we define the lambda terms by

e ::= x | c | λx.e | e1 e2 | e.1 | e.2 | 〈e1, e2〉
| let x← e1 in e2 | let rec f(x) = e

with the last rule for recursive definitions in the partial case only. A typing
context Γ is a finite map from variables to types. The typing judgement Γ ` e : τ
is defined by the usual rules:

x ∈ dom(Γ )

Γ ` x : Γ (x) Γ ` c : τ c
Γ, x : τ1 ` e : τ2

Γ ` λx.e : τ1 → τ2

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1

Γ ` e1 e2 : τ2

Γ ` e : τ1 × τ2
Γ ` e.1 : τ1

Γ ` e : τ1 × τ2
Γ ` e.2 : τ2

Γ ` e1 : τ1 Γ ` e2 : τ2

Γ ` 〈e1, e2〉 : τ1 × τ2
Γ ` e1 : τ1 Γ, x : τ1 ` e2 : τ2

Γ ` let x← e1 in e2 : τ2

Γ, f : τ1 → τ2, x : τ1 ` e : τ2

Γ ` let rec f(x) = e : τ1 → τ2

The term e : τ is closed if ∅ ` e : τ .
For each T ∈ Monad and c fix an interpretation JcKT ∈ Jτ cKT . An environ-

ment for a context Γ and T ∈ Monad is a mapping η such that x ∈ dom(Γ )
implies η(x) ∈ JΓ (x)KT . If Γ ` e : τ and η is such an environment then we define
JeKT (η) ∈ T JτKT by the following clauses:

JxKT (η) = valT (η(x))
JcKT (η) = valT (JcKT )
Jλx.eKT (η) = valT (λv.JeKT (η[x 7→v]))
Je1 e2KT (η) = bindT (Je1KT (η)) (bindT (Je2KT (η)))
Je.iKT (η) = bindT (JeKT (η)) (valT ◦πi), i = 1, 2
J〈e1, e2〉KT (η) = bindT (Je1KT (η))(bindT (Je2KT (η)) ◦ curry(valT ))
Jlet x← e1 in e2KT (η) = bindT (Je1KT (η))(λv.Je2KT (η[x 7→v])))
Jlet rec f(x) = eKT (η) = valT (fixp(λh.λv.JeKT (η[f 7→h][x 7→v])))

where fixp : ∀D.(D → D) → D is the least fixpoint operator for cppos, and
curry is the currying function.
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Definition 6. Fix monads T, T ′ ∈ Monad and an acceptable monadic relation
T rel for T, T ′. Given a binary relation JoKrel ∈ Rel(JoKT , JoKT ′) for each base type
o, we can associate a relation JτKrelT rel ∈ Rel(JτKT , JτKT ′) with each type τ by the
following clauses:

JoKrelT rel = JoKrel , Jτ1 × τ2KrelT rel = Jτ1KrelT rel × Jτ2KrelT rel ,
Jτ1 → τ2KrelT rel = Jτ1KrelT rel → T rel(Jτ2KrelT rel) .

The following parametricity theorem is immediate from the definition of accept-
able monadic relation and the previous one.

Theorem 1. Fix T, T ′ ∈ Monad, and an acceptable monadic relation T rel for
T, T ′. Suppose that JcKT T rel(Jτ cKrelT rel) JcKT ′ holds for all constants c. If ∅ ` e : τ
then

JeKT T rel(JτKrelT rel) JeKT ′ .

Proof. One proves the following stronger statement by induction on typing
derivations. Given Γ ` e : τ and environments η for Γ and T and η′ for Γ
and T ′ then

∀x. η(x) JΓ (x)KrelT rel η
′(x) implies JeKT (η)T rel(JτKrelT rel) JeKT ′(η′) .

The assertion of the theorem follows. ut

Every well-typed program ∅ ` e : τ defines a truly polymorphic function of type
∀T.JτKT by taking a product over a set of monads. From theorem 1, we obtain

Corollary 1. Every truly polymorphic F ∈ Func implemented in the calculus is
monadically parametric. ut

4 Total case

4.1 Strategy trees

Definition 7. The set of strategy trees Tree is a minimal set generated by con-
structors:

– Ans : C → Tree

– Que : A→ (B → Tree)→ Tree

Definition 8. We define function fun2tree : Func→ Tree as follows:

fun2tree F = FContTree (Que)(Ans)

Definition 9. Given T ∈ Monad, we define the function tree2funT : Tree →
Func recursively by

– tree2funT (Ans(c)) = λk. valT c

– tree2funT (Que(a)(f)) = λk. bindT (k a)(λb. tree2funT (f b) k).
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On monadic parametricity of second-order functionals 7

Define tree2fun t =
∏

T∈Monad tree2funT t.

Intuitively, the computation defined by a strategy tree can by considered as
a sequence of queries to the first-order argument function applied to elements
from B followed by an answer in C. The definition ensures that all the monadic
effects come only from the argument function. Moreover, t ∈ Tree defines a pure
(monadically parametric) computation.

Lemma 1. For any t ∈ Tree, tree2fun t is pure.

Proof. Take monads T, T ′ and an acceptable monadic relation T rel for T, T ′. We
prove the statement by induction on t:

– t = Ans(c). It suffices to show that (valT c, valT ′ c) ∈ T rel(∆C) which holds
by the definition of acceptability of T rel.

– t = Que(a)(f), and assume that

tree2fun(f b) is pure for every b ∈ B (IH)

Take (k, k′) ∈ ∆A → T rel(∆B). Since T rel is acceptable, it suffices to show
that

(k a, k′ a) ∈ T rel(∆B) and
(λb. tree2funT (f b) k, λb. tree2funT ′(f b) k′) ∈ ∆B → T rel(∆C).

The former holds by the assumption on k and k′, and the latter holds by (IH).
ut

4.2 Representation theorem

In what follows, we prove that the functions fun2tree and tree2fun are mutually
inverse.

Lemma 2. For any t ∈ Tree, fun2tree(tree2fun t) = t.

Proof. By induction on t.

– t = Ans(c). By definition, tree2fun(Ans(c)) = ΛT.λk. valT c.
Thus, fun2tree(tree2fun(Ans(c))) = (λk. valContTree c)(Que)(Ans) = Ans(c).

– t = Que(a)(f). Assume that

fun2tree(tree2fun(f b)) = f b for all b ∈ B (IH)

We have tree2fun(Que(a)(f)) = ΛT.λk. bindT (k a)(λb. tree2funT (f b) k).
Therefore,

fun2tree(tree2fun(Que(a)(f))) =

= (λk. bindContTree
(k a)(λb. tree2funContTree

(f b) k))(Que)(Ans)

= (bindContTree
(Que(a))(λb. tree2funContTree

(f b) (Que)))(Ans)

= (Que(a))(λb. tree2funContTree
(f b) (Que)(Ans))

= (Que(a))(λb. fun2tree(tree2fun(f b)))

= Que(a)(λb.f b) (by (IH))

= Que(a)(f) . ut
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Our next goal is to prove the reverse statement.

Theorem 2. For any pure F ∈ Func,

tree2funT (fun2tree F ) = FT

holds (extensionally) for an arbitrary monad T ∈ Monad.

We first prove that the statement holds for an arbitrary continuation monad.

Lemma 3. Given F , tree2funContS (fun2tree F ) = FContS holds for every S.

Note that the statement follows from results of Plotkin and Abadi [14]. We give
a direct proof below.

Proof. Given a set S and functions q : A → (B → S) → S and a : C → S, we
define the conversion function convq,a : Tree → S by

convq,a = λt. tree2funContS t q a .

We have:

tree2funContS (fun2tree F ) = FContS

⇐⇒ ∀q, a. tree2funContS (fun2tree F ) q a = FContS q a

⇐⇒ ∀q, a.convq,a(fun2tree F ) = FContS q a

⇐⇒ ∀q, a.convq,a(FContTree
(Que)(Ans)) = FContS q a

⇐⇒ ∀q, a.(FContTree
(Que)(Ans), FContS q a) ∈ Gconvq,a

,

where Gf is a graph of f , i.e., (x, y) ∈ Gf iff y = f x.
We prove the last proposition by constructing an appropriate monadic rela-

tion for ContTree and ContS and utilizing purity of F . Fix some q and a. For
X,X ′ and R ∈ Rel(X,X ′), we define T rel

1 (R) ∈ Rel(ContTreeX,ContSX
′) by

(H,H ′) ∈ T rel
1 (R) iff ∀h, h′.(h, h′) ∈ R→ Gconvq,a =⇒ (Hh,H ′h′) ∈ Gconvq,a

T rel
1 is an acceptable monadic relation. The proof is straightforward and omitted

here. Since F is pure,

(FContTree
, FContS ) ∈ (∆A → T rel

1 (∆B))→ T rel
1 (∆C) .

Thus, it suffices to check that (Que, q) ∈ ∆A → T rel
1 (∆B) and (Ans, a) ∈ ∆C →

Gconvq,a
. Indeed, take some c ∈ C. Then convq,a(Ans c) = a c and the latter holds.

Take a1 ∈ A and f : X → Tree, f ′ : X ′ → S such that (f, f ′) ∈ ∆B → Gconvq,a
.

Then

convq,a(Que a1 f) = tree2funContS (Que a1 f) q a

= bindContS (q a1)(λb. tree2funContS (f b) q) a

= (q a1)(λb. tree2funContS (f b) q a)

= (q a1)(λb.convq,a(f b))

= (q a1)(λb.f ′ b)

= q a1 f
′

and the former holds. ut
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On monadic parametricity of second-order functionals 9

By lemma 3, we have tree2funContTC
(FContTree

(Que)(Ans)) = FContTC
. Using

functions
ϕ1 = bindB,C

T : TB → ContTCB,

ϕ2 = λg.g (valCT ) : ContTCC → TC

we construct ΦT : ((A→ ContTCB)→ ContTCC)→ (A→ TB)→ TC as

ΦTF = λh.ϕ2(F (ϕ1 ◦ h)) = λh.F (bindB,C
T ◦h)(valCT ) .

We prove

Lemma 4. For any pure F ∈ Func, ΦT (FContTC
) = FT .

Proof. Again, the idea is to construct a suitable acceptable monadic relation
and exploit the purity of F . For X,X ′, R ∈ Rel(X,X ′), we define T rel

2 (R) ∈
Rel(ContTCX,TX

′) by

(H,H ′) ∈ T rel
2 (R) iff ∀h, h′, (h, h′) ∈ R→ ∆TC =⇒ (Hh)∆TC (bindT H

′ h′) .

It is straightforward to show that T rel
2 is an acceptable monadic relation. We

omit the proof. Since F is pure, we have (FContTC
, FT ) ∈ (∆A → T rel

2 (∆B)) →
T rel
2 (∆C). Note that for any g : A→ TB,

ΦT (FContTC
) g = FContTC

(bindB,C
T ◦g)(valCT ) and

FT g = bindC,C
T (FT g)(valCT ) .

First, we show that (bindB,C
T ◦g, g) ∈ ∆A → T rel

2 (∆B). Indeed, for any a ∈ A and

h, h′ such that (h, h′) ∈ ∆B → TC (and thus, h = h′) we have (bindB,C
T ◦g) a h =

bindB,C
T (g a)h′. Therefore, we conclude

(FContTC
(bindB,C

T ◦g), bindC,C
T (FT g)) ∈ T rel

2 (∆C) .

Since (valCT , val
C
T ) ∈ ∆C → ∆TC , the lemma is proved. ut

Proof (theorem 2). Finally, we get

FT = ΦT (FContTC
) (by lemma 4)

= ΦT (tree2funContTC
(fun2tree F )) (by lemma 3)

= tree2funT (fun2tree F ) (by lemmas 1, 4)

This proves the theorem. ut

In the paper [8], we introduced a notion of pure functionals polymorphic in
state monads. We notice that from the result of theorem 2 the following is true.

Corollary 2. For any functional

F : ∀S.(A→ StateSB)→ StateSC

pure in the sense of [8] there exists a truly polymorphic in T ∈ Monad pure
implementation of F that does not make use of a state monad, i.e., there exists
a monadically parametric functional G ∈ Func such that FS = GStateS

exten-
sionally, for all S.
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Proof. Such an implementation is given by a corresponding strategy tree repre-
sentation tF of F . That is G = tree2fun tF . ut

5 Partial case

In this section, we generalize the characterisation of monadically parametric
second-order functionals for the partial case in the domain-theoretic setting.
In what follows, we will use the term acceptable monadic relation to refer to
acceptable monadic relations which are strict and admissible as formulated in
Definition 4.

5.1 Domain of strategy trees

We construct a cppo of “strategy trees” as a solution of a recursive domain
equation X ' F(X) with a locally continuous functor F : C → C for a suitable
category C of domains.

Let ηX : X → X⊥ and kleisliX : (X → X⊥)→ (X⊥ → X⊥) be defined by

ηX x = x kleisliX f x = x .

Define the lift monad T⊥ over Cpo by

T⊥X = X⊥, valXT⊥
= ηX , bindX,Y

T⊥
(t)(f) = kleisliX f t .

Let F(X) = C+B× (A→ X⊥) be such a functor for the Kleisli category for T⊥
over the category Cpo (category of cpos with continuous functions). Let Tree
be a cpo such that Tree ' F(Tree), together with two (continuous) isomorphism
functions

fold : C +B × (A→ Tree⊥)→ Tree⊥ and,
unfold : Tree → (C +B × (A→ Tree⊥))⊥,

i.e., kleisli(fold) ◦ unfold = ηTree and kleisli(unfold) ◦ fold = ηF(Tree) hold. For all
isomorphisms in the Kleisli category for T⊥, say, f : X → Y⊥ and g : Y → X⊥
that kleisli(f)◦g = η and kleisli(g)◦f = η, f and g are total functions. Therefore,
we can define total

roll : C +B × (A→ Tree⊥)→ Tree and
unroll : Tree → C +B × (A→ Tree⊥) .

using their “partial” counterparts fold and unfold. Moreover, the minimal invari-
ance property takes place

fixp δ = η

for δ : (Tree → Tree⊥)→ (Tree → Tree⊥) defined by

δ e = fold ◦F (e) ◦ unfold .

For details on a Coq development of the reverse-limit construction and a formal
proof of the minimal invariance, refer to [3].
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It is well known that the morphism fold forms an initial F -algebra in the
Kleisli category, i.e., for any other F -algebra ϕ : F (D) → D there exists the
unique homomorphism h : Tree → D⊥ such that the ϕ ◦ F (h) = h ◦ fold.
(Notice: Since the Kleisli category for the lift monad is classically isomorphic to
the category Cppo⊥ (of cppos with strict continuous functions), Tree⊥ is also
a solution of the domain equation

X ' C⊥ ⊕A⊥ ⊗ (B⊥ ( X)⊥

in Cppo⊥, where ⊕ and ⊗ are the smash sum and the smash product respec-
tively.)

Definition 10. We call elements of Tree⊥ strategy trees. Define continuous
“constructor” functions Ans : C → Tree⊥ and Que : A→ (B → Tree⊥)→ Tree⊥
by

Ans = fold ◦ inl, Que = fold ◦ inr .

Definition 11. We define the function fun2tree : Func→ Tree⊥ by

fun2tree F = FContTree⊥
(Que)(Ans) .

The definition is correct since ContTree⊥ is a strict monad. fun2tree is continuous
and strict.

Definition 12. Given T ∈ Monad, we construct

tree2funT : Tree⊥ → FuncT = fixp GT ,

where fixp : ∀D.(D → D)→ D is a fixpoint operator for cppos and

GT : (Tree⊥ → FuncT )→ Tree⊥ → FuncT = λf. kleisli([φT , ψ
f
T ] ◦ unroll) ,

φT : C → FuncT = λc.λh. valT c ,

ψf
T : A× (B → Tree⊥)→ FuncT = λp.λh. bindT (h(π1 p))(λb.(f ◦ π2 p) b h)

Define tree2fun t = ΛT. tree2funT t.

tree2funT is correctly defined (since FuncT is pointed) and is continuous and
strict for every strict T ∈ Monad .

Lemma 5. For any t ∈ Tree⊥, tree2fun t is pure.

Proof. Fix pointed T, T ′ and acceptable T rel for T, T ′. We note that the relation
(∆A → T rel(∆B))→ T rel(∆C) is admissible. It follows from admissibility of ∆C

and T rel. Define an admissible P ∈ Rel(FuncT ,FuncT ′) by

P (f, f ′) ≡ ∀t.(f t, f ′ t) ∈ (∆A → T rel(∆B))→ T rel(∆C) .

To prove P (fixp GT ,fixp GT ′) it suffices to show that

1. P (⊥,⊥) holds. Indeed, it follows from strictness of T rel.
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2. for all g, g′, P (g, g′) implies P (GT g,GT ′ g′). Take g, g′ such that P (g, g′)
and a strategy tree t.
Case t = ⊥Tree⊥ . Then (GT g t,GT ′ g′ t) = (⊥,⊥) ∈ (∆A → T rel(∆B)) →
T rel(∆C).
Case t = Ans(c). Then (GT g t,GT ′ g′ t) = (λh. valT c, λh. valT c) ∈ (∆A →
T rel(∆B))→ T rel(∆C).
Case t = Que(a, f). Then

(GT g t,GT ′ g′ t) = (λh. bindT (h a)(λb.g(f b)h), λh. bindT (h a)(λb.g′(f b)h)).

Take (h, h′) ∈ ∆A → T rel(∆B). Using admissibility of T rel, it suffices to check
(λb.g(f b)h, λb.g′(f b)h)) ∈ ∆B → T rel(∆C). It follows from P (g, g′). ut

5.2 Representation theorem

Lemma 6. For any t ∈ Tree⊥, fun2tree(tree2fun t) = t.

Proof. We note that fun2tree ◦ tree2fun is a homomorphism for Tree. Thus, the
statement follows from initiality of fold. We give a direct formal proof using the
minimal invariance property. ut

Proofs of the following results are similar to the proofs in the total case.

Theorem 3. For any pure F ∈ Func,

tree2funT (fun2tree F ) = FT

holds (extensionally) for any T ∈ Monad.

We first prove that the statement holds for an arbitrary continuation monad
with a pointed result domain.

Lemma 7. Given pure F , tree2funContS (fun2tree F ) = FContS holds for any
cppo S.

Proof. The proof is similar to the proof of lemma 3. We construct a strict, ad-
missible and acceptable monadic relation T rel

1 for monads ContTree⊥ and ContS
as in lemma 3 and utilize purity of F . ut

As in the total case, for T ∈ Monad we define

ΦT : (A→ ContTCB)→ ContTCC)→ (A→ TB)→ TC .

We prove

Lemma 8. For any pure F ∈ Func and T ∈ Monad, ΦT (FContTC
) = FT .

Proof. The proof repeats the one of lemma 4. We only have to check that T rel
2

defined as in lemma 4 is a strict, admissible and acceptable monadic relation,
which does hold. ut
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On monadic parametricity of second-order functionals 13

6 Generalizations

In this section, we argue that it is possible to extend the notion of purity to
an arbitrary second-order type. Consider a general type n-Func of second-order
functionals with n functional arguments

n-Func = ∀T.(A1 → TB1)→ · · · → (An → TBn)→ TC
' ∀T.(A1 → TB1)× · · · × (An → TBn)→ TC .

Definition 13. A functional F ∈ n-Func is pure (monadically parametric) iff

(FT , FT ′) ∈ (∆A1
→ T rel(∆B1

))→ . . .→ (∆An
→ T rel(∆Bn

))→ T rel(∆C)

holds for all T, T ′ ∈ Monad and acceptable monadic relations T rel for T, T ′.

By theorem 1, any well-typed program of type n-Func is pure in this sense.

Definition 14. The set of strategy trees n-Tree is a minimal set generated by
constructors:

– Ans : C → n-Tree

– Quei : Ai → (Bi → n-Tree)→ n-Tree, i = 1, . . . , n

Similar to the case of one functional argument, one defines functions

tree2fun : n-Tree → n-Func and

fun2tree : n-Func→ n-Tree .

Now, the result of theorem 4 can be generalized for n-Func.

Theorem 4. Given a pure F ∈ n-Func, tree2funT (fun2tree F ) = FT holds (ex-
tensionally) for any T ∈ Monad. ut

We provide formal Coq proofs for the case n = 2 in the total setting.
Characterization for the type n-Func with k parameters

n-FuncD1,...,Dk
= ∀T.D1 → · · · → Dk →

(A1 → TB1)→ · · · → (An → TBn)→ TC

is similar, with parameterized strategies of type

n-TreeD1,...,Dk
= D1 → · · · → Dk → n-Tree .

For types of order higher than two it is not that clear what corresponding strate-
gies should be let alone how one could characterise their existence by parametric-
ity. It could be, however, that strategies in the sense of game semantics, like
in [1,2,9], are the right generalization. This might be an interesting question for
further investigation.
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let rec solve (n:int) x s : Maybe S =
match n with
| 0 → None
| →

if is stable x s then
Some s

else
let s0 = add stable x s in
do p ← F (eval (n−1) x) s0;
let (d, s1) = p in
let cur = getval s1 x in
let new = cur t d in
if new v cur then
Some s1

else
let s2 = setval x new s1 in
let (w, s3) = extract work s2 in
solve all (n−1) w s3

and solve all (n:int) w s : Maybe S =
match n with
| 0 → None
| →
match w with
| [] → Some s
| x :: xs →
(solve (n−1) x s) >>=
solve all (n−1) xs

and eval n x y : StateTS Maybe D =
match n with
| 0 → fun s → None
| → fun s →

let s0 = add infl y x s in
do s1 ← solve (n−1) y s0;
Some (getval s1 y, s1)

Fig. 1. The pure functional implementation of totalized RLD

7 Applications

The provided characterization of pure functionals of type Func can be used
for verification of generic off-the-shelf fixpoint algorithms, which are used to
compute a (local) solution of a constraint system x w Fx, x ∈ V , defined over a
bounded join-semilattice D of abstract values and a set of variables V .

The local solver RLD, which relies on self-observation, applies F to a special
stateful function to discover variable dependencies and perform demand-driven
evaluations [7]. In order to reason about the algorithm formally, we implement
RLD in purely functional manner and model side-effects by means of the state
monad. Thus, the pure right-hand side F is assumed to be of type

F : ∀S.V → (V → StateSD)→ StateSD .

Figure 1 gives a pure functional implementation of a totalized version of
RLD. Every main function of the algorithm has an extra natural parameter
which limits the depth of recursion. Once the limit is reached, the solver termi-
nates with None. Since F is pure, by corollary 2, a corresponding strategy tree
provides a monadically parametric implementation, which can be used as

F : V → (V → StateTS Maybe D)→ StateTS Maybe D ,

where Maybe is an option monad, StateT is a state monad transformer, and S is
a state structure managed by the solver. The total version can be implemented
and proven correct in Coq with the certified code extracted in ML.
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The characterization of 2-Func can be applied for verification of local fix-
point algorithms for side-effecting constraint systems [17] used for interprocedu-
ral analysis and analysis of multithreaded code. The main idea here is that in
each constraint x w Fx the right-hand side Fx is a pure function representable
by a strategy tree with two kind of question nodes: QueR for which values of
variables are queried using a stateful function get and QueW which, when ac-
cessed, update current values of some variables by means of a stateful function
set. Thus, the strategy tree specifies a sequence of reading and writing accesses
to some constraint variables. The general characterization enables the design of
formally verified local solvers for side-effecting constraint systems. One version
of such a solver although not verified presently is implemented in the program
analyzer Goblint [20].

8 Conclusion

We have provided two equivalent characterisations of pure second-order function-
als in the presence of nontermination; an extensional one based on preservation
of relations and an intensional one based on strategy trees. All verifications have
been formalized in Coq.

Our results can be applied to the verification of algorithms that take pure
second-order functionals as input. Among these are generic fixpoint algorithms
and algorithms for exact real arithmetic. It is generally easier to verify the cor-
rectness of such an algorithm assuming the intensional characterisation of purity
for its input. On the other hand, for a concretely given input, e.g. in the form of a
program in some restricted language it will be easier to establish the extensional
characterisation.

We note that a closely related characterisation albeit in a rather different
guise has already been given in O’Hearn and Reynolds landmark paper [13].
Our strategy trees appear there as an intensional characterisation of first-order
Algol procedures which due to the call-by-name policy are in fact second-order
functionals. New aspects of the present work are in particular the monadic for-
mulation, the generalisation of the extensional characterisation to monads other
than the state monad, and last not least the complete formalisation in Coq.

A natural question, albeit of mostly academic interest, is the extension of
this work to higher than second order. Given that the strategy trees resemble
winning strategies in game semantics it would seem natural to attempt to find
extensional characterisations of the existence of a winning strategy. Care would
have to be taken so as to sidestep the undecidability of lambda definability [11],
thus the extensional property would have to be undecidable even if basic types
receive a finite interpretation.

The techniques developed in this paper were extended to impure higher-order
functions enabling modular reasoning about monadic mixin components [10].
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Abstract. Skeleton-based programming is an area of increasing rele-
vance with upcoming highly parallel hardware, since it substantially fa-
cilitates parallel programming and separates concerns. When parallel
algorithms expressed by skeletons involve iterations – applying the same
algorithm repeatedly to successively improving data, the repeated in-
stantiation of a skeleton incurs a certain overhead that could be saved by
reusing existing processes, threads and communication structures. This is
especially important when running parallel applications in a distributed
environment.
However, customising a particular skeleton ad-hoc for repeated execution
turns out to be considerably complicated, and raises general questions
about introducing state into a stateless parallel computation. In addition,
one would strongly prefer an approach which leaves the original skeleton
intact, and only uses it as a building block inside a bigger structure.
In this work, we present a general framework for skeleton iteration and
discuss requirements and variations of iteration control and iteration
body. Skeleton iteration is expressed by synchronising a parallel iteration
body skeleton with a (likewise parallel) state-based iteration control,
where both skeletons offer supportive type safety by dedicated types
geared towards stream communication for the iteration.
The skeleton iteration framework is implemented in the parallel Haskell
dialect Eden. We use example applications to assess performance and
overhead.

1 Introduction

Parallelism degree of modern hardware is currently increasing at multiple levels,
e.g. in (GP)GPUs, CPUs and, combining all the parallel potential, in computer
clusters. Increasing attention is paid to the problem of effectively programming
such complex platforms at a sufficient abstraction level, especially when the
programmer is not a parallelism expert. Therefore, research in parallel program-
ming has developed a range of concepts and models for skeleton-based parallel
programming, which encourages higher abstraction and separation of concerns.
Algorithmic skeletons implement the parallel behaviour for applications of an
algorithm class [Col89], represented directly in form of higher-order functions in
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functional languages. Using skeletons, a concrete algorithm can be parallelised
simply by applying the appropriate skeleton to function parameters which de-
fine the details of the algorithm in question. The skeleton proper describes al-
gorithmic structure and solves independent sub-tasks in parallel - incurring a
certain overhead such as thread and process creation, termination detection and
communication/synchronisation. Repeatedly using one and the same skeleton
leads to this parallel overhead for every skeleton instantiation, instead of reusing
processes, initialisation data, and communication channels across the different
skeleton invocations. As the parallel behaviour is encapsulated inside a skele-
ton’s implementation, it is generally very hard to optimise the repeated use of
a skeleton without modifying the skeleton itself. On the other hand, a solution
that involves rewriting parallel skeletons for every concrete sequence of applica-
tions is infavourable; we seek for a more general method to compose skeletons
for iterative computations, which we call skeleton iteration subsequently

Skeleton iteration should not be confused with parallel for-loops or maps,
where a sequential block is executed in parallel by multiple threads, instead of
several times. We focus on already parallel computations defined by algorithmic
skeletons which will be executed several times in sequence. The contributions of
this paper are as follows:

– We propose a general functional iteration scheme iter, a meta-skeleton
(combinator) that uses an iteration control function and an iteration body
skeleton. Specific control and body functionality can be freely combined to
express a wide range of iterative algorithmic patterns.

– We show examples of iteration control and body skeletons and explain how
to define efficiently iterable versions of ordinary skeletons – involving special
types to describe iterative processing for programming comfort and safety.

– For the case of parallel (skeleton) iteration, we propose specialised solutions
that work iteratively on distributed data. We show how to integrate dis-
tributed data in the iteration cycle and how to systematically adapt the
interface of iteration body and iteration control for the case of parallel pro-
cessing over distributed data.

Iterative algorithms in parallel computing have been discussed by researchers
previously, yet solutions are usually limited to special cases and application
classes. To our knowledge, our work is the first to investigate iteration as a gen-
eral algorithmic pattern and its parallelism aspects and specific optimisations.

We use the parallel Haskell dialect Eden [LOMP05] to implement our skele-
tons. The functional approach makes it easy to precisely state interfaces and
to identify conceptional requirements from our implementation. The proposed
skeleton iteration framework allows for targeted optimisations of iterative algo-
rithms, with respect to minimising data transfers and controlling dependencies.

2 Iterating Skeletons

Algorithmic skeletons are higher-order functions with a hidden parallel imple-
mentation, which provide tools for parallel programming at high abstraction.

2
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A skeleton exposes an interface relating only to the algorithmic structure, and
hides technical details of parallel execution, such as process creation, communi-
cation and synchronisation. As already outlined, this encapsulation becomes an
obstacle when the actual algorithm is one that involves iterative application of
the same skeleton to successively improve or approximate the final result.

2.1 Basic Idea

We start with a simple introductory example to clarify the basic idea of our
approach. The Haskell prelude function iterate defines the iteration of a pa-
rameter function f, producing an infinite list (or: stream) of all intermediate
results of the iteration: [x,(f x),(f (f x)),...].

iterate :: (a → a) → a → [a]
iterate f x = x : iterate f (f x)

This same stream can equally well be computed using the following alternative
definition which uses the map function and a feedback of the result stream instead
of direct recursion:

streamIterate :: (a → a) → a → [a]
streamIterate f x = xs
where xs = x : map f xs

We are especially interested in the case where the parameter f of map is a skeleton
with parallel implementation. In this case, evaluation of f involves the creation
of threads and/or processes and communication of data between these paral-
lel entities. The original iterate function would in this case lead to repeat-
edly constructing and destroying skeleton instances and their parallel process
system, in every iteration step. The same happens when using the alternative
streamIterate function (due to the recursion within the map function), but
this version can be optimised more easily.

As an illustrative example, consider the case where the parameter function f

of map is itself a parallel map skeleton (parMap), i.e. creates one parallel process
per input list element to apply the parameter function to this element. The
following specialised version of streamIterate implements this:

iterateParMap0 :: (a → a) → [a] → [[a]]
iterateParMap0 g xs = xss
where xss = xs : map (parMap g) xss

The type of (parMap g) is [a] → [a], thus this iteration creates a stream of
lists (of type [[a]]) computed in parallel from an initial input of type [a]. Our
goal is to not create new processes in parMap for each iteration, but to reuse
them for all iterations. The simple approach of swapping map and parMap (to use
parMap (map g) xss) would lead to a pseudo-parallelisation over the stream
instead of over the lists. Instead, the stream of lists needs to be transposed into
a list of streams and vice versa, as in the following definition:

3
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iterateParMap1 :: (a → a) → [a] → [[a]]
iterateParMap1 g xs = xss
where xss = xs : transpose (parMap (map g) (transpose xss))

Now the iteration via map takes place within the processes created by parMap

only once. It is by virtue of streaming and the use of map to express the iteration
that we can lift the body skeleton to work on streams and push the iteration
inside the processes. In the following, we will propose special types and mech-
anisms to generalise this approach and make a clear distinction between the
iteration stream and the list of inputs to the parallel processes. We will also add
special control functions for the iteration to improve locality and performance.

2.2 Deriving Iterable Body Skeletons

Implementation Language. We use the parallel Haskell dialect Eden to
present our language-independent concept. In Eden, the parMap skeleton

parMap :: (Trans b, Trans c) ⇒ (b → c) → [b] → [c]

creates a parallel process for every element of the input list, which eagerly eval-
uates the application of the parameter function (mapping input of type b to
output of type c). Processes are distributed among the available machines; and
their inputs (the list elements) and process outputs (elements of the result list)
are sent implicitly to and from these processes. Communication-related proper-
ties of Eden processes are determined by internally used overloaded communi-
cation functions in the type class Trans for transmissible data. Data which is
transferred will generally be evaluated to normal form prior to sending it. Eden
processes thereby introduce strictness into Haskell’s non-strict default evalua-
tion. Furthermore, instances for Trans define different send modes: elements of
a certain type will by default be evaluated and sent as a single item, but they
can also be decomposed into components which are sent concurrently, or sent as
a stream of elements. Such streams can also be infinite, but this is not impor-
tant in the context of our work. The important aspect here is that the type of a
process determines the communication mode for its in- and outputs.

Running Example: K-means Clustering is a heuristic method to partition
a given dataset of n d-dimensional vectors into k clusters. In an iterative ap-
proximation, the method identifies clusters such that the average distance (a
metric such as the euclidian or Manhattan distance) between each vector and its
nearest cluster centroid is minimal [Mac03]. The algorithm proceeds as follows:

– Randomly choose k vectors from the dataset as starting centroids.
– Assign each vector to the cluster of the nearest centroid.
– Compute the centroids of the new clusters.
– Repeat the last two steps until the clusters do not change anymore.

4
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vectorss:: [[Vector]] --distrib. in sub-lists
body :: [Centr] → [[(Int, Centr)]]
body centroids = parMap centr $ zip vectorss (repeat centroids)

centr :: ([Vector],[Centr]) → [(Int,Centr)]
combine :: [[(Int, Centr)]] → [Centr]

Fig. 1: Original version of iteration body for parallel K-means

The iterated function takes a list of cluster centroids as input and computes
the list of new centroids as output. The iteration needs to continue until two
subsequent iteration results are equal or their differences fall below a threshold.
In Figure 1, the parMap skeleton serves to specify a single iteration step of the
K-means example which can be executed in parallel. The vectors are distributed
among the processes and every process receives the whole list of centroids as
input. Function centr computes a list of weighted sub-centroids in every pro-
cess, based on its subset of the vectors. Subsequently, all sub-centroids must be
combined with the weighted centroids of the other processes, done in the re-
cursive outer function (not shown here), which uses the function combine. The
algorithm will re-iterate with these new centroids until convergence is detected.

Special Stream Type for Iteration. As discussed before, simply iterating
this iteration body will trigger all internal side effects needed for the parallel
evaluation over and over again, in every iteration step.

We would like to use a single skeleton instance for the whole iteration which is
modified to work with input and output streams. In our example above, streams
were modelled as lists, leading to a potential pseudo-parallelisation. Therefore we
now define a special iteration type to clearly distinguish between these iteration
streams and e.g. the input lists that the parallel map transforms in one step.
The iteration type Iter, shown in Figure 2, is isomorphic to lists but different
with respect to the communication mode. The benefits of distinguishing between
iteration streams and ordinary lists are the following:

– We are able to identify iteration inputs and outputs in type signatures.
– The distinction of iteration streams and normal lists at type level increases

type safety, as the type checker can distinguish them.
– Streaming behaviour can be defined in the Trans instance especially for
Iter, while other lists can be communicated as single items.3

Aside from the new data type, Figure 2 shows auxiliary functions which de-
fine patterns that can be frequently used to define efficiently iterable skeletons.
3 The original Eden definition specifies that top-level lists are communicated as

streams. In this work, we use a modified Trans class which gives programmers
more control of streaming through separate stream types.

5
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newtype Iter a = Iter {fromIter :: [a]}

instance Functor Iter where
fmap f = Iter ◦ map f ◦ fromIter

distribWith :: (a→[b]) → Iter a → [Iter b]
distribWith f = map Iter ◦ transposeRt ◦ map f ◦ fromIter

combineWith :: ([b]→a) → [Iter b] → Iter a
combineWith f = Iter ◦ map f ◦ transpose ◦ map fromIter

Fig. 2: Iter type and auxiliary functions

The functor instance of Iter provides fmap as an elegant way of lifting a function
of type a → b to iteration streams, Iter a → Iter b. It is used to realise the
iteration inside the skeleton body. Function distribWith splits one iteration
stream into many iteration streams, where each i’th element of the resulting
streams is generated from the i’th element of the originating stream. The func-
tion parameter f is used to produce lists for each element of the iteration stream,
which are distributed into the list of streams using map Iter ◦ transposeRt.
One subtle detail here is that f must produce lists of identical length for all its ar-
guments (elements of the iteration stream). The implementation of distribWith
thus needs to use a custom function transposeRt for rectangular matrices.
transposeRt is mostly equivalent to the prelude function transpose, but fixes
the length of its result list to the length of the first inner list of its input. In this
way, the number of output streams is determined by the first incoming stream
element. Finally, the function combineWith defines the inverse transformation
(and does not impose restrictions on the transposition used).

With these tools at hand, it is easy to define a more efficiently iterable version
of parMap (see Figure 3), which transforms inputs of type Iter [b] element by
element to outputs of type Iter [c]. The input to the skeleton is a stream of
lists (of equal length, see above), and the elements of each list should be sent to
the mapper processes in each iteration step. Effectively, this is achieved by only
using the type conversion and the transposeRt inside distribWith (but setting
the transformation function to id), to generate a list of streams from the stream

simpleParMapIter :: forall b c. (Trans b, Trans c)
⇒ (b→c) → Iter [b] → Iter [c]

simpleParMapIter f xss = yss where
xss’ = distribWith id xss :: [Iter b]
yss’ = parMap (fmap f) xss’ :: [Iter c]
yss = combineWith id yss’

Fig. 3: Efficiently iterable parallel map variant

6
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vectorss:: [[Vector]] --distrib. in sub-lists
bodyIter :: Iter [Centr] → Iter [[(Int, Centr)]]
bodyIter centroids =
simpleParMapIter centr $ zip vectorss (repeat centroids)

centr :: ([Vector],[Centr]) → [(Int,Centr)]

Fig. 4: K-means iterative body function

of lists. The resulting stream of lists is transformed using parMap (fmap f),
and the results of type Iter c streamed back to the caller (bound by yss’ ::
[Iter c]), after reordering them again using function combineWith.

In our example, K-means, process creation overhead can now be saved, as
every process of the body works on an iteration stream of input centroids –
updated by the outer control function (again not shown).

This code exemplifies how to create an iteration body skeleton for the simple
case of parMap. Before proceeding to more complex body skeletons, we discuss
the control aspect of the iteration and the overall setup.

2.3 Iteration Scheme

Now we have to process the two ”loose ends” of the iteration streams to decide
termination and produce new input. The body skeleton’s input stream has to
be supplied with initial data, and the result stream of the skeleton must be
conditionally fed back to the skeleton or terminated by closing the input stream
and returning the final result. This can be defined in terms of a generic iteration
scheme:

simpleIter :: (a → Iter c → (Iter b,d)) --control
→ (Iter b → Iter c) --body
→ a → d --in/out

simpleIter control body a = d where
(iterB,d) = control a iterC
iterC = body iterB

body

Iter b

Iter cda

control

The meta-skeleton simpleIter takes as function parameters an iteration
control function, which produces the initial input and handles the two loose
ends of the iteration stream, also determining the final result, and an iteration
body function. The latter typically is (but is not restricted to) an iterable skeleton
such as parMapIter, which we will refer to as the body skeleton. All parallel side
effects are encapsulated in the function parameters. Function simpleIter only
takes care of their interconnection. The advantage is, that it defines an interface
for control functions and body skeletons which can be freely combined. We allow
that the body skeleton transforms input of type Iter b to Iter c. Thus, to feed
the output of the body back to it, the control function elementwise transforms
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a stream of type Iter c to Iter b. In general, the iteration control has the
following tasks:

1. to determine the iteration body’s input for further iterations,
2. to check the termination condition and
3. to produce the final output from the iteration body’s output.

As examples for very simple control functions, we present the code for loopControl,
which performs exactly n iterations by forwarding n inputs without any trans-
formation:

loopControl :: Int → a → Iter a → (Iter a, a)
loopControl n a as = (Iter as’, a’) where
(as’,˜(a’:_)) = splitAt n $ a : fromIter as

and untilControl:

untilControl :: (c → Either a d) → a → Iter c → (Iter a, d)
untilControl cF a cs = (Iter $ a : lefts as, d) where
(as,˜((Right d):_)) = (break isRight ◦ map cF) $ fromIter cs

which feeds the iteration body until function parameter cF supplied with a bodies
output yields Right result, the inputs for the body are the initial input and
the Left part of the transformed bodies output as.

It is advantageous to use a stateful interface to the control function, which
can be parameterised by a stateful transformation for single iteration steps. This
ensures that the output of an iteration step is transformed to exactly one input
for an iteration step, which is not enforced by the list interface. However, because
of space limitations we will present our work based on the simpler list interface.

Running Example. KMeans can be efficiently iterated using the combinator
simpleIter. In order to optimise the implementation, we use

simpleParMapIter’ :: forall b c. (Trans b, Trans c)
⇒ (a → b → c) → [a]
→ Iter [b] → Iter [c]

for the iteration body, a slightly modified variant of simpleParMapIter pre-
sented in Figure 3, which uses additionally a static initial input for every process,
and a map function working on the static and the iterated input. We need the
additional input to keep the data vectors locally on every machine throughout
the iteration, as they are dominating the communication overhead. In the defini-
tion of the iteration body, we partially apply the simpleParMapIter’ skeleton
to worker function centr and the static input vectorss. The stream of centroids
will be supplied by the simpleIter combinator. Convergence of the centroids
is decided based on a comparison to the centroids of the previous iteration,
which are not available in the presented untilControl function. We therefore
use a custom control function which directly works on the iteration streams.
Using combine on the elements received from the body process, it merges the
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vectorss:: [[Vector]] --distrib. in sub-lists
body :: Iter [[Centr]] → Iter [[(Int, Centr)]]
body = simpleParMapIter’ centr vectorss

control :: [Centr] → Iter [[(Int, Centr)]]
→ (Iter [[Centr]], [Centr])

control a cs = untilCmp hardlyChanged a (fmap combine cs)
hardlyChanged c1 c2 = all (< epsilon) (zipWith distance c1 c2)

kMeans :: [Centr] → [Centr]
kMeans = simpleIter control body

centr :: [Vector] → [Centr] → [(Int,Centr)]
combine :: [[(Int, Centr)]] → [Centr]
untilCmp :: (a → a → Bool) → a → Iter a → (Iter [a], a)

Fig. 5: K-means: Optimised parallel version

partial centroids calculated by the processes, and then compares the new cen-
troids to the ones obtained in the previous iteration (function untilCmp, using
hardlyChanged). Function simpleIter combines control and body, which to-
gether implement the KMeans clustering in parallel.

2.4 Performance Tweaking

The main potential for optimisation of iteration steps lies in the reduction of
communication overhead. One obvious bottleneck is the gathering and redistri-
bution of data between the control function and the body skeleton. One approach
to optimise communication is to keep all data distributed between the iterations.
In Eden, this can be done using Remote Data [DHL10]. We can create a remote
data handle from local data and fetch the data remotely using functions:

release :: Trans a ⇒ a → RD a
fetch :: Trans a ⇒ RD a → a

The intermediate data handle of type RD a can be passed across processes with
minor communication cost. The combination of release and fetch establishes
a direct channel connection between the involved processes. When the body-
skeleton’s inputs and outputs are lifted to Remote Data, the actual data will be
passed directly from the output of a process to its input of the following iteration
step. We can define a variant of the simpleParMapIter skeleton simply by lifting
its parameter function to the Remote Data interface:

parMapIterRD :: (Trans b, Trans c)
⇒ (b → c) → Iter [RD b] → Iter [RD c]

parMapIterRD f = simpleParMapIter (release ◦ f ◦ fetch)
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We can now use loopControl n as control function to iterate parMapIterRD

n times on input which is already supplied as Remote Data, without gathering
and redistributing the data in between the iteration steps. In every iteration
step, each process input will be fetched to process it locally using function f and
afterwards released in order that it can be fetched on the same machine in the
next iteration step. In the following we consider parallel control skeletons, which
remove the conceptual bottleneck of a single manager process.

2.5 Parallel Iteration Control Skeletons

Control Body

Input

Output

Parallel

iteration input

Parallel

iteration output

Fig. 6: Iteration scheme

In many cases where the iteration body
uses a skeleton to work on distributed
data, a corresponding control skeleton with
parallel processes can be used to inspect
the distributed data, exchanging only the
parts of it that are needed globally. In ad-
dition, corresponding processes of control
and body skeleton can be placed on the
same machine (i.e. core of a multicore, or
node of a compute cluster) to avoid com-
munication.4

C B
Iter b

Iter c

d

a

C B
Iter b

Iter c

d

a

C B
Iter b

Iter cd

a

Control Body

Fig. 7: Iteration body and local iteration control

Two different types of parallel iteration control can be distinguished: local
and global iteration control, with respect to the data dependencies in each one
of the control processes.

Local Iteration Control means that tasks of iteration control can be fulfilled
without exchanging data with other control processes – data dependency is local,
as depicted in Figure 7. Otherwise, a global data exchange is necessary.
4 The parallel Haskell dialect Eden supports explicit placement of computations in a

multi-node parallel system. We have omitted placement aspects from our code for
simplicity throughout.
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localControl ::
forall a b c d. (Trans a, Trans b, Trans c, Trans d)
⇒ (a → Iter c → (Iter b, d)) -- ˆprocess-local control
→ [RD a] -- ˆinitial Input
→ Iter [RD c] -- ˆoutput of loops
→ (Iter [RD b], [RD d]) -- ˆinput for loops, final result

Fig. 8: Process-local iteration control skeleton

The type of a local iteration control skeleton for lists of Remote Data is
given in Figure 8. The implementation is similar to the implementation of
parMapIterRD, but takes the two input values and the tuple output into ac-
count. The control processes will connect both to their predecessor processes
that produced the distributed list beforehand and to the processes of the body
skeleton, fetching required data on-demand, or else passing on the RD handles.
Functionality in each process is described by the process-local control function
which transforms the initial input and the output of a process in the iteration
body (stream-wise) in the respective control process. This skeleton can imple-
ment several common iteration control variants simply by partially applying the
control skeleton to a suitable control function. E.g. a variant of untilControl
where termination can be decided from local data would be:

localUntilCtrl :: (c → Either a d) →
[RD a] → Iter [RD c] → (Iter [RD a],[RD d])

localUntilCtrl checkNext = localControl (untilControl checkNext)

The control function checkNext works on the local part of a distributed list
(of type [RD a]), and either produces input for the next iteration or the final
output (again a distributed list).

Global Iteration Control If the control function needs information from mul-
tiple processes to calculate the next input for the body or to determine termi-
nation, the processes of the control skeleton need to exchange these data. As an
example of this kind of control skeleton, consider an all-gather pattern where all
processes gather data of all other processes in a distributed manner.

allGatherControl ::
(a → Iter c → Iter sync) --t1
→ (a → Iter c → Iter [sync] → ((Iter b),d)) --t2
→ [RD a]→ Iter [RD c] → (Iter [RD b],[RD d]) --controlType

Fig. 9: Global control: the allGatherControl Skeleton
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We only discuss the signature of the skeleton here, given in Figure 9. Aside
from the iteration body output (distributed list of type [RD c], iterated), the
input for the next iteration and the final result (distributed lists [RD b] and
[RD d]) depend on additional synchronisation data (of type sync, iterated).
Function t2 produces the local next input and result, but considers the entire list
of synchronisation data (iterated). Function t1 yields the local synchronisation
data which will be communicated to all other control processes.

2.6 Inlining the Iteration Streams

In the previous two sections, we focussed on input/output data of type [RD a/b],
which is something like a distributed list type. For the iterated body and the
control skeletons, we used the interface Iter [RD a/b] because we defined in
the simpleIter scheme that data of type a will be passed during the iteration
using type Iter a. There are two drawbacks of the implementations based on
this signature:

1. The channel connections between the processes of the body and the control
skeleton have to be rebuilt in every iteration step.

2. In the skeleton definitions, we have to drag the iteration stream from the
outside of the iterated list to its elements.

In the definition of simpleParMapIter, we used function distributeWith and
reversed its effects by combineWith when defining the skeleton’s result. Similar
transformations are necessary for other body skeletons as well as control skele-
tons. What is actually desired is a Remote Data connection list that itself carries
iterated data, leading to type [RD (Iter a)]. If we had this type, a stream of
data would be communicated over Remote Data connections established only
once. The following parMap variant with modified interface implements these
static Remote Data connections:

parMapIter :: (Trans b, Trans c)
⇒ (b → c) → [RD (Iter b)] → [RD (Iter c)]

parMapIter f = parMap (release ◦ fmap f ◦ fetch)

Notice that we can express the iterable skeleton simply by transforming the func-
tion parameter. We observed that the transformation of more complex topology
skeletons, such as allToAllRD and allReduceRD (both developed in the context
of remote data [DHL10]), are similarly easy, only involving the respective func-
tion parameters (all transformations done by the nodes are function parameters
to these skeletons).

The allToAllRD skeleton can be adapted for Iteration streams essentially by
lifting its parameter functions appropriately. Function t1 generates the inputs for
the all-to-all connection, t2 combines the outputs from the all-to-all connections,
and both are lifted using distribWith and combineWith:

allToAllIter :: (Trans b, Trans c, Trans i) ⇒
(Int→b→[i]) → ([i]→c) → [RD (Iter b)] → [RD (Iter c)]
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allToAllIter t1 t2 = allToAllRD t1Iter t2Iter where
t1Iter p = distribWith $ t1 p
t2Iter = combineWith t2

Lifting skeleton allReduceRD to allReduceIter (which uses a butterfly
scheme for a more efficient reduction than the former allToAllRD), is similarly
easy.

allReduceIter :: (Trans b, Trans c) ⇒
(b → c) → (c → c → c) → [RD (Iter b)] → [RD (Iter c)]

allReduceIter t r = allReduceRD (fmap t) (liftIter2 r)

liftIter2 :: (a → b → c) → Iter a → Iter b → Iter c
liftIter2 f (Iter bs1) (Iter bs2) = Iter $ zipWith f bs1 bs2

It uses two function parameters, function t transforms the initial input of each
process to the reduction type. The reduce function r is then applied log(n)
times in all the nodes of the butterfly scheme. We lift t using fmap, and r

using liftIter2. The latter is implemented similarly to fmap but uses zipWith
instead of map because r takes two parameters.

The iteration streams to and from all body processes have to be processed by
a control function or skeleton which exactly matches the particular distributed
data shape. This constraint can be fulfilled by restricting the previous itera-
tion meta-skeleton to a special type signature (iterD, with an implementation
identical to the earlier simpleIter):

iterD :: (a → [RD (Iter c)] → ([RD (Iter b)],d))
→ ([RD (Iter b)] → [RD (Iter c)])
→ a → d

Further to using iterD, we need to define specialised versions of local and
global iteration control for this interface, which is again a simplification of the
existing implementations.

2.7 Unifying the Interface

The specialisation of the signature of iterD of the last section is not compatible
to the simpleIter function, even though their implementations are identical.
It is easy to specify a more general type for the iteration combinator,

type generalIter = (a → iterC → iterB,d))
→ (iterB → iterC)
→ a → d

but we lose type safety when dropping the type of the Iter streams. But this
problem can be addressed using a type family which describes iteration types
used to interconnect iteration control and iteration body skeleton. We want to
have special instances for distributed data types. As an example we define a
special for type distributed finite lists.
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type family Iterated a :: ∗

newtype DList a = DList [RD a] --Distributed List
type instance Iterated (DList a) = DList (Iter a)

The distributed list type DList a is defined, containing a list of Remote Data
which represent the distributed elements of type a. Exchanging the iteration
stream and the distribution by [RD _] is now done automatically in the type
instance for DList of the Iterated type family, which yields DList (Iter a) –
isomorphic to type [RD (Iter a)]. Other distributed data types and Iterated

instances can be defined in the same way, e.g. distributed trees or distributed
matrices.

We use the simple type mapping type instance Iterated a = Iter a to
define the types of iterations for ordinary types. It is not possible to allow over-
lapping instances for type families, so we have to define these instances for every
base-type separately. Quite advisedly, we have defined DList a as newtype, so
an instance for lists can be defined without overlapping Iterated DList a:

type instance Iterated [a] = Iter [a]

The type family enables us to define a generic but type-safe iteration skeleton
iter (see Figure 10) that works for both DLists and for any other reasonable
type instance of Iterated. The small caveat is that two dummy parameters b
and c are introduced in the control function, in order for the typechecker to
check the types Iterated b and Iterated c. This is needed because the type
family mapping might not be injective.

3 Evaluation

To assess and compare performance of the iteration framework and its variants,
we carried out runtime measurements on a 32 node Beowulf cluster at the Heriot-
Watt University Edinburgh with 8-core@2.00 GHz Intel Xeon E5504 processors.
Several Eden runtime systems were co-located on nodes to make use of the
multicore processors, in total up to 128, which we further refer to as processors.
This is feasible because a single runtime system does not use more than one

iter :: (b → c -- b/c to typecheck Iterated b/c
→ a → Iterated c → (Iterated b,d)) --control

→ (Iterated b → Iterated c) --body
→ a → d --in/out

iter iterControl iterBody a = d where
(iterB,d) = control undefined undefined a iterC
iterC = body iterB

Fig. 10: General iteration skeleton
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core at once. All program versions where tested on 1, 2, 4, 8, 16, 32, 64 and
128 processors, all numbers given here are mean values of 5 program runs, in
diagrams with logarithmically scaled axes.

3.1 K-means

For our measurements of the k-means algorithm, we used 600000 vectors and 25
clusters which took 142 iteration steps to terminate. The compared versions are

– recursive parMap
This is the näıve setting defined in Figure 1

– gather-distribute/simpleParMapIter
It uses the simpleParMapIter’ as body, and a central control function
which gathers all outputs and then distributes them for the next iteration
as defined in Figure 5.

– allGather/parMapIter
This uses the parMapIter’-body, a slight variant of parMapIter’ using an
additional static input for the data vectors, and skeleton allGatherControl,
which lets every machine gather its input for the next iteration directly from
all the others as described in Section 2.5.

– monolithic iterUntil
The specialised monolithic iteration skeleton iterUntil described in [PR01].
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Fig. 11: Runtimes for k-means with 600000 Vec-
tors, 25 Clusters, 142 iterations

Figure 11 shows the
runtimes plotted against
the number of processors.
Our composed gather-dis-
tribute/simpleParMapIter
version performs almost
identically to the specialised
monolithic iterUntil. Both
scale well up to 128 proces-
sors, but it is notable that
the sequential overhead be-
gins to dominate in the last
steps. This is mainly be-
cause of the sequential ef-
fort to evaluate and dis-
tribute the initial data.

The version allGather/parMapIter runs slightly slower. The amount of data
that has to be communicated (the centroids) is too small to compensate for the
overhead of establishing the additional communication channels in the all-to-all
topology. By far the worst performance can be observed in the näıve version
recursive parMap. Executed on a single processor where all communication is
machine-local (i.e. cheap), performance is still comparable to other variants, but
as soon as communication with other machines is involved, the overhead of dis-
tributing the vectors on every iteration slows down the computation enormously.
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3.2 N-body

Our second example is an n-body simulation program. The n-body problem is to
simulate the movement of n particles in 3-dimensional space, taking into account
their mutual gravitational forces.

The set of n particles is described by the particles’s mass positions and ve-
locities. Computation proceeds in discrete time steps, each time computing the
following:

– Compute a new velocity for each particle, considering the gravitational forces
exerted on it by each of the other particles.

– Update each particle’s position using its velocity and the time step length.

In the parallel versions of this algorithm, particles are distributed to processes
and each process computes the new velocity and position for its own particles. To
update its particles’s velocities, each process needs information about position
and mass (but not velocity) of all other particles. This information needs to be
communicated in-between the iterations, leading to considerable communication
between the parallel processes, in contrast to the parallel k-means algorithm
described earlier.

We used variants of skeleton allToAll as iteration body. The processes pos-
sess a subset of the particles and exchange information about them in every
iteration step in a distributed manner using the all-to-all topology. We distin-
guish the following versions:

– recursive allToAllRD
Simply n recursive calls to allToAllRD. The particles are passed machine-
local between the processes of the different skeleton instances. The overhead
lies entirely in the repeated creation of the skeleton.

– loopControl/allToAllIter
A localLoopControl skeleton with an allToAllIter body.
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Fig. 12: Runtimes for n-body with 15000 bodies, 10
iterations

In the first setting, we
ran the n-body simula-
tion with 15000 bodies and
10 iterations. Workload as
well as data volume to
be moved in every itera-
tion is relatively high. The
runtimes against number
of processes are plotted
in Figure 12. While the
recursive allToAllRD ver-
sion performs better for
medium numbers of proces-
sors, the loopControl/all-
ToAllIter version outper-
forms the latter for bigger numbers of processors.
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An analysis of runtime behavior revealed that the recursive allToAllRD has
no disadvantage in the communication steps but has longer computation phases,
while sharing the same code base and the same evaluation strategies, even similar
communication structures (apart from the repeated creation of the skeleton in
the latter version). We believe that the differences originate from the runtime
system, maybe the garbage collection does not work as effectively for the former
version. We plan to further investigate this. The more important observation is
that the improved localLoop/ allToAllIter version scales much better.
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Fig. 13: Overhead measurement for n-body (1500
bodies, 100 iterations)

In the second setting,
we reduce the workload and
data volume to be sent
for every iteration step,
in order to measure only
the overhead. We use only
1500 bodies but increase
the number of iteration
steps to 100. This time,
version localLoop/allToAl-
lIter clearly performs bet-
ter than the recursive ver-
sion, its runtime on 128
processors is about 4 times
faster than the runtime of
the other version.

4 Related Work

The original skeleton work by Murray Cole [Col89] contains a chapter on an
iterative completion, parallelised on a grid of processes, but does not generalise
iteration as we do. Slightly more general is the iteration skeleton proposed in
earlier Eden skeleton work [PR01], realising an iteration of a stateful parallel
map. This work lays the grounds for our investigation, but does not generalise
iteration bodies and types, nor does it consider parallel control skeletons.

Many skeleton libraries, especially those based on imperative programming
languages, provide the constructs while for conditional iteration or for for fixed
iteration, see e.g. the Scandium library [LP10], which uses Java as computation
language. Scandium allows nesting of skeletons: in the while skeleton, another
skeleton can be used to define the iteration body. No indications are made about
whether the iterated body skeleton will be optimised with respect to process
creation overhead, nor do the authors address or mention data transfer. The
latter question is less important for performance, as Scandium targets multi-
core architectures and may use update-in-place.

A slightly larger corpus of related work can be found in the cloud computing
community, but usually restricted to map-reduce [DG08,BDL09] computations.
iMapReduce [ZGGW12] provides an API to describe map-reduce jobs followed
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by a ”distance check” (Euclidian or Manhattan) and means to pass data directly
from reducers to mappers (1:1 or 1:all). While elegant and addressing a key as-
pect, the framework appears limited in its restriction to map-reduce, and in dis-
allowing stateful computation nodes for the sake of failover safety. A more liberal
programming style is proposed by Twister [ELZ+10], whose extensions to the
Map-Reduce programming model allow for general message-passing and publish-
subscribe communication between all nodes. This approach, however, essentially
breaks the desired functional guarantees of map-reduce. HaLoop [BHBE12] is
another Map-Reduce extension, which adheres more cleanly to the original map-
reduce paradigm, and maintains the functional properties. HaLoop mainly cap-
italises on caching mechanisms for unmodified data and reduction results across
several iterations of one map-reduce computation over the same dataset. A small
API extension is provided to specify how existing map-reduce (Hadoop) compu-
tations should be iterated.

None of these publications addresses parallel iteration as a general concept or
distills out algorithmic patterns as we do. This generalising conceptual angle is
present in very recent work in the data-flow framework Stratosphere [ETKM12].
The authors propose the concept of ”incremental” iteration and ”microsteps”
to exploit sparseness of data dependencies and optimise read-only data accesses,
but thereby break up the iterative nature of the computation.

5 Conclusions and Future Work

Iteration is one of the main building blocks of programming. In this work, we
developed a general approach to describing iteration that works not only in the
common sequential setting but also in the case where the iterated computation
is highly parallel and executed in a distributed setting. We allow for arbitrary
parallel body skeletons and supply some parameterised control functions includ-
ing step counting and termination conditions on local and global data. We have
shown how body skeletons can be transformed in such a way that the body
processes will be re-used for all iterations, how to handle streams of input and
output data, and how to optimise communication between distributed processes
in a parallel execution.

The functional language setting helped us in the design phase to precisely
state needed interfaces and to identify conceptual properties and requirements.
Type families enabled us to non-intrusively introduce optimisations for dis-
tributed input and output types. Qualitative and quantitative examinations
prove the effectiveness of these optimisations. Runtime measurements for two
non-trivial example applications, k-means and n-body, clearly show that our
framework similar to monolithic iteration skeletons and better than directly
programmed iterations where the iterated skeletons are repeatedly instantiated.

In the future, we plan to make further efforts in the interesting field of skele-
ton composition. One missing piece is surely the extension of this work on it-
eration to other distributed data structures. Adequate type class support for
such distributed data structures will be helpful. Some special issues need fur-

18

70



ther investigation. E.g. we need to find out why the allToAllIter skeleton
performs worse than its heartbeat variant for some cases. In the context of the
development of the iteration framework, we had to adjust parts of the Eden im-
plementation, especially the Trans class to overload communication behaviour
on the library level. Moreover, optimisations on runtime system level to shortcut
messages directed to processes on the same machine turned out to be of general
interest. A detailed investigation of the impact of these changes and of further
improvements of the Eden system are left for future work.
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In the last decade vectorisation became an important research topic again, as
most of the modern CPUs grant vectorisation capabilities by means of SIMD in-
structions. Classical research in auto-vectorisation focuses on the optimisation of
loop nestings. Data-independent operations within such loop nestings are iden-
tified and the loop-nestings as well as the order of operations within the loop
nestings are reorganised to match pre-defined vectorisation patterns, typically
sequences of identical arithmetic operations within loops. For vectorisation to be
effective, such subsequent operations need to work on data that are adjacent in
memory. Otherwise, loading/storing overheads would easily outweigh any possi-
ble performance gains from using SIMD operations. Furthermore, vectorisation
only yields a substantial benefit if it can be applied within loop nestings, prefer-
ably within the innermost loops. As a consequence, classical auto-vectorisation
fails to deliver substantial performance improvements whenever loop nestings
cannot be re-arranged to match the layout of the data structures that are being
computed on.

In this paper, we propose a radically different approach towards vectorising
a given program. Rather than focusing purely on a reorganisation of loop nest-
ings we suggest a reorganisation of data layouts to enable vectorisations. Based
on an analysis of loop nestings, we infer a suitable memory layout and trans-
form the given program to match that layout. Subsequently, we apply classical
vectorisation techniques to achieve the overall goal.

The idea to modify data layouts by means of compiler transformations is
not new. There has been quite some work in the context of optimisations for
improved cache behaviour and, more recently, for improved streaming through
GPUs. In that work, improvements of spatial and temporal locality are the
key goals. While this may seem to be a goal very similar to what we propose
here, spatial locality is not sufficient for an efficient vectorisation, as we will
demonstrate at the example of a naive N-Body code. Furthermore, all prior
work, at least to our knowledge, focuses on one individual loop nesting only
rather than looking at the entire lifetime of a variable within a program.

Transforming the overall layout of data structures in memory is a quite chal-
lenging endeavour as it has far reaching implications.

First of all, semantical correctness of such a transformation is a non-trivial
issue. Some languages guarantee a certain layout in memory as part of their
semantics which precludes from the transformations we propose. To our knowl-
edge, most functional languages are free from such constraints apart from some
corner cases, where interfacing with the non-functional world is being supported.
However, even in the functional setting semantical issues arise when it comes to
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code reuse and separate compilation. If layout transformations are eligible in
the context of modules either layout information needs to be stored or explicit
layout conversions need to be inserted to preserve some standard layout at the
interface. The latter comes with a potentially prohibitive runtime overhead and,
thus, may annihilate any gains through vectorisation.

A second challenge arises from the layout inference itself. While one individ-
ual loop nesting may suggest a particular layout for all data structures involved,
another loop nesting may lead to different layout suggestions for the very same
data. Finding a beneficial performance trade-off between using one of the in-
ferred layouts or inserting layout conversions constitutes a non-trivial challenge.
For the same reason, reuse and separate compilation, again, become an issue.
Whole program analyses are likely to be crucial for effective vectorisation.

Further challenges arise from the differences in the executing hardware. The
quality of a vectorized code vastly depends on careful programing within a given
hardware. Missing alignment specifications, inappropriate operation expansion,
poor pipeline usage – all this can lead to serious slowdowns. SIMD instruction
sets differ from architecture to architecture, and there is no uniformly agreed
framework to address them. The straight-forward programming model is to ex-
press vector instructions in assembly, which is non-portable, hard to support,
but very expressive. Alternatively we would like to consider a trade-off between
expressiveness and portability, i.e. a programming abstraction for vector instruc-
tions, which is portable across major architectures, uses high-level language and
is comparable with a hand-written assembly.

In this paper we propose a semantics preserving memory layout transforma-
tion technique for the functional array language SaC. SaC seems particularly
well-suited for this attempt as (i) memory management is completely implicit in
SaC, (ii) all data-structures are n-dimensional arrays which enables data layout
changes in a high-level representation and (iii) data independent loop nestings
are easily identifiable through the central data-parallel construct, the With-
Loop.

The key idea of our approach is a bottom up layout inference that identifies
ideal layouts (wrt SIMD vectorisation) for each individual loop nesting and then
employs representational changes whenever necessary. We provide a solution to
the separate compilation problem by a new program transformation that, in
essence, generates two versions for each function, a vectorised version and a
non-vectorised version. This enables code adaptations at the calling site without
making representational changes inevitable. To cope with the potential variety
of different SIMD hardware architectures, we use an extended version of GNU
GCC, which we developed earlier. It enables the use of vector operations from
C in a platform-independent way.

We use the N-Body problem as a case study throughout the paper. It nicely
demonstrates the difficulties when attempting the classical approach to vectori-
sation and it also shows the effectiveness of our proposed approach. Finally,
we present some performance measurements that show substantial speedups an
different hardware, even in the presence of multi-threaded executions.
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The Design of a GUMSMP:
a Multilevel Parallel Haskell Implementation

Malak Aljabri1, Phil Trinder1, and Hans-Wolfgang Loidl1

Heriot-Watt University

Abstract. The most widely available high performance platforms today are multi-

level clusters of multi-cores. GHC provides several parallel Haskell implementa-

tions. In particular, GHC-SMP supports shared memory, and GHC-GUM sup-

ports distributed memory. Both implementations use different but related runtime-

environment (RTE) mechanisms. Good performance results can be achieved on

shared memory architectures and on networks individually, but a combination of

both, for networks of multi-cores, is lacking.
We present the design of the new multi-level parallel Haskell implementation,

GUMSMP to better exploit such hierarchical platforms. It is designed to effi-

ciently combine distributed memory parallelism, using a virtual shared heap over

a cluster, with low-overhead shared memory parallelism on the multi-cores. Key

design objectives in realising this system are even but asymmetric load balance,

effective latency hiding, and mostly passive load distribution.

1 Introduction

Multi and many core architectures are the dominant general purpose hardware architec-

tures. Moreover, the current trend in parallel architectures has shifted towards networks

of multicores, in which several multicore CPUs with nodes sharing memory are con-

nected via a network. A recent trend that has emerged in high-performance computing

depends heavily on parallelism to efficiently exploit the hierarchy of these architec-

tures. In particular, a hybrid parallel programming model is often used which combines

a shared memory model to exploit parallelism within a multicore node and distributed

memory model to exploit parallelism across the cluster of multicores.

Multilevel platforms are commonly programmed in multiple coordination abstrac-

tions, e.g. using MPI + OpenMP , where OpenMP (directive-based parallelism) is ap-

plied within a multicore node and MPI (message passing interface) is applied across

the cluster of multicores. Thus this achieves a multilevel parallelism, combining the ef-

ficiencies, shared memory, and ease of programming of shared memory model and the

scalability of distributed memory model. However, managing two abstractions is a bur-

den for the programmer and increases the cost of porting to a new platform. In contrast,

GUMSMP provides a uniform, semi-explicit high-level parallel programming model,

with adaptive, automatic policies on both levels of the hierarchy. Therefore, this model

relieves the programmer from the burden of explicitly controlling coordination on a

multi-level hierarchy, delegating such control completely to the RTE.

Parallel functional languages are high level and well suited to exploit parallel ar-

chitectures taking advantage of functional languages features, such as referential trans-

parency, and the absence of side effects [8]. In particular, as the placement of parallelism
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is not prescriptive, parallel functional languages make it relatively easy to exploit a clus-

ter of multicores architectures using single programming model.

Glasgow Parallel Haskell (GpH) [23] is a widely-used parallel extension of Haskell,

a lazy functional language. GPH is developed to facilitate parallel programming by

limiting the programmer’s work to a few key aspects of high-level coordination prim-

itives supported internally by the language implementation. In GPH parallelism is ex-

pressed by two primitives added to the Haskell program, par and pseq. Evaluation

strategies [16,23] are polymorphic and higher order functions abstract over these prim-

itives to provide a high level control of parallelism.

There are two different implementations of this semi-explicit programming model,

namely GHC-SMP [18], a low overhead physical shared memory implementation in-

tegrated in GHC, and GUM [22], a virtual shared memory implementation on clusters

built on top of explicit message passing.

A major difference between them lies in the work distribution model supported.

While both implementations support a work-stealing approach, GUM distributes work

in the form of sparks that are communicated by message passing and prefer coarse

grain computations to be sent away. Whereas, spark pools are shared in GHC-SMP

and therefore idle processors steal sparks from the spark pools of the busy ones.

In this paper we present the design of GUMSMP a multilevel parallel Haskell im-

plementation which integrates the advantages of these two implementations. GUMSMP

is motivated by the work distribution of the GHC-SMP as the shared memory model

within a single multicore and by the work distribution of the GUM as the distributed

memory model across a hierarchy of multicores.

The main benefits of this multi-level design of GUMSMP are:

– It provides a scalable model, which works on large distributed memory architec-

tures.

– It efficiently exploits the specifics of distributed and shared memory on different

levels of the hierarchy.

– It provides a single programming model, which makes programming easier and

achieves performance portability.

Since the programming model is single, the implementation of the RTE is challeng-

ing as it has to make the decision on distributing the load and efficiently exploit the

multilevel architecture.

The main contributions of this paper are as follows:

– We provide a detailed description of parallel Haskell languages and implementa-

tions (Section 2).

– We give a detailed description of the two GPH implementations GUM and GHC-

SMP (Section 3).

– We present the design of GUMSMP, focusing on improved, hierarchy-aware schedul-

ing and placement of light-weight threads (Section 4).

– We discuss the current status of the implementation for GUMSMP and give pre-

liminary performance results (Section 5).
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2 Related Work

There is a diversity of languages and implementations of parallel Haskell. At the lan-

guage level, the diversity is based on the different abstractions supported which vary

in how explicitly they control parallelism, e.g. implicit, semi-explicit, and fully explicit

approaches. At the implementation level, the diversity is based on different classes of

architectures with different characteristics, e.g. clusters, multicore etc. In this section

we briefly outline different parallel Haskell languages and implementations.

2.1 Parallel Haskell Languages

Some important parallel Haskell languages are classified according to the abstraction

level supported as follows:

– Explicit
The Par Monad [17] is a new parallel Haskell programming model for pure deter-

ministic parallel computations providing monadic control of concurrency.

CloudHaskell [6] is a domain-specific language for developing programs for dis-

tributed memory systems. It emulates Erlang style message passing communication

yet still benefits from Haskell features such as purity, types, and monads.

– Semi-explicit
Eden [14] is a semi-explicit approach to functional parallel programming which

extends Haskell with constructs to support parallelism. Processes are defined ex-

plicitly in Eden, but the communications are implicit, thus achieving a high level

of abstraction. Eden supports distributed memory parallelism with message pass-

ing as a communication model. The programmer has some control over the load

balancing as well as the granularity in order to specify expressions that have to be

evaluated as parallel processes. Eden provides high level parallelism abstractions

(libraries of skeletons) and therefore simplifies the task of parallelizing a program

substantially.

HdpH [15] a High-level Distributed-Memory Parallel Haskell is heavily influenced

by the design and implementation of Cloud Haskell, targeting distributed mem-

ory architectures with multicore nodes. It supports high-level semi-explicit paral-

lelism, dynamic load management, polymorphism, powerful coordination abstrac-

tions, and has the potential for fault-tolerance.

2.2 Parallel Haskell Implementations

Parallel Haskell Implementations are classified as distributed memory or shared mem-

ory implementations as follows:

– Distributed Memory Implementation
GUM [22] is the distributed memory implementation for GPH which is discussed

in further detail in Section 3.1 .

Dream/EDI [14] is the distributed memory Eden implementation which extends

GHC functionality by defining primitives for explicit remote task creation and
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channel based communication mechanisms and supports the eager work distribu-

tion model.

CloudHaskell [6] is implemented entirely in Haskell as processes with explicit

message passing and function closures serialisation. The overhead associated from

using Haskell as a system language is acceptable as demonstrated by the initial

performance results.

HdpH [15] is implemented entirely in concurrent Haskell. HdpH implementation

is layered and moduler coded in Vanilla GHC Concurrent Haskell with independent

modules for different coordination aspects, e.g. thread management, communica-

tion, scheduling etc., thus it preserves maintainability and facilitates development.

– Shared Memory Implementation
GHC-SMP [18] is the shared memory GpH implementations which is discussed

in more detail in Section 3.2 .

Par Monad [17] provides implementation of the system-level functionality (work-

stealing scheduler) as a Haskell library. The Par-Monad associated overhead is still

low as indicated by performance results.

Many of the parallel Haskell language implementations depend on the sophisticated

runtime systems implemented in low-level language to automatically manage paral-

lelism, i.e. synchronization, communications, work scheduling etc. Examples include

GUM, GHC-SMP, and Dream/EDI. The implementation of GUMSMP follows this

approach.

Having a runtime system implemented in low level language resulted in a high

application performance. However, the implementation maintenance is challenging and

needs to be continuously updated.

The current trend for parallel Haskells is to use a concurrent Haskell to implement

all functionality instead of modifying the GHC runtime system, thereby trading perfor-

mance with maintainability and ease of development. Examples include CloudHaskell,

Par Monad and HdpH.

Table 1. Parallel Haskell Comparison

Distributed Memory Shared Memory

Property / Language GUMSMP GUM Eden CloudHaskell HdpH GHC-SMP Par Monad

Fault Tolerance (isolated heaps) - - (+) + +

Polymorphic Closures + + + - + + +

Pure, i.e. Non-Monadic API + + + - - + -

Determinism (+) (+) - - - (+) +

Implicit Task Placement ++ + + - + + +

Automatic Load Balancing ++ + + - + + +

Table 1 has been reproduced from [15] which compares the key features of different

parallel Haskells. Shared memory implementations have limited scalability as they only
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work on multicore. On the other hand, distributed memory implementations work on

shared memory architectures as well as on distributed memory architectures. They can

still give good performance on multicores as long as the tasks to be communicated are

large and the communication rate is low [2, 3].

GUMSMP is also scalable, but it provides improvements for two aspects of the

parallel implementations, namely implicit task placement and automatic load balancing.

This resulted from integrating GHC-SMP which is tuned for multicore architectures

and GUM which is tuned for clusters. Thus, GUMSMP is designed to provide an

architecture-aware system tuned for a cluster of multicores architectures. As a result, if

the computation is small it will remain in the multicore, but if it is large, it can be sent

to different nodes in the clusters, thus reducing communication overheads associated

with GUM.

All previously presented languages are dialects to Haskell. There are many other

parallel functional languages. Most closely related to our approach is the Manticore [7]

system implementing CML, a heterogeneous, statically typed, strict language. Most

notably, it also takes a high-level and hierarchical view of designing large parallel ap-

plications, providing different mechanisms on different levels of the hierarchy. For large

scale parallelism a more explicit approach drawn from the original CML [21] design is

used, whereas for small-scale parallelism an implicit approach is used with support for

data-parallelism, drawn from NESL [4] and Nepal [5], and support for task parallelism

through light-weight, future-based synchronisation.

3 GPH Implementations

This section gives an overview of the design of GUM and GHC-SMP with special

emphasis on thread management and load balancing.

3.1 GUM

GUM (Graph Reduction for a Unified Machine Model) [22] is the portable, message

passing virtual machine for the parallel Haskell functional language. It extends the GHC

(Glasgow Haskell Compiler) [10] runtime system by implementing a virtual shared

memory abstraction. It is based on the parallel reduction of the graph representing

the program, and the parallelism being exploited by the reduction of independent sub-

graphs being carried out in parallel [20].

The key concepts in GUM’s design are supporting a virtual shared heap where the

graph representing the program to be evaluated in parallel is stored and which is im-

plemented on top of a distributed memory model as well as dynamically managing

resources for work and data.

Several major components can be identified in the design of GUM:

1. Initialization and Termination: responsible for controlling start up and termina-

tion.

2. Thread Management: responsible for deciding when to generate a new thread and

how to schedule the threads.
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3. Load balancing: responsible for distributing the load in the parallel system so that

the processing elements’ idle time is minimized.

4. Memory Management: responsible for controlling access to remote data and in

GUM, implementing a virtual shared heap.

5. Communication: responsible for transferring data and work between PEs.

Thread Management: The main component of GUM is the PE (CPU with Local

Memory). Conceptually, one instance of the GUM RTE is used to represent one PE. The

collection of communicating PEs implements the virtual machine. The thread manage-

ment model used in GUM is called the ”evaluate and die” thread management model,

and it was originally developed for the parallel graph reduction machine(GRIP) [11],

in which potential parallelism is represented as sparks (pointers to unevaluated graph

structures). A spark is generated in the program code by explicit ‘par‘ construct and

maintained by the run time system in a flat distributed data structure ”spark pool”. An-

other pool is also maintained for runnable threads to be executed by the PE [12, 13].

The core of each PE’s execution is the scheduling loop presented in Algorithm 1

which is executed by each PE until it receives a FINISH message. When a PE has no

more work to do, it looks for local work in the runnable queue, and then it searches

for a spark in its spark pool. If a spark is found, it is turned into a thread by creating

TSO(thread state object)and the PE starts evaluating it. Otherwise, it searches for re-

mote work by searching for a spark in other PE spark pools and hence an independent

thread might execute the sparked expression.

Shared closures (nodes in the graph structure) can be either normal-form closures,

representing data, or thunks, representing work (unevaluated data). Access to shared

closures is implicitly synchronized to avoid two Haskell threads from evaluating the

same thunk simultaneously.

There are three cases when acquiring the value of a spark:

1. If the value has been evaluated already (normal-form closure), the value is returned

directly.

2. If it is under evaluation, the current thread will block on the structures and when

the required data arrives, the blocked thread will be awakened and can continue.

3. If the expression has not been evaluated by another thread then the demanding

thread will execute the computation itself. This behaviour is called ”Thread Sub-

sumption” because the potential parallel work is inlined by the parent thread. The

potential parallelism represented by the spark is then fizzled. This principle of dy-

namically increasing the granularity of the threads by delaying the decision regard-

ing whether a thread should be generated, is similar to the independently developed

lazy task creation model [19].

Load Balancing: The load balancing model is designed specifically to achieve an effi-

cient and effective distribution of the available sparks without generating an excessive

amount of messages. Spark generation in GUM is cheap. It is simply the adding of a

pointer to a thunk which is then added to the spark pool. This is essential to reduce the

parallelism creation overhead, as well as to reduce the communication cost of sending

sparks between PE. However, the cost of managing the thread pool is not as low as that

for spark pool management. The reason for this is that additional information is needed
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for a thread such as a live thread priority, which is essential if more flexible scheduling

is to be achieved.

Fig. 1. Work Distribution in GUM

Figure 1 presents the work distribution in GUM which is explained as follows:

Searching for Local Work: In the current version of GUM, if there are no more threads

to run in the thread pool, the scheduler searches for a spark in its spark pool. If a spark

is found, it is activated by turning it into a thread and generating a TSO to hold essential

information about the thread and start evaluating it. If the running thread is blocked for

unevaluated values, it will be put in a queue and when the required data arrives the

blocked thread will be awakened and transferred back to the runnable pool. The data

becomes available when it is either reduced by a local thread in the same PE or its value

is sent after being evaluated by another PE.

Searching for Remote Work: If there is no spark in the PE’s spark pool, the scheduler

requests work by sending a FISH message. The FISH message swims randomly from

one PE to another searching for work. It includes the originating PE’s id and age number

representing the maximum number of PEs to visit. If the recipient PE has no spark in

its spark pool, it forwards the message to another PE chosen at random after increasing

its age. If the recipient has a spark, it sends it to the requesting PE as a SCHEDULE

message. If no spark is found and the message limit is reached, the unsuccessful FISH

is then returned to the originating PE, which then waits before sending another FISH

message in order to avoid swamping the machine with FISH messages when there are

only a few busy PEs. For the same reason, each PE only ever has a limited number

of outstanding FISH messages (the default number is 1). This mechanism is called

”work stealing”, or passive work distribution, since the work is requested by the idle PE.

Algorithm ScheduleFindWork presents the load balancing mechanism implemented in

GUM.
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1 void ScheduleFindWork(Capability *cap , Task *task)
2 if emptyRunQueue(cap) then
3 //Call ScheduleActivateSpark(cap)to get local work
4 if anySpark(cap) then
5 spark = tryStealSpark(cap);

6 if spark != NULL then
7 tso = createSparkThread(cap,spark);

8 pushOnRunQueue(cap,tso);

9 end
10 else
11 //Call Function ScheduleGetRemoteWork(cap)to get remote work

12 pe = choosePE();

13 sendFISH(cap,pe);

14 end
15 end

Function ScheduleFindWork(Capability *cap, Task *task)in GUM

3.2 GHC-SMP

is an optimized shared memory implementation for functional parallel Haskell inte-

grated in GHC [9, 18]. It assumes a physical shared memory and uses mutexes for

synchronization between local threads. GHC-SMP excels at the efficient handling of

lightweight threads [1]. Millions of lightweight threads are supported by the GHC run-

time system. To achieve this the threads are multiplexed onto a handful of operating

system threads, approximately one for each physical CPU. A (TSO) thread state object

is a heap allocated structure used to keep the Haskell thread’s state together with its

stack where it runs (same TSO structure as in GUM).

A set of operating system threads (worker threads, one worker thread per CPU)

execute the Haskell threads. One Haskell Execution Context (HEC) is maintained for

each CPU owing to the fact that the worker thread may frequently vary.

The HEC is the data structure where the data required by an OS worker thread in

order to execute Haskell threads is contained. Each HEC has a spark, threads, and global

black hole queues that are the same as GUM.

The state required by a HEC to perform ordinary execution of Haskell threads is

local to the HEC. This means that a HEC requires no synchronisation, locks, or atomic

instructions. Synchronisation is only needed for some situations such as load balancing,

garbage collection etc.

Load Balancing HEC’s spark pool is implemented as a bounded work-stealing

queue in order to make spark distribution cheaper and more asynchronous. A work-

stealing queue is a lock-free data structure where the owner can push and pop from one

end of the queue without synchronization. Other threads can steal from the other end of

the queue, meaning that only one atomic instruction is needed. In order to avoid a race

between popping and stealing thread from the queue when it is almost empty, popping

incurs an atomic instruction. On the other hand, when the queue is full, the new spark

to be pushed is discarded, meaning potential parallelism may be lost.
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Fig. 2. Work Distribution in GHC-SMP

As shown in Figure 2, when an HEC has no assigned work, it searches for a spark,

either in its HEC’s spark pool or in any other HEC’s spark pool. If a spark is found,

then the HEC creates a ’spark thread’ in order to reduce the thread overhead, which in

turn steals the spark and starts evaluating it. Once this process has finished, it will steal

another spark. Thus, the spark thread will evaluate sparks to WHNF sequentially until

no more sparks are found, at which point it exits, allowing the TSO to be recovered by

the GC.

1 void ScheduleFindWork(Capability *cap , Task *task)
2 if emptyRunQueue(cap) then
3 //Call ScheduleActivateSpark(cap) to get local work;
4 if anySpark(cap) then
5 for i← 0 to num capabilities do
6 if emptySparkPool(cap[i]) then
7 continue;

8 end
9 spark = tryStealSpark(cap[i]);

10 if spark != NULL then
11 break;

12 end
13 end
14 if spark != NULL then
15 tso = createSparkThread(cap,spark);

16 pushOnRunQueue(cap,tso shell);

17 end
18 end
19 end

Function ScheduleFindWork(Capability *cap, Task *task)in GHC-SMP

It is necessary to create a spark thread in order to avoid creating a new thread and

fresh TSO for every spark and to discard it after completing the evaluation for recovery

by the garbage collector. In this way there will only be one thread executing multiple

sparks. This also fixes the problem of latency between creating the parallel tasks and
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being able to execute them in another CPU. Algorithm ScheduleFindWork presents the

load balancing mechanism implemented in GHC-SMP .

3.3 Main Scheduling Loop

For both implementations, the core of each PE’s execution is the scheduling loop pre-

sented in Algorithm 1 which is executed by each PE. The main difference between

GUM and GHC-SMP is in the load balancing mechanism presented in the function

ScheduleFindWork for both.

4 GUMSMP Design Model

GUMSMP is designed to be multilevel, integrating the work distributions of the two

different parallel Haskell implementations to efficiently exploit a cluster of multicore

architectures.

The main design objectives for GUMSMP can be summarized as follows:

– Even but asymmetric load balancing: The main objective is to balance the load

between the multicores by restricting remote communications as well as controlling

the placement of the new spark coming from a remote PE in response to work

requesting. Whereas, within a multicore node, even load balancing is important

due to the cheap communication.

– Mostly passive load distribution: It is essential to maintain a passive work distribu-

tion between multicore nodes, so work is only sent remotely when requested. On

the other hand, within a multicore, it is preferred to maintain active work distribu-

tion as the communication is carried out locally within the same multicore.

– Effective latency hiding: the system must be designed in such a way that commu-

nication costs are not on the critical path of cooperative computations. This is can

be achieved by providing a large pool of runnable threads, and executing another

thread while another thread is waiting for the result of a communication.

In the remainder of this section we present the GUMSMP design, focussing on the

work distribution algorithm and listing some of the important design alternatives.

4.1 Work Distribution Mechanism

GUMSMP integrates the two GPH implementations by combining the load balancing

approaches for both. So, work distribution within the same node is achieved by GHC-

SMP’s work distribution mechanism, directly accessing the spark pools of other pro-

cessors within the same physical shared memory machine. Across multicores, GUM’s

message-based work distribution is applied. This involves sending FISH messages to

remote processors, in search of available sparks. This behaviour is summarised in Fig-

ure 3.
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1 while True do
2 switch sched state do
3 case SCHED RUNNING
4 continue;

5 case SCHED INTERRUPTING
6 performGC ;

7 shut down;

8 case SCHED SHUTTING DOWN
9 Exit;

10

11 endsw
12 ScheduleCheckBlackHole(cap);

13 ScheduleSendPendingMessages(); //Send any messages
14 ScheduleFindWork(cap);

15 processMessages(cap);

16 ScheduleYield(cap);

17 if emptyRunQueue(cap) then
18 continue;

19 end
20 tso = popRunQueue(cap);

21 result = stgRun(tso);

22 switch result do
23 case out of heap
24 pushOnRunQueue(cap,tso); performGC;

25 case out of stack
26 enlargeStack(tso); pushOnRunQueue(cap,tso);

27 case time expired
28 pushOnRunQueue(cap,tso);

29 case finished
30 if bound then
31 return

32 else
33 continue;

34 end
35

36 endsw
37 end

Algorithm 1: Main Scheduling Loop for GUM and GHC SMP

Fig. 3. Work Distribution in GUMSMP
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The main novelty in the design of GUMSMP work distribution policy is its hierarchy-
aware nature, built on efficient mechanisms that have been tuned for physical and virtual

shared memory, respectively. It uses a work-stealing algorithm, through sending FISH

message, on networks (inherited from GUM). Within a multicore it will search for a

spark by directly accessing spark pools (inherited from GHC-SMP). If a spark found,

a thread will be created to evaluate the associated piece of work. Preference is given

to such local continue stealing of sparks. Only when no more local sparks are found

the system will send a message to look for remote sparks. The concrete work balancing

algorithm for GUMSMP is presented in Function ScheduleFindWork.

At the intersection of both levels, concrete design decisions need to be made to

assure good utilisation without imposing too high communication overhead. We discuss

the most important of these, namely spark placement, fishing and work-offloading and

in the rest of this section.

1 void ScheduleFindWork(Capability *cap , Task *task)
2 if emptyRunQueue(cap) then
3 //Call ScheduleActivateSpark(cap)to get local work
4 if anySpark(cap) then
5 for i← 0 to num capabilities do
6 if emptySparkPool(cap[i]) then
7 continue;

8 end
9 spark = tryStealSpark(cap[i]);

10 if spark != NULL then
11 break;

12 end
13 end
14 if spark != NULL then
15 tso = createSparkThread(cap,spark);

16 pushOnRunQueue(cap,spark);

17 end
18 else
19 //Call Function ScheduleGetRemoteWork(cap)remote work ;

20 pe = choosePE();

21 sendFISH(cap,pe);

22 end
23 end

Function ScheduleFindWork(Capability *cap, Task *task) in GUMSMP

Spark Placement: An important decision is where to place a spark, that has been im-

ported from another processor. An obvious choice would be to assign it to the spark

pool of the first idle HEC. This would aim to keep utilisation high, but it might lead

to higher fragmentation because imported sparks will be executed by different proces-

sor on a multicore. Keeping track of those processors that are executing remote sparks,

and preferring these in the placement of newly imported sparks would help in reducing

fragmentation, but impose additional overhead. Another design alternative would be to
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use a separate spark pool, dedicated to imported sparks, from which other processors

will steal work. This keeps related pieces of work together in one pool, but requires

additional stealing steps in order to acquire external work. Such an additional spark

pool would also be useful in situations where none of the processors are idle at the

time of the arrival of a new spark (the processor originally requesting work, might have

in the meantime found new work locally). Putting the imported spark into a dedicated

spark pool would defer the placement decision to a later point, where idle processors

are available. Committing too early, by eg. assigning the spark to the smallest spark

pool, would not make best use of the dynamic information of the system.

Fishing: Another design decision is when to send a spark requesting message to a

remote PE. One choice would be to send a message immediately as soon as the HEC

becomes idle and there are no sparks in the local spark pools. This option might not

be ideal in some cases when other HECs might produce more local sparks during the

waiting time for the remote spark to arrive. An alternative option would be to delay

for sometime waiting for local sparks to be generated locally. Implementing a Low-

Watermark Mechanism [12] is another design alternative which shows the minimum

number of sparks that should be kept local on a PE. If the number of sparks falls below

this level, no sparks will be exported, and the PE will attempt to obtain new sparks from

other PEs to maintain a minimum level.

Off-loading Work: How to process the received work-requesting message is another

design decision. One option would be to select a spark from the HEC with the largest

spark pool to send it as a response to the message. This would require traversing all

HECs in order to find out the one with the largest spark pool and therefore impose

additional overhead. Another alternative would be to apply the currently implemented

mechanism in GUM in which the message swims randomly looking for a spark. This

option is the most sensible one as it would be faster.

5 Current Implementation

The implementation of the design of GUMSMP, presented in this paper is ongoing.

This section presents the current status of our implementation and focuses on initial

measurements, comparing the overhead in an execution that only exploits the physical

shared memory component of the combined system. The final version of the paper

will present more details measurements, focussing on the performance of the combined

system, with a standard benchmark suite for GPH.

This component has been tested on a common multi-core architecture, namely an

eight-core machine comprising two Intel Xeon 5410 quad-core processors, running at

2.33 GHz, with a 1998 MHz front-side bus 6144 KB and 8GB RAM running under

CentOS release 5.5.

Table 2 summarises our results in terms of runtimes for three test programs. Parfib

which computes the Fibonacci number. Coins which computes the number of ways of

paying a given value from a given set of coins. SumEuler which computes the sum of

the Euler totient function on each list interval.
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Table 2. Runtimes for Parfib, Coins, and SumEuler on an 8-core machine, comparing GHC-SMP

and the shared memory component of GUMSMP

Parfib Coins sumEuler

No. Cores GHC-SMP GUMSMP GHC-SMP GUMSMP GHC-SMP GUMSMP

1 70.8 77.3 56.8 61.3 70.2 73.1

2 38.5 40.8 37.4 39.6 37.5 39.3

3 26.4 29.3 25.4 27.1 26.1 27.3

4 20.9 22.8 21.4 22.2 20.7 21.5

5 17.0 19.0 18.2 18.5 16.6 17.1

6 14.9 16.2 16.5 16.6 14.9 15.5

7 13.2 14.1 15.9 15.9 13.7 13.9

8 11.9 12.8 14.2 14.9 12.2 12.5

Preliminary results in Table 2 assess the relative performance of our merged system

(GUMSMP) with the shared memory implementation (GHC-SMP). We note that on

all cores of an 8-core processor, the GUMSMP version is within 7% of the GHC-SMP

version. This indicates, that the overhead imposed by our implementation is low in this

setup. Therefore GUMSMP is an efficient basis for larger scale distribution. The good

speedups achieved for all three programs are mainly due to the efficient GHC-SMP

implementation.

6 Conclusion

We have presented the design of the new multi-level parallel Haskell implementation

GUMSMP, designed for high-performance computation on networks of multi-cores.

Our design focuses on flexible work distribution policies. In particular, we aim for even

but asymmetric load balancing, accepting that on the large scale clusters will exhibit

significant differences in the relative loads on multicores, but assuring that work can

be cheaply stolen between processors on one multi-core. We stress the importance of

effective latency hiding, moving communication from the critical path of cooperative

computations as much as possible. A high degree of available parallelism and low con-

text switch costs are pre-requisites for this design. Finally, our system uses mostly pas-

sive load distribution, employing work stealing to obtain either local or remote work.

However, we cater for computing patterns of hyper-active generators, that produce an

abundance of parallelism within a short time-period, by allowing a switch to active load

distribution in these cases.

Technically, GUMSMP represents a merge between two parallel Haskell imple-

mentations: GUM for distributed memory and GHC-SMP for shared memory systems.

We build on the strengths of both systems to efficiently orchestrate parallel execution,

and enhance the work distribution policies by accounting for the multi-level architec-

ture by using different policies on different levels in the hierarchy. Additional benefits

of our system are the high degree of scalability, covering large clusters, and the effi-

cient support for multicore platforms. The combined system provides a single program-
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ming model for such a multi-level architecture and therefore greatly simplifies parallel

programming, compared to classical approach such as MPI with OpenMP. By using a

high-level language model we avoid tying applications to one particular architecture,

achieving higher performance portability.

The implementation of GUMSMP is still in early stages, without full support for

the enhanced work distribution policies described in Section 4. We therefore focus on

performance results on individual multi-cores and compare it to that of the existing

GHC-SMP implementation, in order to assess the overhead of the combined system.

The measurements in Section 5, on small test programs, show a very small runtime

overhead. The shared memory component of the hybrid system shows performance

within 7.1% of the original GHC-SMP implementation.

For the final version of this paper we will extend these measurements to assess

the quality of the enhanced work distribution policy on hierarchical architectures, once

completed. In particular, we are interested in test programs with aggressive generators,

analysing how well our mechanisms distribute the work in this case.
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Abstract. A generalisation of pure functional arrays is defined, which

supports extensibility and sparsity. A data parallel algorithm can imple-

ment the array operations efficiently.

1 Introduction

Imperative programming languages implement arrays use address arithmetic to
locate an array element, and a store instruction to update an array element,
thereby destroying the previous value of the element. Both operations — array
lookup and update — take a small constant number of machine instructions.

Pure functional programming languages usually perform computations by
calculating a result and allocating a new memory location to hold it, so previous
values are not destroyed. This approach works well for computations on singleton
data values, but it leads to inefficient arrays. If an array element is updated with
a store instruction, as in imperative languages, the previous value of the array
is destroyed and any existing references to it will have the wrong value.

Several techniques have been developed for overcoming this difficulty [4].
There are two broad approaches: (1) retain the generality of functional arrays
but develop algorithms to improve the efficiency of array operations, and (2)
implement functional arrays with destructive updates (store instructions) and
provide guarantees that previous versions of the array are inaccessible to the
program. Haskell supports such arrays, and this approach has been developed
quite far, with efficient array accesses for parallel processors [1].

Rather than talking about “arrays in imperative/functional languages”, it is
clearer to use the terms imperative array and functional array for two distinct
data structures. It is possible, although unusual, to implement functional arrays
in an imperative language, and imperative arrays have come to be used widely
in functional languages.

Since monads have made it straightforward to express algorithms using im-
perative arrays in a pure functional language [2], there has been less urgency
to find improved implementations for functional arrays. In particular, when an
imperative algorithm is translated into a functional language, imperative arrays
are needed.
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Nevertheless, functional arrays remain interesting in their own right, and they
might have useful practical applications if they can be implemented efficiently.
For example, some constraint solving algorithms use backtracking or coroutines
to explore several alternative paths; functional arrays may prove useful for rep-
resenting the constraint sets. Since unrestricted access to functional arrays is
inefficient, there has been relatively little exploration of algorithms that rely on
them, but this does not mean that such applications do not exist.

A novel implementation of a generalisation of functional arrays—called ESF
arrays—appeared in 1993 [3]. It relies on fine grain data parallelism to perform
both lookup and update on a functional array in a constant number of steps,
without any restrictions on the past history of array operations. To achieve this
performance, the algorithm requires extremely fine grain massive parallelism.
The parallel hardware available at the time of publication was incapable of im-
plementing the algorithm efficiently, but recent advances in FPGA and GPU
technology have improved the situation, and the time is ripe to investigate this
approach further.

The chief characteristic of the ESF array is that it is a pure functional data
structure. There are two other extensions to basic arrays that are also supported:
the arrays are extensible and may be sparse. Extensibility means that an array
does not have fixed bounds, but may grow at any time. Sparseness means that
an array that contains a large number of elements with a specific default value
(such as 0) can be represented compactly, without requiring space for the 0
elements. The implementation discussed here for functional arrays also supports
extensibility (this comes for free) and sparseness (which requires little extra
effort).

The implementation presented here is a fine grain data parallel algorithm.
The arrays are stored in a data parallel memory that is separate from the heap.
The granularity is extremely fine: for best performance, there should be one pro-
cessing element for each location in the array memory. The processing elements
are not full scale processors; they need only the ability to perform comparisons
and increments on natural numbers, and a few bit level operations. A processing
element would contain on the order of 100 bits of memory and a few hundred
logic gates. The algorithm is suited for implementation as a digital circuit or as
an FPGA program.

The contributions of this paper are (1) a precise specification, using Haskell,
of the ESF array algorithm, which was presented informally in the earlier paper
[3]; (2) a precise specification correctness, in the form of a Quickcheck predicate;
and (3) a discussion of the issues that arise in implementing ESF arrays on
modern hardware. Practical parallel implementations, however, are left for future
work.

This is a draft paper; further details will appear in the full paper.
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2 Specification of ESF arrays

The ESF array data structure is defined as an abstract data type. Two versions
are given: first a set of basic pure operations, which are available to the user,
followed by a lower level set of operations that make the machine state visible.

2.1 User level operations

We begin by defining a basic version of the ESF array data structure. The
operations defined below are suitable as an interface to the user programmer. In
the following section the operations are redefined at a lower level, allowing for
some essential implementation issues to be incorporated.

Arrays have type a, with index of type i and element values of type e. A
basic ESF array system has a constant empty array called empty , and two access
functions.

empty :: a
update :: a → i → e → a

lookup :: a → i → Maybe e

The lookup function takes an array and an index and returns the array el-
ement defined at that index: thus lookup a i corresponds to the imperative
notation a[i]. The update function takes an array, index, and new value, and
returns a new array with the given value at that index. Thus update a i x cor-
responds roughly to the imperative notation a[i] := x, but there is a crucial
difference: the update creates a new array without modifying the old one.

An array of undefined elements cannot be allocated all at once, as in For-
tran. Instead, an array is built up incrementally through a sequence of updates,
starting from the empty array:

a1 = update empty 1 101
a2 = update a1 2 102
a3 = update a2 3 103

The values of the arrays can be written

a1 = {1 101}

a2 = {1 101, 2 102}

a3 = {1 101, 2 102, 3 103}

The chief characteristic of functional arrays is that update produces a new
array, but does not change the old one. This allows for a tree-structured set of
relationships among arrays. Consider the following definitions, with the previous
definitions still in scope:

a4 = update a2 4 104
a5 = update a1 5 105
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The values of a1 and a2 have never changed, and the results are:

a4 = {1 101, 2 102, 4 104}

a5 = {1 101, 5 105}

If an update gives a new value to an index that has already been defined, the
old value is shadowed: it does not appear in the new array but is still present in
the old one.

a6 = update a4 2 202

a6 = {1 101, 2 202, 4 104}

The behaviour of arrays is specified by two laws that use equations to define
the relationship between empty , lookup and update.

Law 1. (Empty array)

lookup empty i = Nothing

Law 2. (Nonempty array)

lookup (update a j v) i
| i ≡ j = Just v

| i 6≡ j = lookup a j

2.2 Lower level operations on ESF arrays

In order to define the data parallel implementation, we need a lower level view
of arrays and their operations. The machine state needs to be made explicit,
because the implementation operates directly on the state. Furthremore, there
needs to be an operation for deleting an array that has become inaccessible.
Deletion would not be available to the user programmer, but would be used by
the implementation to reclaim inaccessible arrays. An error mechanism is also
needed; for example, if an update is performed when the array memory is full,
the operation must fail.

Again, a is the type of an ESF array; i is the index type, and v is the element
type. In addition, the ESF arrays are held in a separate memory with state of
type s.

class Eq i ⇒ ESFA s a i v | a → i , a → v where

empty :: a
update :: s → a → i → v → (s ,Maybe a)
lookup :: s → a → i → Maybe v

esfDelete :: s → a → s
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Both lookup and update can fail, giving Nothing. Lookup fails if the array
a is not defined, or if a is defined but does not have a defined value at index i.
Update fails if the array a is not defined, or if the memory does not have enough
space to allocate a new element.

The laws for the array operations are updated to take account of the machine
state and allow for failure.

3 Data parallel implementation

In an imperative array, each array element must be stored at a specific address
that is calculated from the address of the array and the index of the element.
Thus the position of a word in the memory determines the position of the con-
tents of the word within an array.

The essential difficulty in implementing functional arrays is that we need to
maintain full sharing of array elements—otherwise the cost in both space and
time would be prohibitive—yet this means that there is no simple relationship
between the location of an element in the memory and its location within all the
arrays that contain it.

Consequently, we simply abandon the idea of using machine addresses to
encode indices.

Instead, we develop a representation that decorates each memory location
that contains an array elemeent with a representation of the set of arrays that
contain the element. This is called the inclusion set of the element. In general,
arbitrary sets cannot be represented in a small fixed amount of space. However,
the inclusion sets that appear in the ESF memory are not arbitrary: they satisfy
some structural properties that are forced by the fact that the memory state
must be the result of a sequence of update operations.

Each array is identified by a unique natural number called an array code. An
inclusion set can be represented by a pair of indices, low and high, such that an
array is in the inclusion set if and only if its code lies between low and high.
Every location in the array memory contains several fields, including an element
value, and index value, an inclusion set, and a few more.

Suppose we are evaluating lookup a i . The algorithm begins by determining
for each word in the memory whether a is a member of the inclusion set for that
word. This calculation is performed in parallel in every word, and the result is
used to set a mask bit in each word where the inclusion set contains a; this
defines a set of words that might contain the right result; call these words the
“candidates”. We then compare the value of i with the index field in the can-
didates, and clear the mask where there is no match. It is possible that several
candidates remain; this happens if an array has been calculated with several
updates to the same index. The final step resolves the conflict and determines
which location contains the correct value. (There are two ways to perform the
resolution; the details are not given in this extended abstract.)

Notice that there are no loops in the loopup algorithm. The same is true for
update and delete: each of the array operations requires a fixed number of steps.
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Each step performs a lot of work—a small computation in each location—but
these can all be performed in parallel.

The update and delete operations are largely similar; they all involve lo-
cal computations that involve arithmetic on integers that can be performed in
parallel on all the memory locations.

When an update is performed, the inclusion sets and array codes need to
be adjusted. Many of the memory locations will need to modify one or more
of their fields, but again these operations can all be performed in parallel. It is
also necessary to modify some of the existing array codes (think of a memory
allocation scheme that moves data and has to note the changed addresses of
objects that have moved). Since the array codes change frequently, they are
useful only inside the ESF array memory. Consequently the system maintains
an association table between stable array names—which never change—and the
rapidly changing codes. This association table is also maintained in the array
memory. It requires two more fields in each location, and all of the operations
on name/code translation are parallel.

(This brief explanation will be expanded, with examples, in the full paper.)

3.1 Representation

The representation is defined using Haskell notation. The Haskell code that fol-

lows will not be compiled and executed to implement ESF arrays! It is only a
specification. The specification is executable, so it can be used as a reference
implementation (by compiling and executing it!). It can also be used, along with
correctness properties, for Quickcheck testing. To achieve a practical implemen-
tation, however, the specification can be translated to a lower level form, such
as a digital circuit, an FPGA circuit, or a C+CUDA program for a GPU.

type StateDP1 = [CellDP1 ]

The following primitive types areused in the representation.

newtype EltIndex = EltIndex Int deriving (Eq ,Read , Show)

newtype EltValue = EltValue Int deriving (Eq ,Read , Show)
newtype AName = AName Int deriving (Eq ,Read , Show )
newtype ACode = ACode Int deriving (Eq ,Read , Show )

A cell corresponds to one memory location; it holds a complete array element.

data CellDP1 = CellDP1

{ low , high ::ACode,
ind :: EltIndex ,
val :: EltValue,
mapName ::AName,

mapCode ::ACode }
deriving Show
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initCellDP1 :: CellDP1

initCellDP1 = CellDP1

{ low = ACode 0,
high = ACode 0,
ind = EltIndex 0,
val = EltValue 0,
mapName = AName 0,
mapCode = ACode 0}

codeVal :: ACode → Int

codeVal (ACode x ) = x

3.2 Data parallel algorithm

The algorithm is specified here, using Haskell. The full paper will explain how
it works; some explanation is also given in the earlier paper [3].

The definitions below define precisely how the inclusion sets and array codes
are handled. It does not give an accurate model of the process for allocating
an empty cell to hold the result of an update; instead, this is modeled here by
treating the memory as a list of cells. The full algorithm uses a parallel scan to
locate an empty cell, and also for resolving index clashes.

encode :: StateDP1 → AName → ACode

encode [ ] (AName 0) = ACode 0
encode cs (AName n) =
if n ≡ 0
then ACode 0
else selectUnique [mapCode c | c ← cs ,mapName c ≡ AName n ]

dp1update :: StateDP1 → AName → (EltIndex ,EltValue)→ (StateDP1 ,AName)

dp1update cs aname (aidx , aval ) = (cs ′, aname ′)
where

ACode acode = encode cs aname

acode ′ = acode + 1
aname ′ = newName cs :: AName

cs ′ = newc :map adjust cs

adjust c =
c { low = if codeVal (low c)> acode

then ACode (codeVal (low c) + 1)
else low c,

high = if codeVal (high c) > acode

then ACode (codeVal (high c) + 1)
else high c,

mapCode = if codeVal (mapCode c)> acode

then ACode (codeVal (mapCode c) + 1)
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else ACode (codeVal (mapCode c))}
newc = initCellDP1

{ low = ACode acode ′, high = ACode acode ′,

ind = aidx , val = aval ,

mapName = aname ′,mapCode = ACode acode ′ }

4 Conclusion

A data structure for extensible sparse functional arrays has been specified, along
with lookup and update functions for the user, and a delete function for use by
the system.

The implementation relies on a fine grain data parallel host to hold the array
memory. Each operation involves a small amount of calculation in every location
in the entire memory. Each operation also requires a small constant number of
steps, and there is no restriction on the past history of updates. That is, a lookup
will always take the same time, regardless of how much sharing there is among
all the existing arrays.

One way to think of the system is that it performs a lot of extra work—a
little bit of arithmetic in every location—and then mitigates the extra work with
massive parallelism—ideally, a processing element in every location.

However, there is a more insightful way to think of the algorithm. Consider
a sequential program running on standard hardware, with a RAM memory. Pro-
grammers think of the RAM as just doing a little work on the word that is
accessed (if they think of the RAM at all). However, a RAM is a digital circuit
that actually has to perform an enormous amount of work on every access (not
exactly a computation on every location, but that is a fair intuition). We think
of the RAM as performing a small amount of work because most of its work is
wasted. The ESF memory does more work than the RAM, but only by a con-
stant factor, and it uses this work to enable it to support a data structure more
efficiently than a RAM can.

The ideal host for the ESF memory would be an application specific inte-
grated circuit (ASIC). The cost, however, would be prohibitive. FPGA chips
(essentially chips that can be programmed to model an arbitrary circuit) would
be almost as effective as an ASIC, at a far lower cost. Future work is planned
on an FPGA implementation.

The reason that an ASIC or FPGA are well suited for ESF memory is that
they can implement the algorithm at exactly the right level of granularity. As
we move to coarser grain hardware, with smaller numbers of processors that are
more powerful, the efficiency of the ESF algorithm diminishes. A GPU chip with
several hundred processors might just about be useful for a small ESF memory;
work is underway to evaluate this possibility. As we move to extremely coarse
grain systems, such as traditional multicores, the amount of parallelism available
is too low to overcome the extra work created by the ESF algorithm.

How useful is the data paralell ESF array? This is a data structure that
allows for unlimited sharing and updates to arbitrary arrays at any time. It
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may be useful for applications such as constraint solvers that perform searches
through many alternative threads of possibilities, and that switch between dif-
ferent threads as their liklihoods of success are reevaluated. However, no such
applications currently exist, and further work is needed. A final conclusion of
this work is that algorithm designers do not necessarily need to shy away from
functional arrays just because of their performance.
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Abstract. Currently, web applications are replacing traditional desk-
top software more and more. They have impact on the way people work
by allowing people to collaborate in real-time. The way of collabora-
tion ranges from delegating work and inspecting results of it, monitoring
work of others while the work is going on, to working together on the
same document in real-time. Our work on Task-Oriented Programming
(TOP) [13], in particular the iTask system, aims to specifying such ap-
plications and in particular the usage of data sources on a high level of
abstraction, using functional programming techniques.
One of the problems we have to solve is to keep everyone well-informed
about the changes made to shared data. We propose a solution which is a
novel interface combining callbacks with thread pools in a pure functional
language. The technique fulfils the requirements given by the sketched
application domain, but we believe it to be generally applicable to a
wider range of application domains.

1 Introduction

Web applications are increasingly replacing traditional desktop software. They
have several advantages, but the one that impacts the way people work most
is that they allow people to collaborate in realtime. The type of collaboration
ranges from delegating work and inspecting the results to working together on
the same document.

Applications like Etherpad1 and Google Wave2 demonstrate that it is possible
to achieve this kind of real-time collaboration using current web technology.
These applications are however restricted to a single purpose and use a single
data store exclusively. We are searching for a general way to deal with processes
supporting collaborating users, which use a dynamic number of data sources with
different characteristics. This is not only restricted to data storage exclusively
controlled by the application server, but also includes external storages changed
by other applications and even non-storage data sources like sensors.

1 http://etherpad.org/
2 http://wave.google.com/
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This research is motivated by our work on Task-Oriented Programming [13],
in particular the iTask system, which allows the processes supporting collabo-
rating users to be defined in terms of tasks. Modelling real-world applications
requires tasks to share data with other tasks and the outside world to keep
users informed about the progress made by others. The description of the task
completely abstracts from how and where data is stored. These kind of task
descriptions create the need for a server architecture that allows all clients to be
notified instantaneously about changes in an efficient way.

The problem of efficient notifications is already solved for the communication
between a server and its clients by new web standards. Efficient change notifi-
cation mechanisms also exist for different kinds of data storages. This paper
discusses general solutions for offering an interface between arbitrary processes
and data source abstractions and the consequence of different choices for the
entire architecture.

Defining tasks with this high level of abstraction relies on the power of func-
tional programming, so the solution finally discussed must fit in this framework.
The proposed solution is a novel interface combining callback messages with
thread pools in a purely functional language. This technique fulfils the require-
ments imposed by the application domain outlined above, but we believe it to
be generally applicable to a wide ranger of application domains.

The remainder of this paper is organised as follows. A motivating example
showing why such a general way to deal with changes is needed is given first
(Section 2). A short introduction to the iTask system is given in Section 3. In
Section 4 we then discuss the problem in more detail and define a number of
requirements, serving as a basis to evaluate solutions. We then discuss the draw-
back of the most straightforward solution which is a blocking API in Section 5.
Our solution based on a non-blocking API is described finally in Section 6. Sec-
tions 7 and 8 discuss related work and conclude the paper, respectively.

2 Motivating Example

In this section we give an example showing why a general way to deal with
changes is needed. The scenario consists of an operator monitoring some ma-
chine. For this he makes use of an application server providing an application
supporting this task.

It is crucial that the view of the operator is updated as the situation changes
as soon as possible. We concentrate on information that might be useful, which
data sources they come from and how changes of this data are reported to the
application server.

A first interesting piece of information might be the operational state of the
machine. Assume there is some interface between the machine and the server,
the machine can then send a notification to the server when the state changes.
This requires a custom implementation of the notification mechanism.

Other important information might be the current temperature of the ma-
chine measured by some sensor connected to the server. If the server can only
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ask the sensor for the current temperature a proper update interval has to be
defined. For instance, the temperature might be asked every 10 seconds.

Then, the operator might be interested in how long the machine is already
in a certain operational state. This is a combination of the already discussed
reported state, a stored timestamp and the current time. When the current time
is determined, it can be predicted when it will change again. For example, the
view has to be updated in one minute again for sure, at moment the view is
updated and tells that the machine is already running for 24 minutes,

Finally, a maintenance log is maintained for the machine. The maintenance
personnel uses the application server to log what has been done after inspecting
or repairing the machine. The server can detect that the operator’s view has to
be updated, since the log is stored by the application server itself.

3 iTask

In this section we give a short overview of how a cooperative application, like the
example given before, can be defined in a task-oriented way, using iTask [13].
The aim is not to explain the details of the system, but to describe the unique
properties and architecture requiring a very general solution.

3.1 API

One wants to abstract from implementation details as much as possible, in a
task-oriented programming setting, in particular iTask . All of the data sources
discussed are handled by the same abstraction in the definition of the actual
view shown to the operator. This creates the need for a uniform interface for
handling all kinds of data sources.

We quickly introduce some concepts here. The goal is not to explain all details
but to give an impression of the level of abstraction we want to achieve. Data
sources in iTask are represented by an abstraction called shared data sources
(SDS) [11]:

:: SDS a

In the actual system SDS has to type parameters making a difference what one can
read and write, in order to achieve access control. In this way it can for instance
statically be enforced that one cannot write to the current temperature. This is
however not relevant for the problem discussed in this paper and we abstract
from that.

The maintenance log and the measured temperature of the motivating ex-
ample could for instance be represented by the following SDSs:

log :: SDS [(Timestamp, String)]
temperature :: SDS Int

The main building block of iTask applications are tasks, some of them operate
on those SDS. For instance, a task showing the log is represented by the following
one-liner:
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Fig. 1: Composed sources (C) consisting of basic sources (B) using different media

viewSharedInformation "maintenance log" [ ] log

SDSs can be combined to build new ones. One example is the following combi-
nator:

(>+<) infixl 6 :: (SDS x) (SDS y) → SDS (x,y)

Viewing the log together with the temperature can be realised by combining two
SDS:

viewSharedInformation "temperature & maintenance log" [ ] (temperature >+< log)

We use two kinds of powerful abstractions here. We abstract from the actual
updated data store by using an SDS. The actual data could be stored in, for in-
stance, files or some kind of other database. Additionally, we use the abstraction
provided by the task having the goal of updating a data source, abstracting from
how this is done. The system automatically generates a webform and ensures
that all fields are filled in correctly, such that type-safety is remained, using
generic programming [1] techniques.

Composition can be applied repeatedly to build arbitrary large composed
data sources. Composition makes it possible to combine different kinds of data
sources. An example of a composed source using different kinds of storages is
given in Figure 1.

Composition is however not always static as with the >+< combinator. It is
possible to dynamically determine the data sources involved in the composition.
Details are described elsewhere [11]. The important point is that it makes thread-
safe operations, like the one described in Section 6.1, more tricky.

A task such as viewSharedInformation has to deal with all possible kinds of data
sources, but the view it provides should be updated as soon as possible when the
data of these data sources changes. The mechanisms of how changes of SDSs are
detected depends on the concrete SDS implementation while an SDS might even
be a combination of other ones. The definition of the task should completely
abstract from that.

3.2 Architecture

We start with describing the general architecture depicted by Figure 2. Each
active client of the server runs a process, which is actually an instantiation of a
task description. We abstract from sub-processes under the control of this main
process. Computation of an iTask process is at the time of writing initiated only
by a client request, which can be data filled in by the user or just a request to
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Fig. 2: General web application server architecture

refresh. After recomputation of the process, the server sends update instructions
to the client. Details are described elsewhere [10].

Each process uses a number of data sources. Which sources are used can
change each time the process is recomputed. They are accessed through the
already discussed SDSs, finally giving access to the physical data source. We
abstract from the fact that the structure of SDS can be more complex, a SDS
can be composed out of other ones. Each time a process is evaluated however a
number of basic SDS is read.

3.3 Implementation

The implementation of iTask is too complex to be discussed here, we only shortly
explain the low-level interface of the SDS used by the implementation of the
actual tasks, such as viewSharedInformation. The only operations tasks have to
perform is to read and to write SDSs:

read :: (SDS a) *IWorld → (a, *IWorld)
write :: a (SDS a) *IWorld → *IWorld

The iTask API itself is monadic, but its implementation is based on unique-
ness typing, which Clean uses to obtain access to the outside world [2]. In this
paper we assume all side-effecting functions work on a iTask specific uniquely
attributed (*) type IWorld. We further abstracted from error handling, too.

The rest of the paper deals with extending this API, to allow tasks being
recomputed when the value of the SDS has changed.
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4 Problem Overview & Requirements

Our basic assumption is that the view of a user only changes when one of the
SDS used by a task changes its value. Notifications that something is changed
is already solved for the communication between the server and the client. New
web-standards solve the need for direct communication from server to client3.
Both of these APIs are implemented in most modern browsers. We therefore
consider this problem as solved and for the rest of the paper.

Consequently, we reduce the problem to the problem of keeping the process
up-to-date with the data sources. This means concretely to design an interface
between the processes and the data sources abstractions, and an interface be-
tween the data source abstraction and the actual data source implementation.

We characterise different kind of data source by the way a change of their
value is caused. The first kind of source behaves like data storage. It only changes
if a new value is written to it. We distinguish between internal sources, under
exclusive control of the server, and external sources which can be changed by
other systems not under the server’s control. There are then sources which change
without a system changing them. Examples are the current time or sensors. The
difference is that for some sources it is predictable when they change the next
time, while some sources have to be asked whether they have changed.

We define some requirements making it possible to evaluate different possible
designs. Changes should be propagated as soon as possible by using as few as
possible server resources and it should allow the server process to scale. The
synchronisation overhead if computing processes in parallel should remain within
reasonable bounds. It should further work for all different kinds of data sources,
as illustrated by the example in the previous section. This leads to some basic
requirements:

Req 1 Changes of the data sources should be propagated to process depending
on them as soon as possible.

Req 2 As few as possible server resources should be used.
Req 3 The synchronisation overhead when processes are running in parallel

should remain within reasonable bounds.
Req 4 The solution should be very flexible. It should work for all possible

change detection mechanisms.

These requirements are rather vague and one cannot define proper absolute
numbers for them. However, they can be used to compare solutions. At this
stage no concrete measurements have been performed, as this paper is about
designing a suitable architecture avoiding obviously inefficient solutions. In the
following we give a number of related requirements which should minimally hold.

We now define a number of additional requirements derived from to the
general ones given before. They are more concrete and focus on the identified
sub-problems.

3 WebSocket APIWebSocket API (http://dev.w3.org/html5/websockets/),
EventSource API (http://dev.w3.org/html5/eventsource/)
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The actual time between the change of a data source and recomputing the
process, depends on the actual server hardware and load. The server should
however never miss a change. Missing a change means that a data source has
changed, but the server is unaware of this fact and idles instead of undertaken
actions.

Req 1.1 The server should only idle, if the effect of changed data sources is
reflected in the state of all processes and vice versa.

However, it may happen that after a data source has been changed, it changes
again before the change could be propagated to all processes. This is a fine, as
long as the last value will be sent to the client before the server idles. The goal
of web applications we deal with is to give users the most recent view on the
current situation. There is no need to send all intermediate results. It is even
against the goal of giving the most recent view as soon as possible to compute
and communicate a situation which is known to be not up-to-date anymore.

Req 1.2 For the recomputation of processes always the most recent values avail-
able should be used.

It is always better to avoid data transfer if possible, no matter how efficient it
is. There should be only minimal data transfer when nothing is changed. This
requires that the transfer is initiated by the components that have to report a
change. In our architecture this means that processes should not superfluously
be recomputed.

Req 2.1 A process should only be recomputed if it is not up-to-date with the
latest data, relevant for it.

To make Req 4 more concrete we categorise the ways changes of data sources
can be detected. The solution should work for all the mechanisms discussed.
Internal sources do guaranteedly not change as long as no write operation is
performed by the application server itself. We call this mechanism change on
write. Data sources not exclusively controlled by the server, can notify the ap-
plication about changes in several ways. This requires a custom implementation
of notification mechanisms for each such kind of data source. For example, Mi-
crosoft SQL Server, PostgreSQL and CouchDB have different facilities to notify
an application when changes have occurred.

How changes of predictable sources can be detected is obvious. Source
which can only be asked whether they have changed can only be dealt with
by polling. Poling will work for all imaginable data sources and can therefore
serve as a fallback for sources not supporting a more sophisticated mechanism.
A sensible polling interval together with a method to check for changes has to
be defined.

5 Blocking API

The most straightforward solution to wait for changes is to wait for them using a
blocking API. Waiting basically means that the execution of a thread blocks until
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a data source changes. One can either wait for a single source alone (Section 5.1)
or for a source in a collection of sources (Section 5.2) to change. In this section
we show the limitations of this approach.

5.1 Waiting for a Single Change

The first approach is to define a function which waits for changes that happen
in data sources. When we call the function, the function blocks until the data
source has actually been changed. Such a function could look like this:

wait :: (SDS a) *IWorld → *IWorld

This method works well when we want to wait for a single change and continue
processing when the change happened, but has problems in the context we want
to use it.

First, is would require one thread per data source. Threads use quite a num-
ber of resources, since they need a stack, OS related memory and language
specific support like a garbage collector. For this reason we want to restrict the
number of threads (Req 2). The actual number giving optimal performance
depends on the server’s CPUs.

The most severe problem is that the semantics of the function depends on
operations performed by other threads and their order. We miss a change, if a
write operation to a data source is performed by another thread just before a
call to wait.

5.2 Waiting for Multiple Changes

Waiting for multiple changes allows one thread to wait for more than one source
to change. A function for this could look like this:

wait :: [WaitForSDS] *IWorld → *IWorld

:: WaitForSDS =∃ a: WaitForSDS (SDS a)

This makes it possible to use one thread per process waiting for a change of any
of the data sources the process depends on. This still gives too many threads.

The other extreme is to have only a single thread waiting for any change of
any of the data sources. This has several drawbacks. Such a wait function requires
a list of data sources on which we want to wait. This list can become quite big. It
results in quite some processing to handle the list every time a single data source
changes. Also, to only recompute the process for which this is necessary (Req
2.1), the function has to return which sources have changed. This mechanism
can become quite tricky given the fact that during the handling of a change data
sources can be changed in the meantime. The problem is basically the same as
with the semantics for the wait function waiting for a single SDS to change.
A final problem is that the entire mechanism works in one thread only and is
therefore not scalable.

From this we conclude that waiting functions are not suited to solve the
problem in a way fulfilling our requirements. We need a solution allowing for a
variable number of threads.
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6 Non-Blocking API

To allow for a variable number of threads a non-blocking operation seems more
suited. An option is to have an operation on an SDS allowing to register which
process depends on it. During computation each process registers itself to the
SDS. To avoid unnecessary computation (Req 2.1) a process should to able
to unregister itself again. To make the mechanism generally applicable, for in-
stance for handling network request as well, we use callback messages instead of
registering something specific like process identifiers.

Callback messages can be of any user defined type. In contrast to callback
function commonly used in other languages, message have a more functional-
style solution. They can contain function, but one hast to be explicit about
on which state they work and where they are applied. Additionally, serialising
messages not containing functions and transferring them between threads can
be more efficient than doing the same for arbitrary functions in a functional
language. In the case of iTask for instance it is more efficient to use the identi-
fiers of processes which have to be recomputed as messages than serialising and
transferring a function on *IWorld recomputing a process.

So we can actually use an SDS to register work to be done when the corre-
sponding data source changes. This raises the problem of by whom and in which
context the work is performed. To solve this problem we will introduce a queue
which contains user-defined callback messages. When we register for changes of
a data source we store such a message. When a change happens, we put all call-
back messages of that particular data source into the queue. This queue can be
shared by a variable number of threads, which retrieve the callback messages,
remove them from the queue and execute them. The queue makes it possible to
distribute the work among threads. As soon as a change occurs a new message
is put on the queue and executed before the server may idle (Req 1.1). The
behaviour is visualized in Figure 3.

Fig. 3: Work queue for distribution callback functions to execution thread

There are three perspectives of different components involved. The task im-
plementation has to indicate on which SDSs it depends such that the current
process is re-evaluated when necessary (Section 6.1). The implementation of a
data source has to provide the needed operations to support one of the discussed
ways of detecting changes (Section 6.2). The application environment finally has
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to provide the infrastructure for keeping tracks of the dependencies and queuing
processes which have to be recomputed (Section 6.3).

6.1 The Perspective of a Task Implementation

All high-order function, like the discussed task viewSharedInformation, are imple-
mented using basic functions for reading and writing SDSs. If a process wants
to register a message the following extended read operation is used:

readRegister :: msg (SDS a) *IWorld → (a, *IWorld)

The operation reads the current value from a data source (SDS a) using the envi-
ronment *IWorld. It is crucial that the read operation is performed together with
the registration of the message. It makes sure that the message is evaluated as
soon as the value is changed and does not equal the returned read value any
more. In this way we achieve a clear semantics of the function.

The alternative to seperate reading and registering for changes with different
API calls has the drawback that its semantics is unclear, similar to that of the
discussed blocking functions. Further registering for changes without reading is
of little use, since are virtually no cases in which one wants to wait for a value
to change without knowing the value.

The function readRegister is invoked on all basic sources a SDS is composed of
from left to right. Each basic implementation has to make sure that the callback
message is registered in such a way that no changed value is missed. This is
dicussed later.

6.2 The Perspective of a Basic Data Source Implementation

The implementation of an SDS can choose how to pass the message to the
state. This flexiblity is needed in order to support the different ways of deteting
changes, as discussed. The function for registering a message becomes:

registerSDSMsg :: (CallbackMsg msg) *IWorld → *IWorld

:: CallbackMsg msg = EvalOnNotify BasicShareId msg
| EvalAtTime Timestamp msg
| CheckForChange Timestamp BasicShareId (*IWorld → (CheckRes, *IWorld))

:: CheckRes = Changed | CheckAgain Timestamp

The type CallbackMsg represents possible ways to register messages in order to
enable dealing with the different ways of detecting changes, previously discussed.
The first constructor EvalOnNotify BasicShareId msg represents a message evaluated
when a SDS notifies about a change. This can happen when a write operation
is performed (Change on write), but the implementation of a data source can
implement a custom mechanism for this as well (Notification). To be able to
identify a SDS each one – at least if it reports changes – has a unique identifier.
The write operation or some custom event listener of the SDS then has to inform
the state about a change later. For this the following function can be used:

reportSDSChange :: BasicShareId *IWorld → *IWorld
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CheckForChange can be used to schedule a check whether the value of an SDS
with given identifier has been changed (Polling). For this a function on the
state is used. Data sources which certainly change at a predictable moment
of time (Predicatble change) can register a message to be evaluated with
EvalAtTime Timestamp msg. There is no need to first check if the value has been
changed since it certainly did, therefore the process can be recomputed immedi-
atelly.

This scheme introduces a problem for write operations performed after read
operations. A process would be informed about their own changes, but they are
aware of the latest value they have written. To prevent write operations causing
certain messages to be evaluated, a variable using an additional filter function
is available:

reportSDSChangeFilter :: BasicShareId (msg → Bool) *IWorld → *IWorld

writeFilterMsg :: a (msg → Bool) (SDS a) *IWorld → *IWorld

iTask processes would have to filter out messages being their own identifier.
The basic data source implementation performs basically two operations:

reading the current value and registering for changes. In a concurrent environ-
ment, in the case EvalOnNotify is used, this can lead to missed changed, if the
value changes between reading the value and registering for changes. To prevent
this the basic implementation has to lock the source for write operations during
registration for changes.

6.3 The Perspective of the Server State

The environment *IWorld consequently has to support the discussed function:

registerSDSMsg :: (CallbackMsg msg) *IWorld → *IWorld
reportSDSChange :: BasicShareId *IWorld → *IWorld
reportSDSChangeFilter :: BasicShareId (msg → Bool) *IWorld → *IWorld

It has to provide a mapping from BasicSharedIds to a set of messages for all mes-
sages registered using EvalOnNotify. When reportSDSChange or reportSDSChangeFilter
is called this mapping is used to determine which messages to evaluate. No mes-
sage should however be evalauted twice, since this would be a waste of resources,
so possible references from other SDS to the same message should be removed
when a message is evaluated. In a concurrent environment this mapping has to
be thread safe as well.

For messages triggered by a timestamp it also has to support a queue for
elements to which a timestamp is attached.

7 Related Work

In this paper we touched a number of topics: noticing changes in a reliable way,
notifying user-code about changes and reacting to the changes efficiently. We
only focused on a general solution for the particular domain of web applications
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supporting users to collaborate. Many contributions have been made about no-
tifications for changing data, but they are either dealing with a domain with
different requirements or give solutions for particular implementations.

There are different database systems that support change notifications in
different ways [12, 6, 9, 3]. We showed in this paper how we defined an abstraction
for the change notifications so that change notifications can be implemented
across different data-systems, like databases or files. This is different from the
mentioned works. These explain how to define change notifications specifically
for one database system. These contributions can help to apply our concept of
change notifications to the different databases, since one still has to implement
the specific functionality to make change notifications work for a specific type
of shared data source.

The solution for change notifications that we have shown in this paper is
similar to a messaging-system called publish-subscribe. There are many con-
tributions about this technique [4, 7, 8]. It is used often in distributed systems
where multiple systems want to know when new information is published. These
contributions describe network protocols to distribute messages in a networked
publish-subscribe system. This paper describes how to handle change notifica-
tions, that can be described as messages, on the side of the consumer. The
contributions could be used for implementing such messaging-systems over the
network. Using our abstraction these systems could be used for change notifica-
tions the same way as any other change notification, independent of its source.

Apart from these network protocols, there is also work on how to handle
publish-subscribe mechanisms in general. In [5] filtering method is described.
This method can be used to filter messages in publish-subscribe systems effi-
ciently. In this paper we showed how to subscribe for changes of any data in
data sources. When however we are only interested in parts of the data, like a
section of a text-file, it would be more efficient to only be notified of changes we
are interested in. In such case efficient filtering of notifications is needed. This
work on filtering messages can be helpful to give insight into such problems.

8 Conclusions

We discussed several solutions to the problem of notifying clients of changes
in the context of collaborative web applications which are defined in a task-
oriented way using functional programming techniques. The description of tasks
makes it possible to use different kinds of data sources, but to abstract from
their implementation. Consequently, the notification mechanism should allow to
abstract from the actual implementation of notifications as well. Furthermore,
changes should be propagated as soon as possible and with using as few as
possible server and network resources.

We specified the requirements in more detail and used them to evaluate
and compare different possible solutions. Finally, we proposed a solution which
is a novel interface combining callbacks messages with thread pools in a pure
functional language. This technique fulfils the requirements given by the sketched
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application domain, but we believe it to be generally applicable to a wider range
of application domains.
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Abstract. We introduce the Utrecht Haskell Compiler (UHC) JavaScript
backend; a compiler backend which allows one to cross-compile Haskell to
JavaScript, so it can be run in the browser. To interface with JavaScript
and overcome part of the impedance mismatch between the two lan-
guages, we introduce the Foreign Expression Language; a small subset of
JavaScript for use in Foreign Function Interface (FFI) imports. Finally
we discuss the implementation of a JavaScript application, completely in
Haskell, with which we show that it is now possible to develop JavaScript
applications completely in Haskell.

1 Introduction

When developing interactive web applications, JavaScript is often the language
of choice, due to every major browser supporting it natively. In contrast to other
client-side programming languages, no plugins are needed to execute JavaScript.
Unfortunately, JavaScript is currently the only client-side programming language
that is supported on all major browsers. People wishing to use other program-
ming languages or paradigms have to rely on using existing plugins such as
Flash or Java Applets, writing custom browser plugins, or hacking the browsers
themselves. None of these options are ideal, since they either require a lot of
work, or force the use of strict, imperative languages. Instead of choosing be-
tween the aforementioned options, we use the Utrecht Haskell Compiler (UHC)
[9, 10] to compile Haskell code to JavaScript, effectively turning JavaScript into
a high-level byte-code of some sorts.

In this paper, we introduce the UHC JavaScript backend, a compiler backend
that allows one to compile Haskell to JavaScript, while keeping Haskell’s lazy se-
mantics. To overcome the impedance-mismatch between Haskell and JavaScript,
we have extended UHC’s Foreign Function Interface (FFI) with a small JavaScript-
like expression language we call the Foreign Expression Language (FEL). With
these enhancements to the FFI, we claim that it is now possible to write com-
plete JavaScript applications using only Haskell. We back this claim up by port-
ing a web-based Prolog proof assistant from JavaScript to Haskell. While this
paper focusses on Haskell, the ideas should be relatively easy to implement in
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similar languages. Additionally we provide a library containing bindings to the
JavaScript standard functionality and bindings to several other commonly used
JavaScript libraries.

With this paper, we make the following contributions:

– We introduce the UHC JavaScript backend; a compiler backend that allows
one to compile any Haskell code supported by the UHC to JavaScript and
execute it in the browser, maintaining Haskell’s lazy semantics.

– We introduce the Foreign Expression Language (FEL), which allows for a
more natural way of interfacing with object-oriented languages via the FFI.

– We show that it is now possible to write complete JavaScript applications
using only Haskell.

– We provide a basic library with bindings to common JavaScript APIs.

The rest of this paper is structured as follows: section 2 introduces the UHC
JavaScript runtime system (RTS) and FFI with our addition, after which sec-
tion 4 shows the implementation of a complete JavaScript application in Haskell,
after which sections 5 and 6 discuss future and related work respectively. Finally,
section 7 concludes.

2 Compiling Haskell to JavasScript

2.1 Runtime System

There exists an obvious mismatch between Haskell and Object-Oriented (OO)
languages, which has been addressed in various ways over time (Section 6):

– Mapping the runtime machinery required for Haskell to an imperative lan-
guage has to deal with the lazy evaluation strategy imposed by Haskell (rest
of this section).

– Use of OO language mechanisms as available in JavaScript, in particular
prototype based objects; we only mention this topic in passing.

– Use of available JavaScript libraries; we deal with this in the next section by
exploiting the freedom offered by Haskell’s Foreign Function Interface (FFI)

The design of any backend for a lazy functional languages needs to deal with
functions, their (lazy) application to arguments, and evaluating such applications
to Weak Head Normal Form (WHNF). The design should also cater for under-
and over saturated function applications as well as tail recursion.

In UHC’s JavaScript backend, functions and their applications are both repre-
sented straightforwardly by objects:

Fun.prototype = {
applyN : function (args) . . .
needsNrArgs : function () . . .
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}
function Fun (fun) { . . .}

We omit implementation details and only expose the programmatic interface as
used by the runtime system. The actual implementation can be found in the
UHC git repository[1]. A Fun object wraps a JavaScript function so that it can
be used as a Haskell function. The applyN field is only used when function
applications are being evaluated (forced); only then it is necessary to know the
needsNrArgs number of arguments which must be passed. For the time being
it stays unevaluated as a Fun object wrapped inside an App or AppLT closure
object.

Similarly, partially applied (and thus undersaturated) functions need to store al-
ready passed arguments and how many arguments are still missing. An AppLT
(LT stand for less than) object encodes this and again we provide its program-
matic interface first:

AppLT .prototype = {
applyN : function (args) . . .
needsNrArgs : function () . . .
}
function AppLT (fun, args) { . . .}

An AppLT only wraps other AppLT objects or Fun objects.

Finally, for all remaining saturation cases an App object is used, knowledge
about the degree of saturation is delegated to the encapsulated function object,
which may be another App, AppLT , or Fun.

App.prototype = {
applyN : function (args) . . .
}
function App (fun, args) {. . .}

With this interface we now can embed Haskell functions; for example the function
λx→id(id x ) is, assuming an elementary JavaScript function id is available, by:

new Fun (function (x ) {
return new App (id , [new App (id , [x ])]);
})

Evaluation is forced by a separate function eval which assumes the presence of
an eOrV (evaluator Or Value) field in all Haskell runtime values, which tells
us whether the JavaScript object represents a Haskell non-WHNF value which
needs further evaluation or not; in the former case it will be a JavaScript function
of arity 0, which can be called. A Haskell function or application object does
not evaluate itself since the entailed tail recursion will cause the stack of the
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underlying JavaScript engine to flow over. The separate external function eval
doing the evaluation allows non WHNF values to be returned, thus implementing
a trampoline mechanism:

function eval (x ) {
while (x ∧ x .eOrV ) {
if (typeof x .eOrV == ’function’) {

x = x .eOrV ();
} else {
x = x .eOrV ;

} }
return x ;
}

Even normal JavaScript values can be thrown at eval , provided they do not
(accidentally) contain an eOrV field. The actual eval function is somewhat more
involved as it provides some protection against null values and also updates the
eOrV field for all intermediate non WHNF objects computed in the evaluation
loop.

As usual the evaluation is driven by the need to pattern-match on a value, e.g.
as the result of a case expression or by a built-in JavaScript primitive which is
strict in the corresponding argument such as in the wrapper of the primitive
multiplication function, which contains the actual multiplication (∗):

new Fun (function (a, b) {
return eval (a) ∗ eval (b);
})

Depending on the number of arguments provided, either an undersatured clo-
sure is built, or the function is directly invoked using JavaScripts apply . In case
too many arguments are provided, a JavaScript closure is constructed, which
subsequently is evaluated in the evaluation loop of eval . The implementation of
AppLT is similar to that of Fun. App’s implementation of applyN simply dele-
gates to applyN of the function it applies to. Also omitted are the encodings of
nullary applications, used for unevaluated constants (CAF, Constant Applica-
tive Form) and indirection nodes required for mutual recursive definitions. Data
types and tuples are straightforwardly mapped onto JavaScript objects with
fields for the constructor tag and its fields. If available, record field names of the
corresponding Haskell data type are used.

2.2 The UHC-JavaScript library

We provide a library[28], simply called the UHC-JavaScript library, to streamline
the development of JavaScript applications with UHC. It contains bindings to
standard ECMAScript[12], the formal standard behind JavaScript, as well as
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exp ::= ’{}’ -- Haskell constructor to JS object
| (arg | i) post ∗ -- JS expression

post ::= ’.’ i -- object field
| ’[’ exp ’]’ -- array indexing
| ’(’ args ’)’ -- function call

args ::= ε | arg (, arg)∗ -- possible arguments

arg ::= ’%’ (’*’ | int) -- all arguments, or a specific one
| ’"’ str ’"’ -- literal text

i ::= a valid JavaScript identifier
int ::= any integer
str ::= any string

Fig. 1. Import entity notation for the JS calling convention

bindings to the jQuery library[25]. The library aims to provide a bare-metal
interface that is consistent with the JavaScript functions. Eventually, this library
should form the basis on which more (functional) abstractions are built. We shall
make use of this library in the rest of this paper.

3 JavaScript Foreign Function Interface

We have extended the FFI with the Foreign Expression Language (FEL), a
small language that greatly simplifies interfacing with the JavaScript world from
Haskell. The FEL allows one to number and reorder the function arguments,
explicitly use them as arguments to JavaScript functions, or use them as objects.
Functions in these objects can be called in the FEL by using the dot, just like in
JavaScript. Other features include hardcoding of literals, accessing array indices,
and a built-in mechanism for converting data-types to JavaScript objects. The
new grammar for importing functions is shown in figure 1. Common FFI features,
such as the dynamic and wrapper [17] imports, work as expected, allowing one
to deal with higher-order JavaScript functions.

3.1 Creating, manipulating and querying objects

Being a purely functional programming language, Haskell has no notion of ob-
jects. JavaScript, however, does. Objects come in two flavours: anonymous and
named objects. The former is denoted in JavaScript as { }, while the latter is
created by defining a constructor function of which the name starts with an
uppercase letter, like so: function MyObj () { }. Objects can then be instanti-
ated with the new keyword: new MyObj (). Each function also has a prototype
object. This prototype allows for defining values and functions within the ob-
ject scope. New object instances will automatically have the same values and
functions as the prototype.
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UHC now offers support for creating, manipulating and querying objects, using
several new primitive functions in the runtime-system (RTS). Instead of show-
ing the rather uninteresting function definitions in JavaScript, the code below
shows the Haskell type signatures which need to be used when importing these
primitives with the FFI:

primMkCtor :: JSString→IO ()
primMkObj :: JSString→JSPtr c
primMkAnonObj :: IO (JSPtr c)
primGetAttr :: JSString→JSPtr c→IO a
primSetAttr :: JSString→a→JSPtr c→IO (JSPtr c)
primModAttr :: JSString→(a→b)→JSPtr c→IO (JSPtr c)
primGetProtoAttr :: JSString→JSString→a
primSetProtoAttr :: JSString→a→JSString→IO ()
primModProtoAttr :: JSString→(a→b)→JSString→IO ()

JSString is a type synonym for PackedString , which is used as the type for
JavaScript strings. The primMkCtor function creates a new constructor function
if it does not yet exist in the window scope. This function is usually only called
from within the other functions listed above. The primMkAnonObj function
creates an anonymous object { }, while the primMkObj accepts a string with the
class name of the new object. If the class does not exist yet, it is created using
an empty constructor.

The other functions manipulate objects and prototypes, using a mechanism in-
spired by lenses[20, 15, 18]; an abstraction over accessors and mutators. The first
argument is always the name of the object attribute of interest in the shape of a
string. In case of the set-functions, the second argument is the value that needs
to be set. Since JavaScript is a loosely typed language, this can be any type,
even when interfacing with it from the Haskell world. The mod -functions take as
second parameter a function which modifies the attribute specified in the first
argument. Modifying an attribute can cause it to be of a different type, hence
the a→b type for the function. Finally, the last argument is either a reference to
an object, or the name of a class in the form of a string, in case of prototypes.

These functions can be used by importing them as primitives:

foreign import prim "primGetAttr"

getAttr :: JSString→JSPtr p→IO a

Objects are represented in the UHC-JavaScript libraryl by a JSPtr a type,
which has no constructors, so it can’t be instantiated directly. The only way an
object can be obtained is by getting it via the FFI. A JSPtr a requires one type
argument, which specifies the type of the JavaScript object. This should again
be a type without constructor. Suppose we want a pointer to a Book object, we
could define it as follows:
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data JSPtr a
data BookPtr
type Book = JSPtr BookPtr

We can now define functions on the Book type, giving us a type-safe way to deal
with JavaScript objects. This is similar approach as is often taken in GHC’s C
FFI to deal with pointer types.

We offer the Language.UHC .JS .Primitives module in the UHC-JavaScript li-
brary, which defines primitive imports and abstracts away from JSString . Using
these functions we can now create, manipulate and query an object:

main = do
o ← mkObj "Book"
setAttr "pages" 123 o
modAttr "pages" (+1) o
p ← getAttr "pages" o
print p -- Prints 124

While defining objects as shown in the previous example works fine, the process
is rather verbose and tedious, especially when dealing with several object at-
tributes. It would therefore be ideal if we could use Haskell datatypes to achieve
the same results. In some ways, datatypes and JavaScript objects have a lot in
common, especially when the datatype has record selectors. Suppose we have a
simple Book type in Haskell:

data Book
= Book
{ author :: JSString
, title :: JSString
, pages :: Int
}

A concrete Book value would look as follows:

myBook
= Book
{ author = toJS "me"

, title = toJS "story"

, pages = 123
}

The representation of myBook closely resembles an object with the same data
in JavaScript:

myBook

=
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{ author : "me"

, title : "story"

, pages : 123

}

In fact, a JavaScript object very similar to the one shown above is already being
generated by the UHC. However, since it is generated as an application of a
constructor to some values, the generated datatype values are not directly usable
in other JavaScript libraries. We require a mechanism to convert the Haskell
representation of the datatype into a JavaScript representation. This idea is
similar to that of the FFI’s wrapper import feature. Using a similar mechanism
to the wrapper, we can make Haskell datatypes available as JavaScript objects.
This mechanism is exposed via de FEL, simply as { }:

foreign import jscript "{}"
mkObj :: a→IO (JSPtr b)

It takes a datatype a and converts it to a plain JavaScript object, resulting in a
pointer to the new object. If the datatype contains record selectors, they will be
used as the object’s indices. When no record selectors are available, an integer
is used instead.

Creating the object is achieved by recursively evaluating and cloning the data
inside the datatype to a new, empty object, disposing of RTS-specific information
in the process. Using the object wrapper, we can simplify our example from
before:

main = do
let b′ = myBook {pages = pages myBook + 1}
b ← mkObj b′

p ← getAttr "pages" b
print p -- Prints 124

Note that even though this example is only one line shorter, we also have the two
strings available in our JavaScript object, which would haven taken two more
lines in the original example. More importantly, Haskell’s type system is in a
much better position to catch programmer mistakes, since record selectors are
used in the modification of the pages value instead of strings.

3.2 Pure objects

Objects in JavaScript are mutable by nature. By modifying an object, you modify
it for everything that has a pointer to that particular object. This forces any
update operation to be defined in IO . In order to escape the IO monad, update
operations need to become non-destructive, which is achieved by creating a copy
of an object before modifying it. The RTS exports a primitive to do just this:
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primClone :: JSPtr a→JSPtr a

By cloning an object first, all pointers to the original object remain untouched
when modifying the clone. This enables pure variants of the primSetAttr and
primModAttr functions:

primPureSetAttr :: JSString→a→JSPtr c→JSPtr c
primPureModAttr :: JSString→(a→b)→JSPtr c→JSPtr c

Since a potentially large tree of objects will be cloned by these pure functions,
they should be used with care. The cloning method used is a modification of the
cloning method used by jQuery[25].

4 The JCU Application

To explore the limitations, and to demonstrate the features of the UHC JavaScript
back-end in a real-life scenario, we ported the ‘JCU Prolog Proof Assistant’[30],
a web application developed to aid in teaching[27] Prolog at the Junior College
Utrecht. It is a tool developed for students to learn about important concepts in
computer science, such as proofs, trees, unification, and backtracking, by means
of proving Prolog queries manually. Students enter a Prolog query, after which
they are tasked with constructing a proof by dragging and dropping Prolog rules
and facts, and by applying substitutions manually throughout the proof tree.

The application was originally programmed in coffeescript [7], a layer of syn-
tactic sugar for JavaScript, and used the Brunch [21] framework. In the original
implementation, all Prolog logic was implemented server-side in Haskell, using
the NanoProlog[29] library.

We rewrote the application in Haskell using the UHC and the UHC-JavaScript
library. We also use jQuery for interacting with the DOM and the jQuery
AjaxQueue[24] plugin for sequential non-blocking communication with the server.
The resulting application has the same functionality as the original implementa-
tion and appears to be at least as stable, although this has only been manually
tested. As is expected of applications that interact heavily with a graphical user
interface, a large part of the application’s code lives in the IO monad.

With the ability to compile Haskell to JavaScript comes the possibility of running
any Haskell library that compiles on the UHC in the browser, without modifi-
cation. We use this feature in the JCU web application to run the NanoProlog
library in the browser, allowing us to perform proof checking and unification
client-side, eliminating the need for many AJAX requests.

4.1 Implementation Issues

Most of the problems we encountered in porting the JCU application to Haskell
were due to the lack of advanced language features in UHC, such as functional
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dependencies and type families, amongst others. Practically, this implies that
only part of the libraries available on Hackage today can currently be compiled
to JavaScript using the UHC JavaScript back-end.

Another issue arises from JavaScript’s scoping rules. In JavaScript, the keyword
this is dynamically scoped while all other variables are lexically scoped. Since we
emulate lazy evaluation by native JavaScript functions encapsulated by objects,
the this keyword can in some cases point to the runtime system, rather than
the expected scope, exposing the runtime system to the programmer. Simply
importing this as a function using the FFI is not an option then.

A common use-case of when this might happen is when an imported JavaScript
library expects the programmer to make use of the this keyword in a callback
function. The jQuery library, for example, expects event callbacks to get the
active DOM-node using the this keyword. One way to still get a reference to the
expected object when using this is to create a wrapper function that captures
the expected scope and passes it to the wrapped function as explicit argument.
We have implemented this solution in the wrappedThis function, which is part
of our RTS.

Figure 2 shows how the wrappedThis function can be used to obtain the value
of an HTML input field. valString is a function that gets the value of a jQuery
object as a String , while alert shows an alert box containing the provided mes-
sage. We query the DOM using jQuery, retrieving all input elements, such as
text fields, in the DOM. We define a function alertHndlr that takes the string
value of a jQuery object and then shows it in an alert box. Note the explicit this
parameter. We then wrap it so it becomes a JavaScript function, after which we
partially apply it to an explicit this parameter using wrappedThis. Finally, we
bind the event handler to all input fields retrieved by our jQuery selector.

A last example of implementation difficulties is found in the lack of threading
support in our current implementation. In addition to the web-based proof ex-
erciser, we offer a web-based user interface to NanoProlog’s interpreter. In some
cases, the interpreter can get stuck in an infinite recursion when trying to unify
a rule. For example, trying to proof the query silly (X ), where silly is defined
as silly (X ) ` silly (X ). will never terminate. Originally, we spawned a new
thread on the server, which we would terminate after a given amount of time.
Our current approach, however, does not yet offer threading, risking blocking
the client-side process causing a tab or the whole browser to hang. JavaScript’s
WebWorkers might provide a solution to this problem, although we have yet to
investigate this option. Another solution would be to change the implementation
to limit it’s recursion depth.

4.2 Performance

In general, the performance of the web application is on par with the original
implementation in JavaScript, but only when using a state of the art JavaScript
engine, as is found in Google Chrome or Safari. The biggest bottleneck seems to
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data JQueryPtr
type JQuery = JSPtr JQueryPtr

foreign import js "%1.bind(%*)"

bind :: JQuery→JSString→JEventHandler→IO ()

type ThisEventHandler = JQuery→JQuery→JEventResult
type JEventHandler = JSFunPtr (JQuery→JEventResult)
type JThisEventHandler = JSFunPtr ThisEventHandler

valString :: JQuery→IO String
mkJThisEventHandler :: ThisEventHandler→IO JThisEventHandler

foreign import js "wrappedThis(%1)"

wrappedThis :: JThisEventHandler→IO JEventHandler

bindInput = do
let alertHndlr :: ThisEventHandler

alertHndlr this = valString this>>= alert
inputField ← jQuery "input"

eh ← mkJThisEventHandler alertHndlr >>= wrappedThis
bind inputField (toJS "blur") eh

Fig. 2. Code for adding an event handler to an input field

be memory management. Building up lazy Haskell expressions leads to a large
amount of JavaScript objects. The quick creation and then successive destruction
of these large expressions places a strain on the memory manager and garbage
collector. Other popular browsers, such as Firefox, Opera, and Internet Explorer,
perform significantly worse than the aforementioned browsers, although this has
only been tested informally.

5 Future Work

While we have shown that it already is possible to implement an entire JavaScript
application in Haskell, there is still a lot of room for improvement. As mentioned
before, the UHC itself lacks support for the more advanced Haskell features. Im-
plementing these in the UHC would go a long way to making the UHC JavaScript
back-end a true alternative to JavaScript.

Our current UHC-JavaScript library relies on the programmer to use imported
functions correctly. The object-wrapper import, for example, will currently try
to wrap anything, possibly failing at runtime. Extra constraints could be added,
although the RTS cannot currently deal with them. Eventually, one could image
a higher-level library being built on top of the low-level imports to provide
improved type-safety. Such libraries may be based on generic programming to
eliminate repetition, function reactive programming[13, 31, 6] to interact with
the DOM, or they may be an entire user-interface toolkit, such as wxHaskell[19].
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Working with WebWorkers as an alternative to Haskell threads is currently not
investigated yet. Our JCU application would become significantly more usable
with a threading alternative.

Communication with the server is currently encoded manually, possibly using
existing libraries, like jQuery. One could imagine an approach inspired by Cloud
Haskell’s[14] typed channels, where communication proceeds over type-safe com-
munication channels, abstracting away from the actual AJAX call.

Currently the only way of converting a datatype to a JavaScript object is to do
so at runtime. This, however, is a process with time complexity linear in the
number of datatype records. Future work could focus on generating (parts of)
JavaScript objects at compile-time, so that only dynamic values will need to be
copied to the object at runtime.

Targeting Haskell to a different platform means that some assumptions following
from using a single platform only are no longer valid. First, a different platform
means a different runtime environment. Almost all of the UNIX functionality is
available for the usual Haskell UNIX runtime, but is naturally not available inside
a web browser and, vice verse, specific JavaScript libraries like jQuery are not
available on a UNIX platform. Some library modules of a package (partially)
cannot be build on some platforms, while others (partially) can. To cater for
this, UHC rather ad-hoc marks modules to be unavailable for a backend by a
pragma {-# EXCLUDE_IF_TARGET js #-}. Of course cpp can still be used to
select functionality inside a module. However, in general, awareness of platform
permeates all aspects of a language system, from the compiler itself to the library
build system like Cabal .

In particular, Cabal needs a specification mechanism for such variation in target
and platform to allow for selective compilation of a collection of variants. Cur-
rently this means that UHC compilation for the JavaScript backend cannot be
done through Cabal .

A second aspect has more to do with the evolution of Haskell as an ecosys-
tem. Many libraries go far beyond the Haskell standard by making use of GHC
extensions. Currently, such libraries evolve to use type families, a feature not
yet available in UHC. For (non GHC) Haskell compiler writers to keep with
this pace of evolution poses a considerable challenge; yet in our opinion there
is value in the availability of compiler alternatives as well as variation in what
those compilers are good at.

Currently, we generate JavaScript from the compiler’s core language. It might be
possible to generate faster code which uses native JavaScript language features
when generating JavaScript at a later stage in the compiler pipeline, where the
intermediate code is more imperative in nature.
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6 Related work

The idea of running Haskell in a browser is not new. To our knowledge first
attempts to do so using JavaScript were done in the context of the York Haskell
Compiler (YHC) [3]. The Document Object Model (DOM) inside a browser was
accessed via wrapper code generated from HTML standard definitions [2]. How-
ever, YHC is no longer maintained and direct interfacing to the DOM nowadays
is replaced by libraries built on top of the multiple DOM variations.

The idea of running functional programs in a browser even goes further back to
the availability of Java applets. The workflow framework iTasks, built on top of
the Clean system [5], uses a minimal platform independent functional language,
SAPL, which is interpreted in the browser by code written in Java. The latest
interpreter incarnations are written in JavaScript [16, 8, 23]. Although currently
a Haskell front-end exists for Clean, the use of it in a browser seems to be tied
up to the iTasks system. The intermediate language SAPL also does not provide
the facilities as provided by our Haskell FFI.

Of the GHC a version exists which generates JavaScript [22], based on the GHC
API, supporting the use of primitives but not the FFI. Further down we elaborate
on some consequences of multiple platforms and backends relevant for this GHC
backend variant as well.

Both “Functional javascript” [26] and “Haskell in Javascript” [4] do not use a
separate Haskell compiler. Instead, JavaScript is used directly in a functional
style, respectively a small compiler for a subset of Haskell has been written in
JavaScript.

A more recent attempt at cross-compiling Haskell to JavaScript it the Fay lan-
guage[11], which aims to support a subset of Haskell. It shows promise, and even
draws some inspiration from the work we present here, namely the FEL.

7 Conclusion

We have shown that the UHC is capable of supporting the development of com-
plete client-side web applications. This opens the door to Haskell-only web de-
velopment. In the process we added the FEL to UHC and provided a library
that exposes the JavaScript world to Haskell.

Better abstractions are still required to reduce the amount of code that lives
in the IO monad directly, and to give programming with the UHC JavaScript
backend a more functional feel. While in most cases performance is acceptable,
it needs to be improved if computationally heavy functions are to be run on the
client. In order for most of the frequently used Hackage libraries to be run on
the client, UHC and Cabal will need some more work as well.
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29. Doaitse Swierstra and Jurriën Stutterheim. Nanoprolog package.
http://hackage.haskell.org/package/NanoProlog.

30. Wouter Swierstra, S. Doaitse Swierstra, and Jurriën Stutterheim. Logisch en
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Abstract. Functional Reactive Programming is a promising class of
systems for writing interactive and time-dependent programs. Signal-
function FRP is a subclass of these systems which provides advantages
of modularity and correctness, but has proven difficult to efficiently im-
plement.
The abstraction of signal vectors provides the necessary type apparatus
to distinguish components of the input and output of signal functions
which benefit from a push-based implementation from those which ben-
efit from a pull-based implementation, and to combine both implemen-
tation strategies in a single system.
We describe a signal-function FRP system which provides push-based
evaluation for events, pull-based evaluation for signals, and a simple
monadic evaluation interface which permits the system to be easily in-
tegrated with one or more IO systems.

1 Introduction

Functional Reactive Programming (FRP) is a class of systems for describing
reactive programs. Reactive programs are programs which, rather than taking
a single input and producing a single output, must accept multiple inputs and
alter temporal behavior, including the production of multiple outputs, based on
these inputs.

An FRP system will provide a means of manipulating behaviors and events.
Behaviors are often referred to as signals in FRP literature, but the definition
is the same. A behavior or signal is, semantically, a function from time to a
value. An event is a discrete, possibly infinite, and time-ordered sequence of
occurrences, which are times paired with values.

FRP systems can generally be categorized as “classic FRP,” which corre-
sponds to the originally described FRP system in that behaviors and events are
manipulated directly and are first-class values in the FRP system, or “signal-
function FRP,” in which behaviors (generally termed signals in this approach)
and events are not first-class values, but signal functions are first class values.
Signal functions are time-dependent and reactive transformers of signals, events,
or combinations of signals and events.

FRP combines behaviors and events through the use of switching, in which
a behavior (in classic FRP) or a signal function (in signal-function FRP) is
replaced by a new behavior or signal function carried by an event occurrence.
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Classic FRP was first described as an system for interactive animations [1].
Recent work on classic FRP has focused on efficient implementation. Reactive is
a system for push-pull FRP [2]. Push-based evaluation evaluates a system only
when input is available, and is thus suitable for discrete inputs such as events.
Pull-based evaluation evaluates the system as quickly as possible, polling for
input, and is preferable for behaviors and signals. The initial implementations of
FRP made use of pull-based evaluation for both behaviors and events. Reactive,
as well as more recent systems such as “reactive-banana” [3], make use of push-
based evaluation for events and pull-based evaluation for behaviors.

All implementations of signal-function FRP to date [4–7] have used pull-
based evaluation. This is due to the ease of implementation of pull-based evalu-
ation, and the types used for signal functions which do not permit distinguishing
signals and events, or constructing only part of the input (for instance, one event
occurrence.)

A recent extension of signal-function FRP called N-Ary FRP [7] describes a
method of typing signal functions which, as we will show, enables the push-based
evaluation of events in a signal-function FRP system. The notion of signal vectors
allows the representation of signal function inputs and outputs as combinations
of signals and events, rather than a single signal which may contain multiple
values, including option values for events. Signal vectors are uninhabited types,
which can be used to type partial or full representations of the signal function
inputs and outputs.

We present TimeFlies,1 a push-pull signal-function FRP system. We hope to
demonstrate the feasibility of such an approach to FRP, and provide a basis for
further research into efficient implementation of signal-function FRP. We also
describe a powerful evaluation interface for TimeFlies, which permits us to use
TimeFlies to describe applications which make use of multiple and differing IO
libraries.

Section 2 describes design choices for the system, and provides an overview
of the interface. Section 3 describes how the system is implemented, and how
the separation of evaluation between events and signals is achieved. Section 4
is a discussion of the usefulness of our implementation. Section 5 describes the
current and future work on this system. Section 6 gives an overview of related
efforts. Section 7 concludes.

2 System Design

Our goal is to produce a composable and efficient FRP system. Signal function
FRP has an advantage in terms of composability, because it permits the con-
struction of self-contained objects through both input and output composition,
rather than purely through output composition as in classic FRP. Signal-function

1 The sentence “Time flies like an arrow.” is a favorite quotation of one of the author’s
philosophy instructors, used to demonstrate the ambiguity of language. The origin
of the quotation is unknown.
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data SVEmpty

data SVSignal a

data SVEvent a

data SVAppend svLeft svRight

Fig. 1. Signal vectors.

FRP also avoids problematic properties common to classic FRP systems such as
a large class of time and space leaks [8].

Efficient implementations of signal-function FRP have been approached through
runtime optimization [6], but all implementations have been pull-based for both
signals and events. A truly efficient implementation will likely combine run-time
optimization with push-based evaluation for events.

The concept of N-Ary FRP was to encode additional safety properties into the
types of a signal-function FRP system [7]. This system introduced the concept
of signal vectors as input and output types for signal functions. Signal vectors
are combinations of signals and events. In N-Ary FRP, signal functions are rep-
resented at the type level, and type-level functions (type families in Haskell) are
used to specify the representations of signal functions.

In our system, we construct representations of signal vectors using Gener-
alized Algebraic Datatypes [9, 10]. The use of GADTs enables us to use signal
vectors to instantiate type parameters in the types of signal vector represen-
tations, as well as in the types of signal functions. GADTs are available as an
extension in the Glasgow Haskell Compiler [11].

This approach permits us to construct partial inputs and outputs for signal
functions. For instance, we can construct a representation for a single event in a
signal vector, and another representation of updated values for a subset of the
signals in the signal vector, and yet another carrying values for all signals in a
signal vector. The signal vector types are shown in Figure 1.

With the ability to construct partial representations of signal vectors, we can
represent signal functions with a datatype carrying multiple functions, one for
each type of input. This allows us to separate the pull-based processing of signals
from the push-based reaction to events.

The exposed interface is a set of combinators for constructing signal func-
tions, as well as combinators for describing the evaluation of a signal function.
The interface is shown in Fig. 2.

Signal functions are produced by combining primitive signal functions using
the >>> (sequential composition), first, and second routing combinators. Other
routing signal functions are provided, but they are intended to be combined with,
rather than to modify, other signal functions.

2.1 Examples of Signal Function Primitives

The most basic signal is the identity signal function, which, as its name sug-
gests, simply passes its input to its output.
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-- Signal Functions

type :~> svIn svOut

-- Infix type alias for SVAppend

type :^: svLeft svRight = SVAppend svLeft svRight

-- Basic signal functions

identity :: sv :~> sv

constant :: a -> SVEmpty :~> SVSignal a

never :: SVEmpty :~> SVEvent a

asap :: a -> SVEmpty :~> SVEvent a

after :: Double -> a -> SVEmpty :~> SVEvent a

-- Lifting pure functions

pureSignalTransformer :: (a -> b) -> SVSignal a :~> SVSignal a

pureEventTransformer :: (a -> b) -> SVEvent a :~> SVEvent a

-- Composition and routing

(>>>) :: (svIn :~> svMiddle) -> (svMiddle :~> svOut)

-> (svIn :~> svOut)

first :: (svIn :~> svOut) -> (svIn :^: sv) :~> (svOut :^: sv)

second :: (svIn :~> svOut) -> (sv :^: svIn) :~> (sv :^: svOut)

swap :: (svLeft :^: svRight) :~> (svRight :^: svLeft)

copy :: sv :~> (sv :^: sv)

ignore :: sv :~> SVEmpty

cancelLeft :: (SVEmpty :^: sv) :~> sv

cancelRight :: (sv :^: SVEmpty) :~> sv

uncancelLeft :: sv :~> (SVEmpty :^: sv)

uncancelRight :: sv :~> (sv :^: SVEmpty)

associate :: ((sv1 :^: sv2) :^: sv3) :~> (sv1 :^: (sv2 :^: sv3))

unassociate :: (sv1 :^: (sv2 :^: sv3)) :~> ((sv1 :^: sv2) :^: sv3)

-- Reactivity

switch :: (svIn :~> (svOut :^: SVEvent (svIn :~> svOut)))

-> svIn :~> svOut

-- Feedback

loop :: ((svIn :^: svLoop) :~> (svOut :^: svLoop)) -> svIn :~> svOut

-- Time dependence

time :: SVEmpty :~> Double

delay :: Double -> (SVEvent a :^: SVEvent Double) :~> SVEvent a

class TimeIntegrate

-- Joining

union :: (SVEvent a :^: SVEvent a) :~> SVEvent a

combineSignals :: (a -> b -> c)

-> (SVSignal a :^: SVSignal b) :~> SVSignal c

capture :: (SVSignal a :^: SVEvent b) :~> SVEvent a

-- Events

filter :: (a -> Maybe b) -> SVEvent a :~> SVEvent b

Fig. 2. Signal function interface.
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The constant signal function has an empty input, and produces a constant
signal as its output.

The asap signal function produces an event at the first time interval after it
begins, and never again.

The filter signal function applies a predicate to the values of event oc-
currences and passes them along only if the predicate is true of the value. The
predicate outputs Maybe values to allow the user to avoid partial functions on
types such as Maybe or Either.

The associate signal function is a routing function, which takes as input a
combination of three signal vectors to which the signal vector append constructor
is combined left-associatively, and produce the same signal vector as output, but
with the signal vector append constructor combined right-associatively.

The switch function is the essential signal function for reactivity. It acts
as the supplied signal function until that signal function produces an event on
its right output. This event’s value is a new signal function, which replaces the
switch signal function.

The loop function permits a signal function to receive its own output as an
input.

Implementations for these examples will be discussed in Sec. 3.3.

2.2 Evaluation Interface

The evaluation interface provides a monad [12, 13] for specifying input to signal
functions and handling their output. This interface also allows input actions to
be separated from output actions, and from each other, so that a signal function
may receive input from multiple IO systems and have its output handled by
multiple output systems.

The evaluation interfaceis a monad transformer [14]. This allows a signal
function evaluation to be constructed from primitive evaluation actions (event
pushing, input signal updating, and sampling) as well as actions from the under-
lying monad. These actions can then be run in the underlying monad to actuate
the signal function. Because the actuation takes a signal function’s state as input
and produces a new state as output, in addition to the monadic side effects of
handling the signal function’s output, different evaluation actions may be taken
on the same signal function from distinct locations within an application’s code.
This allows the evaluation interface to be easily integrated with event-loop style
systems as well as traditional imperative IO systems.

The evaluation interface consists of the monad transformer type, functions for
constructing event inputs, initial input signal samples, and input signal updates,
functions for constructing the vector of output handlers for a signal function,
and evaluation actions. The full interface is shown in Fig. 3.
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-- Input helpers

class SVRoutable -- Instances: SVSignalUpdate,

-- SVEventOccurrence

svLeft :: (SVRoutable r) =>

r svLeft -> r (SVAppend svLeft svRight)

svRight :: (SVRoutable r) =>

r svRight -> r (SVAppend svLeft svRight)

-- Signal inputs

data SVSignalUpdate

data SVSample

sample :: a -> SVSample (SVSignal a)

sampleEvt :: SVSample (SVEvent a)

sampleNothing :: SVSample SVEmpty

combineSamples :: SVSample svLeft -> svSample svRight

-> svSample (svLeft :^: svRight)

svSig :: a -> SVSignalUpdate (SVSignal a)

-- Event inputs

data SVEventInput

svOcc :: a -> SVEventInput (SVEvent a)

-- Actuation

update :: (Monad m) => SVSignalUpdate svIn

-> SFEvalT svIn svOut m ()

push :: (Monad m) => SVEventInput svIn

-> SFEvalT svIn svOut m ()

sample :: SVEvalT svIn svOut m ()

-- Running

data SVHandler

emptyHandler :: SVHandler m SVEmpty

eventHandler :: (a -> m ())

-> SVHandler m (SVEvent a)

signalHandler :: (a -> m ())

-> SVHandler m (SVSignal a)

combineHandlers :: SVHandler m svLeft

-> SVHandler m svRight

-> SVHandler m (svLeft :^: svRight)

initSFEvalT :: SVHandler m svOut -> SVSample svIn

-> Double ->(svIn :~> svOut)

-> SFEvalState m svIn svOut

runSFEvalT :: SFEvalT svIn svOut m a

-> SFEvalState m svIn svOut

-> m a

Fig. 3. Evaluation interface.
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data SVSample sv where

SVSample :: a -> SVSample (SVSignal a)

SVSampleEvt :: SVSample (SVEvent a)

SVNothing :: SVSample SVEmpty

SVBoth :: SVSample svLeft -> SVSample svRight

-> SVSample (svLeft :^: svRight)

sample :: a -> SVSample a

sampleEvt :: SVSample (SVEvent a)

sampleNothing :: SVSample SVEmpty

combineSamples :: SVSample svLeft -> SVSample svRight

-> SVSample (svLeft :^: svRight)

splitSample :: SVSample (svLeft :^: svRight)

-> (SVSample svLeft, svSample svRight)

sampleValue :: SVSample (SVSignal a) -> a

Fig. 4. Signal sample representation.

3 Implementation

We now turn our attention to the implementation of the signal function system.
We will discuss representations of inputs, outputs, and signal functions, as well
as the implementations of specific signal function combinators.

3.1 Input and Output Representations

As discussed in Section 2, our implementation requires representations of the in-
puts and outputs of signal functions. Since signal functions are typed using signal
vectors, the representation types must be parameterized over signal vectors. But
signal vectors are uninhabited types, and in ordinary Haskell we cannot declare
a data constructor which uses a component of a type parameter. Further, we
cannot restrict which types may instantiate a type parameter for a particular
data constructor.

GADTs lift these restrictions, permitting type constraints to be applied to
individual data constructors. In the declaration of a GADT, a type signature
is provided for each data constructor, including the types of the constructor’s
parameters. When a GADT is pattern-matched, the types of the parameters
are inferred using the constraints given in this signature. This is called type
refinement.

Using GADTs, we can construct representations of signal vectors to use in
our implementation. The first such representation carries a value for each signal
component of a signal vector, and is shown in Figure 4.

A value of this type represents the entire vector, though it has nullary con-
structors at event leaves and empty leaves. For event occurrences, we want to
represent only a single point in the vector, as shown in Figure 5. This represen-
tation uses two constructors, each of which leaves one or the other of the type
variables in the signal vector SVAppend constructor unconstrained.
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data SVOccurrence sv where

SVOccurrence :: a -> SVOccurrence (SVEvent a)

SVOccLeft :: SVOccurrence svLeft

-> SVOccurrence (svLeft :^: svRight)

SVOccRight :: SVOccurrence svRight

-> SVOccurrence (svLeft :^: svRight)

occurrence :: a -> SVOccurrence (SVEvent a)

occLeft :: SVOccurrence svLeft

-> SVOccurrence (svLeft :^: svRight)

occRight :: SVOccurrence svRight

-> SVOccurrence (svLeft :^: svRight)

chooseOccurrences :: SVOccurrence (svLeft :^: svRight)

-> Either (SVOccurrence svLeft) (SVOccurrence svRight)

fromOccurrence :: SVOccurrence (SVEvent a) -> a

Fig. 5. Event occurrence representation.

data SVDelta sv where

SVDelta :: a -> SVDelta (SVSignal a)

SVDeltaNothing :: SVDelta sv

SVDeltaBoth :: SVDelta svLeft -> SVDelta svRight

-> SVDelta (svLeft :^: svRight)

delta :: a -> SVDelta (SVSignal a)

deltaNothing :: SVDelta sv

combineDeltas :: SVDelta svLeft -> SVDelta svRight

-> SVDelta (svLeft :^: svRight)

updateSample :: SVDelta sv -> SVSample sv -> SVSample sv

Fig. 6. Signal delta representation.

The final representation “signal deltas,” carries replacement values for some
points in a signal vector. Here, we combine the unconstrained type variable
from the occurrence representation with the “Both” constructor from the sample
representation. The unconstrained type variable will be placed in a separate
constructor, which allows the construction of empty signal deltas, as is shown in
Figure 6.

3.2 Signal Function Representations

With representations for signal function inputs and outputs in place, we turn to
the representation of signal functions. A signal function must be able to respond
to time increments and new signal samples, as well as event occurrences. Since we
wish to be able to “push” event occurrences independently of sampling, events
are handled using the last-updated time and signal sample.

When a signal function is asked to respond to either of these types of inputs,
it must produce an output consisting of zero or more event occurrences, a new
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data Initialized

data NonInitialized

type :~> svIn svOut = SF NonInitialized svIn svOut

data SF init svIn svOut where

SF :: (SVSample svIn -> (SVSample svOut, SF Initialized svIn svOut))

-> SF NonInitialized svIn svOut

SFInit :: (Double -> SVDelta svIn

-> (SVDelta svOut, [SVOccurrence svOut],

SF Initialized svIn svOut))

-> (SVOccurrence svIn -> ([SVOccurrence svOut],

SF Initialized svIn svOut))

-> SF Initialized svIn svOut

Fig. 7. Signal function representation

signal function with the same type (to enable reactivity and state), and, if it is
responding to a time and sample update, a delta which represents updates to
the sample of its output signals.

Finally, there is a special case for a signal function at time 0. It must be
provided with an initial input sample before it can respond to incremental time
and sample updates or to event occurrences.

Signal functions are represented as a datatype with two constructors. The
first constructor wraps a function from an input sample to an output sample
and an initialized signal function. The second wraps two functions. The first
accepts a time delta and a signal delta, and produces a signal delta, a list of
event occurrences, and a new signal function as the output. The second accepts
an event occurrence and produces a list of event occurrences and a new signal
function as the output. The signal function representation is shown in Figure 7.

This representation allows a signal function to respond to events and time
updates separately, and does not enforce the representation of events during time
updates, as previous signal function systems do.

3.3 Signal Function Implementations

Now that we have established representations for signal functions and their in-
puts and outputs, we show several examples of how signal function combinators
are implemented.

The identity signal function’s initialization function takes a sample, and
returns that sample as its output sample. The initialized function returned is
the identityInit function, which is not exported by the module. The time
and sample function ignores the provided time delta, produces the input signal
delta as the output signal delta, and returns identityInit as the new signal
function. The event function takes an event occurrence and returns a singleton
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identity :: sv :~> sv

identity = SF (\sample -> (sample, identityInit))

identityInit :: SF Initialized sv sv

identityInit = SFInit (\_ delta -> (delta, [], identityInit))

(\occ -> ([occ], identityInit))

Fig. 8. identity signal function implementation.

list containing that occurrence, along with the identityInit function as the
replacement signal function. The implementation is shown in Figure 8.

The constant signal function is initialized with a value, which it then pro-
duces as its output forever. Thus, the initialized version of constant never pro-
duces any output other than itself as a replacement signal function, and an
empty signal delta. The implementation of constant is shown in Fig. 9.

constant :: a -> SVEmpty :~> SVSignal a

constant x = SF (\_ -> (constantInit, sample x))

constantInit :: SF Initialized SVEmpty (SVSignal a)

constantInit = SFInit (\_ _ -> (deltaNothing, [], constantInit))

(\_ -> ([], constantInit))

Fig. 9. constant signal function implementation.

The asap signal function implementation requires a parameter for the initial-
ized version of the signal function, to specify the value of the event occurrence.
It replaces itself with the initialized version of the never signal function after
the first time step. The implementation is shown in Fig. 10.

asap :: a -> SVEmpty :~> SVEvent a

asap x = SF (\_ -> (sampleEvt, asapInit x))

asapInit :: a -> SF Initialized SVEmpty (SVEvent a)

asapInit x = SFInit (\_ _ -> (deltaNothing, [occurrence x], neverInit))

(\_ -> (never))

Fig. 10. asap signal function implementation.

The filter function accepts events, applies a Maybe predicate to their values,
and produces the value produced by the predicate as an event occurrence, or
no occurrence if the value is Nothing. It is implemented by having the event
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filter :: (a -> Maybe b) -> SVEvent a :~> SVEvent b

filter p = SF (\_ -> (sampleEvt, filterInit p))

filterInit :: (a -> Maybe b) -> SF Initialized (SVEvent a) (SVEvent b)

filterInit p = SFInit (\_ _ -> (deltaNothing, [], filterInit p))

(\evtOcc -> (maybe [] ((:[]) . occurrence) $

fromOccurrence evtOcc,

filterInit p))

Fig. 11. filter signal function implementation.

occurrence response function apply the maybe function from the Haskell prelude
to the value returned by the predicate, as shown in Fig. 11

The associate signal function is a routing signal function. It transforms
a signal vector which is left-associated at the top level to one that is right-
associated at the top level. Its implementation is representative of all of the
routing functions, and is shown in Fig. 12.

The switch function is the basic combinator used to introduce reactivity. It
is given a signal function whose output is the append of two signal vectors. The
left side of the signal vector is passed on as the output of the reactive signal
function, and the right side is an event carrying signal functions. When an event
occurrence is present on the right-side event output, the signal function carried
by this occurrence replaces the signal function constructed by switch. Due to
space concerns, the implementation is elided, but a brief description will suffice.
The signal function stores the input sample provided during initialization, and
updates it with deltas. When an event occurrence carrying a signal function is
produced by either the event or time function of the wrapped signal function, the
stored signal sample is used to initialize the new signal function. If this occurs
while handling an event input, the sample output by the new signal function’s
initialization is stored and is combined with its first output delta to produce the
output delta at the next time step.

The loop function allows a signal function to see a component of its own
output as input. This is primarily useful when a signal function has components
which mutually depend on each others outputs, such as in physics simulations
or games. Care must be taken that the feedback output is not immediately
dependent on the feedback input, or sampling the signal function will not termi-
nate. Loop is implemented by generating a recursive list (which will be infinite
if the feedback is not decoupled) of event inputs, and by splitting the output
signal delta and using the right side output delta as the right side input delta
within a recursive let-binding. (The let-binding in Haskell always admits re-
cursive bindings.) If the system is not completely decoupled, this will result in
non-termination during an evaluation step. Decoupling can be achieved using
delay primitive.
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associate :: SVAppend (SVAppend sv1 sv2) sv3

:~> SVAppend sv1 (SVAppend sv2 sv3)

associate =

SF (\sigSample -> let (sigSampleLeft, sigSampleRight) =

splitSample sigSample

(sigSampleLeftLeft, sigSampleLeftRight) =

splitSample sigSampleLeft

in (combineSamples sigSampleLeftLeft

(combineSamples sigSampleLeftRight sigSampleRight),

associateInit))

associateInit :: SF Initialized (SVAppend (SVAppend sv1 sv2) sv3)

(SVAppend sv1 (SVAppend sv2 sv3))

associateInit = SFInit (\_ sigDelta -> let (sigDeltaLeft, sigDeltaRight) =

splitDelta sigDelta

(sigDeltaLeftLeft,

sigDeltaLeftRight) =

splitDelta sigDeltaLeft

in (combineDeltas sigDeltaLeftLeft

(combineDeltas sigDeltaLeftRight

sigDeltaRight),

[], associateInit))

(\evtOcc -> (case chooseOccurrence evtOcc of

Left leftOcc ->

case chooseOccurrence leftOcc of

Left leftLeftOcc ->

[occLeft leftLeftOcc]

Right leftRightOcc ->

[occRight $ occLeft leftRightOcc]

Right rightOcc ->

[occRight $ occRight $ rightOcc],

associateInit))

Fig. 12. associate signal function implementation.

3.4 Evaluation Interface Implementation

The evaluation interface must maintain state including the current signal func-
tion, the current time (to produce time deltas), updates to the input sample
which have yet to be sampled, and the output handlers.

The output handlers are stored in a structure similar to that for a signal sam-
ple. The difference is that both signal and event leaves contain values, and these
values are functions from the leaf type to another type. The handler datatype is
shown in Fig. 13.

We now need a datatype to hold the various components of the evaluation
state. This type is shown in Fig 14.

The evaluation interface itself is a monad transformer, which we implement
as a Haskell newtype wrapping the StateT monad transformer. We do not ex-
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data SVHandler out sv where

SVHandlerEmpty :: SVHandler out SVEmpty

SVHandlerSignal :: (a -> out) -> SVHandler out (SVSignal a)

SVHandlerEvent :: (a -> out) -> SVHandler out (SVEvent a)

SVHandlerBoth :: SVHandler out svLeft -> SVHandler out svRight

-> SVHandler out (SVAppend svLeft svRight)

Fig. 13. Handler datatype.

data SFEvalState m svIn svOut

= SFEvalState {

esSF :: SF Initialized svIn svOut,

esOutputHandlers :: SVHandler (m ()) svOut,

esLastTime :: Double,

esDelta :: SVDelta svIn

}

Fig. 14. Evaluation state datatype.

port the raw put and get actions of the state monad, but instead implement
the push, update, and sampling operations for signal function evaluation using
put and get. The evaluation monad transformer is shown in Fig. 15. Instances
of typeclasses including Monad and MonadTrans are derived using the “General-
izedNewtypeDeriving” extension to the Glasgow Haskell Compiler.

4 Discussion

The system presented here, TimeFlies, demonstrates how using signal vectors
to type inputs and outputs enables push-based evaluation of events in a signal-
function system. We take advantage of this representation in several ways.

First, by separating components of inputs and outputs in the types, we are
free to create distinct, and often partial, representations of the input or output
of a signal function. This enables us to represent only the event occurrence being
pushed at that time.

Second, this separation also permits us to separate the process of gathering
the input to a signal function, and the process of handling its output, into dif-
ferent points in a program. Using the evaluation interface described, an event
occurrence may be pushed onto one input of a signal function from one point in a
program (e.g. a mouse click handler), an input signal may be updated in another
(e.g. a mouse movement handler), and finally the system may be sampled in a
third place (e.g. an animation or audio timed callback).

Finally, this approach enables further work on the implementation of the
signal function system to be separated from changes in the interface. By enabling
differing representations of the inputs and outputs of signal functions, we are free
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newtype SFEvalT svIn svOut m a = StateT (SFEvalState m svIn svOut) m a

Fig. 15. Signal function evaluation monad transformer.

to change these representations without the need to further constrain the input
and output types.

5 Ongoing and Further Work

TimeFlies, the system described here, has been implemented, but not extensively
tested. The immediate goal is to create a real-time application which will permit
a performance and implementation comparison of TimeFlies with Yampa, the
current state-of-the-art pull-based signal-function system.

In the future, we hope to apply run-time optimizations, using the technique
used for Yampa, to create a push-pull self-optimizing signal-function system.
Further, we hope to use this system as a basis for exploring signal-function FRP
as a basis for general-purpose application frameworks.

6 Related Work

Signal Function FRP was introduced as a model for Graphical User Interfaces [4].
The system was originally termed “AFRP” (Arrowized FRP). Yampa is a rewrite
of AFRP where signal functions apply a number of ad-hoc optimizatons to them-
selves as they evolve. Yampa demonstrated a modest performance improvement
over AFRP [6].

Reactive is a classic FRP system which implements push-based evaluation for
events by transforming behaviors to “reactive normal form,” where a behavior
is a non-reactive behavior running inside a switch, whose event stream carries
behaviors in reactive normal form. The system is evaluated by forking a Haskell
thread to repeatedly sample the non-reactive behavior, and then blocking on the
evaluation of the first occurrence in the event stream. When this occurrence is
yielded, the evaluation thread for the behavior is killed and a new thread forked
to evaluate the new behavior [2].

7 Conclusion

We have presented TimeFlies, a system for push-pull signal-function Functional
Reactive Programming, and have shown how the use of a signal vectors as in-
put and output types for signal functions, together with GADT-based represen-
tations of the inputs and outputs, permits the implementation of a push-pull
system.

We have also described a general and flexible monadic evaluation interface
for TimeFlies, which permits us to interface the TimeFlies system with different
styles of IO systems, including multiple IO systems in the same application.
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This opens up the exciting possibility that a signal-function FRP could be-
come an efficient and general framework for writing interactive applications.
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Parameterized Parsers

Kathryn E. Gray

University of Cambridge

Abstract. Modular parser implementations aid in the development and
maintenance of parsers for experimental language design as well as fami-
lies of programming languages. However, existing modular parsers do not
support parameters that span multi-non-terminal subsets of a grammar
as well as supporting small readable specifications, both of which are
beneficial in supporting modular design principles. Combinator parsers
provide a common style of modular specification, with readable gram-
mars and local parameters, but they lack grammar-wide abstractions and
modular recursive dependencies.

We combine combinator parsers with a component system that provides
parameterization and recursive dependencies to develop modular parser
specifications. We demonstrate the organization and benefits of this tech-
nique with a modular parser specification for a family of Java-like lan-
guages. To develop this specification, we implement a unit-based combi-
nator parser library for Racket.

1 Why parameterize a parser?

Experimenting on and maintaining most programming languages re-
quires modifying or extending a parser. In some circumstances, such as
within various teaching environments (see Ruckert and Halpern (1993);
Findler et al. (2002); Gray and Flatt (2003); Hsia et al. (2005)), a set
of related programming languages with varying restrictions (a family of
languages) may be supported simultaneously, requiring multiple parser
specifications. These different specifications often share many grammar
productions despite their differences.

Typical parser generators, such as Yacc-like generators, do not support
specifying parsers for multiple different yet similar languages. These gen-
erators strictly connect a usage of a grammar term to its definition point;
thus requiring either numerous different productions (with similar for-
mat) or requiring completely separated repetitious specifications. A more
modular approach to this task reduces errors and frustration.

Some compiler-writing tools and parser generators, such as Asf+Sdf (Klint
1993) and antlr (Parr 1997), provide support for modular parser spec-
ifications. Existing modular systems provide support for system-wide
grammar parameters, as well as limited support for language-wide pa-
rameters. However, their mechanisms for providing this support obfus-
cate the grammar specification and reduce readability. Combinator parsers (Hut-
ton 1992) provide another means for developing modular parsers, by
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functionally abstracting a parser specification on the definition of sub-
grammars with natural grammar specifications. However, these specifi-
cations do not cleanly support modular specifications either where pa-
rameters might vary over sets of terms.
In implementing variations of a programming language, a designer may
choose to extend subgrammars, to exclude subgrammars, or to modify
the definition of one subgrammar. To illustrate, in our family of Java
languages implemented for ProfessorJ Gray and Flatt (2003), one Java
variant excludes for loops from the statement subgrammar while an-
other includes only the for loop production that requires a termination
condition. The rest of the grammar specification refers to the statement
subgrammar several times, including within the method subgrammar,
constructor subgrammar, and within different productions of the state-
ment subgrammar itself. Modifying the statement grammar indirectly
impacts all of these references and their specifications.
Implementing different statement grammars, while reusing independent
specifications, following a combinator approach requires a significant
function parameter overhead. The method grammar specification must
reside in a function with a statement parameter. Additionally, the con-
structor grammar and each production of the statement grammar must
follow the same pattern. Further, to allow modifications within other
subgrammars, each of these definitions should be parameterized over
any reference to a subgrammar.
When instantiating these grammars, each statement parameter for each
of the functions is satisfied by the same value, referred to multiple times.
This repetition complicates the development process for the parser and
suggests the use of a more modular approach. However, utilizing the
module systems supported by most programming languages does not
provide sufficient recursive parametric modularity to create clear mod-
ular parser specifications. The unit system from Racket (Owens 2007;
Culpepper et al. 2005; Flatt and Felleisen 1998) provides flexible module
support that matches the needs of parameterized parsers.
Combining a combinator parser and a unit-based component system al-
lows the creation of grammar specifications that parameterize over the
different subgrammars while maintaining a readable grammar that re-
sembles a standard context-free grammar. This provides another illus-
tration of the benefits of component-based modularity, even combined
with traditionally flexible functional implementations. We demonstrate
the benefits of this approach by outlining a parser for Java parameter-
ized to support different language configurations. The parser utilizes a
combinator parser library we developed to support unit interactions and
clear specifications, written in Racket.
Section 2 presents an overview of our parser interface, including the
unit connections. Section 3 presents representative examples of the Java
parser implementation. Section 4 presents details of the implementation.

2 Combinator parsing and units

Combinator parsers allow a parser author to specify a grammar us-
ing BNF notation while simultaneously employing functional abstrac-
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tions. Although at least one other combinator implementation exists for
Scheme (Garnock-Jones 2005), we require an implementation that allows
unit-based parameterizations.

Our combinator parser library uses units to achieve clean modular spec-
ifications. This combination led to choices in the interface that add flex-
ibility to library and parser implementors.

2.1 Specifying a parser

As with most combinator parser libraries, we supply forms for specify-
ing sequential and optional grammars that generate appropriate parser
functions. The specifications may be abstracted with standard function
definitions etc. Specifications may also nest anonymously. Figure 1 in-
cludes a specification for the standard calculator parser, using our in-
terface to define two dependent grammars with nested sequence and
choose declarations.

(define mul-exp

(choose [(sequence

(num (choose (∗op /op)) num)

(lambda (l op r) (op l r)))

num]

"multiplicative expression"))

(define expr

(choose [(sequence

(mul-exp (choose (+op -op)) mul-exp)

(lambda (l op r) (op l r))

(sequence (o-prn (eta expr) c-prn)

(lambda (dl exp ld) exp))

mul-exp]

"expression"))

Fig. 1. Calculator grammar

Both the choose and sequence forms expect a parenthesized listing of
parser specifications, followed by production specific information, as seen
in figure 2. The choose form allows an optional string argument. When
present, this argument provides a name for the production, used in pro-
viding debugging information as well as identifying errors. The sequence

form first requires a function before allowing an optional naming argu-
ment as well. The arity of the function must match the number of sub-
parser specifications; the function will be applied to the same number
of arguments when building the resulting parse tree. When a produc-
tion specification does not have a supplied name, the form automatically
generates a generic name. However, within nested specifications without
name annotations, an outer-most name applies to all contained forms.
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(choose (parser ...) ?string)

(sequence (parser ...n) arityn-func ?string)

(eta parser)

(repeat parser)

Fig. 2. Provided combinator forms

The eta application within the calculator example supports the imme-
diate definition of recursive grammars. Recursive definitions that rely on
unit parameterization do not require an eta expansion.
The signature of the generated parser, and the signature required for
each function identified in the specification lists, follows

(listof α) → (struct:res β (listof α) ...)

The β value arises as the result of calling the provided build function for
a sequence, or returns a value representing a parse error. A choose built
parser returns a sub-structure of the general res structure, containing
the same basic information as in a sequence result, with the addition
of a list containing the possible parses of the input. The returned α-list
represents the remaining input stream not yet consumed by the parser.
In addition to these syntactic forms, our interface also exposes the under-
lying function implementations seq and choice —so that parser authors
may opt for greater flexibility as needed— as well as a repeat combina-
tor generator. These three basic forms simplify the process of specifying
grammars as well as further parser generators. Figure 3 demonstrates
both the use of repeat as well as the definition of a new parser genera-
tor.

(define (comma-sep pat n)

(sequence

(pat (repeat (sequence (comma pat) second)))

cons

(string-append "comma separated list of " n)))

Fig. 3. Portion of an expression grammar

The repeat function expects a parser argument and generates a function
that accepts any number of repetitions of the provided parser before
terminating. The functional forms of sequence and choose accept a list
of parsers as their first argument, along with the same parameters as the
macro forms.
Although the repeat combinator can be built by calls to sequence and
choice, we provide it directly due to its prevalent use. Parser authors
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may extend the parser generators themselves, following similar patterns
as the comma-sep specification.

Terminals and scannerless parsing In our example calculator
parser, we refer to number and operator parsers that are not presented.
These parsers accept terminals. Many combinator parsers support scan-
nerless parsing, where individual characters are the terminals and com-
binations of sequence or choice parsers form groups of characters into
words. Our system supports either scannerless parsing or parsing a stream
of tokens generated by a lexer. Individual terminal specification controls
the granularity of a parser to permit flexible implementations; however,
we provide additional specification support for parsing a list of lexed
tokens.

We provide a terminal function that expects three values used in creat-
ing the initial parser:

(terminal (α→ bool) (α→ β) string)

The returned parser consumes one input item from the list when the
first argument returns #t and the result is a res struct embedding the
β returned by the second argument. The choice of predicate permits the
parser author to manage the granularity of parsing, and even combine
scannerless and tokenized parsing. However, we recognize that specify-
ing terminals by defining each terminal function and writing individual
predicates can be tedious for reasonable languages.

We elected to provide a shorthand for specifying terminals that corre-
spond to tokens generated by the Racket parsing library’s lexer, and have
not provided any additional support for generating scannerless terminals.
Since we expect that parsers generated by our system will interface with
the DrRacket development environment, we believe that authors will
write a lexer for their language to utilize the provided syntax-coloring
support. A modular lexer specification that produces either the coloring
information or parsing tokens reduces development effort.

The define-simple-terminals and define-terminals forms, seen in
figure 4, bind lists of given names to specific invocations of the terminal

function with the second and third arguments either specified by the
author or resolved by context. Token-based predicates are always gener-
ated and provided to the terminal function, with the particular pred-
icate based on the name of the terminal. When not provided by the
programmer, the default building operation is the identity function, and
the default name matches the name of the terminal.

(define-simple-terminals operators

((+op (lambda (x) +) "+") o-prn c-prn ...))

(define-terminals values

((string make-string-lit)

(num string->number "number")))

Fig. 4. Terminal specification
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A simple terminal definition denotes a set of terminals/tokens that match
language keywords and therefore contain tokens that do not hold values.
The other form specifies terminals whose content changes, such as identi-
fiers and numbers. The programmer must supply a building function for
these forms, which receives the value contained within the token. Equiva-
lent token definitions are also generated by the define-terminal forms,
as expansions to define-tokens or define-empty-tokens macros from
the parser-tools collection. So the forms in figure 4 bind the names +op,

o-prn, c-prn, num, string, token-+op, token-o-prn, token-c-prn,

token-num, token-string within their context.

2.2 A Unitized interface

We provide the constructs described above to the programmer through a
unit interface. Before describing the format of this interface, we provide
a brief summary of unit constructs and technology.

A background on units Units within Racket (Flatt and Felleisen
1998) support recursive component programming using three basic lan-
guage constructs – unit, compound-unit, and signature. A unit collects
and selectively exports definitions jointly parameterized over a set of im-
ported values. A compound-unit selectively connects imports and exports
from different units and forms a new unit out of them. A signature spec-
ifies either the names of the imports or exports (depending on position)
for a unit or a compound-unit. A unit that requires no imported values
can be invoked, executing expressions within the unit and potentially
opens the exported names into the exterior namespace.
A signature form can include macro specifications (Culpepper et al.
2005), which places the defined macros into the body of an importing
unit where the specifications may rely on values from an exporting unit.
Signatures support nominal inheritance, with contravariant subtyping
on unit imports. Additionally, the signature form can be extended to
support new specification forms (Owens 2007) so that programmers may
easily import and export definitions stemming from macros that expand
into definitions. As an additional benefit, a compound-unit/infer form
automatically resolves all linking dependencies between units when their
signatures provide sufficient information to do so unambiguously.

Units, signatures, and parsers Parser authors import a signature,
combinator-parser^ , that provides all of the functions and macros de-
scribed previously. When their parser is complete, the author then links
their parser with a unit providing full definitions for all of these forms.
Uses of the define-terminals forms produce a significant number of
definitions. In many parser organizations, each terminal and token def-
inition must be specified in the signature for export and import. The
combinator implementation additionally provides a shorthand for spec-
ifying terminal definitions within signatures, for an example signature
see figure 5. The terminals list must contain the names of all terminals
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that should be externally visible, regardless of the inclusion of the group
name. This allows programmers to limit the scope of terminals while still
grouping them meaningfully.

(define-signature terminals^

((terminals operators (+op o-prn c-prn))

string->number
(terminals values (num string))))

Fig. 5. Signature form for specifying terminals

Augmentations to the core combinators can be contained within sepa-
rate units and provided to programmers via signature inheritance. For
example, the comma-sep implementation could require that the comma

form be provided as a unit import, while the function is exported. If the
comma-sep author chooses to extend the general functionality of the com-
binators, then the signature for the unit extends the combinator-parser^
signature, adding the new operation. Other parser authors may then im-
port either the augmented signature or the original. The final compound
unit linkages can accept a unit containing the comma-sep implementation
in either case.
Presenting the combinator-parser interface via units and signatures also
permits greater flexibility in the implementation of the library as well
as simpler per-parser parameterization. Future versions of the library
can provide multiple implementations that parser authors can then se-
lect between without modifying their specifications. Additionally, the
combinator library can rely on imports from the parser author to pro-
vide per-parser customizations without using system-wide parameters or
additional arguments for each specification. This information includes
facilities for source tracking, error message contexts, etc.

3 Configurable parsers made easy

Experimenting with programming language syntax may require extend-
ing or modifying portions of the language definition, while maintaining
both the original language definition and intermediate stages to aid in
comparisons. Also pedagogic projects, such as ProfessorJ (Gray and Flatt
2003) and DrJava (Hsia et al. 2005), support multiple related language
implementations simultaneously, indefinitely.
Our experience with implementing and maintaining parsers for Profes-
sorJ demonstrated the benefits of a modular parser that shares related
definitions across multiple languages while supporting a clean grammar
specification, instead of a hand written parser. Different related lan-
guages may require similar structures with different component pieces,
for example one language may support type names that include dots
while another may support an expression form not present in the first.
These differences require varying support for modular specifications.
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We describe the benefits of our approach to modular parsing through
the example of the parser specification of our Java parsers. Previously,
we supported four Yacc-style parser specifications and a single hand-
written parser to identify and report error messages. Due to the lack of
abstraction in this system, maintenance and modifications caused repli-
cation of mistakes and only partial corrections, difficulties alleviated by
implementing a modular parser with significant levels of reuse.

3.1 Simple specifications

Conceptually related grammar productions reside within the same unit
definition. Related specifications typically rely on the same set of im-
ports and appear in the same final language production. While the latter
grouping is not necessary for ease of specification, the conceptual group-
ing aids in extension and in locating related definitions. Figure 6 presents
two partial units containing related definitions with language-wide pa-
rameterized dependencies.

(define-unit methods@

(import ...)

(export ...)

(define method-sig

(sequence (mtype identifier method-parms)

build-signature

"method signature"))

)

(define-unit expressions@

(import ...)

(export ...)

(define unary-assignment

(choose

((sequence (++ expression) build-unary)

(sequence (−− expression) build-unary))

"unary modification"))

(define if-end

(sequence (? expression : expression)

build-if

"conditional expression")))

Fig. 6. Expression and Method grammars

The different units for the Java language represent the different language
constructs including expressions, statements, methods, etc. We expect
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that most language definitions would group different constructs similarly.
In this example, the methods@ unit imports a definition of types and
identifiers to parameterize these definitions across the language. This
parameterization allows different languages to restrict or expand the set
of types within the language without explicitly modifying the definition
of method signatures, which uses the subgrammar but does not change
form based on the specific allowed types.
The expressions@ definition unit contains a recursive reliance on the
expression definition, to be outlined in section 3.3. Language repre-
sentations may contain a subset of all the expression forms, or they
may contain new forms not in the original language. Specific expression
grammar forms rely on the definition of all expressions, as they contain
expressions themselves. Indeed, most expression forms rely on the defi-
nition a single expression. Providing these recursive definitions through
a unit parameter supports the reliance without restricting the language
designer to a single definition for expressions.
Either of these units can be combined with additional units to extend
the allowed set of grammar specifications without impacting language
definitions that do not rely on the extensions. Similarly, a program spec-
ification may elect to exclude definitions appropriately.

3.2 Configurable grammars

Not all grammar specification abstractions require or allow language-
wide parameterization. For these circumstances, traditional functional
abstraction continues to provide the means of defining appropriate gram-
mar specifications, as outlined in figure 7.
These definitions may support abstractions that do not come from lan-
guage wide definitions and may complicate a unit interface if added as
a parameter. The return-s definition outlines such a parameterization,
where the full definition of a language form relies on a per-language
choice but not a per-language definition.
Other definitions may include conditional implementations of portions of
the language and so cannot rely on language-wide definitions. Both the
for-loop and interface-def rely on definitions of expressions, meth-
ods, or fields that may vary from the definitions found in other portions
of the language. The support for both unit and functional parameters
lets the parser author choose the level of abstraction required without
forcing the over parameterization of individual definitions.

3.3 Whole language parameterization

The definition of language-wide parameters occurs within the unit that
defines the overall language. Each language specification resides in in-
dividual units and implements a uniform signature that the component
definitions require. Figure 8 demonstrates signatures for the Java gram-
mars, including the signature implemented by each full language speci-
fication.
The expression@ unit in figure 9 imports the expression definition
from the language-forms^ signature, while the language specification
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(define-unit statements@

...

(define (return-s expr-req?)

(let ([with-exp (sequence ...)]

[without (sequence ...)])

(if expr-req?

(choose (with-exp without) ...)

without)))

(define (for-loop expr ...) ...)

)

(define-unit interface@

...

(define (interface-def body)

...

(sequence (interface identifier ... body)

...))

)

Fig. 7. Functionally parameterized definitions

(define-signature literals^

((terminals EmptyLits (true lit false lit))))

(define-signature language-forms^

(expression statement field method ....))

(define-signtaure expressions^

(unary-assignment if-end ...))

Fig. 8. Signatures
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beginner-language@ unit imports the definition of different expression
forms to use in the definition of an expression for the current language.
This demonstrates the use of per-language parameterization in defining
abstracted yet dependent definitions. The final resolution of this defini-
tion occurs with unit-linking.

(define-unit expressions@

(import combinator-parser^

language-forms^ literals^ ...)

(export expressions^)

...)

(define-unit beginner-language@

(import combinator-parser^

experssions^ statements^ ...)

(export language-forms^)

(define expr-start

(choose (all-literals unary-assignment ...)

"expression"))

(define expr-end

(choose (if-end call-end ...)

"expression end"))

(define expression

(sequence (expr-start (repeat expr-end))

build-expr "expression")))

Fig. 9. Using units to parameterize definitions

The three-tier definition of the expression grammar presented supports
traditionally left-recursive grammar definitions without creating infinite
evaluations. Our parser implementation provides no automatic support
for detecting left-recursion or lifting left-recursive definitions, relying on
the programmer to detect and avoid these situations manually.

3.4 Forming a grammar

The final step in building a particular parser combines the different unit
implementations into one. This step provides the final ability to differ-
entiate language definitions with concrete implementations. Figure 10
presents the customization of a language implementation to specify the
form of identifiers supported.

The final compound unit definition restricts the programming language
to exclude Java’s qualified names (i.e. no indirect imports). The linkage
passes the specification of name as a flat identifier to all positions within
the language, additionally the compound passes the definition of expres-
sions found in beginner-language@ into the expression definitions in the
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(define-unit flat-names@

(import ...)

(export java-variables^)

(define identifier ID)

(define name ID))

(define-unit non-flat-names@

(import ...)

(export java-variables^)

(define identifier ID)

(define name ...) ;support id.id

)

(define-compound-unit/infer beginner-p@

(import ...)

(export ...)

(link .... expressions@ beginner-language@

flat-names@))

Fig. 10. Different unit implementations of identifiers

expressions@ unit and vice versa. Other language definitions may allow
qualified names by including the not-flat-names@ unit.

If all the unit imports are now satisfied, the programmer may invoke
the compound unit and begin parsing the defined language. This spec-
ification style supports modular parsers with varying levels of parame-
terization without unnecessarily obfuscating the grammar specifications.
Although the whole grammar cannot be viewed until during a debugging
phase, the individual pieces are clearly identifiable and comprehensible,
as well as the locations and definitions on which they depend.

4 Implementation

Embedding the implementation within units required isolation of the
different aspects of the parser library to properly present the interface
to programmers. This task paves the way for a more flexible, extendable
implementation in the future.

4.1 Component structure

Our combinator parser resides within three units. One contains the defi-
nitions of the necessary functions in parsing the program, a second con-
tains a bare-bones error message generator, and a third provides a func-
tion, parser , to build a front-end parser by extracting results or calling
within the second unit to build an error message for failed parses.

This division allows development and expansion of different portions of
the implementation independently. For example, a future implementation
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of the parser generators may forbid ambiguous or left-recursive specifica-
tions (Grimm 2006), or incorporate a component that provides analysis
of the resulting parse or partial parse to inform programmers of poten-
tial mistakes. Neither of these changes need impact the interactions with
other unitized implementations.
The provided compound-unit, combinator-parser@ , expects authors to
supply a unit containing parameters setting variables for error reports,
source-annotations, and similar information. These parameters allow au-
thors to tweak the settings for a specific language specification or to use
the same settings multiple times.

4.2 Implementing seq and choice

The two base functions implement the standard operations, using a
packrat-style (Ford 2002) strategy to alleviate performance issues.

seq A returned seq function progressively calls each of the specified
subparsers on the next available input. A successful subparser consumes
at least one element from the source list, and the next subparser receives
the remaining list. A failed seq parse either contains a failed subparser
or the input list becomes empty before the subparser list. Regardless of
the outcome, the function packages result information into a structure
containing an abstract summary of the parse.
A subparser built using the choice operator may result in multiple cor-
rect parses of the input. When returning this result to a sequence built
parser, the parser cannot eliminate any of the provided parses as the po-
tential best fit for the current input. Therefore, the remaining subparsers
are mapped over the list of returned parses. This list propagates through
the parsing as long as it contains multiple correct parses.

choice A returned choice functions maps the provided list of subparsers
over the initial input, wrapping the resulting list of possible parses in a
structure. A specialized filter removes incorrect parses from this list.
A parse fails only when all of the subparsers fail. The results of any
subparser returning a list of possible parses itself are merged into the
result of parsing the top form, passing all of the potential parses directly
to the next level.

Using the parsers The parser function, referred to in the previous
section, accepts a parser specification function and returns a function
that provides either an error message or the result of parsing an input list.
This function selects the first correctly parsed item when presented with
multiple parses and returns an error when any input remains after an
otherwise successful parse. Parser authors may find this function useful
but can use the individual parser functions directly if they desire.

4.3 Modular parsers in other languages

While our implementation and design is only within the Racket language,
the techniques and style of parser library could be applied to other lan-
guages. The features we rely on are higher-order functions, recursively
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dependent components, and signatures with inheritance-like flexibility.
While we benefit from macros to generate special forms for choice and
eta, macros are not strictly necessary for the flexibility. Further, the
library forms are tapeable in a reasonable static (polymorhpic) type sys-
tem. Thus this style of parser implementation could be implemented in
ML variants supporting recursive modules, namely that of Dreyer and
Rossberg (Dreyer and Rossberg 2008) or of Russo (Russo 2001).

The transition to a Dreyer-Rossberg-style module system would require
few changes to the system addressed above. The recursive module def-
initions can support definitions of grammar terms, such as expressions,
that cross module boundaries in a similar fashion to the unit definitions.
The flexibility of implementation provided by the signature system will
support a compatible level of interchange as the nominally subtyped
signatures in the unit model, so there would be a base signature pro-
vided by the library and users could extend and refine this signature
to suit their needs. The embedding into Russo-style structures requires
eta-expansions within the combining structure for recursive definitions
like expressions, but the flexibility of signature specifications permits a
similar level of abstraction in the composition of modules.

The types as given for the parser combinators above will fit into a stan-
dard ML type system implementation and are not themselves recursive
or generative, so do not cause a problem for integration in a typed set-
ting. If the AST-type specifications are defined along with the grammar,
then the recursive type definitions may cause difficulty in either setting
depending on their form. However, this is an orthogonal problem of mod-
ular language implementation in a typed setting.

5 Related work

Our technique for developing a parameterized parser builds on both
the experience of implementing multiple parsers for variants of Java as
well as the efforts of previous parser implementors at creating modular
parser specifications. These prior efforts demonstrated both techniques
for parser-wide modularization and clear specifications, although not to-
gether. Further, our efforts benefited from the advances in unit and macro
technology developed by work on Racket Culpepper et al. (2005).

5.1 Combinator parsers

Combinator parsers occur frequently in Haskell, where lazy evaluation
simplifies the implementation as well as recursive specifications (Hut-
ton 1992). Parsec (Leijen and Meijer 2001) and Mimico (Camarao and
Figueiredo 2001) are two prominent implementations with robust per-
formance and monadic parser specifications.

Garnock-Jones (2005) developed a combinator parser library for Scheme
that utilizes macros to encode the specifications and delay evaluation.
Although the macros provide a more specialized syntax, the parser spec-
ifications closely resemble the Haskell-style monadic parsers.
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In these combinator parsing systems, individual specifications do resem-
ble a BNF grammar but providing language-wide parameterizations suf-
fers, as each production must be individually parameterized over multiple
non-terminals. Haskell’s module system does not provide the necessary
separation between interface and implementation to selectively modify
the implementation of imported values. As Garnock-Jone’s parser is im-
plemented in Scheme, it could be extended to utilize units as we describe,
at the price of interoperability with other Scheme implementations.
Both systems use a similar syntax for binding parsed values to variables;
id <- identifier binds the result of parsing an identifier to id within
the body of the specification. We opted for a system that uses functions
and does not provide binding to avoid potentially obscuring the grammar
specification with information related to the actions.
Parsing combinators for object-oriented languages, including Rats! (Grimm
2006) for Java and pyparsing (McGuire 2006) for Python, use classes to
represent different productions. This combinator style does not resolve
the parameterization problem for system wide-parameters as the initial-
ization position has merely shifted into object creation.

5.2 Other configurable parsers

Parser generators that support modular specifications led us to consider
separating portions of the specification that refer to a single position
for parameters. The Asf+Sdf (Klint 1993) and Eli (Gray et al. 1992)
support defining pieces of a language, including syntactic entities and
associated actions, and then combining them into one language processor
with different specifications referring to different productions. However
the level of modularity is not as flexible as in combinator parsers.
Similar systems, IPG (Heering et al. 1989) and antlr (Parr 1997), sup-
ports the incremental generation of parsers by extending existing parsers.
Further antlr provides local parameterization through object parameters.
Neither provides system wide parameters. These systems demonstrated
techniques in modularizing a parser specification, but did not fully satisfy
our requirements and do not provide clear grammar specifications.

6 Conclusions

By using units to provide abstraction boundaries within our parser imple-
mentation, we simplify the process of writing a parser for four variants
of one programming language with shared grammar specifications but
customized productions. The resulting parser still contains recognizable
language productions, benefiting future maintenance and reducing the
need for correcting errors. Modifying a language in this system requires
tweaking appropriate booleans and modifying the contents of the top-
level language form specifications, reducing the effort of both creating
new variant-languages and refactoring the contents of old variants.
Our parser library can be downloaded with the DrRacket environment,
within the combinator-parser collection. The Java parser presented in
section 3 can be found at www.professorJ.org.
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Abstract. Property based test tools perform tests based on properties
stated in (first order) logic. The test tool generates test values for the uni-
versal quantified variables, executes the associated tests, and evaluates
the test results. Property based testing enhances unit testing by moving
to a higher abstraction level; instead of specifying individual instances
of properties, the test engineer specifies the properties themselves. This
moves the burden of generating relevant test cases to the test tool. In
this paper we compare the advantages and disadvantages of various test
data generation approaches. We show that a modified generic generation
algorithm combines the best aspects of those approaches.

1 Introduction

With the introduction of property based test tools an important abstraction step
is made. Instead of specifying individual instances of properties as test cases,
the test engineer specifies the underlying properties themselves. This has three
advantages. First, the tested properties are explicit instead of implicit. Second,
it is much easier to maintain such a set of properties than to maintain a large
set of individual unit tests. Third, it is very easy to execute more tests, by just
changing a parameter the tool can execute more tests. The seamy side of these
advantages is that one has to relay on the test system for selecting relevant
test cases. In this paper we discuss various approaches to for this test data
generation. We introduce a generic algorithm that combines the best properties
of those approaches.

Examples of these tools in lazy functional languages are QuickCheck [6], Small-

Check [13], and EasyCheck [5] for Haskell, and G∀st [10] for Clean. This property
based approach to testing is quite successful. Hence, this idea is implemented
in many other languages, see http://en.wikipedia.org/wiki/QuickCheck for
an overview. Today this incomplete list contains 22 languages and even more im-
plementations. The capabilities of the host languages often impose restrictions
on the ported test system. However, the main approach remains unchanged: the
user specifies a universal quantified logical property and the test system tries
to falsify this property by automatically generating test cases. Although this
approach to testing clearly set a trend, the idea of automatic generation of test
cases and test scripts itself is much older. See e.g. [3, 4, 7].
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A benefit of the logical property based testing approach is that the burden of
selecting test cases is transferred to the testing tool. The tool developers however,
need to determine how these test cases are generated. Usually the test suite, the
set of test values, is selected based on the type of the universally quantified
variables in the logical property. When a property is falsified the test system
has found an issue. Such an issue might indicate an error in the tested software.
Also incorrect properties or invalid test values might cause the test system to
report issues. Whether or not a property that does not hold is indeed falsified
depends critical on the test suite generated. Hence, effective test suite generation
is critical for effective testing.

We focus on generation by a generic algorithm, which has the advantage that
it works for any data type. Instead of defining generation of each and every new
type by a tailor made instance of a class, the generation for the new type can
be derived by the compiler. When there are restrictions on the data type (like
sorted threes or restricted values of parameters), it is still possible to specify the
generation manually.

In this paper we review the advantages and disadvantages of systematic test
data generation. The main drawback appears to be that large test values are
generated too late in some circumstances. We show how the generic algorithm
can be improved to cure those problems.

2 Test Data Generation Revisited

In this section we review the selection of the test suite used in the tests and
how such test suites are typically generated. The test suite to be used is either
indicated explicitly by the user, or deduced from the type of the variables in
the property. Whether the test values are selected directly by the user or with
help of the type system is not very relevant for this paper. We focus on how to
generate effective test values.

Two approaches are used for the generation of test suites. Presumably the
simplest approach is to generate the test data in some pseudo random order.
The other option is to generate test values in some systematic order.

2.1 Selection of the Test Suite

The test suites to check a property can be indicated explicitly, or be deduced
from the type of the variables in the property. In a strongly typed language, like
Haskell or Clean, the type system can be used to select the appropriate test suite
for a universally quantified variable. A typical example is the property propAbs

for G∀st:

propAbs x = abs x ≥ 0
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The type system of Clean deduces that x has type Int1. Hence G∀st will generate
test values of type Int for this property. Testing this property is just evaluat-
ing the function propAbs for a large number of integer test values and checking
whether it yields True for all tests.

For test systems embedded in a language without a strong type system, like
QuviQ or Triq in Erlang, the user has to indicate the test suite in one way or
another. A typical example is (see [2]):

prop reverse () →
?FORALL({Xs ,Ys} ,

{ l i s t ( int ()) , l i s t ( int ())} ,
l i s t s : r eve r s e (Xs++Ys) == l i s t s : r eve r s e (Ys) ++ l i s t s : r eve r s e (Xs)) .

Here one indicates that the property

∀xs, ∀ys .reverse(xs ++ ys) = reverse(ys) ++ reverse(xs)

should be tested with test suites of type List Int for xs and ys.
Even in strongly typed language the user has to indicate the test suite every

now and then: when the type system cannot solve the overloading in the property
the has to indicate the exact type in order to allow the test system to choose a
test suite. Consider for instance the same property of the reverse function stated
in G∀st:

propReverse xs ys = reverse (xs++ys) == reverse ys ++ reverse xs

The type system will derive the polymorphic type [a ] [a ] → Bool for this prop-
erty. This does not tell the type system what test suites to generate. When we
specify a more specific type like [ Int ] [ Int ] → Bool it is clear for the test sys-
tem that it has to generate list of integers as test cases. A more elegant solution
is to keep the property itself polymorphic and make a type restricted version to
determine using the type to be used in the tests:

propReverseInt : : ( [ Int ] [ Int ] → Bool)
propReverseInt = propReverse

For the test suite generation it is largely irrelevant how the test suite is selected.
Given that a test suite of a well determined type is selected, we focus on the
strategies to generated the values within a test suite.

Even when the default test suite is determined by the type of the variables, it
is often possible to deviate from the default generation algorithm. For instance,
we can use list of the form [0 . . i ] for increaasing i for the property propReverse

with a property like:

propReverse2 : : Property
propReverse2 = (λxs.propReverse xs xs) For [ [0 . . i ] \\ i ← [1 . . ] ]

1 In contract to Haskell, 0 in not an overloaded value in Clean, it has type Int . Hence
it is clear what type of test values to generate. In Haskell 0 is an overloaded value
with type (Num a) => a.
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2.2 Pseudo Random Test Data Generation

Pseudo random generation is a simple approach to test data generation. QuickCheck

and most of its ports rely on pseudo random generation of test values. When the
number of test data generated is large enough, it is likely that a value falsifying
an invalid property is encountered. Using the primitives provided by the test
system the test engineer has to specify how the actual test data are generated
for all user defined data types used in the properties. Pseudo random generation
of test data appears to be rather effective; issues with many properties are found
using this test data generation strategy.

The pseudo random approach to test suite has three drawbacks. First, it
requires effort and experience to generate effective test data. Generating appro-
priate test data is often a nontrivial task. The basic problem is that the set of
possible test cases is often very large. For recursive types, that are heavily used
in functional programming, the set of possible test values is even infinite. The
pseudo random generation of test case often needs guidance to find counterex-
amples in a reasonable amount of time. Second, due to the random generation
test cases might be missed while others are unnecessary duplicated. Especially
missing small test cases is annoying, one might expect that a Third, the coun-
terexamples found are often not the minimal values that falsify the property.
For analysis of such an issue it is convenient to have small test values falsifying
the property. A technique called shrinking [9] is used to search systematically
for smaller test data showing the same issue. Shrinking is somewhat similar to
delta-debugging as introduced by Hildebrant and Zeller [8, 14].

The original Haskell QuickCheck and most of its ports rely on pseudo random
generation of test values [6]. For primitive types that are part of the host language
the generation is predefined in the test system. For user defined data types, the
test engineer has to specify how the test data are generated using the primitives
provided by the test system. Technically the user has to define an instance of
the class Arbitrary in Haskell.

The rationale behind random test data generation is that it is generally not
known where the counterexamples are in the input space. Pseudo random test
data generation will encounter the counterexamples sooner or later if they exist.

This pseudo random approach to generate test suite has several drawbacks.
The first drawback is that it requires effort and experience to generate effective
test data. Generating appropriate test data is often a nontrivial task. The main
problem is that the set of possible test cases is often very large. The pseudo ran-
dom generation of test case often needs some guidance to find counterexamples
in a reasonable amount of time.

The second drawback is that the counterexamples found are often not the
minimal values that falsify the property. Larger counterexamples make it harder
to analyze the source of the issue. In order to reduce this problem QuickCheck

provides shrinking. This is an algorithm that produces a test set of smaller
values based on the counterexample found [2, 9]. If the counterexample found
is not the minimal counterexample, it is likely that shrinking finds a smaller
counterexample for the same property.
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A third drawback of pseudo random test data generation is that testing large
test cases takes usually more time than small test cases.

Furthermore, random test generation can generate duplicated test cases. Due
to the referential transparency of functional languages a duplicated test will
always produce exactly the same result. Hence duplicated tests are a waste of
effort and provide unjustified confidence in the system under test since the actual
number of tests is lower than the number of tests executed. Worse, in pseudo
random generation one does not detect that all possible tests are executed and
hence that one has in fact proven the property by exhaustive testing.

2.3 Systematic Test Data Generation

Another approach for test suite generation is based on the observation that if
a property is falsifiable there is almost always a small counterexample. This is
explained by the fact that functions over recursive types are usually fail because
of an incorrect or missing alternative. There are usually small function argu-
ments that selects the erroneous alternative and hence falsify the correctness
property. Based in this observation it is worthwhile to enumerate all small test
data systematically. This prevents problems with missed small test cases and
avoids unnecessary duplication of tests.

The test data generation of SmallCheck limits the nesting depth of test data in
order to ensure that only small test values are generated [13], this also prevents
the need for shrinking.

The generic generation strategy of G∀st generates test suites with values
ordered from small to large [11]. In this generic generation algorithm the size
of a test value is determined by the number of constructors and basic values
it contains. The test data generation of SmallCheck limits the nesting depth of
test data in order to ensure that small test values are generated. Although it is
easy to construct functions that have no small counterexamples, the generation
of test values from small to large appears to be very effective in practise. For,
sufficient small, finite domains it is possible to detect that the test system has
executed all possible tests. Hence, the property is proven by exhaustive testing.
A drawback of the systematic generation approach is that it might be too busy
with the systematic generation of small test cases. Large test cases might not be
generated, and hence issues might be missed.

There are usually small function arguments that select the erroneous alter-
native and hence falsify the correctness property. Based in this observation the
generic generation strategy of G∀st generates test suites with values ordered from
small to large [11].

Systematic generation of test values instead of pseudo random generation
also has the advantage that no duplicated test values are generated. For small
finite domains it is possible to detect that the test system has done all possible
tests and hence the property is proven by exhaustive testing rather than just
passes the tests. Such a proof is really stronger than the usual pass yielded by
the test system when no counterexamples are found.
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Another advantage of the systematic generation of test cases from small to
large is that it eliminates the need for a separate shrinking phase. A coun-
terexample found is always a minimal counterexample. If there was a smaller
counterexample it would have been generated and tested before.

The disadvantage of systematic generation is that it may take (too) long
before a sufficiently large test case is generated to falsify the property. Although
this problem can often be solved by increasing the number of tests and having
a cup of coffee, we want to find counterexamples as quickly as possible using
systematic test data generation. In this paper we show how we can improve the
power of testing polymorphic functions by choosing an argument type of the
right size. In addition the systematic generation algorithm for test cases can be
improved without losing the advantages.

Claessen and Hughes have considered the possibility to generate test cases
automatically. In [6] they explain why they do not use this: “This is partly
because we want QuickCheck to be a lightweight tool, easy to implement and easy
to use in a standard programming environment; we don’t want to oblige users
to run their programs through a pre-processor between editing them and testing
them. But another strong reason is that it seems to be very hard to construct a
generator for a type, without knowing something about the desired distribution
of test cases.“ In Clean we do not suffer from problems with a separate pre-
processor for generic functions since the generic system is completely integrated
in the language. The systematic generation algorithm from small to large values
in G∀st works very well in most situations. It appears to be a good solution to
the hard problem mentioned by Claessen and Hughes. If the generic generation
does not behave as desired it is always possible to define the generation by hand
instead of deriving the generic behaviour. Typically pure generic generation is
not adequate if there are more constraints than expressed by the type system,
like search trees where the type system only enforces the tree structure, or if one
uses unnecessary large data types.

2.4 Mixing Systematic and Pseudo Random Test Data Generation

It seems attractive to combine pseudo random generation and systematic gen-
eration of test data in order to combine the advantages of both approaches. For
effective testing we do not want to miss small test cases and to include suffi-
cient large test cases as well. This is applied in EasyCheck [5] that uses a kind
of systematic generation with pseudo random local jumps deeper into the recur-
sion. Also G∀st uses a pseudo random shuffling of test values since the beginning
[11]. There are some positive results reported for this combination of generation
strategies.

The big problem is of course finding a balance between the systematic gener-
ation and the pseudo random generation. When the contribution of the pseudo
random generation is small it remains likely to miss issues shown by large tests
cases. On the other hand, when the contribution of the pseudo random genera-
tion is big we might use a larger number of large test data, but we also encounter
the drawbacks of pseudo random generation.
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In this paper we propose a systematic way to generate test data that has a
user controllable preference for the recursive cases of the generated test data.
In this way we try to achieve the best of both worlds. We have a systematic
generation and large test values.

First we review the generic generation algorithm and show how it can be
improved to favor the recursive cases in the generated data types.

3 The Generic Generation Algorithm Revisited

Despite these advances of systematic generic generation of test suites we have
also encountered some points where it can be improved:

1. As mentioned above, it can take very long before a sufficient large test case
is generated. This can be cured by using small data types in the test, or
by using a tailored made generator instead of derive the generic algorithm.
Nevertheless, it would be better if the generic algorithm generates large test
cases earlier. The new version of the generic generation algorithm improves
this significantly by giving higher preference to recursive branches in the
data type. It is easy to tune the preference of branches if that would be
necessary.

2. The pseudo randomness added to the generic algorithm does not really im-
prove it. Although the generated values are an enumeration of the inhabi-
tants of the type, their order had some pseudo random perturbation. Some-
times this distribution of the systematic order ensures that a counterexample
is found somewhat earlier, but in an equal amount of situation it pushes the
counterexample further to the future.
Especially, the pseudo random number generation for integers appeared to
perform disappointingly. For integers G∀st generates the well known border
cases 0, 1,−1, maxint and minint followed by pseudo random numbers. The
border cases are very effective, but the pseudo random numbers do not really
contribute to the counterexample finding capabilities of G∀st.
The pseudo random changes in the order of elements used in G∀st uses a
significant amount of resources. Each time the generation algorithm splits,
the pseudo random generation is split also to prevent that we have to pass the
random generator through all element generators. This appears to consume
significant amounts of heap space if we generate large test suites.

3. The current system controls the amount of test done. Sometimes it is de-
sirable to test a property for all test cases of some depth (e.g. all lists of
length up to 3, or all trees up to depth 2), rather than the number of tests.
In those situation an approach like SmallCheck that implements this would
be desirable.

4. The current algorithm assumes an order of constructors in a recursive al-
gebraic data type: the nonrecursive case (empty list or tree) is assumed to
be the first constructor. It is better not to rely on this kind of assumptions
and to determine the nonrecursive constructor with the smallest number of
elements for the actual data type used.
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To overcome the drawbacks and maintain the advantages of generic test
case generation the generic algorithm is improved. First we remove the pseudo
random distribution of the order of elements.

This results in the basic generic algorithm introduced in [11]. The core of
this algorithm becomes:

generic gen a : : [a ]

gen{|UNIT|}= [UNIT]
gen{|PAIR|} f g = [ PAIR a b \\ (a ,b)←diag2 f g ]
gen{|EITHER|} f g = merge (map LEFT f ) (map RIGHT g)
where

merge : : [a ] [a ] → [a ]
merge [ a:as ] bs = [a:merge bs as ]
merge [ ] bs = bs

The prompt generation of large test cases is a bigger challenge. Recall that
generic functions are defined on the ’sum-of-products’ structure of types [1].
In Clean and G∀st this amounts to defining cases for EITHER (sum) and PAIR

(product). There are two places in the generic algorithm where the order of
elements can be controlled. The choice of elements in with the generic construct
EITHER, and the combination of elements with the generic PAIR.

The case for EITHER determines the choice between the constructors of a data
type. Although this seems to be the appropriate place to change the order of
elements generated, it is not the best place. Consider a type like list with one
nonrecursive constructor, Nil, and one recursive constructor, Cons a (List a).
In its generic representation there is a single LEFT in the list generated by the
case for EITHER, all other elements will start with a RIGHT. Moreover, we risk
nontermination if the generation of the nonrecursive case is delayed too much:
the generated Cons expression will need its argument, which in its turn needs its
arguments etc.

As a consequence, the combination of values in the case for PAIR is the place
to improve the algorithm. Here the order of combinations of heads and tails in
the generated list is determined. The existing algorithm makes the combinations
in a fair way by diagonalization of combinations. We change this to a skew di-
agonalization that gives an adjustable priority to the recursive cases. We have
introduced a generation state, GenState, to keep track of the necessary informa-
tion, like the deviation from straight diagonalization and the generic represen-
tation of the nonrecursive element in a data type, path. The state also counts
the current depth and stops at a maxDepth, similar to SmallCheck. By default this
depth is maxint such that the given maximum number of tests terminates the of
testing properties.

: : GenState
= { depth : : ! Int // current object depth

, maxDepth : : ! Int // max object depth
, path : : ! [ConsPos ] // path to non recursive constructor
, skewl : : ! Int // skew Left factor, default 1
, skewr : : ! Int // skew Right factor, default 3
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}

The generic function ggen becomes:

generic ggen a : : GenState → [a ]

ggen{|UNIT|} s = [UNIT]
ggen{|PAIR|} f g s = diag s.skewl s.skewr ( f s) (g s) PAIR
ggen{|EITHER|} f g s

= case s.path of
[ConsRight: ] = merge (map RIGHT (g s ‘ ) ) (map LEFT ( f s ‘ ) )

= merge (map LEFT ( f s ‘ ) ) (map RIGHT (g s ‘ ) )
where s ‘ = { s & path = t l s.path }

merge [ x:xs ] ys = [ x: merge ys xs ]
merge [ ] ys = ys

ggen{|CONS|} f s = map CONS ( f s)
ggen{|OBJECT of gtd|} f s

= take (s.maxDepth − s.depth)
(map OBJECT ( f {s & depth = s.depth + 1, path = path}))

where path = hd ( [getConsPath gcd \\ gcd ← sortBy argCount gtd.gtd conses
| recCount gcd.gcd type == 1 ] ++ [ [ ] ] )

The definition of ggen for OBJECT inspects the generic representation of the type
to select the nonrecursive constructors, recCount gcd.gcd type == 1. If there are
more of these constructor we select the one with the fewest argument count
sortBy argCount.

The diagonalization algorithm takes two integer arguments that determine
the number of elements taken to the left and right in each step. The local function
skew has three lists as arguments: the elements to process on this diagonal, the
elements processed, and the unprocessed elements.

diag : : ! Int ! Int [a ] [b ] (a b→ c) → [ c ]
diag skewl skewr as bs f = skew skewl [ ] [ ] [ [ f a b \\ a ← as ] \\ b ← bs ]
where

skew : : Int [ [ a ] ] [ [ a ] ] [ [ a ] ] → [a ]
skew n [ [ a:as ] : a s l ] bs cs = [ a: i f (n>1) (skew (n−1) [ as :as l ] bs cs)

(skew skewl as l [ as:bs ] cs ) ]
skew n [ [ ] : a s l ] bs cs = skew skewl as l bs cs
skew n [ ] [ ] [ ] = [ ]
skew n [ ] bs cs = skew skewl ( rev bs cs1) [ ] cs2
where (cs1 , cs2) = spl itAt (max skewr 1) cs

Using this algorithm we can derive the generation of lists or user defined types.
Using skew instead of diag2 (the symmetric diagonalization algorithm that comes
with the Clean distribution) in the case for PAIR is very effective. For (skewl , skewr)

equal to (1 ,1) the result of diag is equal to the result of diag2. The skew factor
(1 ,3) is the default provided by the new version of G∀st.
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4 Results

It is hard to measure the measure the effect of the skewness generic algorithm in
a fair way. The effect depends hugely on the examples chosen and on the actual
pseudo random values used for strategies with a random component. In general
pseudo random generation is very effective for properties with very many large
counter examples. Systematic generation is more effective in situations with a
specific small counter example. We will demonstrate the effect of skew generic
generation compared to the straight generic generation.

4.1 Length of Generated Lists

In order to show the effect of the skew data generation we measured the length
distribution of generated list. As a reference we give the results for plain gener-
ation of test data of type [ Int ] . This is equal to a skew generation with factor
Skew 1 1.

Number of lists Length of generated lists
generated 0 1 2 3 4 5

100 1 14 44 38 3 0
200 1 20 77 88 14 0
500 1 32 158 236 73 0
1000 1 45 271 481 202 0
2000 1 63 460 956 520 0
5000 1 100 927 2291 1616 65
10000 1 141 1563 4380 3625 290

Since there are very many integer values there are also very many lists of
length one possible. In that sense test values of type [ Int ] are a realistic example,
but also shows one of the worst possible behaviors with respect to the length of
the generated lists. For list of Booleans, [Bool ] , there are only two possible lists
of length one, and four lists of length two. Hence the test system will generate
much longer test data of that type.

Nevertheless, the maximum length of the generated lists is 3 for the first 2000
test cases and 4 for the first 1000 test cases. Given that the default number of
test for a property is 1000, it is obvious that issues only revealed by somewhat
longer lists are not found in this way.

The next table shows the influence of the skew factor for the default number
of 1000 test cases.
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skew factor
length 1 1 1 2 1 3 1 4 1 5 1 6

0 1 1 1 1 1 1
1 45 32 26 22 20 18
2 271 166 123 97 83 72
3 481 337 250 193 159 135
4 202 329 303 248 200 166
5 0 131 210 228 199 166
6 0 4 83 153 180 166
7 0 0 4 57 117 149
8 0 0 0 1 41 95
9 0 0 0 0 0 32

Obviously, the length of the generated lists increases when the skew factor
increases. On the other hand there remains a desirable good coverage of short
lists.

4.2 Example 1: Finite Queue Detection

As a simple example we consider a queue implementation with amortized O(N)
complexity. A desirable property of such a queue is:

– When we enqueue a list of elements and dequeue elements until the queue
is empty we should obtain the same list of elements.

As property in G∀st this is:

pDequeueQueue : : [T] → Bool
pDequeueQueue l = allElements queue == l
where

queue = fo ld l ( f l i p enqueue) newQueue l
allElements : : (Queue a) → [a ]
allElements q | isEmptyQ q

= [ ]
= let (e ,q2) = dequeue q in [ e: allElements q2 ]

In our test we use a queue implementation with bounded length of 5. Al-
though the implementation works correct as bounded queue, the property re-
quires clearly an unbounded queue.

The number of test cases needed by G∀st to discover an issue is strongly
dependent on the type chosen for T. The smaller the type, the quicker a coun-
terexample is found. However, the general advice in model-based testing seems
to be ”chose a type with is large enough”. In the table below we use T :== Char.

skewness 1 1 1 2 1 3 1 4 1 5
test cases needed 218590 813 64 24 12

The number of test cases needed to find an issue for pDequeueQueue clearly
drops very significantly when the skew factor increases. This has no negative
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consequences for the size of counterexamples for other properties of these queues,
nor for the number of tests needed to find them. So, introducing this skewness
has a huge positive effect on testing properties of polymorphic functions.

Despite this success there are of course still counterexamples that will be
missed by generic generation. If the bound of the bounded queue implementation
is for instance 100 instead of 5, no issue will be found. Whether or not the queue
can hold at least N elements can be checked with the single test:

Start = test (pDequeueQueue For [ [1 ..N ] ] )

The problem with this is that someone must realize that this is a desirable
property for a queue. The advantage of the new generation algorithm is that the
general generation algorithm covers this quality aspect for modest queue sizes
with a general property on the correct behaviour of queues.

4.3 Example 2: A Parser and Evaluator for Expressions

Next we consider a parser for expressions that evaluates the parsed expression
immediately, see [12] for details about the parser combinators.

expr : : Parser Char Int
expr

= fact /?λ λe. ((λo. (+) e) @> symbol ’+’ ∧. expr λ!/
(λo. (−) e) @> symbol ’-’ ∧. expr)

fact
= term /?λ λe. ((λo. (∗) e) @> symbol ’*’ ∧. fact λ!/

(λo. (/) e) @> symbol ’/’ ∧. fact )
term

= num @> !+! pDigit λ!/
symbol ’-’ />λ (¬) @> term λ!/
symbol ’(’ />λ expr /<λ symbol ’)’

In order to test this parser we generate test inputs by generating instances of
the expression trees.

: : ExpTree = Op ExpTree Op ExpTree | Int Int
: : Op = Mul | Add | Sub

derive ggen ExpTree , Op

A simple property for model based testing tell that the value obtained by eval-
uating a tree should be equal to the value obtained by transforming the tree to
an input for the parser and applying the parser:

propEx : : ExpTree → Bool
propEx tree = expr (toChars tree ) == [( eval tree , [ ] ) ]

The number of test cases needed to show the error in the parser again changes
with the skewness of the generic data generation:

skewness 1 1 1 2 1 3 1 4 1 5
test cases needed 286 1278 162 212 262
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In this example a skewness of 1 3 appears to be the optimal value. This value
appears to work very well in other examples as well. For that reason we have
chosen it as default value. We recommend to use other values only if there are
very good reason to deviate from this default.

5 General Recursive Types

The algorithm introduced above is geared towards two argument constructors. It
appears to work also for other data types, but not in an optimal way. For optimal
generation the algorithm has to determine in which arguments the constructor
is recursive and favor those positions in the generic generation. Determination
of the recursive positions can be done based on the type information available
in the generic representation.

6 Conclusion

In this paper we argue that systematic generation of test data for logical property
based testing is preferable over pseudo random generation. The existing generic
systematic generation had some drawbacks. The most significant problem was
that in some situation huge amounts of tests cases were needed to falsify a
property.

In this paper we show that this can be cured with a new generic systematic
algorithm to enumerate the values in a, recursive, data type. The main differ-
ence is that we give a higher priority to the recursive cases in the systematic
generation. Even a moderate skewness reduces the number of required test val-
ues with a huge factor. The advantages of systematic generation are not effected
by skew instead of straight test data generation. In our examples this skew test
data generation has no negative effects for other properties.

However, knowing the algorithm it should always be possible to design a spe-
cial situation where any systematic generation order finds the counter example
extremely late.
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Abstract A property-based testing library enables users to perform
lightweight verification of software. This paper presents improvements
to the Lazy SmallCheck property-based testing library. Users can now
test properties that quantify over first-order functional values and nest
universal and existential quantifiers in properties. When a property fails,
Lazy SmallCheck now accurately expresses the partiality of the counter-
example. The necessary architectural changes to Lazy SmallCheck result
in a performance speed-up. All of these improvements are demonstrated
through several practical examples.

1 Introduction

Property-based testing is a lightweight approach to verification where expected

or conjectured program properties are defined in the source programming lan-

guage. For example, consider the following conjectured property that in Haskell

all reductions on lists of Boolean values to a single Boolean value can be ex-

pressed as a foldr .

prop ReduceFold :: ([Bool ]→ Bool)→ Property

prop ReduceFold r = exists $ λf z → forAll $ λxs → r xs ≡ foldr f z xs

When this property is tested using our advanced version of Lazy SmallCheck, a
small counterexample is found for r .

¿¿¿ test prop˙ReduceFold

...

Depth 6:

Var 0: – [] -¿ False

; ˙:[] -¿ False

; ˙:˙:˙ -¿ True ˝

Reading the output in the style of Haskell’s case-expression syntax in explicit

layout, this function tests for a multi-item list. Several new features of Lazy
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SmallCheck are demonstrated by this example. First, note that two of the quan-

tified variables, r and f , are functional values. Secondly, an existential quantifier

is used in the property definition. Thirdly, the property involves nesting of uni-
versal and existential quantifiers inside the property. Finally, the counterexample

found for r is concise and easy to understand.

Previous property-based testing libraries can struggle with such a property.

QuickCheck (Claessen and Hughes, 2000) does not support existentials as it
‘would rarely give useful information about an existential property: often there is

a unique witness and it is most unlikely to be selected at random.’ (Runciman

et al., 2008) QuickCheck also requires that functional values be wrapped in a

modifier (Claessen, 2012) for shrinking and showing purposes.

The previous Lazy SmallCheck (Runciman et al., 2008) supports neither ex-
istentials, nested quantification nor functional values. SmallCheck (Runciman

et al., 2008) supports all the necessary features of the property but it takes

longwer to produce a more complicated looking counterexample. This is because

SmallCheck enumerates only fully defined test values and shows them by sys-

tematically probing function responses to input.

Contributions This paper discusses the use and implementation of new fea-

tures in Lazy SmallCheck. We present several contributions:

– A method of lazily generating and displaying functional values, enabling the

testing of higher-order properties.

– An architecture and refutation algorithm that permits properties containing

nested quantifications in a Lazy SmallCheck-style testing library.

– An evaluation of these additions with respect to functionality and run-time

performance.

Roadmap The next sections give examples demonstrating the new features of

the Lazy SmallCheck (§2 and §3). The paper then focuses on the architectural

changes that enable these new features (§4) and the formulation of functional

values (§5). Performance (§6) and features (§7) are evaluated and compared
with other Haskell property-based testing libraries.

Note to reader: In a final version of this paper, further examples will be

included to demonstrate the features of the library.
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2 Functional values

Example: Left and right folds Let us look for a counterexample of another

conjectured property. This property states that foldl1 is extensionally equivalent

to foldr1 .

prop foldlr1 :: (Peano → Peano → Peano)→ [Peano ]→ Property

prop foldlr1 f xs = (¬ ◦ null) xs =⇒ foldl1 f xs ≡ foldr1 f xs

As we shall be testing this with list elements from the user-defined data-type

Peano, we shall need to create an Argument instance in order to produce func-
tional values with Peano arguments. A Template Haskell function (Sheard and

Peyton Jones, 2002) — deriveArgument — does this automatically.

data Peano = Zero | Succ Peano deriving (Eq,Ord ,Show ,Data,Typeable)

instance Serial Peano where series = cons0 Zero <|> cons1 Succ

deriveArgument ′′Peano

Lazy SmallCheck finds a counterexample at depth 6. The function f returns

Succ Zero if its input is Zero and returns Zero in all other cases. The list xs is

of length three where the last element is Zero.

¿¿¿ test prop˙foldlr1

...

Depth 6:

Var 0: – ˙ -¿ – Zero -¿ Succ Zero

; Succ ˙ -¿ Zero ˝ ˝

Var 1: ˙:˙:Zero:[]

The underscore symbol has overloaded meaning. If it is on the left-hand side of

a functional mapping, it indicates a wildcard pattern. Elsewhere, it represents

undefined input.

Example: Generating predicates More complex patterns and partial func-
tions can be represented, as shown in the next example related to

prop PredicateStrings from Claessen (2012).

prop bitstring :: ([Bool ]→ Bool)→ Property

prop bitstring p = p [False,False,True, False,False,True ]

∧ p [False,False,False,False,True, True ]

=⇒ p [False,False,False,False,False,True ]

The counterexample is a function that returns False for all bitstrings that have
False in their third and fifth positions, True for all functions that have False in

their third but True in their fifth positions and True for all bitstrings that have

True in their third position. Notice that the function is undefined for strings of

length two or less and for strings that are of length 4 or less but have False in

their third position.

175



4 Jason S. Reich, Matthew Naylor and Colin Runciman

¿¿¿ test prop˙bitstring

...

Depth 14:

Var 0: – ˙:˙:False:˙:False:˙ -¿ False

; ˙:˙:False:˙:True:˙ -¿ True

; ˙:˙:True:˙ -¿ True ˝

Lazy SmallCheck has found the minimal definition of a function that falsifies

the property. Wildcard patterns are used where the bit at that position simply

does not matter. The function is undefined for the regions of the function space

that do not affect the property.

3 Stronger properties

Example: Prefix of a list In the next example, taken from Runciman et al.

(2008), we assert that a (flawed) definition of isPrefix satisfies a soundness spe-

cification of the function.

isPrefix :: Eq a⇒ [a ]→ [a ]→ Bool

isPrefix [ ] = True

isPrefix (x : xs) (y : ys) = x ≡ y ∨ isPrefix xs ys

isPrefix = False

prop isPrefixSound xs ys = isPrefix (xs :: [Peano ]) ys =⇒
(existsDeeperBy (∗2) $ λxs ′ → xs ++ xs ′ ≡ ys)

In Runciman et al. (2008), this property could only be checked using SmallCheck

as Lazy SmallCheck did not support existential properties. Running it through

Lazy SmallCheck gives another concise counterexample: the first argument of

isPrefix is a multi-item list with first element Zero, and the second argument is

[Zero ]; isPrefix incorrectly returns True.

¿¿¿ depthCheck 3 prop˙isPrefixSound

Var 0: Zero:˙:˙

Var 1: [Zero]

Given the recursive behaviour of isPrefix , a counterexample with both xs and ys

non-empty shows that the error is likely in the second clause. Indeed, a disjunc-

tion has been used in place of a conjunction.

4 Under the hood

SmallCheck operates by exhaustively constructing all possible values of a partic-

ular type, bounded by the depth of construction (or some appropriate metric for
non-algebraic types). Lazy SmallCheck extends this by first generating a partial
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Figure 1. The Lazy SmallCheck counterexample search space for prop strange.
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value at each point in the structure and filling it only if a property function

interrogates its value.

To illustrate, Figure 1 visualises the complete Lazy SmallCheck search space

for test data of type Either Bool (Bool ,Bool). Consider the following illustrative

property, prop strange.

prop strange :: Either Bool (Bool ,Bool)→ Bool

prop strange (Left ) = True

prop strange (Right (x , y)) = x =⇒ y

Testing this property gives the following output, as one would expect.

¿¿¿ test prop˙strange

...

Depth 1:

Var 0: Right (True,False)

Only the grey nodes are explored by the refutation algorithm. The thought

bubbles in Figure 1 indicate the order in which the search space was explored

to discover this ‘counterexample’.

Notice that entire sections of the search space are never visited because either

the property does not force the value (children of Left ˙) or because the order

of evaluation explores those terms through a different route (second child of

Right ˙ ˙). Only the term representing the counterexample is a total value.

What follows is a description of how the new Lazy SmallCheck achieves this

process. Some simplification has been performed to ease reading: in particular,

simpler but less efficient formulations are used in places.

4.1 Lazy SmallCheck terminology

In Lazy SmallCheck, a Property is a predicate written using Bool functions or
in a domain-specific language that exposes Lazy SmallCheck features. If the free

variables in a Property are of types belonging to the Serial type class, then they

are instantiated by the refutation algorithm to find a counterexample.

Instances of the Serial type class define a constant series of type Series a,
where a is the type of the test data being generated. Series a is a function that

produces test data Terms a, for a given Depth bound.

The type Term a is a tuple consisting of a value (rectangle nodes in Figure 1)

and list of expansions (children circle nodes in Figure 1). The refutation al-

gorithm selects the appropriate expansions when a property forces an undefined
region of a test-data value.

The previously mentioned value of a term is a composition of several types

to provide the necessary partiality and contextual information. The following
sections will describe those types and their combination.
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4.2 Partial values

The original Lazy SmallCheck involved a property refutation function that ex-
isted in the IO monad. This was to make use of exception catching functions

to detect partial values. The new Lazy SmallCheck takes some slightly different

approaches and abstractions that enable the richer property language and the
display of partial counterexamples.

LSC Exceptions The latest version of Lazy SmallCheck still uses exceptions
to implement partial values, although it makes use of GHC’s user-defined ex-

ceptions (Marlow, 2006) facility. These allow arbitrary types to be included in

exceptions, rather than just strings. In any case, the library used by the original
Lazy SmallCheck had long since been deprecated.

data LSC = Expand Location derving (Show ,Typeable)

instance Exception LSC

type Location = (Path,Nesting)

type Nesting = Int

type Path = [Bool ]

The expansion exceptions are tagged with a Path representing their location in

the structure and the Nesting level of the quantifier.

Partial values monad To ensure that all Lazy SmallCheck exceptions are

caught by the refutation algorithm, a monad of Partial values is defined.

newtype Partial e a = Partial {unsafePeek :: a}
instance Functor (Partial e) where

fmap f = Partial ◦ f ◦ unsafePartial

instance Monad (Partial e) where

return = Partial

Partial xs >>= f = f xs

inject :: Exception e ⇒ e → Partial e

inject = Partial ◦ throw

runPartial :: (Exception e,NFData a)⇒ Partial e a→ Either e a

runPartial = unsafePerformIO ◦ try ◦ evaluate ◦ force ◦ unsafePeek

The intention is to ensure that we can perform any operation within the context

of the Partial value monad but only safely retrieve the value with runPartial .

The entire value is forced to make sure that an exceptions of type e are caught

before they can escape outside the monad.

Showing partial values A Show instance is defined over Partial values which

have Data and Typeable instances for the value type. The definition is omitted
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here but it follows the ‘Chasing Bottoms’ technique from Danielsson and Jansson

(2004). This is what allows the display of wildcard patterns in the left-hand side

of functional values and partial values in counterexamples.

4.3 Quantification contexts

The quantification context is simply a (co)monad container that carries inform-
ation about quantifiers.

type QuantInfo = [String ]

data QuantCtx a = QC {qcCtx ::QuantInfo, qcVal :: a}
instance Functor QuantCtx where

fmap f (QC ctx val) = QC ctx (f val)

instance Applicative QuantCtx where

pure = QC [ ]

QC ctx0 f <∗> QC ctx1 x = QC (ctx0 ++ ctx1) (f x)

QuantInfo simply holds the pretty-printed representations of instantiated quan-

tification variable values.

4.4 Test data terms

A Term is a pairing of possibly partial values with their possible expansions.

The tValue component takes in a root path values and returns a possibly Partial

value (containing exceptions of type LSC ), wrapping in a quantification context

(QuantCtx) holding pretty-printed representations of instantiated quantification

variables. The tExpand component returns a list of Terms that are expansions

at the path provided.

data Term a = Term {tValue :: Location → QuantCtx (Partial LSC a)

, tExpand :: Path → [Term a ]}
instance Functor Term where

fmap f (Term v es) = Term ((fmap (fmap f )) ◦ v) (map (fmap f ) ◦ es)

instance Applicative Term where

pure x = Term (const $ pure $ pure x) (const [ ])

f @(Term fv fes) <∗> x@(Term xv xes) = Term

(λloc → (<∗>) <$> fv loc <∗> xv loc)

(λ(p : ps)→ if p then map (f <∗>) (xes ps)

else map (<∗> x) (fes ps))

4.5 Series and Serial generators

Generators of Lazy SmallCheck values are defined by the Series functor. In-

stances of Functor , Applicative and Alternative are provided such that the depth-
bounding and partiality functionality is introduced and preserved.
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type Depth = Int

newtype Series a = Series {runSeries ::Depth → [Term a ]}
instance Applicative Series where

return = Series ◦ const ◦ pure ◦ pure

Series fs <∗> Series xs = Series $ λd →
[f x | d > 0, f ← fs d , let x = mergeTerm xs ]

instance Functor Series where

fmap f xs = pure f <∗> xs

instance Alternative Series where

empty = Series $ const [ ]

Series xs <|> Series ys = Series $ (++) <$> xs <∗> ys

mergeTerm :: [Term a ]→ Term a

mergeTerm [ ] = error ”LSC: Cannot merge empty terms.”

mergeTerm [x ] = x

mergeTerm xs = Term (pure ◦ inject ◦ Expand) (const xs)

Using this interface, we can define series generators for types. For example, a

series generator for Peano numerals could be represented as;

peanoSeries :: Series Peano

peanoSeries = pure Zero <|> (pure Succ <∗> peanoSeries)

When instantiating quantification variables, the QuantInfo representation is stored.

The instantiation is performed automatically for types satisfying the Serial type-

class.

class Serial a where

series :: Series a

seriesWithCtx :: (Data a,Typeable a)⇒ Series a

seriesWithCtx = storeShow ◦ series

The storeShow value uses the Partial instance of Show to store a pretty-printed
representation of each Term’s value in its quantification context.

Now that we have the Serial type-class, the consχ family of combinators can

be constructed as described by Runciman et al. (2008).

4.6 Properties

An internal Property domain-specific language supplies more information than

simple Boolean properties. The PAnd constructor is parallel conjunction, as de-
scribed in Runciman et al. (2008). The ForAll and Exists constructors represent

nested quantification over some property, with some depth modification.
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data Property = Lift Bool | Not Property | And Property Property

| PAnd Property Property | Implies Property Property

| ForAll (Depth → Depth) (Series Property)

| Exists (Depth → Depth) (Series Property)

Smart constructors are provided for these, either automatically lifting Bool-

typed expressions to Property or automatically instantiating free variables in

properties with appropriate series from Serial instances.

4.7 Refuting properties

The algorithm for refuting properties (finding counterexamples) is defined using
using auxiliary functions, making use of the Partial values library. At various

points, exceptions are made explicit through the runPartial function.

Note to reader: In the final paper, a full description of the refutation algorithm

will be supplied.

5 Implementing functional values

The key to generating functional values is the ability to represent the data-types

of arguments as tries, also known as prefix trees. Lazy SmallCheck can then

generate an appropriate trie and convert it into the requried function.

The previously described architectural changes enable the storage of a pretty-

printed trie representation before the trie is converted into a Haskell function.

This removes the need for a Claessen (2012) style modifier.

5.1 Custom data-types for functional value arguments

Users only need to define the Argument instance to allow custom data-types

to be functional value arguments. The definition of Argument is related to the
formulation of HasTrie instances by Elliott (2008). The instance defines a the

type of the trie structure, an application function for looking up arguments in

the trie structure and a tabulation function that converts the trie structure into
a argument/value table ready for display.

A generic Serial instance for functional values uses the Argument instance as
follows:

instance (Argument a,SerialF (Store a),Data a,Typeable a,

,Serial b,Data b,Typeable b)⇒ Serial (a→ b) where

series = applyT <$> trieSeriesF series

seriesWithCtx = applyT <$> storeShowTrie (trieSeriesF series)

We provide a generic trie construction kit for building these instances with (:+:),

(:∗:) and V representing sums of product types leading to output values. Using

these types provides users with free Serial instances for the required tries.
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Writing the Argument instances for most algebraic data types follows a

regular pattern. We have therefore written a Template Haskell (Sheard and

Peyton Jones, 2002) function to generate instance definitions on behalf of the
user. In a previous example, the definition for Peano was automatically derived

in this way. It produced a definition equivalent to;

instance Argument Peano where

type Store Peano = V :+: Peano :∗: V

applyT ′ (z :+: s) Zero = unV z

applyT ′ (z :+: s) (Succ k) = unV $ (‘applyT ‘k) $ unPro s

tabulateT ′ (z :+: s) = return (pure Zero, unV z) ‘Branch‘

(do (k , v)← tabulateT $ unPro s

return (pure Succ <∗> k , unV v))

5.2 Implementation highlights

While based on the Elliott (2008) trie implementation, our differs the following

respects.

– Non-strict ‘wildcard’ matching, where the argument is not interrogated.
– A standard trie construction kit, rather than producing a concrete trie type

for each possible argument.
– The lack of a functional-value-to-trie function as it is unnecessary for first-

order functional values.
– The inclusion of a tabulation function to expose a trie for display.

Note to reader: A fuller description of the implementation of tries for Lazy

SmallCheck will be provided in the final paper.

6 Performance comparison

The performance of the new Lazy SmallCheck is compared to that of the original

(Runciman et al., 2008), previously published. Experiments were performed us-
ing GHC 7.0.3 with -O2 optimisation on a 2GHz dual-core PC with 4GB of RA.

The original benchmark programs used by Runciman et al. (2008) have been
run using the Criterion (O’Sullivan, 2011) benchmarking library to perform ex-

ecution time measurements.

Table 1 shows the execution times. Run-time ratios less-than one show a per-
formance improvement. A geometric mean of the ratios is calculated to indicate

overall performance gains.

There is a performance increase in all but three benchmarks. Overall, there

is a 147% speed-up compared with the previously published version of Lazy

SmallCheck.
Note to reader: The final paper will have further analysis of why some bench-

marks perform better than others.
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7 Discussion and related work

A comparision of several Haskell property-based testing libraries can be found
in Table 2. Test space exploration strategy is the main distinction between the

QuickCheck library and SmallCheck family of libraries. QuickCheck assumes

that test data detecting a failure is likely within some probability distribution.

SmallCheck, on the other hand, appeals to the Small Scope hypothesis (Jackson,
2012) — programming errors are likely to appear for small test data.

Functional values The original QuickCheck paper (Claessen and Hughes,
2000) explains how functional test values can be generated through the Arbitrary

instance of functions with a Coarbitrary instance of argument types. At this stage,

QuickCheck could not display the failing example without bespoke use of the

whenFail property combinator.

QuickCheck has since gained the ability not only to display functional counter-

examples but also to reduce their complexity through shrinking. Claessen (2012)

achieves this by transforming functions generated using the existing Coarbitrary

technique into tries.

Claessen’s formulation of tries differs from ours. Among its advantages is

a simpler interface is presented that could be derived using a generics lib-

rary, such as Scrap Your Boilerplate (Lämmel and Peyton Jones, 2003), rather

than through Template Haskell meta-programming. However, Claessen (2012)

requires that

functions are wrapped in a ‘modifier’ at quantification binding. This Fun mod-

ifier retains information for showing and shrinking at the expense of a slightly

more complex interface presented to users.

In Lazy SmallCheck, on the other hand, we directly generate a trie and then

convert it into a Haskell function. A pretty-printed representation of the trie is

stored at the time of generation and retrieved for counterexample output.

The SmallCheck representation of functional values uses a coseries approach,

analogous to QuickCheck’s Coarbitrary . However, functional values are displayed
by systematically enumerating arguments.

Existential and nested quantification Runciman et al. (2008) discusses

the lack of existential properties in QuickCheck. “Testing a random sample of

values as in QuickCheck would rarely give useful information about an existential
property: often there is a unique witness and it is most unlikely to be selected at

random.” (Runciman et al., 2008)

Unfortunately, the previous design of Lazy SmallCheck made it difficult to
concieve of a refutation algorithm that could handle the nested quantification re-

quired to make existential properties useful. The use of the Partial values monad

gives statically-typed guarantees that term expansions would be performed at
the correct quantifier nesting.
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Table 1. Comparative execution time performance.

Benchmark Original New Ratio Benchmark Original New Ratio

Catch 2.37s 0.67s 0.28 Huffman2 0.24s 0.14s 0.59

Circuits1 4.85s 4.84s 1.00 ListSet1 0.05s 0.04s 0.80

Circuits2 0.02s 0.02s 1.04 Mate 0.13s 0.08s 0.60

Circuits3 4.45s 2.48s 0.56 RedBlacka 0.06s 0.04s 0.66

Countdown1 0.89s 0.49s 0.55 SumPuz 1.42s 1.37s 0.97

Countdown2 0.59s 0.60s 1.01 Turner 0.18s 0.11s 0.62

Huffman1 1.04s 0.69s 0.67 Geometric mean 0.68
a Counterexample found.

Table 2. Comparision of property-based testing library features.

Feature QuickCheck SmallCheck Original LSC New LSC

Test strategy Random Bounded

exhaustive

Bounded

exhaustive

Bounded

exhaustive

Test space

pruning

N/A N/A Lazy test-data

generation

Lazy test-data

generation

Minimal

counterexamples

Shrinking Natural Natural Natural

Functional values Yesa Yes No Yes

Existentials No Yes No Yes

Nested

quantification

Yes Yes No Yes

Displays partial

counterexamples

N/A N/A No Yes

Haskell 98/2010 Partialb Compatible Compatible Noc

a Functional value is wrapped in a modifier at its quantification binding if showing or
shrinking is required.

b Originally Haskell 98 compatible but functional values modifier requires GADTs.
c Requires Haskell extentions such as type families, flexible instances, flexible contexts

and Template Haskell.
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As highlighted by Runciman et al. (2008), occasionally the depth of the

existential quantification space needs to be larger than the surrounding universal

quantification space. The existsDeeperBy combinator provides this functionality.

Benefits of laziness Runciman et al. (2008) discussed the benefits and fragil-

ity of exploiting the laziness of the host language to prune the test-data search

space. When applied to functional values, we see further benefits. The partiality

of underlying trie representation of functions corresponds directly with the par-
tiality of the resulting function. Whereas Claessen (2012) needs to shrink total

function to partial functions, the latest Lazy SmallCheck has partial functions
as a natural result of its construction.

Runciman et al. (2008) notes that Lazy SmallCheck gets best results under
universal quantification when the antecedent of an implication does not need to

force the entire structure. Under existential quantification, it is hard to conceive

of a similar design pattern.

8 Conclusions and further work

This paper has described the extension of Lazy SmallCheck with several new fea-

tures; (1) quantification over functional values, (2) existential and nested quan-

tification in properties and (3) the display of partial counterexamples. These

features required some architectural changes to Lazy SmallCheck giving an im-

provement in execution time.

Further investigation is needed to investigate if the trie representation used by

Claessen (2012) can be adapted for our purposes. This is an appealing prospect as

trie implementations could be shared between the libraries and the Claessen style

tries do not necessarily require Template Haskell to be automatically derived.

We have not discussed the handling of primitive types (e.g. Int and Char)

as functional value arguments. Our approach has been quite similar to Claessen

(2012) — reducing them to a pseudo-inductive definition. However, showing
partially generated values of these types is difficult. Further work may resolve
this omission.

Properties that quantify over functional values occur often in higher-order

functional programming. Similarly, many properties may involve existential quan-
tification and even nesting of quantification within property definitions. The

examples in this paper have demonstrated the power of a tool that can find
counterexamples for such properties.

As noted in the discussion section and in previous research (Runciman et al.,

2008), the exploitation of laziness can effectively prune the test-data search
space. This, combined with the performance improvements presented in this

paper, makes finding counterexamples in a large search space attainable.
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Abstract. Thanks to mission creep, network proxies, or simply proxies,
are often rather large, somewhat disorganized pieces of software. Moti-
vated by a concern for security, we have recently been working to bring
the power of functional programming to bear on the problem of con-
structing proxies. In this paper, we construct a proxy for the Hypertext
Transfer Protocol to illustrate one nice result of our work: a large, com-
plicated proxy may be far more clearly expressed as a transparent one
with many small, simple controls, each one an executable specification.

Keywords: functional programming, proxy programming.

1 Introduction

Nowhere are the dangers of mission creep more apparent than in the construction
of network proxies, or simply proxies, whose duties may have grown haphazardly
to include anonymization, authentication, filtering, screening, bridging, tunnel-
ing, caching, accounting, logging, monitoring, and more besides [1]. Look at a
proxy nowadays and you will often see a rather large, somewhat disorganized
piece of software1. This matters because proxies have an increasingly important
part to play in ensuring our security [2]. Motivated by a concern for security,
we have recently been working to bring the power of functional programming
to bear on the problem of constructing proxies. Here, we illustrate one nice re-
sult of our work: a large, complicated proxy may be far more clearly expressed
as a transparent one with many small, simple controls, each one an executable
specification.

This paper is organized as follows. Section 2 introduces clients, servers and
proxies. Section 3 introduces basic and composite controls. Section 4 considers an
example proxy. Section 5 considers some example controls. Section 6 describes a

1 The reader is invited to inspect, for example, the source code of squid, version 3.1.19,
(76,401 non-blank lines), or even that of tinyproxy, version 1.8.3, (7,004 non-blank
lines).
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proxy test bench. Section 7 reviews some closely related work. Section 8 suggests
some possible future work. Section 9 concludes.

Throughout, we use the Haskell programming language [3] — indeed, this
paper is a literate Haskell script — and assume some familiarity with it. Those
without such familiarity may sometimes need to consult one of the many excel-
lent introductory textbooks [4–7].

2 Clients, Servers and Proxies

2.1 Clients and Servers

A server receives a request message of type a from a client over a network, and
transmits a response message of type b back to it

type Server a b
= a → IO b

It is convenient to have a class for message types, equipped with operations to
transmit and receive message values on network handles

class Message m where
transmit :: Handle → m → IO ()
receive :: Handle → IO m

and further convenient to have classes for request and response message types,
equipped (for this work at least) with an operation to get request message des-
tinations as (host, port) pairs

class Message a ⇒ Request a where
destination :: a → (String , Int)

class Message b ⇒ Response b where
-- nothing

2.2 Proxies

A proxy stands in for a server

type Proxy a b
= Server a b

A transparent proxy relays a request, x , from a client, and a response, y , back
to it

transparentProxy :: (Request a,Response b)⇒ Proxy a b
transparentProxy x
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= do let (hst , prt) = destination x
hdl ← connectTo hst (PortNumber (fromIntegral prt))
transmit hdl x
y ← receive hdl
hFlush hdl
hClose hdl
return y

3 Basic and Composite Controls

3.1 Basic Controls

A basic control , c, adapts a proxy, p, so as to improve its security2. See Fig. 1.
In other words

cx
-

�
y

p
x′

-

�
y′

Fig. 1. A basic control.

type Control a b
= Proxy a b → Proxy a b

3.2 Tinker Controls

One basic control adapts a proxy by replacing its requests; that is, it tinkers
with it. A replacement request is obtained by applying a function to a request

tinker :: (Request a,Response b)⇒ (a → a)→ Control a b
tinker f pxy

= λx → do y ← pxy (f x )
return y

2 A control is a means of managing risk, including policies, procedures, guidelines,
practices or organizational structures, which can be of an administrative, technical,
management or legal nature [2].

190



3.3 Tailor Controls

Another basic control adapts a proxy by replacing its responses; that is, it tailors
it. A replacement response is obtained by applying a function to a request and
response

tailor :: (Request a,Response b)⇒ (a → b → b)→ Control a b
tailor f pxy

= λx → do y ← pxy x
return (f x y)

3.4 Soldier Controls

Yet another basic control adapts a proxy by partially replacing it; that is, it
soldiers for it. A replacement is made by applying a function to a request and a
proxy

soldier :: (Request a,Response b)⇒ (a → Proxy a b → IO b)→ Control a b
soldier f pxy

= λx → do y ← f x pxy
return y

3.5 Spy Controls

A final basic control adapts a proxy by recording it; that is, it spies on it. A
recording is made by applying a function to a request and response

spy :: (Request a,Response b)⇒ (a → b → IO ())→ Control a b
spy f pxy

= λx → do y ← pxy x
f x y
return y

3.6 Composite Controls

A composite control , c0 ◦ c1, also adapts a proxy, p, so as to improve its security.
See Fig. 2. In other words

(◦) :: Control a b → Control a b → Control a b

4 An Example Proxy

As an example proxy, we consider one for the Hypertext Transfer Protocol (HTTP)
[1].
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Fig. 2. A composite control.

4.1 HTTP Requests

An HTTP request , or simply a request , consists of a start line, some header lines,
and a body. The start line consists of a method string, a Universal Resource
Identifier (URI) string, and a version string. Each header line consist of a name
string and a value string, separated by a ’:’. The body consists of either a single
content string or several chunk strings

data HttpRequest
= HttpRequest

(String ,String ,String) [(String ,String)] (Either String [String ])

An HttpRequest is a Request

instance Request HttpRequest where
destination = destinationHttpRequest

instance Message HttpRequest where
transmit = transmitHttpRequest
receive = receiveHttpRequest

although to save space, we omit the functions that make it so.

4.2 HTTP Responses

An HTTP response, or simply a response, also consists of a start line, some
header lines, and a body. The start line consists of a version string, a status code
string, and a reason string. The header lines and the body are as for requests

data HttpResponse
= HttpResponse

(String ,String ,String) [(String ,String)] (Either String [String ])

An HttpResponse is a Response

instance Response HttpResponse where

instance Message HttpResponse where
transmit = transmitHttpResponse
receive = receiveHttpResponse

although again to save space, we omit the functions that make it so.
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4.3 An HTTP Proxy

An HTTP proxy , or simply a proxy , is a specialized transparent proxy

httpProxy :: Proxy HttpRequest HttpResponse
httpProxy

= transparentProxy

5 Example Controls

As example controls, we consider some for our example proxy.

5.1 An Anonymization Control

Some users prefer anonymity . Let us assume — with good reason [8] — that
the extraordinarily precise version numbers found in request user-agent header
values decrease user anonymity. Two typical user-agent header values are

chrome19 :: String
chrome19

= "Mozilla/5.0 (X11; Linux i686) "

++ "AppleWebKit/535.21 (KHTML, like Gecko) "

++ "Chrome/19.0.1041.0 Safari/535.21"

and

safari533 :: String
safari533

= "Mozilla/5.0 (Macintosh; U; Intel Mac OS X 10_6_6; en-gb) "

++ "AppleWebKit/533.20.25 (KHTML, like Gecko) "

++ "Version/5.0.4 Safari/533.20.27"

A request is anonymized by mapping many user-agent headers to a few valid,
appropriate, generic ones

anonymize :: HttpRequest → HttpRequest
anonymize (HttpRequest sl hdrs bdy)

= case partition ((≡) "user-agent" ◦ fst) hdrs of
([(n, v)],nvs)→ HttpRequest sl ((n, generic v) : nvs) bdy
other → HttpRequest sl hdrs bdy

generic :: String → String
generic v

| any (isPrefixOf "Chrome/19") ws = chrome19
| any (isPrefixOf "Safari/533") ws = safari533
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| otherwise = v
where

ws = words v

A tinker control for anonymization is then initialized as follows

initHttpAnonymize :: IO (Control HttpRequest HttpResponse)
initHttpAnonymize

= return (tinker anonymize)

In general, initializations may make reference to the environment, and especially
to the file system, and so we give them an IO type. This control replaces all
requests.

5.2 An Authentication Control

Some administrators permit only authenticated users. The credentials used for
authentication might consist of colon-separated usernames and passwords, such
as “smiley:letmein”, that have been hashed and formatted in a standard way,
such as “Basic c21pbGV5OmxldG1laW4=”. Let us assume that a list of valid
credentials like this may be loaded from the file system using a function

loadList :: FilePath → IO [String ]

A request is then authenticated if any credentials in its headers are the same as
those on such a list

authenticated :: [String ]→ HttpRequest → Bool
authenticated crds (HttpRequest (mth, uri , ver) hdrs bdy)

= case lookup "proxy-authorization" hdrs of
Just crd → crd ∈ crds
Nothing → False

A tailor control for authentication is then initialized as follows

initHttpAuthenticate :: IO (Control HttpRequest HttpResponse)
initHttpAuthenticate

= do crds ← loadList "credentials"
return (tailor (λx y → if authenticated crds x then y

else demand))

This control replaces the response corresponding to a request that is not authen-
ticated with an authentication demand

demand :: HttpResponse
demand

= HttpResponse
("HTTP/1.1", "407", "Proxy Authentication Required")
[("proxy-authenticate", "Basic realm=\"The Circus\"")]
(Left "")
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5.3 A Filtering Control

One way to block undesirable content is to filter certain addresses according
to a blacklist [2]. A blacklist might consist of a number of authorities, such as
“www.facebook.com”. Let us assume that a blacklist may be loaded from the
file system using loadList as before. A request is blacklisted if its URI, such as
“http://www.facebook.com”, has an authority that is on a blacklist

blacklisted :: [String ]→ HttpRequest → Bool
blacklisted atys (HttpRequest (mth, uri , ver) hdrs bdy)

= let (scm, aty , pth) = schemeAuthorityPath uri in
aty ∈ atys

schemeAuthorityPath :: String → (String ,String ,String)
schemeAuthorityPath uri

= case break (λx → x ≡ ’:’) uri of
(scm, ’:’ : ’/’ : ’/’ : ts)→
case break (λx → x ≡ ’/’ ∨ x ≡ ’?’) ts of

(ath, "") → (scm, ath, "/")
(ath, pth)→ (scm, ath, pth)

A tailor control for filtering is then initialized as follows

initHttpFilter :: IO (Control HttpRequest HttpResponse)
initHttpFilter

= do atys ← loadList "blacklist"
return (tailor (λx y → if blacklisted atys x then blocked

else y))

This control replaces the response corresponding to a request that is blacklisted
with an innocuous one

blocked :: HttpResponse
blocked

= let msg = "Blocked" in
HttpResponse

("HTTP/1.1", "200", "OK")
[ ("Content-length", show (length msg))
, ("Content-type", "text/plain")
]
(Left msg)

5.4 A Screening Control

Another way to block undesirable content is to screen it for certain signatures,
and then perhaps to quarantine it [2]. The signatures might be represented by
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a Bloom filter [9] — a compact set representation with an efficient probabilistic
membership test [10]. Let us assume that membership of a Bloom filter may be
tested using a function3

elemBloom :: String → Bloom → Bool

and that a Bloom filter of signatures may be loaded from the file system using
a function

loadBloom :: FilePath → IO Bloom

A response is considered to be infected if a scan of its content, or of its concate-
nated chunks, finds any window that is a member of such a Bloom filter

infected :: Bloom → HttpResponse → Bool
infected blm (HttpResponse (ver , cde, rsn) hdrs bdy)

= either (scan blm) (scan blm ◦ concat) bdy

scan :: Bloom → String → Bool
scan blm cs

= any (λw → elemBloom w blm) (windows cs)

where a window is chosen to be six characters

windows :: [a ]→ [[a ]]
windows [ ]

= [ ]
windows cs

= take 6 cs : windows (tail cs)

A tailor control for screening is then initialized as follows

initHttpScreen :: IO (Control HttpRequest HttpResponse)
initHttpScreen

= do blm ← loadBloom "signatures"

return (tailor (λx y → if infected blm y then quarantine y
else y))

This control replaces a response that is infected by a similar one that is marked
with a cautionary header

quarantine :: HttpResponse → HttpResponse
quarantine (HttpResponse sl hdrs bdy)

= HttpResponse sl (("quarantine", "yes") : hdrs) bdy

3 For a full Bloom filter implementation, see [11].
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5.5 A Caching Control

A cache is often used to avoid repeated communication with a server [1]. Let us
assume that a cache is represented by an association list of request URIs and
corresponding responses. If a request URI is successfully looked up in such a list,
then the response should be taken from there; otherwise, the request should be
transmitted to the server, and the request URI and the response received from
the server should be added to the list

cache :: IORef [(String ,HttpResponse)]
→ HttpRequest
→ Proxy HttpRequest HttpResponse
→ IO HttpResponse

cache ref x@(HttpRequest (mth, uri , ver) hdrs bdy) pxy
= do lst ← readIORef ref

case lookup uri lst of
Just y → return y
Nothing → do y ← pxy x

writeIORef ref ((uri , y) : lst)
return y

A soldier control for caching is then initialized as follows4

initHttpCache :: IO (Control HttpRequest HttpResponse)
initHttpCache

= do ref ← newIORef [ ]
return (soldier (cache ref ))

This control replaces the proxy.

5.6 A Monitoring Control

Some administrators like to monitor system activity [2]. Let us assume that
monitoring involves nothing more than displaying a time, a request URI, and a
response status code and reason on the console

monitor :: HttpRequest → HttpResponse → IO ()
monitor (HttpRequest (mth, uri , ver1 ) hdrs1 bdy1 )

(HttpResponse (ver2 , cde, rsn) hdrs2 bdy2 )
= do utc ← getCurrentTime

putStrLn (show utc ++ " " ++ uri ++ " " ++ cde ++ " " ++ rsn)

A spy control for monitoring is then initialized as follows

initHttpMonitor :: IO (Control HttpRequest HttpResponse)
initHttpMonitor

= return (spy monitor)

This control records all requests.

4 Although strictly speaking a cache is not a control, it is something we are often
asked to demonstrate!
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5.7 A Composite Control

Of course, we could create many more small controls like this, each one an
executable specification; that is, an inefficient solution which comes from tran-
scribing the problem statement that may later be transformed into an efficient
one by more-or-less formal reasoning [12]. Let us pause, however, to show how
these small controls may be put together as a large one. A composite control
that increases user anonymity, permits only authenticated users, filters undesir-
able addresses, screens undesirable content, caches content, and monitors system
activity is initialized as follows

initHttpControl :: IO (Control HttpRequest HttpResponse)
initHttpControl

= do httpAnonymize ← initHttpAnonymize
httpAuthenticate ← initHttpAuthenticate
httpFilter ← initHttpFilter
httpScreen ← initHttpScreen
httpCache ← initHttpCache
httpMonitor ← initHttpMonitor
return

( httpAnonymize
◦ httpAuthenticate
◦ httpFilter
◦ httpScreen
◦ httpCache
◦ httpMonitor
)

6 A Proxy Test Bench

Before closing, we briefly describe a proxy test bench. Straightaway, we stress
that this test bench is robust enough for proxy development, but not for proxy
deployment. The test bench behaves as both a client and a server. The function
that makes the test bench behave as a client takes a proxy and a network handle.
It receives a request on the handle, acts as the proxy with the request, and
transmits the resulting response on the handle

client :: (Request a,Response b)⇒ Proxy a b → Handle → IO ()
client pxy hdl

= do x ← receive hdl
y ← pxy x
transmit hdl y
hFlush hdl
hClose hdl
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The function that makes the test bench behaves as a server takes a proxy and
a port. It casts off a new thread to act as a client with the proxy and a network
handle for each connection on the port

server :: (Request a,Response b)⇒ Proxy a b → PortID → IO ()
server pxy prtid

= do sck ← listenOn prtid
forever

(do (hdl , hst , prt)← accept sck
forkIO (client pxy hdl)

)

A main program may then use the test bench to run a particular proxy on a
particular port

main :: IO ()
main

= withSocketsDo
(do httpControl ← initHttpControl

server (httpControl httpProxy) (PortNumber 8000)
)

7 Related Work

A general taxonomy of “middleboxes” was presented by Carpenter and Brim,
who defined them as intermediate devices performing functions other than those
of a standard router [13]. After studying this taxonomy, Joseph and Stoica con-
structed a middlebox model consisting of zones, which describe packet entry
and exit points, input pre-conditions, which describe what packets are to be pro-
cessed, processing rules, which describe how packets are to be processed, state
databases, which describe the general state involved when packets are processed,
interest and state fields, which describe the specific state involved when pack-
ets are processed, and auxiliary traffic, which describes any additional packets
generated when packets are processed [14]. In his famous Turing Award lecture,
Backus observed that conventional programming languages are both fat , because
of their close coupling of semantics to state transitions, and weak , because of
their inability to effectively use powerful combining forms for building new pro-
grams from existing ones [15]. Similarly, it seems to us that Joseph and Stoica’s
middlebox model is both fat, because it closely couples protocols and their pro-
cessing, and weak, because of its inability to effectively use powerful combining
forms for building new middleboxes from existing ones.

So far, functional programmers seem to have worked more on router pro-
gramming than on middlebox programming. As far as router programming is
concerned, Voellmy and Hudak used a domain specific language embedded in
Haskell [16], and Loo et al. used a declarative language based on Datalog [17].
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As far as middlebox programming is concerned, Capretta et al., considered a
proof of correctness of a conflict detection algorithm for firewall access control
lists [18].

8 Future Work

Firstly, we plan to work on the systematic transformation of controls. The idea
here would be to demonstrate both how and why we arrive at good solutions
— ideally, with the clarity of [4] — so as to encourage others to try functional
proxy development . Secondly, we plan to work on increasing the performance of
controls. The idea here would be to improve the way that we process content and
perform input/output — perhaps incorporating the ideas of [19] and [20] — so as
to encourage others to try functional proxy deployment . Finally, we plan to com-
bine this work by considering controls as algorithmic skeletons [21]. Algorithmic
skeletons provide skeleton definitions, which are the same for all computers, and
usually take the form of a higher-order functions, and skeleton program transfor-
mations, which introduce these functions [22]. Algorithmic skeletons also provide
skeleton performance models, which give the resource consumption of skeleton
functions, and skeleton implementations, which are different for sequential and
parallel computers [22]. These models and implementations should assist func-
tional proxy development and deployment — already, a composite proxy may
be considered as a pipeline skeleton.

9 Conclusion

Network proxies are often rather large, somewhat disorganized pieces of software.
Motivated by a concern for security, we have been working to bring the power of
functional programming to bear on the problem of constructing proxies, and in
this paper we illustrated one nice result of our work: a large, complicated proxy
may be far more clearly expressed as a transparent one with many small, sim-
ple controls. These controls are either basic ones — tinkers, tailors, soldiers and
spies — or composite ones. In future, we plan to work on the systematic trans-
formation of controls and on their performance, so that they may be considered
as algorithmic skeletons.

10 End Note

The subtitle of this paper is borrowed, with apologies, from le Carré’s novel
Tinker Tailor Soldier Spy [23]. Set during the Cold War, this story is one of
the hunt for a mole at the very top of British Secret Service. The head of the
Service, Control, succeeds in narrowing-down the list of suspects to five men, and
assigns them unambiguous code-names: the ambitious Percy Alleline (Tinker);
the suavely confident Bill Haydon (Tailor); the stalwart Roy Bland (Soldier);
the officious Toby Esterhase (Poorman); and the razor-sharp George Smiley
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(Beggarman). However, the operation supposed to yield one of these code names
is compromised, and Control is forced to resign, dying soon afterwards. It later
falls to Smiley reconstruct the operation, and by examining the actions of each
of the other suspects, to uncover the mole.
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Abstract. The architecture of most programming languages differs significantly 
from the architecture  of the problem domain concerning the construction of 
neural network based computational intelligence. This paper makes a claim that 
Erlang  has  the  architecture  which  maps  perfectly  to  neural  network  based 
systems, and is thus the quintessential neural network programming language, 
and  which  this  author  believes  to  be  an  essential  element  in  the  future  of  
computational  intelligence  research  and  implementation.  Furthermore,  this 
paper presents a  case study of a  topology and parameter  evolving universal  
learning network called DXNN, developed purely in Erlang. Finally, the paper 
demonstrates  the  advantages  Erlang  provides  to  computational  intelligence 
based systems built  through it,  and  the new frontiers  that  it  paves the  way 
towards within the field. 

Keywords: Erlang, Neuroevolution, Concurrency, Distributed Computing, 
Evolutionary Computation, Neural Networks, DXNN.

1 Introduction

There is nothing mystical about the human brain, it is but a neurocognitive computer,  
carved  out  in  flesh  through  billions  of  years  of  evolution.  When  it  comes  to 
computational  intelligence,  we know of one  method that,  given  advanced  enough 
technology  and  computational  power,  will  produce  truly  intelligent  agents.  That 
method  is  the  simulation  of  such  a  biological  neurocognitive  system  on  a  non 
biological substrate, it is the approach to computational intelligence through neural 
networks and evolutionary computation. The proof that this approach works is  us, 
neural network based intelligent agents, whose neurocognitive computers have been 
evolved through billions of years of trial and error. Finally, as was shown by the blue 
brain  project  [1],  we  already  have  proof  that  the  non biological  neural  networks 
behave  just  as  their  biological  counterparts.  Nature  does  not  care  whether  the 
computations are performed in flesh or in silicone, as long as the mathematics behind 
it is the same.

Artificial  neural  networks  are  mathematical  abstractions  of  the  biological 
neurocognitive systems, and similarly to a  biological  neural  network, the artificial 
neural network is a vast graph of interconnected signal processing nodes as is shown 
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in Fig-1. The following figure presents a diagram of a neural network, a graph of  
interconnected simple processing elements. Those in the input layer are fed vector 
encoded percepts by sensors, and those in the output layer, forward their signals to the 
actuators which interpret those vector signals and act upon the world. The sensors of a 
neural  network  can  be  cameras  (real,  or  simulated  within a  virtual  environment), 
pressure  sensors,  Geiger  counters,  or  any  other  programs  which  interface  with 
hardware, the OS, or some database for information, and then vector packages it and 
forwards it  to the neurons.  The actuators  can be programs controlling servos of a 
robot (real or simulated), or programs which write data to files, or dump it to screens.

Fig. 1. A neural network with sensors and actuators

The neural  network (NN) approach to computational intelligence (CI) has 
produced some very powerful and interesting systems. With just a sample [2-9] of the 
contributions  of  these  systems  ranging  from  controlling  robotic  systems,  to 
controlling artificial organisms in ALife experiments, giving the organisms the ability 
to  hunt  and  ambush  each  other  [10],  to  controlling  highly  complex  appendages 
[11,12],  to  performing  time  series  analysis  and  autonomously  trading  financial 
instruments [13-16], to being used in vision systems, picking out patterns, and finally, 
to even predicting epitopes on an antingen amino acid sequence [17]. There are many 
ways to evolve topologies for the NNs and teach NNs to perform various tasks, or 
even have neural  plasticity based on biological  plasticity rules  [18,19],  letting the 
NNs learn and adapt during their lifetime all on their own. But the architecture of 
these systems, as can be seen from the above figure, is significantly different from the 
architecture of the standard programming languages most commonly used within the 
software  industry  and  the  Scientific  community,  languages  like  C/C+
+/Java/Perl/Python... Thus there exists a conceptual gap between the architecture of 
the tools used to build such systems, and the actual architecture of these systems. A 
conceptual gap that we must constantly walk around and trudge through, to convert 
our ideas into prototypes and functional systems. Neural networks, population based 
evolutionary  algorithms,  these  are  all  concurrent,  distributed,  multi-agent  based 
systems where  the  various  self  contained  agents  interact  with  each  other  through 
signals and messages, yet the languages we use to develop such systems are non-
parallel, not inherently concurrent, and vastly different in behavior, and concept. It is 
this difference that requires us to constantly jump through unnecessary hoops to get 

204



from ideas to implementations, and it is this difference that at times prevents us to  
even consider the actual ideas due to our being stuck thinking in the programming 
languages that  is  most  prevalently taught in universities  (C/C++/Java),  being held 
back by linguistic determinism [22].

This  paper  makes  a  claim  that  there  is  indeed  an  existing  functional 
programming language that is perfect for the development of neural network based 
computational intelligence research, and indeed all distributed and multi-agent based 
computational intelligence systems, and that this language is Erlang. To demonstrate 
the validity of this claim, the author first asks the question of what are the essential 
features a neural network programming language would need to have, had one the 
chance  to  build  it  from  scratch  without  being  constrained  by  resources  or  other 
obstacles. The paper then discusses the features that Erlang offers, and notes a 1:1 
mapping between this concurrency oriented (CO) programming language, and the NN 
based CI problem domain. Once this perfect  mapping is demonstrated, the author 
provides  a  case study of  the currently existing,  purely  Erlang built,  topology and 
parameter evolving universal learning network system called DXNN [20]. Discussing 
the architecture of this system, the features it offers, and the features that it could later 
offer,  which  would  be  very  difficult  to  develop  through  another  programming 
language,  yet  naturally  provided  by  Erlang.  Finally,  the  paper  concludes  with  a 
discussion of the future of this language and machine learning, and the urging of this 
author for the scientific community to utilize the Erlang programming language due 
to  the direction of  hardware towards  many-core architectures,  and  the accelerated 
results the language can provide within the problem domain. It must be noted that it is 
not the aim of this paper to discuss NN algorithms, or compare neuroevolutionary 
systems,  but  merely  to  discuss  and  demonstrate  why Erlang  is  the  quintessential 
neural network programming language, the benefits, features, and opportunities that 
Erlang offers to the future, research, and creation of distributed CI systems.

2 Creating a Perfect Neural Network Programming Language

If you had the chance to create a programming language that is perfect for developing 
NN systems, and other types of distributed CI systems, what features would it need?

The first thing we'd want from our neural network programming language, is 
for its architecture to mirror that of the NN's, so that there is as little of a conceptual 
gap as possible between the two, or preferably no conceptual gap at all. This would 
make  it  possible  for  all  the  ideas  and  innovations  within  the  field  of  neural 
computation  to  be  exactly  and  directly  represented  by  this  new  programming 
language.  This  would  allow  the  researcher  to  think  about  NNs  rather  than  the 
procedural or object oriented systems instead, and then having to translate the ideas 
back  into  the  field  of  NN  based  systems.  This  alone  already  requires  that  the 
programming  language  has  structures  which  are  similar  to  those  within  neural 
networks:  connections,  message passing ability,  concurrent and independent signal 
processing elements... For this reason, this programming language would need at least 
the following two features: 

1. Neural networks are composed of independent, concurrent, distributed processing 
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units called neurons. Thus the programming language architecture would need to 
support having such elements, having independently acting processes which can all 
function in parallel,  and which can be easily distributed throughout the modern 
parallel hardware, or even the global network, and which are able to accept and 
process signals asynchronously. 

2. The  neurons  in  NNs  communicate  with  each  other  through  signals.  Thus  the 
programming language architecture needs to allow the processes to communicate 
with each other through messages or signals too, and for those signals to have the 
ability to be encoded in any form or syntax. 

But  just  having  the  programming  language's  architecture  mirror  the 
architecture of  neural  networks is  not  enough.  Our  brains  are robust,  they posses 
graceful degradation, where a number of neurons can die, indeed hundreds die every 
day, yet our brains continue to function, degrading gracefully. This type of robustness 
is provided through the vastness and interconnectedness of the NN graph, and simply 
requires that neurons are independent, concurrent processing elements. But there is 
another  type  of  robustness:  in  our  wetware  we  usually  don't  encounter  situations 
where we get  a “bug”, and suddenly crash. In other words,  our brains, our neural 
systems, our biological makeup is robust, fault tolerant, and self recovering. Thus if 
we want for the language architecture to support the creation of a true computational 
intelligence,  it  needs to allow for  a similar  level  of  robustness.  It  must  allow not 
simply the graceful degradation due to the interconnectedness within the NN, but the 
language must be made with fault tolerance in mind, with the built systems having the 
ability to self recover, to run forever, so that the programming language does not get  
in the way of the actual NN system. The programming language must give us the 
ability to build distributed systems with at least 99.999% uptime. To accommodate 
this, it needs the following features:

1. Allow for an easy way to recover from errors. 

2. If one of the elements of the computational intelligence system crashes or goes 
down, the CI system must have features that can recover and restart the crashed 
elements automatically.

3. There must exist multiple levels of security, such that the processes are able to 
watch each other's performance, monitoring for crashes and assisting in recovering 
the crashed elements.

Another feature we we want is as follows: though the NN itself takes care of 
the learning part, performs the incorporation of new ideas, the growth and experience 
gaining, there is one thing that biological organisms do not have the ability to do with  
regards to their intelligence. Biological organisms do not have the ability to modify 
their own neural structures, we do not have the ability to rewrite our own NNs at will, 
nor our genetical makeup, we do not have the ability to update the very manner in 
which we function, in which our biological NNs process information... but that is the 
limitation of biological systems only, and non biological systems need not have such 
limitations. Thus an ideal CI programming language architecture must also provide 
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the following features:

1. The programming language must allow for code hot-swapping. For the ability for 
the CI system to rewrite the code that defines its own structure and functionality, 
its own neural network, and have the ability to fix errors and then update itself, its  
own source code, without taking anything offline.

2. The programming language architecture must allow for the CI system to be able to 
run forever, crashes should be local in nature, and with code hot-swapping, should 
thus be fixable by the CI system itself.

Finally, taking into account that the neural network based CI systems should 
be able to interface and control robotic systems, be used in Unmanned Ariel Vehicles 
(UAVs), or in bipedal robots, the programming language should from the start make it 
easy to develop and allow for control of a lot of different types of hardware. It should 
allow: for an ability to easily develop different and numerous hardware drivers. 

In summary, the programming language architecture that we are looking for 
must process information through the use of independent concurrent and distributed 
processes. It should allow for code hot-swapping. It should allow for fault tolerance, 
error  fixing,  self healing, and recovery. Finally,  it  should be made with ability  to 
interface with a  large number of hardware parts, allow for an easy way to develop 
hardware drivers so that not only the software part of the CI be allowed to grow and 
self  modify  and  update,  but  it  should  also  be  able  to  incorporate  and  add  new 
hardware parts over time, whatever those new parts may be. A list of features that a 
NN based CI system needs, as quoted from the list made by Bjarne Däcker [2], is as 
follows:

1. “The system must be able to handle very large numbers of concurrent activities. 

2. Actions must be performed at a certain point in time or within a certain time.

3. Systems may be distributed over several computers.

4. The system is used to control hardware. 

5. The software systems are very large.

6. The system exhibits complex functionality such as, feature interaction.

7. The systems should be in continuous operation for many years. 

8. Software maintenance (reconfiguration, etc) should be performed without stoping 
the system.

9. There are stringent quality, and reliability requirements.

10. Fault tolerance“

Surprisingly  enough,  Däcker  was  not  talking  about  a  NN  based  general 
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computational intelligence programming language when he made the above list, he 
was talking about a programming language for the development of telecom switching  
systems.  And  it  is  for  the  construction  of  exactly  such  systems  that  Erlang  was 
specifically created for.

3 From Telecommunications Networks To Neural Networks

Erlang is a functional  concurrency oriented (CO) programming language. With its 
origins and inspiration from Prolog. It was developed at Ericsson, a project lead by 
Dr.  Joe  Armstrong.  Erlang  was  created  for  the  purpose  of  developing  telecom 
switching  systems.  Telecom  switching  systems  have  a  number  of  demanding 
requirements,  such  systems are  required  to  be  highly  reliable,  fault  tolerant,  they 
should be able to operate forever, and act reasonably in the presence of hardware and 
software errors. 

These features are so close to those needed by NN based CI systems, that the 
resulting  language's  features  are  exactly  those  of  a  neural  network  programming 
language. The features that Erlang possesses, as quoted from Armstrong's thesis [3], is 
as follows:

“1. Encapsulation primitives — there must be a number of mechanisms for limiting 
the consequences of an error. It should be possible to isolate processes so that they 
cannot damage each other. 
2.  Concurrency  — the  language must  support  a  lightweight  mechanism to  create 
parallel  process,  and  to  send  messages  between  the  processes.  Context  switching 
between  process,  and  message  passing,  should  be  efficient.  Concurrent  processes 
must  also  time-share  the  CPU  in  some  reasonable  manner,  so  that  CPU  bound 
processes do not monopolize the CPU, and prevent progress of other processes which 
are 'ready to run.' 
3. Fault detection primitives — which allow one process to observe another process,  
and to detect if the observed process has terminated for any reason. 
4. Location transparency — If we know the PId of a process then we should be able to 
send a message to the process. 
5. Dynamic code upgrade — It should be possible to dynamically change code in a 
running system. Note that since many processes will be running the same code, we 
need  a  mechanism to  allow existing  processes  to  run  “old”  code,  and  for  “new” 
processes to run the modified code at the same time. 
With a set of libraries to provide: 
6. Stable storage — this is storage which survives a crash. 
7. Device drivers — these must provide a mechanism for communication with the 
outside world. 
8. Code upgrade — this allows us to upgrade code in a running system. 
9. Infrastructure — for starting, and stopping the system, logging errors , etc.”

Erlang provides all of these, and it is for this reason why it is such a perfect 
programming language for distributed CI system development. Whereas before one 
would need to first create the NN algorithms, topologies, and architectures separately, 
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and then try to figure out how to map the programming language like C++ to the task  
domain, or even worse, think in C++, and thus create a sub-par and compromised NN 
based system... The ideas, the algorithms and NN structures are mapped to Erlang 
perfectly,  and  vice  versa.  The  ideas  that  would  otherwise  be  very  difficult  to 
implement, or even consider when one thinks in one of the more commonly used 
languages, are easily and clearly mapped-to, and implemented-with, this functional 
programming  language.  One  does  not  need  to  switch  from  thinking  about  NN 
systems, algorithms, and architectures when developing in Erlang, to thinking about 
the programming language and how to implement such systems through it, for they 
are one and the same. The conciseness of the language, the clarity of the code and the 
programming language's architecture... make even the most complex problems which 
would otherwise not be possible to solve, simply effortless.

3.1 The Conceptual Mapping of a NN to Erlang's Architecture

In Erlang, concurrency is achieved through processes. Processes are self contained, 
independent,  concurrently running  micro servers/clients,  primarily  interacting with 
each other through message passing. Already you can visualize that these processes 
are basically neurons, independent, distributed, concurrent... primarily communicating 
with each other by sending signals, action potentials, messages. 

Once  again  taking  a  quote  from  Armstrong's  thesis,  where  he  notes  the 
importance  of  there  being  a  one  to  one  mapping  between  the  problem  and  the 
program: “It is extremely important that the mapping is exactly 1:1. The reason for 
this is that it minimizes the conceptual gap between the problem and the solution. If 
this mapping is not 1:1, the program will quickly degenerate, and become difficult to 
understand. This degeneration is often observed when non-CO languages are used to 
solve concurrent problems. Often the only way to get the program to work is to force 
several independent activities to be controlled by the same language thread or process. 
This leads to an inevitable loss of clarity, and makes the programs subject to complex 
and  irreproducible  interference  errors.”  We  see  that  the  mapping  from  Erlang's 
architecture to neural networks is 1:1, as shown in Fig-2.

From the figure it becomes obvious that indeed, there is a perfect correlation 
between the architecture of this programming language, and the NN problem domain. 
In the figure each neuron is directly mapped to a process, each connection between 
the  neurons  is  a  connection  between  processes.  Every  signal,  simulated  action 
potential that is sent from one neuron to another is a signal, a message in vector/list or 
tuple form, sent from one process to another. We could not have hoped for a better 
mapping. Erlang was also created with an eye towards scaling to millions of processes 
working in  parallel,  so even here we are in great  luck,  for  the future in  NN will 
require vast NN based systems, with millions or even billions of adaptive neurons on 
every computing node. Also, because robotics is such a close field to CI, the evolved 
NN  based  systems  will  need  to  be  able  to  interface  with  numerous  sensors  and 
actuators, with the hardware in which the CI is embedded and which it inhabits; again 
Erlang is perfect for this, it was made for this, it was created to interface and interact  
with varied types of hardware, and it was created such that developing drivers is easy.  
Erlang was created to be not simply concurrent, but distributed, over the web or any 
other  medium. This  alone makes the frontier  of large,  distributed CI systems that 
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much more approachable and manageable.

Fig. 2. A 1:1 mapping from Erlang to the NN based CI systems 

But of course there are other important features, beyond that of scaling and the 
perfect mapping from the problem to the solution domain. There is also the issue of 
fault tolerance, the issue of robustness... It would be rather comical if it were possible 
for an advanced CI system to be brought down by a single bug. Here again Erlang 
saves us. This programming language was designed to develop systems that must run 
forever, that cannot be taken off-line, even when there is a bug, and even when it 
absolutely must be fixed. Through supervision trees Erlang allows for processes to 
monitor  each  other,  and  to  restore  each  other.  Thus  if  any  element  of  the  neural 
network crashes, it does not bring down the whole system. We can create an external 
self monitoring system, an exoself of the CI system, which can monitor the system's 
performance and restore it  to  the  previously functional  form.  But  not  only can it  
restore the CI to a previously functional form in the case of emergency, it can also  
allow for the bug to be fixed, and the new updated source code to be ran without 
taking the system offline,  all  using the Erlang's  code hot-swapping capabilities.  It  
allows for the system to fix itself, to self heal, to recover, to upgrade, to rewrite itself,  
and to evolve. What other programming language can be said to offer such features 
so, naturally? 

210



4 DXNN: A Case Study

Having now discussed the features that Erlang offers, and thus the advantages and the 
reasons behind this author's considering Erlang to be such a perfect fit for the field of  
neural network based computational intelligence, we now move to a discussion of the 
application of Erlang to the construction of an open source topology and parameter 
evolving universal learning network called DXNN [20,21]. DXNN is the first purely  
Erlang built, general,  topology and parameter evolving universal  learning network 
platform. In the following subsections we will overview this system, by first briefly 
discussing the standard memetic neuroevolutionary algorithm, then discuss DXNN's 
NN based agent architecture, and then finally the whole system, putting it into the 
perspective by framing it within the memetic algorithm based steps of our discussion.

4.1 Overview of a Memetic Algorithm

What makes the memetic algorithm different from genetic, is simply the separation of 
the local and global search parts of the algorithm into two separate phases. In the case 
of the DXNN, the algorithm is as follows:

1. Initialization: A population of minimalistic seed agents is created.

2. Evaluation: Agents are converted from their genotypes to their phenotypes, 
and applied to the problem to be evaluated.

1. Local  Search/Tuning:  For  each  agent,  after  each  evaluation,  a 
perturbation to its synaptic weights is applied. The algorithm selecting 
the neurons and the weights to be perturbed or modified, is based on 
what local search algorithm is used. It can be as simple as a stochastic 
hill  climbing  algorithm,  or  as  complex  as  a  custom  ant  colony 
optimization  algorithm.  Tuning  is  performed  until  some  local  search 
termination condition is reached by the agent (some maximum number 
of  local  search  evaluations,  or  processing  time  used  for  this  weight 
tuning phase.)

3. Selection: After all the agents have been tuned (through local search), some 
selection algorithm (rank, top_3...) is used to choose the fit agents to act as 
parents for the purpose of creating offspring agents.

4. Global Search: From the selected parent agents the offspring are created, by 
for example taking the parent, creating a clone of it, mutating its topology 
and parameters, and designating the mutant clone as the offspring. After the 
new generation of agents is created, we go back to step-2.

The  loop  composed  of  steps  2-4,  continues  until  some  termination  condition  is 
reached,  such  as  the  maximum number  of  total  evaluations  performed within the 
population, or some maximum amount of computational power used by the system.
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4.2 A Quick Overview of a DXNN's NN Based Agent

With  DXNN being  written  purely  in  Erlang,  every  Neuron,  Sensor,  Actuator,  the 
Synchronizing element called Cortex, and the monitoring process called Exoself, are 
independent  concurrent  processes  which  can  only  communicate  with  each  other 
through message passing. An agent, an example architecture of which is shown in 
Fig-3, is composed of 3 structural levels. At the lowest level are the neurons, sensors, 
and actuators that form the NN. At the second level is the cortex which synchronizes 
the neurons. Finally, at the top level is the exoself process which monitors these agent 
composing  elements,  and can  perform NN repairing  routines,  and  communication 
routines between the NN based agent, and the infrastructure of the neuroevolutionary 
platform, the evolutionary algorithm, as will be discussed in the next subsection. In 
DXNN, a  Neuron can  utilize any  type of  signal  integration function,  not  just  the 
standard  dot  product,  but  also  for  example  weighted  input  multiplication,  or  a 
function calculating the weighted result of the difference between input vector at time 
T and  T-1... Also any type of activation function, such as a sigmoid, Gaussian, sin, 
cos...  And any  type  of  signal  pre  and  post  processors  can  be  used.  All  of  these 
functions can be mutated between the ones available to the agent, and the availability 
is presented to the evolutionary algorithm through a list of such function names.

Fig. 3. The hierarchical structure of a directly encoded NN based agent
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What input the NN gets and what its output is used for, is determined by the 
sensors and actuators respectively. The Sensors and Actuators are the processes which 
deal with the acquisition of percepts from the environment, and perform actions upon 
it, respectively. The environment can be a simulated world, a database, the OS, or the 
outside world, and is referred to within the system as a scape [20]. The sensors poll 
the environment for data, which they then package as vectors and pass them to the 
appropriate  input  layer  Neurons.  The  Neurons  in  the  output  layer,  those  neurons 
which are connected to Actuators, forward their output signals to the actuators they 
connect to, which then post-process those output signals, and based on the resulting 
vector interact with the environment. The Cortex element is necessary to synchronize 
and pace the NN system. When the actuators of the NN have finished acting upon the 
environment, they send the cortex element the sync message, once the cortex element 
received such a message from all the actuators, it sends a sync message to the sensors,  
calling them to action. The cortex element allows us to synchronize the system, and 
provides  an  extra  process  monitoring  element.  It  also  gives  us  a  process  through 
which we can put the whole NN system on pause,  for example when we need to 
mutate the synaptic weights of the NN's neurons, or revert those weights back to their  
previous state. This is done simply by contacting the cortex, which in response to such 
a message would simply gather all the sync messages from the actuators, but not call  
the sensors to action, thus effectively pausing the NN system. 

Beyond all of this, there is another process, the process that is part of the NN 
based agent, but which is not part of the NN processing or synchronizing system, that 
process is called the  exoself. The exoself is a process that is part of the NN based 
agent, but is outside the NN, monitoring the elements of the NN, and thus having 
access to the whole system. This means that the exoself can monitor all the processes 
in the NN, have access to all the neurons, have the ability to backup the whole system 
regularly  to  the  mnesia  database,  repair  elements  that  have  crashed,  perform 
algorithms that require global knowledge/view of the state of the NN system (exp. 
SOM), and act as the part of the agent that communicates with the neuroevolutionary 
system, and whose Id/PId can act as the unique designation of the whole agent.

But what must be noted here though is how every single one of these elements, 
is a concurrent process, communicating with the others through messages. It is natural 
to perceive these parts of the NN system as independent and concurrent, and Erlang 
can represent them as such, allowing for a natural 1:1 mapping, as is shown in Fig-3.

4.3 The DXNN Neuroevolutionary Platform

Having discussed the memetic algorithm used, and the architecture of a DXNN agent, 
we now move to a discussion of the DXNN's whole neuroevolutionary architecture. A 
diagram of the global overview of the system is shown in Fig-4. Let's put this system 
into perspective by going through the memetic algorithm, and see how all these parts 
fit into it, and the roles they play within it.

Because  DXNN  uses  the  mnesia  database  to  store  the  genotypes  of  the 
agents, before anything can be run, the infrastructure of the system is started. To do 
this, the researcher executes  polis:start(), which starts mnesia, and all the simulated 
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environments/scapes and other programs that need to run independently of the agents.
 

Fig. 4. The DXNN platform

Once the polis process is started, which keeps track of the mnesia, error logger, and 
acts as a router for persistent and agent independent simulations (public scapes), the 
researcher can run the experiment:

1. Initialization: The researcher first sets up the record by the name constraint  
which  specifies  all  the  parameters  (constraints)  for  the  particular 
evolutionary  run.  A sample  of  these parameters  is  as  follows:  Population 
size. Number of distinct species, and the set of sensors and actuators that 
each agent belonging to that specie starts with and has access to. A list of 
available activation functions as a list of tags, where each tag is the name of 
the actual activation function. With this, during evolution, the evolutionary 
algorithm  can  create  new  neurons  which  are  created  with  a  randomly 
selected activation function from this  list.  A list  of  sensors  and  actuators 
available for each particular specie. Though the seed agents start with some 
particular minimal set, or even a single sensor and actuator, over time as new 
offspring  are  created,  a  mutation  operator  like  add_sensor  and/or 
add_actuator, can be applied to the agent, which will add and connect a new 
sensor  and/or  actuator  to  the  NN,  allowing  the  agent  to  explore  new 
morphological  properties,  and  how  different  sensory  inputs  and  actions 
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performed, can be utilized to achieve higher fitness. A list of global mutation 
operators  from  which  random  ones  are  selected  during  the  topological 
mutation phase (global search). A list of plasticity rules which could be used 
by the neurons. A list of signal integration functions (such as the dot product, 
but also others)... The full list is available in source code [21]. 

2. With  the  Constraints record  set, population_monitor:new(Constraints)  is 
executed by the researcher. This function, based on the specified constraints, 
creates the seed population of NN based agents. The genotypes of the agents 
are Id linked records stored within the mnesia database. Each cortex, sensor, 
actuator, and exoself, is a record with all the needed data for that process. 
Once  the  genotypes  of  seed  agents  are  created,  the  population_monitor 
process  is  spawned,  which  then  runs  through  the  mnesia  database,  and 
converts  each exoself  record  into a  process.  The exoself  process  of  each 
agent  then  spawns  the  remainder  of  the  processes  (neurons,  sensors, 
actuators, and the cortex), links them together, and then triggers the cortex to 
action. At this point all the NN based agents are functional.

3. Evaluation: Each agent is evaluated by interacting with some scape/s, where 
the scape is a simulation, not necessarily of a 3d environment. A scape is 
used to represent a problem, with an ability to also gage fitness of the agent's 
performance. For example a XOR truth table,  or a double pole balancing 
simulation, can be represented as scapes. The scape, based on its parameters,  
determines when the evaluation has finished (after agent reaches the end of 
the truth table,  or  when for  example the  agent  dies  within the simulated 
environment in a ALife scenario), and gives the agent it's fitness score.
1. Local Search/Tuning: The exoself of each agent decides on whether to 

further perturb the synaptic weights of the NN using some local search 
algorithm, or whether to backup the best parameter set (synaptic weights 
and  others)  combination  achieved,  and  its  correlating  fitness,  to  the 
database, and inform the population_monitor that it has finished with its 
local search evaluations and synaptic weight & parameter tuning.

4. Selection: Once  the  population_monitor  process  receives  the  completion 
signals  from all  the  NN based  agent  exoselves,  it  executes  the  selection 
function:  population_monitor:Selection(Agent_Ids).  Just as with everything 
else, there are numerous selection algorithms available, and can be used and 
experimented with. Using some selection algorithm, lets say a variation of a 
multi-objective, hall of fame based  rank  algorithm, the population_monitor 
selects a list of fit agents to be used as parents.

5. Global  Search:  Once  the  fit  agents  have  been  chosen,  the  population 
monitor,  based  on  a  function which  calculates  for  each  agent  how many 
mutation  operators  to  apply,  applies  random number  of  random mutation 
operators  chosen  from  the  list  of  such  operators,  with  the  probabilities 
specified  within  said  list,  values  which  themselves  are  mutatable  (which 
gives the system the ability to evolve evolutionary strategies as well). The 
mutant clones, the offspring, compose the new generation of agents, at which 
point we go to step-2.

Finally, the population_monitor keeps track of how many total evaluations have been 

215



performed,  and other  population statistics,  and based  on this  data  and the  chosen 
termination condition, it then decides on whether the evolutionary run has completed.

5 Beyond the Horizon

Having  now  discussed  the  reason  for  Erlang's  excellent  fit  into  the  field  of 
computational  intelligence,  particularly the distributed neural  network based types, 
and  having  discussed  the  use  of  Erlang  in  the  construction  of  DXNN 
neuroevolutionary  platform,  we  now  discuss  things  that  have  not  yet  been 
implemented within the DXNN system, but can easily be done so in the future. 

5.1 Self Modification and Self Evolutionary Experimentation

One of the very interesting features that Erlang based computational intelligence can 
posses,  which  would  be  difficult  or  even  impossible  to  implement  in  another 
language, is a self modifying and rewriting intelligent agent. Though we humans do 
posses brains which can change over our lifetimes, it  is  not  the case that  we can  
double the size of our brains, or rewrite the very deep structures of our neurocognitive 
system as we find more efficient and better solutions of computation. This is not the 
case with non-biological systems, which can evolve and change at the speed of their 
creativity. As soon as a new idea for computation emerges, an intelligent system can 
rewrite itself to incorporate it. We have already noted that with Erlang and in DXNN, 
an evolving agent can incorporate new actuators and sensors. One set of such sensors 
and actuators can be a set  of  sensors  that  read the agent's  own NN topology and 
architecture. The sensor would encode it in a vector form, and thus let the agent peak  
inside its own neural structure. Also actuators can be made available which let the 
agent traverse its neural topology, and have the ability to add new neurons, or make 
new connections and cut old ones, live. This set of sensors and actuators would allow 
the NN based agent to rewrite itself, once it  has evolved for such functionality in  
some ALife environment, which is not a far-fetched idea when the agents are evolved 
within the ALife scenarios in which such self rewriting provides a survival advantage. 

Or  a  sensor  can  be  made  to  peak  into  another  agent's  neural  structure, 
analyze  the  architectures  of  other  agents,  to  get  new  ideas  for  neurocognitive 
processing. Self rewriting is easy in Erlang, which allows code hot-swapping. This 
means an actuator that opens the source code for the agent's own modules, can allow 
it to rewrite the code, recompile it, add new features, and thus truly give the agent the 
ability to rewrite itself,  to truly evolve and change in any direction, and gain any 
functionality imaginable. If the agent rewrites something that causes a crash, the crash 
is local, and the self healing and monitoring and robustness that Erlang provides can 
come into play, the exoself process comes into play. At such an event the exoself can 
respawn the crashed elements, and restore the previous functionality/implementation, 
with a self sent signal such that the agent knows it has just recovered from a crash.  
One of the great things about Erlang is that it's made for the creation of such robust 
systems,  systems that  must  stay  on-line  forever.  The  monitoring  features  and  the 
architecture used within DXNN agents, makes it very easy to create such distributed, 
self healing neural networks, where self rewriting mistakes are manageable.

216



5.2 Decreasing Message Passing Overhead Ratio

Erlang is most efficient when processes do large computations and exchange small 
messages. So it can be noticed that if we have very simple neurons with each given its 
own  process,  the  processing  conducted  by  each  such  neuron,  and  the  number  of 
messages exchanged, produces an non-advantageous messages/computation ratio. As 
the  NN  grows  and  evolves,  some  parts  of  the  NN  will  be  untouched  by  the 
evolutionary process in surviving agents. Some NN structures will stabilize in such a 
manner that when they get modified during offspring creation, the offspring will not 
be functional, thus the only surviving offspring will be those in which mutation did 
not touch those structures. We can keep track which structures stabilized within a NN, 
and  rewrite  them  as  single  process  modules  rather  than  compositions  of  neuron 
processes. This will allow the NN based agent to increase the ratio of processing done 
per process against the number of messages exchanged. 

But even without this, one has to note that the more advanced NN based 
agents  will  have  not  simple  static  neurons,  but  plastic  neurons.  Neurons  using 
plasticity  and  activation  and  signal  integration  functions  more  complex  than  the 
simple sigmoid with dot product respectively,  will  have the messages/computation 
ratio significantly more advantageous.

5.3 Concurrency and Distribution

The hardware is moving towards the many-core architecture. The number of Cores 
available  on  a  single  machine  is  increasing  with  every  year.  Only  recently  Intel 
announced the release of Xeon Phi, a co-processor composed of 50+ x86 cores. A 
programming language like Erlang, and thus the systems like DXNN written in it, are 
some of the few of the systems which could seamlessly be migrated to such a machine 
and begin to utilize it immediately. 

Furthermore, Erlang allows us to distribute the NN based systems not simply 
over  the  Cores  and  CPUs,  or  over  multiple  machines,  but  over  the  entire  global 
network. This opens up possibilities of  a  globally distributed neural  network with 
significant computational power, robustness, fault tolerance, and ability for recovery. 

6 Conclusion

Procedural and other standard programming languages do not have a 1:1 architectural 
mapping to the field of neural network computational intelligence. But there is one 
programming language that does, Erlang. Erlang is a concurrency oriented message 
passing paradigm functional programming language. It maps perfectly to the field of 
NN based CI, and has a slew of features perfect for building advanced neurocognitive 
systems  that  would  be  prohibitive  or  even  impossible  to  implement  in  another 
language.

One  of  the  first  such  neuroevolutionary  systems  built  in  Erlang  is  called 
DXNN [20-21]. DXNN is a neuroevolutionary platform capable of evolving universal 
learning  networks,  taking  advantage  of  the  process  and  message  passing  based 
computing offered  by Erlang.  But  there  is  still  an  enormous  amount  of  things to 
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explore and advance within the field, all possible and easily testable in Erlang. Erlang 
offers the flexibility within the field that we have not seen before. It allows for rapid 
prototyping, and it  allows us to  transfer  our ideas  directly to  the implementation, 
without jumping through the hoops of a programming language not made for this 
field. With Erlang, linguistic determinism does not limit our ideas, and we can think 
naturally about  distributed NN based CI systems.  Erlang offers  new opportunities 
within the field, it opens new frontiers previously not even considered. Erlang gives 
us the ability to look beyond the horizon of Computational Intelligence.
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Abstract. Discrimination is a generalization of both sorting and parti-
tioning: It partitions list elements according to a user-specifiable equiv-
alence or ordering relation and, for ordering relations, lists the result-
ing blocks in ascending order. We show how discriminators (discrimi-
nation functions) can be defined generically by structural recursion on
representations of ordering and equivalence relations. They improve the
asymptotic performance of generic comparison-based sorting and par-
titioning and yet do not to expose more information about the input
elements than their pairwise ordering, respectively equivalence relation.
For a large class of order and equivalence representations, including all
standard orders for regular recursive first-order types, the discriminators
execute in worst-case linear time.
The generic discriminators can be coded compactly using list comprehen-
sions, with order and equivalence representations specified using General-
ized Algebraic Data Types (GADTs). We give examples of the uses of dis-
criminators, including most-significant-digit lexicographic sorting, type
isomorphism with an associative-commutative operator, and database
joins.
Since practical efficiency requires a thread-local bucket table reused by
all same-thread discriminator calls we argue that built-in primitive types,
notably pointers (references), should come with efficient discriminators
since they, in contrast to binary comparison operations or hashing func-
tions, facilitate the construction of discriminators for abstract types that
are both highly efficient and representation independent.
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Fusion is a popular technique for speeding up programs in Haskell. It al-
lows programmers to program in a modular, compositional style without paying
the performance cost introduced by intermediate data structures. This is often
accomplished by writing libraries with functions that fuse when composed to-
gether. This allows the transformation to take place without any intervention
from the client programmer. An elementary example of this is map fusion. This
allows a program consisting of two maps

map (λx → x + 1) ◦map (λy → y ∗ 2)

to be written as one map instead

map (λx → (x ∗ 2) + 1)

In the Glasgow Haskell Compiler [5], this is accomplished using two kinds of
transformations. The first is an algebraic transformation, which is stated as an
equation where instances matching the left hand side are rewritten into instances
matching the right hand side. For map fusion, the rule might be phrased as

∀ xs. map f (map g xs) = map (f ◦ g) xs

These are implemented as rewrite rules [7], which take the form of compiler prag-
mas that specify these transformations as above. The second kind of transforma-
tion is simply the normal optimisations that are applied during compilation [6],
which inline f and g to create a single function, and then move on to even lower-
level optimisations. The onus on the library writer is to write f and g such that
they can be combined, which means they must be nonrecursive. The benefit of
this optimisation is that it takes the burden off the user of the library, who does
not have to worry about the fusion mechanics, and the library writer need not
worry about the underlying transformation machinery that accomplishes it, pro-
vided they write their programs appropriately. Libraries can be written in such
a way that all the functions of a library fuse with each other (i.e. not just maps
with other maps). This method of implementing fusion underlies common fusion
techniques, including foldr/build [3], destroy/unfoldr [8], and stream fusion [1].

Getting programs to fuse using such a system, however, is not always straight-
forward. First, they must be written in a certain form. Even then, the transfor-
mations are rather fragile; it is difficult to make any guarantees about whether
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fusion will actually occur in a given program, because fusion results from the ad-
hoc application of standard transformations. For example, the algebraic trans-
formations seek instances of the left hand side, but there is guarantee that they
will be found before they are inlined away, meaning that the opportunity for
fusion is lost. This means that the library writer must result to using more prag-
mas, in this case to tune the compiler to choose which functions to inline and
when. Even in this case, fusion is not guaranteed to occur due to the interaction
of various transformations that could preemptively remove opportunities.

Currently, the Utrecht Haskell Compiler (UHC) [2] implements no inlining
or case transformations, which are the basis for fusion using this method. We see
this clean slate as an opportunity to implement a fusion infrastructure based on
the experiences and challenges encountered by library writers. We start with the
idea of that this method of fusion, which we call shortcut fusion, is a general pro-
gram transformation of which each of the aforementioned techniques is a specific
instantiation [4]. This formalisation provides uniform method for implementing
shortcut fusion.

With this in mind, we have begun implementing the necessary features for
shortcut fusion in UHC, where the focus is on simplicity in the frontend and
robustness in the backend. In the frontend, the programmer uses keywords that
allow him to declare which functions should be targeted for fusion. These fusion-
specific declarations give the compiler more information about the programmer’s
specific intention, as opposed to using general-purpose pragmas. In the backend,
small, simple transformations are composed together to fuse functions. However,
the information gathered from the programmer’s declarations is used to choose
when and how to apply the necessary transformations, which can be focussed on
inlining the necessary functions and while preserving others. We also limit the
scope of transformations to the targeted functions, which allows us to be more
aggressive with inlining without concerns for the rest of the program.

We present the results of the project so far. We review which local transfor-
mations are necessary for fusion and show how they can be composed to achieve
a fusion algorithm. We describe what guarantees can be made using this ap-
proach, focussing on the robustness of the fusion and under what conditions and
it be guaranteed to succeed, but also issues of correctness and termination of
the algorithm. The performance aspect will be addressed using benchmarks. We
will also present plans for future work. In particular, features are sought that
will provide more feedback to the programmer about the outcome of attempted
fusion, which would be useful both to verify successful fusion and to help the
programmer debug situations in which fusion is meant to occur and but does
not.
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Abstract. This article presents the code generation scheme of the OCaml-
Java compiler. The goal of the OCaml-Java project is to allow execution
of OCaml programs on a Java Virtual Machine. In order to achieve decent
performances, it is necessary to build a compiler producing optimized
bytecode that will relies on an efficient support library at runtime.
The OCaml-Java project thus provides (i) an efficient runtime written in
pure Java, and (ii) an optimizing compiler based on the original OCaml
compilers for the front-end and on the Barista library for the back-end.

Keywords: OCaml, Java, bytecode, compiler, code generation

1 Introduction

The OCaml-Java project is presented at large in [1]; in the present article, we
will focus on the code generation process as implemented in the OCaml-Java
compiler. In the remainder of this section, we will nevertheless summarize the
goals and state of the OCaml-Java project. Then, section 2 will expose the
architecture of the various OCaml compilers. Section 3 will present the runtime
representation of values in the different compilers, and section 4 will give an
overview of the Barista library that is used as the compiler back-end. Section
5 shows examples of actual bytecode generation. Finally, sections 6 will discuss
future work.

Why the JVM is an interesting target

The official OCaml distribution features both bytecode (for a dedicated virtual
machine), and native compilers (for common architectures and OSes). It may
seem at first sight that nothing more is needed, the former meeting portability
needs and the latter meeting performance needs. However, being able to run
OCaml code on a Java Virtual Machine is appealing for mainly two reasons:

– access to a larger choice of libraries;
– access to multicore programming.

The availability of libraries, which is essentially correlated with the size of a
language community, is still a known weakness of the OCaml ecosystem in spite
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of a vibrant community. Having the ability to run on a Java Virtual Machine
gives access to all the libraries of the Java ecosystem. Its huge community has
developed frameworks and tools for almost any purpose, and those can now be
used by OCaml developers.
Indeed, to be able to use such Java libraries, it is not sufficient to be able to pro-
duce Java bytecode. It is also necessary to give to the OCaml developer means to
manipulate Java elements from an OCaml program. For this reason, the OCaml-
Java compiler features an extension of the typer to allow the construction and
manipulation of Java instances from a pure OCaml program. More details re-
garding the extensions to the typer can be found in [1].

Multicore programming can be done in OCaml without resorting to com-
pilation to Java bytecodes. However, the current implementation of OCaml is
based on a global runtime lock allowing only one OCaml thread to run at a time.
For this reason, leveraging multiple cores is often done through libraries using
indeed multiple processes (most notably, map/reduce implementations such as
[2] or [3]).
Another option is to modify the OCaml runtime to get rid of the global runtime
lock. Such a modification implies of course to develop a parallel garbage collector
(see for example [4]) and needs a lot of manpower, as well as some modifications
to core OCaml libraries that are not reentrant. At the opposite, by targeting a
Java Virtual Machine, we get a parallel garbage collector for free, and in addition
can take advantage of Java standard libraries such as the fork/join framework
to develop multicore OCaml programs based upon shared-memory.

Java 1.7 features for functional programming

The latest major release of the Java platform has brought a lot of exciting
new features. Among them, two are particularly interesting when implementing
functional languages:

– the invokedynamic framework;

– the G1 garbage collector.

The invokedynamic framework is a very powerful addition to the Java plat-
form as it allows a language implementor to define new semantics for method
dispatch. In the OCaml-Java project, we in fact only use the method handles
(which are akin to function pointers in C) provided by the framework in order
to easily and efficiently implement closures.

The G1 garbage collector is actually pretty important for functional lan-
guage implementors because it is known to better suit the allocation/collection
pattern found in functional programs. Such programs are typically allocating a
lot of small and short-lived values while classical Java programs tend to put less
pressure on the allocator.

224



OCaml-Java: from OCaml sources to Java bytecodes 3

Past and present of OCaml-Java

The 1.x versions of the OCaml-Java project should be regarded as mere proofs
of concept, whose goal was to reach compatibility with the original implemen-
tation. The compatibility is almost total: all language constructs are supported
and most library exhibit the same behavior (some minor differences are due to
the fact that the Java Virtual Machine does not implement every posix primi-
tives).

The 2.0 version keeps the same compatibility level, and proposes great im-
provements in both memory usage and performances. The goal is to be able to
execute typical OCaml code on a Java Virtual Machine while remaining at worst
two times slower than native code. The current prototype fulfills this objective
on the majority of tested benchmarks.

2 Compilers architecture

Original compilers

The original OCaml distribution ships with two compilers: one producing byte-
code for a dedicated virtual machine, and the other one producing native code.
The bytecode compiler is available on every architecture while the native one is
only available on the following:

– tier 1 (i. e. officially maintained): amd64, ia32, powerpc, and arm under
Linux, MacOS X or Windows;

– tier 2 (i. e. unofficially maintained): sparc, and tier 1 architectures under
BSD or Solaris flavors.

Both compilers naturally share a large codebase: parsing and typing are iden-
tical, thus relying on the very same code. Figure 1 shows the successive passes of
both compilers from an implementation source file (i. e. a .ml file) to an imple-
mentation compiled file (i. e. a .cmo file for the bytecode compiler, and a .cmx

file for the native compiler). We do not detail the compilation of interface source
file because they (i) do not produce code, and (ii) are identical in both compilers.

Figure 1 presents the various passes from a source file to a binary file, as
well as the different data structures used during the process. We only skip
the passes that are just intended to optionally pretty-print the intermediate
data structures on standard output to ease debugging. As previously stated,
both compilers share the passes related to parsing (Pparse.file) and typing
(Typemod.type implementation). They also share the very first passes related
to code generation: Translmod.transl implementation and Simplif.simplify

lambda. These passes produces so-called lambda code, which is the most abstract
representation of code to be executed.

225



4 Xavier Clerc

Pparse.file

Unused_var.warn

Typemod.type_implementation

Translmod.transl_implementation

Simplif.simplify_lambda

Parsetree.structure

Parsetree.structure

Typedtree.structure

Lambda.lambda

Lambda.lambda

ml

Bytegen.compile_implementation

Emitcode.to_file

Compile.implementation

Optcompile.implementation

Closure.intro

Selection.fundecl

Comballoc.fundecl

Spill.fundecl

Split.fundecl

Asmgen.regalloc

Linearize.fundecl

Scheduling.fundecl

Emit.fundecl

Instruct.instruction list

Lambda.lambda

cmo

Lambda.lambda

Cmm.fundecl

Mach.fundecl

Mach.fundecl

Mach.fundecl

Mach.fundecl

Mach.fundecl

Linearize.fundecl

Linearize.fundecl

cmx o&

Fig. 1. Passes of OCaml compilers.
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From this point, the two compilers diverge. The bytecode compiler only needs
two more passes to produce its result; these passes are straightforward because
the instruction set of the OCaml virtual machine was designed to provide the
pieces allowing to almost execute lambda code. Of course, the native compiler
has far more work to do because it has to accommodate an instruction set that
was not specifically designed for functional programming, and has to target a
register-based machine rather than a stack-based machine.

The first step, Closure.intro, handles the transformations associated with
closures, uncurrification, and related optimizations. From this point, the code
is represented by machine code which is an abstract representation that is still
largely independent from the target platform, based on pseudo-instructions. The
Selection.fundecl and Comballoc.fundecl are designed to perform the se-
lection of pseudo-instructions for the code, and the optimization of allocations
linked to a given block. Then, Spill.fundecl, Split.fundecl, and Asmgen.

regalloc are responsible for actual register allocation, using information from
the target platform. Finally, Linearize.fundecl reifies pseudo-instructions into
actual lists of instructions, and Scheduling.fundecl optimizes the resulting or-
der. The very last step is to output the assembly source code that will be used
by an external assembler to produce object code.

OCaml-Java compiler

The OCaml-Java compiler can be seen as a third branch of the tree depicted
by figure 1. This means that passes up to Simplif.simplify lambda are shared
with the original compilers. Figure 2 shows which transformations are then made
on lambda code. First, very similarly to the native compiler, Jclosure.jlambda
of lambda is responsible for the handling of closures, producing a slightly differ-
ent and optimized lambda code. Then, Macrogen.translate decomposes opera-
tions from the lambda code into macro instructions that are not Java bytecode
instructions but can be easily mapped to. This pass is also responsible for variable
allocation which entails the choice of their actual representation, thus opening
the possibility of value unboxing. Finally, Bytecodegen.compile function pro-
duces actual Java bytecode using the Barista library (detailed at section 4).

The use of the Barista library provides several benefits: first, some typing
discipline on instruction parameters is enforced (it would not be the case if we
generated assembly source); second, the library is responsible for tedious boil-
erplate operations such as the computation of stack maps; third, the library
provides some generic optimizations over produced bytecode. Such optimiza-
tions (removal of unnecessary operations, simplifications related to neutral or
absorbing elements, strength reduction, etc.) allow the compiler to produce Java
bytecode without having to reason on low-level optimization. As a consequence,
the optimizations made by the compilers are only the ones related to the OCaml
source code, not to the produced bytecode.
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Javacompile.implementation

Jclosure.jlambda_of_lambda

Macrogen.translate

Bytecodegen.compile_function

cmj jo&

Lambda.lambda

Jlambda.jlambda

Macroinstr.expression

BaristaLibrary.Method.t

Fig. 2. Architecture of OCaml-Java compiler.

When compilation is done, two files are produced: a .cmj file corresponding
to the .cmx file of the native compiler, and a .jo file corresponding to its .o file.
The .jo file is actually a Java archive containing two entries:

– Module.class is the class file containing the implementation of all module
functions as Java static methods;

– Module.consts is a binary file respecting the OCaml marshal format con-
taining the (structured) constants used by the module.

A module is later linked to produce an executable jar file. At runtime, the ini-
tialization code for a module (located in its entry method) is responsible for the
loading of the constants. The constants are then accessed through thread-local
storage. This indirection is indeed necessary in order to allow several OCaml
programs to run on the very same Java Virtual Machine.

3 Value representation

The compilation scheme of OCaml performs type erasure, meaning that almost
every typing information is lost during the compilation process. This is of course
not a problem as OCaml is statically and strongly typed, meaning that no type
test has to be performed at runtime.

Basically, all the values share a common type, namely value. Having a com-
mon type for all values at runtime greatly simplifies the compilation process
because such a common representation make polymorphism compilation trivial.

Precisely, use of the value type is mandatory at function boundaries (i. e. to
call an OCaml function, or a C primitive), but a function is free to use whatever
representation it prefers for local values. This freedom is indeed crucial in order
to reach good performances because it allows unboxing of values. Values still
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need to be boxed at function call, but this penalty can also be partially avoided
by applying inlining.

In the remainder of this section, we first present the de facto specification
of runtime values set by the original OCaml implementation, and then present
how such a specification is implemented in OCaml-Java.

Original runtime

The various values manipulated at runtime by OCaml program can be specified
by the following grammar.

value ::= long unboxed value

| pointer to managed block

| pointer to unmanaged block

A long value is differentiated from a pointer value using tagging: the lowest
bit is set to one for long values, while it is set to zero for pointer values. The
encoding of an integer value i as a long unboxed value l is thus done according to
the following equation: l = (i×2)+1. A managed pointer (i. e. inside the OCaml
heap) is discriminated from an unmanaged one (i. e. allocated by C code) by
testing the actual address against the lower and higher bounds of the OCaml
heap.

managed block ::= tag ⊕ size ⊕ list of size blocks

| closure-tag ⊕ size ⊕ code pointer ⊕ list of size - 1 blocks

| string-tag ⊕ size ⊕ array of size bytes

| double-tag ⊕ 64-bit float value

| double-array-tag ⊕ size ⊕ array of size 64-bit float value

| custom-tag ⊕ identifier ⊕ size ⊕ array of size bytes

As seen by the possible contents of a managed block, some typing information
seems to be retained at runtime. However, this does not allow to recover the
typing information present in the source, because several different types in the
source can be mapped to the same runtime representation. Again, strong typing
has been enforced at compile time, so no confusion could be made at runtime
between values of different types.

OCaml-Java runtime

The representation of values is based on multiple classes for the various kinds of
values. All classes inherit from a parent Value abstract class. This class imple-
ments the operations for all the kinds of values, possibly proposing a dummy or
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failing implementation. It is then the responsibility of children classes to over-
ride that base implementation with a correct one. The guarantee that a dummy
or failing implementation will never be called is based on the static and strong
typing occurring at compile time.

Specialized classes are defined for long values, string values, double values,
double array values, and block values. Contrary to the original runtime, all values
even long ones are allocated because the Java Virtual Machine does not support
tagged values. However, every creation of value has to be done through a factory
method, which allows us to share values through a cache. As an example, long
values are immutable and such a cache allows to share values between −128 and
255. These values are allocated once at program startup, and also allow to use
reference comparison for values between the bounds.

The compilation scheme of OCaml will turn a type such as a record or a tuple
of values into a mere block at runtime. Again, strong and static typing ensure
that the program will not try to access to an element that does not exist (e. g.
trying to access the third component of a couple). For this reason the original
OCaml compilers will not generate code for testing such bounds. However, in
Java it is not possible to remove bounds checks when accessing the elements of
an array1. As a consequence, if the elements of a block are stored into an array,
we will have to pay the price of a bound check at every access.

For this very reason, we resorted to what could be called data inlining. Rather
than having only one class named BasicBlockValue storing its elements as one
Value[] field, we define a bunch of classes named BasicBlockValuen that stores
n elements as n Value fields. This allows to defines methods such as get0() that
will return the first element of a value with no bound check. The same is done
for double arrays and allows “small” tuples, record and all types sharing the
same runtime representation to avoid bound checks when accessing the element
at a given index.

Experimentation showed measurable speedups when growing the n value up
to 8. The current version of the runtime hence contains classes with n rang-
ing from 0 to 8. The source code for these classes is, of course, generated to
avoid maintenance issues. Naturally, besides those classes, a BasicBlockValue

(respectively a DoubleArrayBlockValue) is defined to be able to store an un-
bounded number of elements through an array. Then, array bound checks are
no more avoided but experience indicates that this representation is indeed used
for OCaml types that are arrays, and should test bounds at runtime for every
access.

1 The Hotspot compiler can remove such tests if it can prove that no illegal access will
happen, but the developer can not request to remove such tests.
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4 The Barista library

Overview

Barista [5], by the same author, is initially an OCaml library designed to load,
construct, manipulate and save Java class files. The library supports the whole
class file format as defined by Oracle (formerly Sun). Upon the library, a command-
line utility (also named “barista”) has been developed: both an assembler and a
disassembler for the Java platform.

The assembler will turn an assembly source file into a class file to be run onto
a Java Virtual Machine. The disassembler does the same work in the opposite
direction: it takes the fully qualified name of a Java bytecode class file present
in the classpath, and transforms it into an assembler source. Two other utilities
allow to inspect the contents of a bytecode file: it is possible to just print the list
of methods of a given class, and also to print the control flow of a given method
as a graph. The following code sample shows how the canonical “Hello world”
example can be coded in the Barista assembler:

.class public final pack.Test

.extends java.lang.Object

.method public static void main(java.lang.String[])

getstatic java.lang.System.out : java.io.PrintStream

ldc "hello world.\n"

invokevirtual java.io.PrintStream.println(java.lang.String):void

One important feature of the library is that it provides two representations
for the various Java element: a high-level representation, and a low-level one. The
high-level representation is intended to be easily used by the developer, while the
low-level one is intended to be as close as possible to the class file specification.
Obviously, conversion functions between representations are provided and the
developer is thus able to choose the representation level that suits her needs.
Table 1 shows how Java elements are mapped to Barista types.

Table 1. Mapping of Java elements to Barista types.

Element Low-level form High-level form

Annotations Annotation.info Annotation.t

Attributes Attribute.into Attribute.t

Instructions ByteCode.t Instruction.t

Fields Field.info Field.t

Methods Method.info Method.t

Classes ClassFile.t ClassDefinition.t

Packages ClassFile.t PackageDefinition.t

Modules ClassFile.t ModuleDefinition.t
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Hypergraph

Besides the two representation of instructions, namely types ByteCode.t and
Instruction.t, that are basically lists of instructions, the code of a method
can also be represented as a graph. Precisely, a method code can be represented
as a rooted hypergraph. The rooted property stems from the fact that there is
only one entry point for a given method. The hypergraph nature of the structure
is indeed a design choice that allows to represent the conditionals by edges with
one source and as many destinations as there are possible destinations.

The nodes of the hypergraph are labelled with instruction lists that contain
no jump, jumps being represented by edges. Edges hence represent the control
flow of the method and can be:

– classical edges with one source and one destination, in order to encode se-
quential execution (the edge is then with no label);

– three-legged edges with one source and two destinations, in order to encode
a test and its two possible consequences (the edge is then labelled with the
condition associated with the test);

– n-legged edges with one source and n − 1 destinations, in order to encode
switch instructions (the edge is then labelled with the definition of the switch,
that is either a list of values or lower and upper bounds);

– special edges with one source and one destination, in order to indicate that
the source is protected by a try/catch construct, the destination being
the exception handler (the edge is then labelled with the class name of the
exceptions that can be caught).

Given the hypergraph structure, there are two kinds of optimizations that
can be performed by the Barista library:

– structural optimizations, modifying the hypergraph structure;
– non-structural optimizations, modifying only the labels of nodes.

In the first category, Barista currently features two optimizations: dead code
elimination, and jump optimization. Dead code elimination removes all nodes
that cannot possibly be reached from the root. Jump optimization short-circuits
consecutive jumps with no bytecode between them, as shown by figure 3.

In the second category, Barista features several peephole optimizations that
are performed independently on the hypergraph nodes. These include, among
others:

– code size optimizations (e. g. replacing a generic instruction such as aload

by a more compact aloadn);
– removal of unnecessary load and/or store operations (e. g. if a loaded value

is discarded or if a stored value is overwritten with no use);
– expression simplifications related to neutral or absorbing elements (e. g.

addition to zero);
– basic strength reduction (e. g. shifting rather than multiplying when the

multiplier is a power of 2).
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empty

instr_1

instr_2

instr_1

instr_2

(a)

(b)

Fig. 3. Jump optimization: (a) before, and (b) after short-circuiting an empty node.

Example

As an example, we take the following Java static method, doing some computa-
tion over integer values:

public static int meth(final int x, final int y) {

if (x > y) {

try {

return compute1(x);

} catch (final Exception e) {

return 0;

}

} else {

return compute2(y);

}

}

After compiling it with the javac compiler, we can dump its bytecode by
invoking the javap utility, leading to the following output:

public static int meth(int, int);

Code:

0: iload_0

1: iload_1

2: if_icmple 13

5: iload_0

6: invokestatic #2 // Method compute1:(I)I

9: ireturn

10: astore_2

11: iconst_0
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12: ireturn

13: iload_1

14: invokestatic #4 // Method compute2:(I)I

17: ireturn

Exception table:

from to target type

5 9 10 Class java/lang/Exception

Barista can be used to transform a method bytecode into an hypergraph by
executing the barista flow ’C.meth(int,int):int’ command where C is the
class defining the method. The result is a graph representation in dot2 format
and is represented in figure 4.

iload_0
iload_1

iload_0
invokestatic compute1(int):int

ireturn

iload_1
invokestatic compute2(int):int

ireturn

astore_2
iconst_0
ireturn

java.lang.Exception

le

Fig. 4. Hypergraph for method meth(int,int):int.

Figure 4 features seven graph elements:

– four nodes (represented by boxes), containing the bytecode for the various
code blocks (condition evaluation, if block, else block, and exception han-
dler);

– a double arrow, indicating which node is the root;
– a dotted edge, from the protected node to the handler node and also labelled

with the class of exceptions to be caught;
– an hyperedge, linking three nodes: (i) the block evaluating the condition, (ii)

the block to execute next if condition is true, (iii) the block to execute next

2 See http://www.graphviz.org/.
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if condition is false; the hyperarc is also labelled with the kind of condition
to perform.

5 Examples of bytecode generation

Tail call optimization

Our first example is a very classical one: the recursive computation of a list length
using an accumulator parameter in order to make the recursive call terminal. The
left column shows the OCaml code of the function, while the right one shows
the generated bytecode.

let rec length acc = function

| [] -> acc

| _ :: tl -> length (succ acc) tl

0: aload_1

1: invokevirtual Value.asLong:()long

4: l2i

5: ifeq 27

8: aload_0

9: invokevirtual Value.getRawValue:()long

12: invokestatic NativeArithmetic.incrint:(long)long

15: invokestatic Value.createFromRawLong:(long)Value

18: aload_1

19: invokevirtual Value.get1:()Value

22: astore_1

23: astore_0

24: goto 0

27: aload_0

28: areturn

Instructions at offsets 0−5 load the second parameter of the function to test
whether it equals 0 (which is used to represent an empty list). The first branch of
the matching, at offset 27, only loads the first parameter (i. e. the accumulator)
in order to return its value to the caller.

The second branch of the matching perform the following operations:

offsets 9 − 15 the acc parameter is loaded and incremented;
offsets 18 − 19 the value of the second parameter is loaded, and its second component (i. e.

the tail of the list) is extracted;
offset 22 the new value for the second parameter overwrite its previous one;
offset 23 the new value for the acc overwrite its previous one;
offset 24 as the new values of the parameters have replaced the previous ones, the

recursive call can be safely translated as a bare jump to the entry point of
the method.

Unfortunately, it is not possible to optimize every tail call using the pre-
sented scheme, as it is not allowed in Java to jump into the body of another
method. The only way to transfer the execution to another method in Java is to
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actually execute an invokeXYZ instruction, which involves placing parameters
on the stack.

For this reason, most implementors of functional languages on the Java Vir-
tual Machine only optimize tail calls when they turn to be direct recursive calls.
In this respect, OCaml-Java does the same as, for example, Clojure [6] or Scala
[7]. Of course, it would be possible to apply transformations to a program in or-
der to overcome the Java restrictions over jumps (e. g. trampolines, or cps could
be used). However, such solutions do not only make compilation more complex,
they also tend to exhibit other problems in terms of performances and/or code
size.

Value unboxing

Our second example has been designed to show how the unboxing of values
allows to reach good performances in the case of numerical code. The left column
shows the OCaml code of the complete function, while the right one shows the
generated bytecode for the loop body.

let float () =

let x = ref 1. in

let y = ref 2. in

let acc = ref 0. in

for i = 1 to 1_000_000_000 do

acc := !acc +. (!x *. !y);

x := !x +. 1.;

y := !y *. 2.

done;

!acc

(...)

33: dload 5

35: dload_1

36: dload_3

37: dmul

38: dadd

39: dstore 5

41: dload_1

42: dconst_1

43: dadd

44: dstore_1

45: dload_3

46: ldc2_w 2.0d

49: dmul

50: dstore_3

(...)

Variables x, y, and acc are respectively stored at local indexes 1, 3, and 5.
The compiler has determined from their initial values that they are double val-
ues. Instructions at offset 33−39 computes the expression !acc +. (!x *. !y)

and store its value back. Then, instructions 41 − 44 update the value of the x

variable, and instructions 45 − 50 update the value of the y variable.
It is obvious from the instructions that all operations are done using the Java
double primitive type, no boxing being made at all. This ensures that we get the
best possible performances, and also avoid to put any pressure on the memory
allocator and garbage collector.
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When comparing the performances of the original OCaml compiler to the
OCaml-Java compiler, we measured the code generated by the former to take
3.8 seconds and the code generated by the latter to take 5.6 seconds. Then, we
changed the upper bound of the loop by multiplying it by ten, and then mea-
sured times to be respectively 38.6 seconds and 48.0 seconds. This means that
in the second setting, OCaml-Java in less than 25% slower than original OCaml.
Of course, the ratios are better when measuring longer runs because virtual ma-
chine startup and just-in-time compiling are amortized.

Even better, the OCaml-Java compiler is on par with the original one on
benchmarks such as nbody from the Language Shootout3. However, generally
speaking, it is safe to state that OCaml-Java is currently between two and three
times slower than OCaml on average.

6 Future Work

Most of our short-term effort will be focused on the unboxing of values. It proved
to produce large speedups in the past, and a lot of things can be done to make it
more aggressive. First, currently, the kind of storage is chosen according to the
initial value of a variable; we could design an heuristic also based on the uses of
the variable.
Second, as previously said, boxing is mandatory at function boundaries; there
are two ways to lift this restriction: (i) avoid such a boundary (e. g. by using
inlining) or (ii) allow the compilation to functions taking unboxed parameters
when typing information allows to do so. Also, unboxing is currently done only
for the following OCaml types: int, int32, int64, nativeint, and float. It
could also be done on others types, particularly ones constructed (e. g. records
with mutable fields) over those that can already be unboxed.

Inlining itself can also be greatly improved. For example, the current version
of the compiler is unable to inline recursive functions. This seems like a reason-
able limitation at first, but some recursive functions can be tail-call optimized
and thus be compiled as mere loops. In this case, it would be possible to inline
such functions.

Another area we should definitely investigate is the possible influence of
garbage collection parameters over performances. It would have had little sense
for the examples presented in this paper, but we expect performances to be
sensitive to garbage collector parameters in real-world applications. Indeed, the
default parameters are chosen to allow good performances for typical Java ap-
plications, not OCaml ones.

Finally, we could also optimize compile-time performances by generating the
Barista hypergraph directly during code generation. Currently, the compiler pro-

3 http://shootout.alioth.debian.org/
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duces plain bytecode that is then passed to Barista for low-level optimizations.
This incurs the price of hypergraph construction from a list of bytecode instruc-
tions, which can be avoided.

To conclude, some words about optimization opportunities that are linked
to the future development of the Java platform. Among those considered for
inclusion in the next revision of Java, two would be particularly useful to func-
tional languages targeting the Java Virtual Machine. The first feature is tagged
values, and would allow us to avoid boxing of int values: it would not only allow
faster operations but would also relieve the pressure over garbage collection by
avoiding allocation.
The second feature is support for tail calls, and would allow us to mark a method
call as terminal to indicate to the just-in-time compiler that a call can be opti-
mized. It would allow, of course, faster execution, but would especially make the
life of users easier because the absence of tail call optimization interacts with
semantics when calls come to blow up the stack.
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Abstract. There are many program transformation techniques that have
been described in theory but have not been mechanized — either because
they are too specialized to include in a general-purpose compiler, or be-
cause the developers’ interest is in theory rather than implementation.
This is unfortunate, as the mechanization process can often reveal ob-
stacles that are glossed over in pen-and-paper proofs, yet need to be
addressed before the transformation can be used in practice. In this pa-
per, we describe our experiences of using the HERMIT toolkit to apply
known transformations to the Glasgow Haskell Compiler’s core language.

Keywords: GHC, mechanization, transformation, worker/wrapper

1 Introduction

There are a wide variety of transformation techniques for optimizing functional
programs [19, 23, 20, 1]. Many such transformations have been implemented, and
many are used by modern compilers. However, there are also techniques that have
been described on paper but not mechanized, either because the transformation
is too specialized to include as an optimization in a general-purpose compiler,
or because the developers’ interest is in theory rather than implementation.

We believe there is a lot to be gained from mechanizing program transforma-
tions. The mechanization process can often reveal obstacles that do not appear
in pen-and-paper proofs, either because of implementation-specific details, or
because the pen-and-paper proofs gloss over details that may seem obvious to a
human, but are less obvious to a machine. And sometimes, mechanization can
find genuine errors in pen-and-paper proofs [15, 6].

HERMIT (Haskell Equational Reasoning Model-to-Implementation Tunnel)
is a recently implemented plugin for the Glasgow Haskell Compiler (GHC) [7]
that provides an interactive interface for applying transformations directly to
GHC’s internal intermediate language [5]. This plugin is part of a larger HER-
MIT toolkit, a Haskell framework which is being developed with the aims of
supporting equational reasoning and allowing custom optimizations to be ap-
plied without modifying either GHC or the Haskell source code.
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In this paper we report on our experience of using HERMIT to mechanize
optimization techniques, using the concatenate vanishes transformation [29], tu-
pling transformation [18] and the worker/wrapper transformation [9, 25] as case
studies. The main contributions of this work are:

– We show that it is viable to mechanize theoretical transformations in the
setting of the industrial-strength Glasgow Haskell Compiler. We report on
our experiences, the obstacles that arose during mechanization, and our ap-
proaches to overcoming them. (§2, 4)

– We show that the HERMIT system is sufficiently mature to be able to encode
and apply these transformation techniques. Additionally, we show that it is
straightforward to augment the HERMIT framework to add new specialized
transformations as needed. (§4, 5)

– In the process of abstracting the common patterns of our examples, we dis-
cover that concatenate vanishes and tupling transformation are special cases
of the worker/wrapper transformation. (§3)

2 HERMIT

This section briefly overviews the HERMIT toolkit; for more details consult [5].

2.1 GHC Core

GHC recently added support for custom compiler plugins that can be inserted
amid GHC’s optimization passes [7]. HERMIT uses this mechanism to provide
a transformation system for GHC Core, GHC’s internal intermediate language.

GHC Core is an implementation of System F�
C [27], which is System F [22]

extended with let-binding, constructors, and support for type coercions. Types
are explicitly passed as arguments, but never returned. Fig. 1 gives the Haskell
syntax for GHC Core, presented using some inlined type synonyms for clarity.

2.2 User Interface

HERMIT provides several interfaces at different levels of abstraction. In this
paper we will use just one of those interfaces: a read-eval-print loop (REPL).

The REPL allows navigation over a GHC Core abstract syntax tree (AST),
displaying the current sub-tree via a choice of pretty printers. The REPL pro-
vides a statically typed monomorphic functional language with overloading. Most
commands return a rewrite from AST to AST, and the result of executing such
a command is the newly transformed AST. Older versions of the AST are main-
tained, and it is possible to step back and forth through the history of ASTs, or
create branches to explore alternative transformation sequences. That is, HER-
MIT provides a version-control tree, where each node of the tree is an AST. When
the user has finished applying transformations, she selects one of the ASTs for
GHC to compile. See §5 for an extended example using the REPL.
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data ModGuts = ModGuts { :: [CoreBind ], ...}
data CoreBind = NonRec Id CoreExpr | Rec [(Id ,CoreExpr)]

data CoreExpr = Var Id
| Lit Literal
| App CoreExpr CoreExpr
| Lam Id CoreExpr
| Let CoreBind CoreExpr
| Case CoreExpr Id Type [CoreAlt ]
| Cast CoreExpr Coercion
| Tick (Tickish Id) CoreExpr
| Type Type
| Coercion Coercion

type CoreAlt = (AltCon, [Id ],CoreExpr)

data AltCon = DataAlt DataCon | LitAlt Literal | DEFAULT

Fig. 1: GHC Core.

2.3 Extendability

HERMIT is designed to make the addition of new transformations straightfor-
ward. There are two ways of doing this, first by adding a new internal primitive,
and secondly by leveraging the GHC RULES mechanism [21].

The former requires modifying the HERMIT source code, but our experience
has been that typically they can be constructed fairly easily out of the large suite
of low-level congruence combinators and strategic traversals already provided by
HERMIT (see [5]). We discuss this further in §4.

The latter allows Haskell programmers to annotate their source files with
directed rewrite rules. These rules are type checked, but otherwise GHC provides
no guarantee as to their correctness. HERMIT exposes any such rules as rewrite
commands, allowing the user to selectively apply them as desired. This provides
a lightweight mechanism for allowing the user to add custom transformations to
HERMIT, albeit limited to those that can be expressed by GHC RULES.

We used both methods extensively while mechanizing the examples discussed
in §3. In particular, we needed to add several primitive transformations that were
not obviously useful until we started mechanizing examples (see §4, 5).

3 Transformations for Mechanization

After selecting our three program transformation techniques, we chose several
representative examples of each from the literature. Of about a dozen examples
considered, those we have successfully mechanized in HERMIT thus far are:

– Concatenate Vanishes: Flatten [29, 13], Quicksort [29], Reverse [29, 13]
– Tupling Transformation: Fibonacci [4, 25]
– Worker/Wrapper: Last [25], Reverse [9, 5], Stream Memoization [9]

This section overviews the three techniques, and then discusses how concate-
nate vanishes and tupling can be viewed as special cases of worker/wrapper.
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3.1 Concatenate Vanishes

The concatenate vanishes transformation (CV) [29] is a technique for increasing
the efficiency of programs that make repeated use of list concatenation. Here we
briefly summarize the key aspects of the transformation; for full details consult
the original work by Wadler [29].

Consider the standard definition of list concatenation:

(++) :: [a ]→ [a ]→ [a ]
[ ] ++ bs = bs
(a : as) ++ bs = a : (as ++ bs)

The time complexity of this definition is linear in the length of its first argument,
but constant in the length of its second argument. Thus, while ++ is associative,
(as ++ bs) ++ cs will evaluate less efficiently than as ++ (bs ++ cs). The essence
of CV is to exploit this observation to restructure programs using repeated con-
catenation into a more efficient form.

The transformation is as follows. Given a function that returns a list1

f :: a → [b ]
f a = expr

define a new function that returns a list-to-list function (known as an H-list [12])

f ′ :: a → [b ]→ [b ]
f ′ a bs = expr ++ bs

where expr is an expression that may contain f and a. Then redefine the original
function f as:

f :: a → [b ]
f a = f ′ a [ ]

The efficiency gains (if any are possible) are then achieved through refactoring
the definition of f ′: first by applying the associativity and unit laws of ++, and
then by folding the definition of f ′ to eliminate any recursive calls to f .

3.2 Tupling Transformation

The tupling transformation (TT) [18] applies to functions that make duplicated
recursive calls. The idea is to create a linearly recursive function that returns
multiple results as a tuple, where the additional results are the values that would
have been unnecessarily recomputed, but now can be reused. At the top level, a
combining function computes the final result from the tuple components.

To illustrate this, consider the call dependency tree (Fig. 2a) for a naively
defined Fibonacci function. Notice the duplicated calls to fib with the same

1 For clarity of presentation we assume the function is in uncurried form, but CV is
valid for functions that take any number of arguments; see [29].
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fib n

fib(n− 2)

fib(n− 4)fib(n− 3)fib(n− 3)

fib(n− 1)

fib(n− 2)

(a)

fib n

fib(n− 2)

fib(n− 4)fib(n− 3)

fib(n− 1)

(b)

Fig. 2: Dependency graphs for fib, illustrating redundant calls.

arguments. Ideally we want to combine these calls to produce the dependency
graph shown in Fig. 2b.

Informally, we tuple nodes that depend on the same recursive call. Thus, we
tuple the results of fib n and fib(n − 1), which both depend on fib(n − 2), and
fib(n − 1) and fib(n − 2), which both depend on fib(n − 3), and so forth. The
task is to calculate, from the existing definition of fib, a recursive function t
that computes each tuple from the subsequent tuple. Finally, the fib function is
redefined in terms of t and the combining function. We perform this calculation
in §5.

3.3 Worker/Wrapper Transformation

The worker/wrapper transformation (WW) [9, 25] is a technique for improving
the efficiency of a recursive program by changing the data type being operated
on. The basic idea is that given a program prog :: a, we factorize it into a more
efficient worker program work :: b, and a wrapper function wrap :: b → a that
converts the result into a value of the original type.

The first step is to rewrite the program as the fixed point of a non-recursive
function f (where expr is an expression that may call prog):

prog = expr ⇒ prog = fix f where f = λprog → expr

Next comes the key step: choosing a more efficient data type. Once chosen, we
define conversion functions between the two types:

unwrap :: a → b
wrap :: b → a

These conversion functions are required to satisfy the property that

fix (wrap ◦ unwrap ◦ f ) ≡ fix f

and often satisfy the stronger property wrap ◦ unwrap ≡ id . It is then valid to
redefine the original program as follows (known as WW factorization):

prog = wrap work

The definition of work can be derived in a number of ways [25]. Typically, we
start from either work = fix (unwrap ◦ f ◦ wrap) or work = unwrap prog , and
then simplify the definition using any laws specific to the types a and b.
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3.4 Concatenate Vanishes is an instance of Worker/Wrapper

CV can be expressed as an instance WW, where the original data type is a
function returning a list, and the more efficient data type is a function returning
an H-list. Thus we can verify the correctness of CV within the WW framework.

We start with a recursively defined function that returns a list:

prog :: a → [b ]
prog a = expr

The first step of WW is to redefine prog as fix f . However, we won’t need the
definition of f for this particular derivation, so we omit this step and proceed to
choose the type of work , which is a function returning an H-list:

work :: a → [b ]→ [b ]

Next we define conversion functions between the two types:

wrap :: (a → [b ]→ [b ])→ a → [b ]
wrap h a = h a [ ]

unwrap :: (a → [b ])→ a → [b ]→ [b ]
unwrap h a bs = h a ++ bs

It is straightforward to show that the WW precondition holds:

wrap ◦ unwrap ≡ id
⇔ { extensionality }

wrap (unwrap h) a ≡ id h a
⇔ { unfold wrap and id }

unwrap h a [ ] ≡ h a
⇔ { unfold unwrap }

h a ++ [ ] ≡ h a
⇔ { [ ] is the unit of ++ }

True

Applying WW factorization produces the following definitions:

prog :: a → [b ]
prog = wrap work

work :: a → [b ]→ [b ]
work = unwrap prog

η-expanding and unfolding wrap and unwrap gives:

prog :: a → [b ]
prog a = work a [ ]

work :: a → [b ]→ [b ]
work a bs = prog a ++ bs

Finally, inlining prog in the definition of work gives the CV transformation:

work :: a → [b ]→ [b ]
work a bs = expr ++ bs
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3.5 Tupling Transformation is an instance of Worker/Wrapper

Less formally, we can observe that the TT is an instance of WW by noting
that the linearly recursive function t (see §3.2) is the more efficient worker func-
tion, while the combining function is the wrapper. The unwrapping function is
constructed by tupling multiple function calls on different arguments. The defi-
nitions of wrap and unwrap derived in this manner typically satisfy the strongest
WW precondition. We demonstrate this in §5.

4 User Experience

This section discusses our experiences of using HERMIT to mechanize the WW
and CV transformations, as well as some general experiences that aren’t tied to
a specific technique. We postpone discussion of TT until §5, where it serves as
our more detailed case study.

4.1 Worker/Wrapper

WW was the first transformation that we mechanized. Introducing fix , the first
step of WW, was not a transformation originally provided by HERMIT, nor
was it definable in terms of other HERMIT commands. However, making use of
the existing HERMIT infrastructure, we found it straightforward to add a new
rewrite for this task. We did not need to add a rewrite to eliminate fix , as that
can be achieved by using HERMIT’s existing unfold command.

We chose to encode WW factorization using GHC RULES. Thus no modifi-
cation to HERMIT was required, we just included the following pragma in the
source code of each example, along with appropriate wrap and unwrap functions:

{-# RULES "ww" ∀ f . fix f = wrap (fix (unwrap ◦ f ◦ wrap)) #-}

This works, but in the future we plan to add a HERMIT command that takes
wrap and unwrap functions as parameters, thereby avoiding the need to repeat
this rule for every specific wrap and unwrap.

HERMIT does not yet have a mechanism for checking preconditions, so it is
up to the user to ensure that factorization is used only when the WW precondi-
tion holds. This is not ideal, and providing some mechanism within HERMIT for
verifying pre-conditions, or at least for recording which pre-conditions have been
assumed during the transformation, is an obvious next step in its development.

Another issue is that, unlike in a Haskell source file, the top-level bindings
are not treated as a mutually recursive group. During type checking (before gen-
erating GHC Core), a dependency analysis separates the bindings into minimal
recursive groups and orders these groups by their dependencies [14]. This can
be problematic when applying GHC RULES, as some of the identifiers in the
rule may not be in scope. To address this, we added a flatten-module rewrite
that combines the top-level binding groups into a single recursive group, thereby
ensuring all identifiers that can appear in a rule will be in scope.
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Other than these issues, we found mechanizing the WW examples to be
straightforward uses of HERMIT’s basic transformations and GHC RULES. A
detailed walk-through of the Reverse example can be found in [5].

We also encountered some unexpected behavior involving type-level universal
quantification. GHC Core passes around type arguments explicitly; thus when a
call is made to a polymorphic function, the type argument has to be provided.
For example, the Core generated from last has the following type and structure:

last :: ∀ τ . [τ ]→ τ
last = λ τ as → ...last τ ...

However, we discovered that if the type signature for a top-level polymorphic
function is omitted in the source code, GHC generates different Core. Specifically,
it produces an outer non-recursive polymorphic function, and an inner recursive
monomorphic function. That is, the type is fixed outside the recursion, avoiding
the need to provide the type as an argument to each recursive call.

last :: ∀ τ . [τ ]→ τ
last = λ τ → let last :: [τ ]→ τ

last = λ as → ...last ...
in last

This difference, which is not noticeable at the level of Haskell source code, is
significant enough to allow a GHC rule to fire in one case and not another. For
example, WW factorization only fires for monomorphic functions, not polymor-
phic ones. In our opinion, HERMIT’s ability to interactively display information
on selected fragments of GHC Core was most helpful in understanding why the
rule was not firing. Indeed, one potential application of the HERMIT system is
experimenting with and debugging GHC RULES.

4.2 Concatenate Vanishes

Mechanizing CV proved straightforward. As shown in §3.4, the first step can
be expressed as WW factorization, so we were able to proceed in the same
manner as in §4.1. Mechanizing Flatten and QuickSort proved very similar to
the Reverse example, with only a few differences in the basic transformations
applied to simplify the resultant worker function. It was not necessary to add
any new functionality to HERMIT.

Encouraged by the similarity of the three HERMIT scripts, we wrote a single
generic script that works for all three examples, using HERMIT’s higher-level
commands. For this we did need to add a new command to HERMIT. The
issue was that case floating (taking a function applied to a case expression and
applying it to each case alternative instead) is only valid if the function is strict:

f (case x of
a1 → e1
a2 → e2
...
an → en)

⇒

case x of
a1 → f e1
a2 → f e2
...
an → f en
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As HERMIT lacks a mechanism for verifying preconditions (see §4.1), it is the
user’s responsibility to ensure case floating is only applied to strict functions.
This was fine when considering each example in isolation, as we explicitly stated
when and where to float a case. But as this differed between examples, the
usage in the generic script was potentially unsafe. To address this, we added a
command that floats case (and let) expressions, but only past a function that it
takes as a parameter. Again, adding this was straightforward.

Our generic CV script makes heavy use of GHC RULES, which encode the
monoid laws for ((++), [ ]) and ((◦), id), and a monoid homomorphism between
them. We also used a rule to encode the fusion law relating the conversion
functions between the list and H-list types [9]. This rule also has a precondition,
and currently its usage in the generic script is unsafe in general (although in
each specific example it is used safely). We are working on adding a rewrite to
HERMIT that will allow us to restrict this rule to situations where the pre-
condition is met, in a similar manner to the case-floating previously discussed.

Note that we do not claim that our generic script would work for any CV
example; indeed we are quite confident it would not. Its purpose was just to
test how well HERMIT copes with abstracting from multiple similar examples.
HERMIT is designed as an interactive system where transformations are user-
guided; we do not aim nor expect to be able to fully automate transformations
in general. What we do aim for is to make HERMIT commands as robust as
possible, in an effort to minimize the changes required if the source code changes,
and more abstract commands help in this regard.

4.3 General Experiences

We found that we often followed inlining with the general-purpose clean-up com-
mand bash [5], which was serving as a crude way of unfolding [4] a definition.
However, in some cases this was adversely affecting the content of the inline func-
tion, as well as its arguments. After consideration, we settled on the following
HERMIT terminology, and introduced corresponding command support:

– To inline: to replace a value with its definition.

– To apply : to inline in the context of (zero or more) arguments, and perform
beta-reduction (to let binding) on all the arguments.

– To unfold : to apply, then attempt safe/cheap substitution on all the new let
bindings introduced by the apply.

Building on this terminology, we found the recursive deep-traversal combina-
tors [5] insufficient for our needs: specifically, it was difficult to include as many
arguments as possible when unfolding curried functions, while at the same time
ensuring termination of unfolding. To address this, we invented a traversal strat-
egy called any-call, which has the order of visiting nodes specifically tuned to
maximize the number of arguments provided to any inlineable value, as well as
traversing any arguments before performing the apply/unfold.
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We found debugging transformation scripts to be challenging. To make it
easier, we added two folklore combinators to HERMIT. The first, trace, iden-
tifies if a specified rewrite was attempted, and counts how many times. The
second, observe, is similar, but also emits the node at which it was attempted.
We have found both useful in practice when debugging our scripts, especially
when understanding the usage of our deep higher-order combinators.

5 Example: Fibonacci Tupling

In this section we demonstrate the mechanization process in detail by performing
TT on the Fibonacci function using the HERMIT REPL. Starting with the clear
but inefficient (exponential time) definition over Peano naturals

data Nat = Z | S Nat

fib :: Nat → Nat
fib Z = Z
fib (S Z) = S Z
fib (S (S n)) = fib (S n) + fib n

we transform it into the following efficient (linear time) definition:

fib′ :: Nat → Nat
fib′ n = fst (work n)

where work :: Nat → (Nat ,Nat)
work Z = (Z, S Z)
work (S m) = let (x , y) = work m in (y , x + y)

As noted in §3.5, TT is an instance of WW, so we will make use of our
existing WW infrastructure. Following [25], we choose the more efficient data
type to be a function that returns a tuple of consecutive Fibonacci numbers,
and define wrap and unwrap as follows:

wrap :: (Nat → (Nat ,Nat))→ Nat → Nat
wrap h = fst ◦ h

unwrap :: (Nat → Nat)→ Nat → (Nat ,Nat)
unwrap h n = (h n, h (S n))

Trivially, the wrap ◦ unwrap ≡ id precondition holds.

Loading the original definition of fib into HERMIT, we see the GHC Core
that is generated:

hermit> set-pp-expr-type Show ; flatten-module ; consider ’fib

rec fib = λ ds � case ds of wild

Z � Z

S ds � case ds of wild

Z � S Z

S n � (+) (fib (S n)) (fib n)
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We need to introduce the fixed-point operator, perform WW factorization,
and then eliminate the fixed-point operator to return to a recursive definition.
As this is a common sequence of steps (which we call the WW split), we have
written a HERMIT script for this purpose. The script takes a recursively defined
function of the form g = expr , and transforms it into a non-recursive call to a
wrapped worker:

g = let f = λg → expr
in (let work = unwrap (f (wrap work)) in wrap work)

The worker is recursive, making use of the original body by coercing to and from
the original computation type. The body of f is kept separate from the body
of work by a let binding, allowing us to selectively inline f when required, but
otherwise keep the details of the original computation abstract. The script relies
on WW factorization being available as a GHC RULE (see §4.1).

hermit> load "WWSplitTactic.hss"

fib = let f = λ fib ds � case ds of wild

Z � Z

S ds � case ds of wild

Z � S Z

S n � (+) (fib (S n)) (fib n)

rec work = unwrap (f (wrap work))

in wrap work

This derivation will use the fold/unfold equational-reasoning technique [4].
When using fold/unfold, it is common to need access to past definitions of func-
tions; a non-issue when working on paper (one simply looks up the page), but
one that we needed to address. While the HERMIT kernel maintains a record of
every version of the AST, we found it preferable to provide a command remember

that explicitly saves a definition, rather than dig through the kernel’s history.
This also allows fold/unfold to be a lower-level notion that does not assume the
existence of a version-control history, and means a definition can be saved and
then applied within a single composite rewrite.

hermit> consider ’work ; remember origwork

work = unwrap (f (wrap work))

We now η-expand the body of work and unfold unwrap. Notice that the tuple
constructor is polymorphic, and thus takes two types arguments (both Nat):

hermit> down ; eta-expand ’n

hermit> any-call (unfold ’unwrap)

λ n � (,) Nat Nat (f (wrap work) n) (f (wrap work) (S n))

We need to establish a base case for work . To do this we created a new
command, case-split-inline, which takes as an argument a free variable in
the expression. Using the type of the variable, a case expression is created with
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one alternative per constructor, and the original expression is cloned as the right-
hand side of each alternative. Finally, the constructor application making up the
pattern of each alternative is inlined for the variable2:

hermit> down ; case-split-inline ’n

case n of n

Z � (,) Nat Nat (f (wrap work) Z) (f (wrap work) (S Z))

S a � (,) Nat Nat (f (wrap work) (S a)) (f (wrap work) (S (S a)))

This required modifying HERMIT’s inline mechanism such that two defi-
nitions are stored for a case wildcard binder. Previously, calling inline on a
wildcard binder would inline the case scrutinee. However, as the case analysis
partially evaluates the scrutinee, we can instead inline the result of that evalua-
tion (namely, the constructor or literal on the left-hand side of the alternative).
This is now the default behavior, with only the default alternative inlining the
scrutinee. The scrutinee can also be inlined explicitly using inline-scrutinee.

Now we selectively unfold f in three of the four places it is called, resulting
in a fully simplified base case for work , and preparing to expose the duplicated
computation in the S a case3:

hermit> { 1 ; any-call (unfold ’f) }
hermit> { 2 ; 0 ; 1 ; any-bu (unfold ’f) }
hermit> simplify

case n of n

Z � (,) Nat Nat Z (S Z)

S a � (,) Nat Nat (f (wrap work) (S a))

((+) (wrap work (S a)) (wrap work a))

We move into the second case alternative for the remainder of the derivation.
In the second tuple component, we unfold the saved definition of work :

hermit> 2 ; 0 ; { 1 ; any-bu (unfold origwork) }
(,) Nat Nat (f (wrap work) (S a))

((+) (wrap (unwrap (f (wrap work))) (S a))

(wrap (unwrap (f (wrap work))) a))

This creates an opportunity for fusing wrap and unwrap via the precondition,
which we encode as a GHC RULES pragma:

{-# RULES "precondition" ∀ w . wrap (unwrap w) = w #-}

hermit> any-bu (unfold-rule precondition)

(,) Nat Nat (f (wrap work) (S a)) ((+) (f (wrap work) (S a))

(f (wrap work) a))

2 There is also a case-split command, which does not inline n in the alternatives.
3 The numbers select a child node to descend into. The curly braces denote scoping:

within a scope it is impossible to navigate above the node at which the scope starts,
and when the scope ends the cursor returns to the starting node.
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Now the duplicated computation of f (wrap work) (S a) is evident. We name
each distinct call to f using let introduction, float the lets outside of the tuple,
and use a newly created fold rewrite to combine the duplicated computation:

hermit> { 1 ; 1 ; let-intro ’x }
hermit> { 0 ; 1 ; let-intro ’y }
hermit> innermost (let-float-arg <+ let-float-app)

hermit> one-td (fold ’y)

let x = f (wrap work) a

y = f (wrap work) (S a)

in (,) Nat Nat y ((+) y x)

Our implementation of fold performs a straightforward structural compar-
ison of two expressions, attempting to instantiate one in terms of the other. It
makes no attempt to convert into a normal form, so is currently limited to fold-
ing syntactically equivalent expressions. Of the new rewrites, this was the most
challenging to add to HERMIT.

At this point, we would like to have the following code because it exposes an
opportunity to fold unwrap:

let (x , y) = (f (wrap work) a, f (wrap work) (S a)) in (y , y + x )

However, GHC Core does not support pattern matching in let bindings. Thus
we added the let-tuple rewrite, which combines two non-recursive let bindings
into a single binding of a tuple. The original bindings are altered to project out
of this tuple. This currently only works for pairs, but we plan to generalize it to
n-ary tuples. The only complication in encoding this rewrite was locating GHC’s
tuple constructor, as the name (, ) is used at both the type level and value level,
and in GHC Core they live in the same name space.

hermit> let-tuple ’xy

let xy = (,) Nat Nat (f (wrap work) a) (f (wrap work) (S a))

x = fst Nat Nat xy

y = snd Nat Nat xy

in (,) Nat Nat y ((+) y x)

We can now fold unwrap:

hermit> one-td (fold ’unwrap)

let xy = unwrap (f (wrap work)) a

x = fst Nat Nat xy

y = snd Nat Nat xy

in (,) Nat Nat y ((+) y x)

All that remains is to fold our saved definition of work . This results in a
definition with no calls to f , and no conversions via wrap and unwrap:

hermit> one-td (fold origwork)

let xy = work a

x = fst Nat Nat xy

y = snd Nat Nat xy

in (,) Nat Nat y ((+) y x)
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Zooming out to see all of fib, we notice that f is now dead code. This would
be removed by GHC’s optimizer, but for presentation purposes we do so here.
We also unfold the remaining call of wrap:

hermit> top ; consider ’fib

hermit> innermost dead-code-elimination

hermit> { 0 ; 1 ; any-call (unfold ’wrap) ; simplify }
fib = let rec work = λ n � case n of n

Z � (,) Nat Nat Z (S Z)

S a � let xy = work a

x = fst Nat Nat xy

y = snd Nat Nat xy

in (,) Nat Nat y ((+) y x)

in λ x � fst Nat Nat (work x)

We now have the efficient version of fib, and so tell GHC to resume compilation:

hermit> resume

6 Related Work

There are several refactoring tools for Haskell programs, including the Haskell
Refactorer (HaRe) [3, 16], the Programming Assistant for Transforming Haskell
(PATH) [28], the Ulm Transformation System (Ultra) [10], and the Haskell Equa-
tional Reasoning Assistant (HERA) [8]. HaRe and HERA allow the user to op-
erate directly on Haskell source code, internally transforming the code into an
AST (using Programatica [11] and Template Haskell [26], respectively) and then
reconstructing the Haskell source code. PATH is similar, although it converts the
program to its own Haskell-like language, and has the user operate on that. Ultra
operates on Haskell extended with some non-deterministic operators, allowing
non-executable specifications to be transformed into executable programs.

HERMIT differs from these other systems by operating on GHC Core, mid-
way through the compilation process. The principal advantage of this approach
is that GHC Core is a small language, having stripped away all of Haskell’s
syntactic sugar. This makes HERMIT simpler to use, implement and maintain,
as there are far fewer cases to consider. Other advantages are that this auto-
matically supports GHC language extensions, as GHC compiles them to GHC
Core, and that inserting HERMIT inside the GHC optimization pipeline allows
transformations to be intermixed with GHC’s optimization passes. However, a
disadvantage is that HERMIT cannot output Haskell source code.

One can also use proof assistants such as Coq [2] or Agda [17] to mechanize
program transformations interactively. However, this requires modeling the syn-
tax and semantics of the object language, encoding the program in that model,
and then, after the transformation, transliterating the result back into the ob-
ject language before it can be compiled and executed. Even were we to ignore
GHC language extensions and consider only a limited subset of Haskell, the
presence of partial values and lazy semantics means we cannot simply define our
programs directly in the total languages provided by such proof assistants, but
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instead have to model Haskell’s domain theoretic setting of continuous functions
over pointed ω-complete partial orders [24, 25], which in our experience is signif-
icantly harder to work with than GHC Core where that model is inherent. We
emphasize that one of the aims of the HERMIT project is to make transforming
Haskell programs as easy as possible for the user: we do not want familiarity
with domain theory and proof assistants to be prerequisites.

7 Conclusions and Future Work

Our experience thus far has been that it is viable to mechanize basic program
transformations, and that performing the transformations in HERMIT is no
more complicated than on paper. However, while encoding our examples we re-
peatedly found it necessary to add additional transformations, and higher-level
transformation strategies. This is unsurprising, as the HERMIT system is still
in an early stage of development. What remains to be seen is whether, as we
try more complex examples, we continue to need to add new transformations, or
whether those we have now will scale. In general, we found adding new transfor-
mations to HERMIT to be a fairly simple procedure, whether by building them
from HERMIT’s existing low-level transformations, or by using GHC RULES.
More challenging has been verifying the correctness of these transformations,
and debugging our HERMIT programs when they fail to do as we expect.

Working within GHC has proved convenient. GHC Core has already been
type checked before HERMIT acts on it, making all type information available.
Much implementation effort was saved by using existing GHC functions such as
substitution and variable de-shadowing, and safety checks such as the Core Lint
pass [20] which ensures that the resultant code is type-correct and well-scoped.

More work is now needed. We have mechanized a collection of small examples
as a proof of concept, but we need to try transforming larger real-world programs.
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Optimisation of Generic Programs through Inlining
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Abstract. It is known that datatype-generic programs often run slower than type-
specific variants, and this factor can prevent adoption of generic programming
altogether. There can be multiple reasons for the performance penalty, but often
it is caused by conversions to and from representation types that do not get elimi-
nated during compilation. However, it is also known that generic functions can be
specialised to specific datatypes, removing any overhead from the use of generic
programming. In this paper, we investigate compilation techniques to specialise
generic functions and remove the performance overhead of generic programs in
Haskell. We pick a representative generic programming library and look at the
generated code for a number of example generic functions. After understand-
ing the necessary compiler optimisations for producing efficient generic code,
we benchmark the runtime of our generic functions against handwritten variants,
and conclude that all the overhead can indeed be removed automatically by the
compiler.

1 Introduction

Datatype-generic programming is a form of abstraction that allows defining functions
that operate on every datatype. Generic programs operate on the general structure of
datatypes, therefore remaining agnostic of the individual detail of each datatype. Exam-
ples of behaviour that can be defined generically are (de)serialisation, equality testing,
and traversing data. It is convenient to define such functions generically because less
code has to be written, and this code has to be adapted less often. However, generic
programs operate on the underlying structure of datatypes, and not on datatypes them-
selves directly. This indirection often causes a runtime penalty, as conversions to and
from the generic representation are not always optimised away.

The performance of generic programs has been analysed before. [14] present a de-
tailed comparison of nine libraries for generic programming in Haskell, with a brief
performance analysis. This analysis indicates that the use of a generic approach could
result in an increase of the running time by a factor of as much as 80. [10] also report
severe performance degradation when comparing a generic approach to a similar but
type-specific variant. While this is typically not a problem for smaller examples, it can
severely impair adoption of generic programming in larger contexts. This problem is
particularly relevant because generic programming techniques are especially applica-
ble to large applications where performance is important, such as structure editors or
compilers.

? This work has been funded by EPSRC grant number EP/J010995/1.
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2 José Pedro Magalhães

To understand the source of performance degradation when using a generic function
from a particular generic programming library, we have to analyse the implementation
of the library. The fundamental idea behind generic programming is to represent all
datatypes by a small set of representation types. Equipped with conversion functions
between user datatypes and their representation, we can define functions on the rep-
resentation types, which are then applicable to all user types via the conversion func-
tions. While these conversion functions are typically trivial and can be automatically
generated, the overhead they impose is not automatically removed. In general, conver-
sions to and from the generic representations are not eliminated by compilation, and
are performed at run-time. These conversions are the source of inefficiency for generic
programming libraries. In the earlier implementations of generic programming as code
generators or preprocessors [4], optimisations (such as automatic generation of type-
specialised variants of generic functions) could be implemented externally. With the
switch to library approaches, all optimisations have to be performed by the compiler, as
the library approach no longer generates code itself.

The Glasgow Haskell Compiler (GHC, the main Haskell compiler) compiles a pro-
gram by first converting the input into a core language and then transforming the core
code into more optimised versions, in a series of sequential passes. While it performs a
wide range of optimisations, with the default settings it seems to be unable to remove the
overhead incurred by using generic representations. Therefore generic libraries perform
slower than handwritten type-specific counterparts. [1, 2] show that in many cases it is
possible to remove all overhead by performing a specific form of symbolic evaluation in
the Clean language. In fact, their approach is not restricted to optimising generics, and
GHC performs symbolic evaluation as part of its optimisations. Our goal is to convince
GHC to optimise generic functions so as to achieve the same performance as handwrit-
ten code, without requiring any additional manipulation of the compiler internals.

We have investigated this problem before [8], and concluded that tweaking GHC
optimisation flags can achieve significant speedups. The problem with using compiler
flags is that these apply to the entire program being compiled, and while certain flags
might have a good effect on generic functions, they might adversely affect performance
(or code size) of other parts of the program. In this paper we take a more fine-grained
approach to the problem, looking at how to localise our performance annotations to the
generic code only, by means of rewrite rules and function pragmas.1 In this way we can
improve the performance of generic functions with minimal impact on the rest of the
program.

We continue by defining two representative generic functions which we focus our
optimisation efforts on (Section 2). We then see how these functions can be optimised
manually (Section 3), and transfer the necessary optimisation techniques to the compiler
(Section 4). We confirm that our optimisations result in better runtime performance of
generic programs in a benchmark in Section 5, and conclude in Section 6.

1 http://www.haskell.org/ghc/docs/latest/html/users_guide/pragmas.html
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Optimisation of Generic Programs through Inlining 3

2 Example generic functions

For analysing the performance of generic programs we choose the generic-deriving
library, now integrated in GHC. Due to space considerations we cannot provide an
introduction to this library; the reader is referred to related work for this purpose [8, 7].
We present two generic functions that will be the focus of our attention: equality and
enumeration.

2.1 Generic equality

A notion of structural equality can easily be defined as a generic function. We first
define a class for equality on the representation types:

class GEqRep φ where
geqRep :: φ α → φ α → Bool

We can now give instances for each of the representation types:

instance GEqRep U1 where
geqRep = True

instance (GEqRep α,GEqRep β )⇒ GEqRep (α :+: β ) where
geqRep (L1 x) (L1 y) = geqRep x y
geqRep (R1 x) (R1 y) = geqRep x y
geqRep = False

instance (GEqRep α,GEqRep β )⇒ GEqRep (α :×: β ) where
geqRep (x1:×:y1) (x2:×:y2) = geqRep x1 x2 ∧ geqRep y1 y2

instance (GEqRep α)⇒ GEqRep (M1 ι γ α) where
geqRep (M1 a) (M1 b) = geqRep a b

Units are trivially equal. For sums we continue the comparison recursively if both values
are either on the left or on the right, and return False otherwise. Products are equal if
both components are equal, and meta-information is ignored.

For recursive occurrences we fall back to an user-facing GEq class:

instance (GEq γ)⇒ GEqRep (K1 ι γ) where
geqRep (K1 a) (K1 b) = geq a b

This user-facing class is similar to GEqRep, but is used for user datatypes, and
comes with a generic default method:

class GEq α where
geq :: α → α → Bool
default geq :: (Generic α,GEqRep (Rep α))⇒ α → α → Bool
geq x y = geqRep (from x) (from y)

This class is similar to the Prelude Eq class, but we have left out inequality for simplic-
ity. The generic default simply calls from on the arguments, and then proceeds using the
generic equality function geqRep.

Adhoc instances for base types can reuse the Prelude implementation:
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instance GEq Int where
geq = (≡)

User datatypes, such as lists, can use the generic default:

instance (GEq α)⇒ GEq [α ]

2.2 Generic enumeration

We now define a function that enumerates all possible values of a datatype. For infinite
datatypes we have to make sure that every possible value will eventually be produced.
For instance, if we are enumerating integers, we should not first enumerate all positive
numbers, and then the negatives. Instead, we should interleave positive and negative
numbers.

While equality is a generic consumer, taking generic values as input, enumeration
is a generic producer, since it generates generic values. We enumerate values by listing
them with the standard list type. There is only one unit to enumerate, meta-information
is ignored for enumeration purposes, and for datatype occurrences we refer to an user-
facing GEnum class:

class GEnumRep φ where
genumRep :: [φ α ]

instance GEnumRep U1 where
genumRep = [U1 ]

instance (GEnumRep φ)⇒ GEnumRep (M1 ι γ φ) where
genumRep = map M1 genumRep

instance (GEnum φ)⇒ GEnumRep (K1 ι γ φ) where
genumRep = map K1 genum

The more interesting cases are those for sums and products. For sums we enumerate
both alternatives, but interleave them with a (|||) operator:

instance (GEnumRep α,GEnumRep β )⇒ GEnumRep (α :+: β ) where
genumRep = map L1 genumRep |||map R1 genumRep

infixr 5 |||
(|||) :: [α ]→ [α ]→ [α ]

For products we generate all possible combinations of the two arguments, and di-
agonalise the result matrix, ensuring that all elements from each sublist will eventually
be included, even if the lists are infinite:

instance (GEnumRep α,GEnumRep β )⇒ GEnumRep (α :×: β ) where
genumRep = diag (map (λx→ map (λy→ x:×:y) genumRep) genumRep)

diag :: [ [α ] ]→ [α ]
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Optimisation of Generic Programs through Inlining 5

We omit the implementation details of (|||) and diag as they are not important; it only
matters that we have some form of fair interleaving and diagonalisation operations. The
presence of (|||) and diag throughout the generic function definition makes enumera-
tion more complicated than equality, since equality does not make use of any auxiliary
functions. We will see in Section 4.3 how this complicates the specialisation process.
Note also that we do not use the more natural list comprehension syntax for defining
the product instance, again to simplify the analysis of the optimisation process.

Finally, we define the user-facing class, with a default implementation:

class GEnum α where
genum :: [α ]

default genum :: (Generic α,GEnumRep (Rep α))⇒ [α ]
genum = map to genumRep

3 Specialisation, by hand

We now focus on the problem of specialisation of generic functions. By specialisation
we mean removing the use of generic conversion functions and representation types,
replacing them by constructors of the original datatype. To convince ourselves that this
task is possible we first develop a hand-written derivation of specialisation by equational
reasoning. For simplicity we ignore implementation mechanisms such as the use of type
classes and type families, and focus first on a very simple datatype encoding natural
numbers:

data Nat = Ze | Su Nat

We give the representation of naturals with standard Haskell datatypes using a type
synonym:

type RepNat = Either () Nat

We use a shallow representation (with Nat at the leaves, and not RepNat), remaining
faithful with generic-deriving. We also need a way to convert between RepNat and
Nat:

toNat :: RepNat→ Nat
toNat n = case n of {Left ()→ Ze; Right n→ Su n; }
fromNat :: Nat→ RepNat
fromNat n = case n of {Ze→ Left (); Su n→ Right n; }

We now analyse the specialisation of generic equality and enumeration on this datatype.

3.1 Generic equality

We start with a handwritten, type-specific definition of equality for Nat:

eqNat :: Nat→ Nat→ Bool
eqNat m n = case (m , n) of
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(Ze , Ze )→ True
(Su m , Su n)→ eqNat m n
( , )→ False

For equality on RepNat we need equality on units and sums:

eqU :: ()→ ()→ Bool
eqU x y = case (x , y) of {(() , ())→ True; }

eqPlus :: (α → α → Bool)→ (β → β → Bool)→
Either α β → Either α β → Bool

eqPlus ea eb a b = case (a , b) of
(Left x , Left y)→ ea x y
(Right x , Right y)→ eb x y
( , )→ False

Now we can define equality for RepNat, and generic equality for Nat through conver-
sion to RepNat:

eqRepNat :: RepNat→ RepNat→ Bool
eqRepNat = eqPlus eqU eqNatFromRep
eqNatFromRep :: Nat→ Nat→ Bool
eqNatFromRep m n = eqRepNat (fromNat m) (fromNat n)

Our goal now is to show that eqNatFromRep is equivalent to eqNat. In the following
derivation, we start with the definition of eqNatFromRep, and end with the definition of
eqNat:

eqRepNat (fromNat m) (fromNat n)

≡〈 inline eqRepNat 〉
eqPlus eqU eqNatFromRep (fromNat m) (fromNat n)

≡〈 inline eqPlus 〉
case (fromNat m , fromNat n) of
(Left x , Left y)→ eqU x y
(Right x , Right y)→ eqNatFromRep x y

→ False

≡〈 inline fromNat 〉
case ( case m of {Ze→ Left ();Su x1→ Right x1}

, case n of {Ze→ Left ();Su x2→ Right x2}) of
(Left x , Left y)→ eqU x y
(Right x , Right y)→ eqNatFromRep x y

→ False

≡〈 case-of-case transform 〉
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case (m , n) of
(Ze , Ze )→ eqU () ()
(Su x1 , Su x2)→ eqNatFromRep x1 x2

→ False

≡〈 inline eqU and case-of-constant 〉
case (m , n) of
(Ze , Ze )→ True
(Su x1 , Su x2)→ eqNatFromRep x1 x2

→ False

≡〈 inline eqNatFromRep, induction 〉
case (m , n) of
(Ze , Ze )→ True
(Su x1 , Su x2)→ eqNat x1 x2

→ False

This shows that the generic implementation is equivalent to the type-specific variant,
and that it can be optimised to remove all conversions. We discuss the techniques used
in this derivation in more detail in Section 4.1, after showing the optimisation of generic
enumeration.

3.2 Generic enumeration

A type-specific enumeration function for Nat follows:

enumNat :: [Nat ]
enumNat = [Ze] |||map Su enumNat

To get an enumeration for RepNat we first need to know how to enumerate units
and sums:

enumU :: [ () ]
enumU = [()]

enumPlus :: [α ]→ [β ]→ [Either α β ]
enumPlus ea eb = map Left ea |||map Right eb

Now we can define an enumeration for RepNat:

enumRepNat :: [RepNat ]
enumRepNat = enumPlus enumU enumNatFromRep

With the conversion function toNat, we can use enumRepNat to get a generic enumera-
tion function for Nat:

enumNatFromRep :: [Nat ]
enumNatFromRep = map toNat enumRepNat

We now show that enumNatFromRep and enumNat are equivalent:
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map toNat enumRepNat

≡〈 inline enumRepNat 〉
map toNat (enumPlus enumU enumNatFromRep)

≡〈 inline enumPlus 〉
map toNat (map Left enumU |||map Right enumNatFromRep)

≡〈 inline enumU 〉
map toNat (map Left [()] |||map Right enumNatFromRep)

≡〈 inline map 〉
map toNat ([Left ()] |||map Right enumNatFromRep)

≡〈 free theorem (|||) :∀f a b.map f (a |||b) = map f a |||map f b 〉
map toNat [Left ()] |||map toNat (map Right enumNatFromRep)

≡〈 inline map 〉
[toNat (Left ())] |||map toNat (map Right enumNatFromRep)

≡〈 inline toNat and case-of-constant 〉
[Ze ] |||map toNat (map Right enumNatFromRep)

≡〈 functor composition law: ∀f g l.map f (map g l) = map (f ◦g) l 〉
[Ze ] |||map (toNat ◦Right) enumNatFromRep

≡〈 inline toNat and case-of-constant 〉
[Ze ] |||map Su enumNatFromRep

Like equality, generic enumeration can also be specialised to a type-specific variant
without any overhead.

4 Specialisation, by the compiler

After the manual specialisation of generic functions, let us now analyse how to convince
the compiler to automatically perform the specialisation.

4.1 Optimisation techniques

Our calculations in Section 3 rely on a number of lemmas and techniques that the com-
piler will have to use. We review them here:
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Inlining Inlining replaces a function call with its definition. It is a crucial optimisation
technique because it can expose other optimisations. However, inlining causes code
duplication, and care has to be taken to avoid non-termination through infinite inlining.

GHC uses a number of heuristics to decide when to inline a function or not, and
loop breakers for preventing infinite inlining [11]. The programmer can provide explicit
inlining annotations with the INLINE and NOINLINE pragmas, of the form:

{−# INLINE [n] f #−}
In this pragma, f is the function to be inlined, and n is a phase number. GHC performs a
number of optimisation phases through a program, numbered in decreasing order until
zero. Setting n to 1, for instance, means “be keen to inline f in phase 1 and after”. For a
NOINLINE pragma, this means “do not inline f in phase 1 or after”. The phase can be
left out, in which case the pragma applies to all phases.2

Application of free theorems and functor laws Free theorems [15] are theorems that
arise from the type of a polymorphic function, regardless of the function’s definition.
Each polymorphic function is associated with a free theorem, and functions with the
same type share the same theorem. The functor laws arise from the categorical nature
of functors. Every Functor instance in Haskell should obey the functor laws.

GHC does not compute and use the free theorem of each polymorphic function, also
because it may not be clear which direction of the theorem is useful for optimisation
purposes. However, we can add special optimisation rules to GHC via a RULES pragma
[13]. For instance, the rewrite rule corresponding to the free theorem of (|||) follows:

{−# RULES "ft |||" ∀f a b. map f (a |||b) = map f a |||map f b #−}
This pragma introduces a rule named “ft |||” telling GHC to replace appearances of the
application map f (a |||b) with map f a |||map f b. GHC does not perform any confluence
checking on rewrite rules, so the programmer should ensure confluence or GHC might
loop during compilation.

Optimisation of case statements Case statements drive evaluation in GHC’s core lan-
guage, and give rise to many possible optimisations. [12] provide a detailed account of
these; in our derivation in Section 3.2 we used a “case of constant” rule to optimise a
statement of the form:

case (Left ()) of {Left ()→ Ze; Right n→ Su n; }
Since we know what we are case-analysing, we can replace this case statement by the
much simpler expression Ze. Similarly, in Section 3.1 we used a case-of-case transform
to eliminate an inner case statement. Consider an expression of the form:

case (case x of {e1→ e2; }) of {e2→ e3; }
Here, e1, e2, and e3 are expressions starting with a constructor. We can simplify this to:

case x of {e1→ e3; }

2 See the GHC User’s Guide for more details: http://www.haskell.org/ghc/docs/
latest/html/users_guide/pragmas.html.
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This rule naturally generalises to case statements with multiple branches.

4.2 Generic equality

We have seen that we have a good number of tools at our disposal for directing the
optimisation process in GHC: inline pragmas, rewrite rules, phase distinction, and all
the standard optimisations for the functional core language. We will now annotate our
generic functions and evaluate the quality of the core code generated by GHC.

We start by defining a Generic instance for the Nat type:

instance Generic Nat where
type Rep Nat = U1 :+: Rec0 Nat
{−# INLINE [1 ] to #−}
to (L1 U1) = Ze
to (R1 (K1 n)) = Su n
{−# INLINE [1 ] from #−}
from Ze = L1 U1
from (Su n) = R1 (K1 n)

We give inline pragmas to and from to guarantee that these functions will be inlined.
However, we ask the inliner to only inline them on phase 1 and after; this is to guarantee
that we first inline the generic function definitions, and to prevent partial fusion.

We can now provide a generic definition of equality for Nat:

instance GEq Nat

Compiling this code with the standard optimisation flag -O gives us the following
core code:

$GEqNatgeq :: Nat→ Nat→ Bool
$GEqNatgeq = λ (x :: Nat) (y :: Nat)→

case x of
Ze → case y of {Ze→ True; Su m→ False; }
Su m→ case y of {Ze→ False;Su n → $GEqNatgeq m n; }

The core language is a small, explicitly typed language in the style of System F [16].
The function $GEqNatgeq is prefixed with a $ because it was generated by the compiler,
representing the geq method of the GEq instance for Nat. We can see that the generic
representation was completely removed.

The same happens for lists, as evidenced by the generated core code:

$GEq[]geq ::∀α.GEq α ⇒ [α ]→ [α ]→ Bool
$GEq[]geq = λα (eqA :: GEq α) (l1 :: [α ]) (l2 :: [α ])→

case l1 of
[] → case l2 of { []→ True;(h : t)→ False; }
(h1 : t1)→ case l2 of

[] → False
(h2 : t2)→ case eqA h1 h2 of
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False→ False
True → $GEq[]geq α eqA t1 t2

Note that type abstraction and application is explicit in core. There is syntax to distin-
guish type and value application and abstraction from each other, but we suppress the
distinction since it is clear from the colour. Note also that constraints (to the left of the
⇒ arrow) become just ordinary parameters, so $GEq[]geq takes a function to compute
equality on the list elements, eqA.3

Perhaps surprisingly, GHC performs all the required steps of Section 3.1 with-
out requiring any annotations to the generic function itself. In general, however, we
found that it is sensible to provide INLINE pragmas for each instance of the represen-
tation datatypes when defining a generic function. In the case of geqRep, the methods
are small, so GHC inlines them eagerly. For more complicated generic functions, the
methods may become larger, and GHC will avoid inlining them. Supplying an INLINE
pragma tells GHC to inline the methods anyway.

4.3 Generic enumeration

Generic consumers, such as equality, are, in our experience, more easily optimised by
GHC. A generic producer such as enumeration, in particular, is challenging because it
requires map fusion, and lifting auxiliary functions through maps using free theorems.
As such, we encounter some difficulties while optimising enumeration. We start by
looking at the natural numbers:

instance GEnum Nat where
genum = map to genumRep

Note that instead of using the default definition we directly inline its definition; this is
to circumvent a limitation in the current implementation of defaults that prevents later
rewrite rules from applying. GHC then generates the following code:

$x2 :: [U1 :+: Rec0 Nat ]
$x2 = map $x4 $GEnumNatgenum

$x1 :: [U1 :+: Rec0 Nat ]
$x1 = $x3 |||$x2

$GEnumNatgenum :: [Nat ]
$GEnumNatgenum = map to $x1

We omit the definitions of $x3 and $x4 for brevity. To make progress we need to tell
GHC to move the map to expression in $GEnumNatgenum through the (|||) operator. We
use a rewrite rule for this:

{−# RULES "ft |||" ∀f a b. map f (a |||b) = map f a |||map f b #−}
With this rule in place, GHC generates the following code:

3 The type of eqA is GEq α , but we use it as if it had type α→ α→ Bool. In the generated core
there is also a coercion around the use of eqA to transform the class type into a function. This
is the standard way class methods are desugared into core; we elide these details as they are
not relevant to optimisation itself.
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$x2 :: [U1 :+: Rec0 Nat ]
$x2 = map $x4 $GEnumNatgenum

$x1 :: [Nat ]
$x1 = map to $x2

$GEnumNatgenum :: [Nat ]
$GEnumNatgenum = $x3 |||$x1

We now see that the $x1 term is map applied to the result of a map. The way map is
optimised in GHC (by conversion to build/foldr form) interferes with our "ft |||"
rewrite rule, and map fusion is not happening. We can remedy this with an explicit map
fusion rewrite rule:

{−# RULES "map/map1" ∀f g l. map f (map g l) = map (f ◦g) l #−}
This rule results in much improved generated code:

$x3 :: [U1 :+: Rec0 Nat ]
$x3 = $x4 : []
$x2 :: [Nat ]
$x2 = map to $x3

$x1 :: [Nat ]
$x1 = map Su $GEnumNatgenum

$GEnumNatgenum :: [Nat ]
$GEnumNatgenum = $x2 |||$x1

The only thing we are missing now is to optimise $x3; note that its type is [U1 :+:
Rec0 Nat ], and not [Nat ]. For this we simply need to tell GHC to eagerly map a function
over a list with a single element:

{−# RULES "map/map2" ∀f x. map f (x : []) = (f x) : [] #−}
With this, GHC can finally generate the fully specialised enumeration function on Nat:

$x2 :: [Nat ]
$x2 = Ze : []
$x1 :: [Nat ]
$x1 = map Su $GEnumNatgenum

$GEnumNatgenum :: [Nat ]
$GEnumNatgenum = $x2 |||$x1

Compelling GHC to optmise generic enumeration for lists proves to be more diffi-
cult.4 Since lists use products, we need to introduce a rewrite rule for the free theorem
of diag, allowing map to be pushed inside diag:

{−# RULES "ft/diag" ∀f l. map f (diag l) = diag (map (map f ) l) #−}

4 We believe, however, that this is only due to bugs in the inliner, and have filed bug reports
#7109, #7112, and #7114 to address these issues.

266



Optimisation of Generic Programs through Inlining 13

With this rule, and the extra optimisation flag -fno-full-laziness to maximise the
chances for rewrite rules to apply, we get the following code:

$GEnum[]genum ::∀α.GEnum α ⇒ [ [α ] ]

$GEnum[]genum = λ (gEnumA :: GEnum α)→
([] : []) ||| let $x1 :: [Rec0 [α ] ]

$x1 = map K1 ($GEnum[]genum gEnumA)
in diag (map (λ ($x3 :: α)→

map (λ ($x2 :: Rec0 [α ])→ case $x2 of
K1 $x4→ $x3 : $x4) $x1)

gEnumA)

Most of the generic overhead is optimised away, but one problem remains: $x1 maps
K1 over the recursive enumeration elements, but this K1 is immediately eliminated by a
case statement. If $x1 was inlined, GHC could perform a map fusion, and then eliminate
the use of K1 altogether. However, we have no way to specify that $x1 should be inlined;
the compiler generated it, so only the compiler can decide when to inline it. Also, we
had to use the compiler flag -fno-full-laziness to prevent some let-floating, but
the flag applies to the entire program and might have unintended side-effects.

Reflecting on our developments in this section, we have seen that:

– Convincing GHC to optimise genum for a simple datatype such as Nat requires
the expected free theorem of (|||). However, due to interaction between phases of
application of rewrite rules, we are forced to introduce new rules for optimisation
of map.

– Optimising genum for a more complicated datatype like lists requires the expected
free theorem of diag. However, even after further tweaking of optimisation flags,
we are currently unable to derive a fully optimised implementation. In any case, the
partial optimisation achieved is certainly beneficial.

– More generally, we see that practical optimisation of generic functions is hard
because of subtle interactions between the different optimisation mechanisms in-
volved, such as inlining, rewrite rule application, let floating, case optimisation,
etc.

These experiments have been performed with GHC version 7.4.1. We have ob-
served that the behavior of the optimiser changes between compiler versions. In par-
ticular, some techniques which resulted in better code in some versions (e.g. the use of
SPECIALISE pragmas) result in worse code in other versions. We are working together
with GHC developers to ensure that generic code, at least for the generic-deriving
library, is specialised adequately, guaranteeing performance equivalent to type-specific
code.

5 Benchmarking

We have confirmed the runtime behaviour of our code by benchmarking it. Benchmark-
ing is, in general, a complex task, and a lazy language imposes even more challenges
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on the design of a benchmark. We designed a benchmark suite that ensures easy re-
peatability of tests, calculating the average running time and the standard deviation for
statistical analysis. It is portable across different operating systems and can easily be
run with different compiler versions. To ensure reliability of the benchmark we use
profiling, which gives us information about which computations last longer. For each
of the tests, we ensure that at least 50% of the time is spent on the function we want
to benchmark. A top-level Haskell script takes care of compiling all the tests with the
same flags, invoking them a given number of times, parsing and accumulating results as
each test finishes, and calculating and displaying the average running time at the end,
along with some system information.

We have a detailed benchmark suite over different datatypes, generic functions,
and generic programming libraries.5 Due to space constraints, we present here only
a general overview of the results. Confirming the findings of Section 4, the benchmark
finds no difference between the running times of generic versus type-specific equality.
We have also benchmarked a traversal that updates the values in a tree, and a conversion
to String; in both cases, the generic function performs as fast as the handwritten code.
As for enumeration, we find no overheard for the Nat datatype. Enumeration for a binary
tree datatype runs about 1.63 times slower than a type-specific variant, probably because
the optimiser fails to remove all generic representation overhead.

6 Conclusion

In this paper we have looked at the problem of optimising generic functions. With their
representation types and associated conversions, generic programs tend to be slower
than their type-specific handwritten counterparts, and this can limit adoption of generic
programming in situations where performance is important. We have picked one spe-
cific library, generic-deriving, and investigated the code generation for generic pro-
grams, and the necessary optimisation techniques to fully remove any overhead from
the library. We concluded that the overhead can be fully removed most of the time, us-
ing only already available optimisations that apply to functional programs in general.
However, due to the difficulty of managing the interaction between several different
optimisations, in some cases we are not able to fully remove the overhead. We are con-
fident, however, that this is only a matter of further tweaking of GHC’s optimisation
strategies.

6.1 Automatic inlining and generation of rewrite rules

Some work remains to be done in terms of improving the user experience. We have
mentioned that the to and from functions should be inlined; this should be automatically
established by the mechanism for deriving Generic instances. Additionally, inserting
INLINE pragmas for each case in the generic function is a tedious process, which should
also be automated. Finally, it would be interesting to see if the definition of rewrite
rules based on free theorems of auxiliary functions used could be automated; it is easy

5 https://bitbucket.org/dreixel/public/src/7d32c569e678/benchmark
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Optimisation of Generic Programs through Inlining 15

to generate free theorems, but it is not always clear how to use these theorems for
optimisation purposes.

6.2 Optimising other libraries

The library we have used for the development in this paper, generic-deriving, is
practical, realistic, and representative of many other libraries. In particular, our tech-
niques readily apply to regular [9] and instant-generics [3], for instance.

Other approaches to generic programming, such as Scrap Your Boilerplate [SYB, 5,
6], use different implementation mechanisms and require different optimisation strate-
gies. SYB, in particular, cannot be optimised using the same techniques we have seen,
because it relies on (type-safe) runtime casts. Since type comparisons are performed
at runtime, the compiler does not have enough information to automatically specialise
generic functions. It remains to be seen how to optimise other approaches, and to estab-
lish general guidelines for optimisation of generic programs.

In any case, it is now clear that generic programs do not have to be slow, and their
optimisation up to handwritten code performance is not only possible but also achiev-
able using only standard optimisation techniques. This opens the door for a future where
generic programs are not only general, elegant, and concise, but also as efficient as type-
specific code.
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1 Introduction

During the past decade, the functional programming community achieved par-
tial success in their goal of maintaining fine-grained properties by moderate
extensions to the type system of functional languages[6, 5, 11]. This approach
is often called “lightweight” (e.g., lightweight dependent types3, lightweight pro-
gram verification), since using a full blown proof assistant to maintain similar
properties is likely to require much more effort (heavyweight).

The Generalized Algebraic Data Type (GADT) extension, implemented in
the Glasgow Haskell Compiler (GHC), has made this approach possible even
when performing everyday functional programming tasks. Unfortunately, im-
plementations supporting a lightweight approach (e.g., GHC) lack correctness
guarantees and type inference in general. In addition, practical implemen-
tations often lack support for GADTs indexed by terms, so term indices are
faked (or simulated) by additional type structure replicating the requisite term
structure. We believe that the lightweight approach can become more productive
and reliable if we can resolve these problems.

Problem 1. Correctness guarantee
Proof assistants based on dependent types can express fine-grained properties

and also guarantee correctness since these calculi are based on strongly normal-
izing and logically consistent systems. For instance, Coq is based on the Calculus
of Inductive Constructions, which is a dependently-typed λ-calculi known to be
strongly normalizing and logically consistent.

But, the same fine-grained properties are not expressible in ordinary func-
tional programming languages with only simple polymorphic types, since such
languages lack the expressivity of dependent types. Even if these fine-grained
properties were somehow expressible, one would not have any guarantee of
correctness. Recall that general purpose programming languages are neither
strongly normalizing nor logically consistent, because they are (by design) capa-
ble of expressing diverging computations. So, the lightweight approach in conven-
tional functional languages can only raise programmers confidence of correctness

? supported by NSF grant 0910500.
3 http://okmij.org/ftp/Computation/lightweight-dependent-typing.html
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(assuming that the inconsistent fragment of the type system was never used for
reasoning about the desired properties) but cannot guarantee the correctness of
the desired properties as is the norm in proof assistants.

Problem 2. Type inference
Type inference makes type-safe programming pleasant when performomng

everyday programming tasks, since programmers are freed from including te-
dious type annotations. Many typed functional programming languages includ-
ing Haskell 98 and SML are based on the Hindley-Milner type system (HM),
which is not only type-safe but also supports type inference.

An essential feature of the lightweight approach is indexed datatypes, which
are datatypes with heterogeneous type parameters (a.k.a. indices) which are made
possible by the GADT extension. Such datatypes, often used in lightweight
approaches, are beyond the capabilities of polymorphic type schemes used in
HM. Inclusion of just a simple subset of the indexed datatypes, such as nested
datatypes [3], already make type inference undecidable [8]. More sophisticated
uses add even more complication[9].

So, functional language implementations, that support the lightweight ap-
proach, require type annotations on both indexed datatype declarations and on
function definitions that pattern match indexed datatypes, in order to recover
a semblence of type inference.4 Type annotations on datatype declarations are
absolutely necessary when either the result types of their data constructors have
indices or when the argument types of their data constructors have existential in-
dices. However, it still an open question of where and how much type annotations
are needed on function definitions.

Problem 3. Faked term indices
The indexed datatypes can only have static dependencies (i.e., indices must

be compleytely known at type checking time), unlike full-fledged dependent
types, as used in proof assistants, which can depend on both static and dynamic
values. Therefore, having term indices does not imply full-fledged dependent
types.

Indexed datatypes can be indexed by either types or terms, or both. Type
representations [6] (Fig. 1) used in datatype generic programming are typical
examples of type-indexed datatypes. The length-indexed list, or Vector, (Fig. 2)
is an example of a term-indexed datatype. However, the Vector datatype dec-
laration in Fig. 2 uses faked term indices. These indexes are faked because
rather than use the real term constructors of the natural numbers (defined by
data Nat = Succ Nat | Zero) it uses the uninhabited types Succ and Zero to
simulate the data constructors of Nat. Such faked term indices are problematic
since they (1) duplicate code (i.e., operations on Nat must be redefined at type
level) and (2) have less precise semantics than true term indices (e.g., cannot
prevent ill-typed types such as Succ Bool).

4 Type inference aided by type annotation is also called partial type inference or type
reconstruction.
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Although indexed datatypes with true term indices have been studied[12],
including term indices in practical functional languages is not trivial. Allowing
arbitrary terms at the type level breaks the decidability of type checking due
to diverging terms. Term indices in types implies that type equality depends on
term equality. And, obviously, term equality will loop when one of the terms
being compared diverges. Undecidability of type checking can be lifted once we
have resolved Problem 1, and make sure that indices are normalizing.

data Rep t where

R_Int :: Rep Int

R_Char :: Rep Char

R_List :: Rep a -> Rep [a]

R_Pair :: Rep a -> Rep b -> Rep (a,b)

Fig. 1. A type representation for Int, Char, [], and (,) in Haskell with GADTs

data Succ n

data Zero

data Vector a n where

VCons :: a -> Vector m a -> Vector a (Succ m)

VNil :: Zero

Fig. 2. Length indexed list datatype Vector in Haskell with GADTs

To resolve these problems, we have designed and implemented a prototype
of the Nax programming language. The current proptotype of Nax is a strongly
normalizing functional language supporting the following features (which are all
illustrated in §2):

Two level datatypes. Recursive dataypes are introduced in two stages. First
a non-recursive structure is introduced which abstracts over where recursive
sub-components will appear. Then a fix-point is taken to define the recursive
types (§2.1). To minimize the extra notation necessary to program in this
manner an extensive macro-facility is provided. The most common macro
forms can be automatically derived. This is illustrated in §2.3.

Indexed types with static term indices. A type constructor is applied to
arguments. Arguments are either parameters or indices. A datatype is poly-
morphic over its parameters (in the sense that parametricity theorems hold
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over parameters). Parameters are always types. Indexed arguments can be
either types or terms. An index usually encodes a static property about the
shape or form of a value with that type. We use different kinding rules to
separate term indices from type indices. For instance a length indexed list,
x, might have type (List Int 2). The Int is a parameter, indicating the
list contains integers, but the 2 is an index indicating that the list, x, has
exactly two elements. Types are static in Nax. Types are only used for type
checking and are computationally irrelevant, even though some parts of a
type might include terms. In other words, Nax supports index erasure,

Recursive types of unrestricted polarity but restricted elimination. It
is well known that unrestricted recursive types enable diverging computa-
tion even without any recursion at the term level. To design a normalizing
language that supports recursive types, we must make a design choice that
limits the use of recursive types. There are two possible design choices. We
may restrict the formation of recursive types (i.e., type definition) or we
may restrict the elimination of recursive types (i.e., pattern matching). In
Nax, we make the latter design choice, so that we can define all the recursive
datatypes available in modern functional languages.

Mendler style iteration and recursion combinators. Any useful normal-
izing language should support principled recursion operators that guarantee
normalization. Such operators should be easy to use, and expressive over
datatypes with both parameters and indices. Mendler style combinators meet
both requirements. So, we adopt them in Nax.

Type inference (reconstruction) from minimal annotation. When we ex-
tend the Hindley-Milner type system with indexed data types, we no longer
have type inference for completely unannotated terms. For example, this re-
striction shows up in languages which support GADTs, which support a kind
of type indexing. Although complete type inference is not possible, partial
type inference (reconstruction of missing type information) is still possible
when sufficient type annotations are provided. Nax’s systematic partition of
type parameters from type indices provides a mechanism where it is possible
to decide exactly where additional type annotations are needed, and to en-
force that the programmer supply such annotations. This system faithfully
extends the Hindley-Milner type inference (i.e., no additional annotations
are needed for the programs that are already inferable by Hindley-Milner).

2 Nax by Example

We introduce programming in our implementation of Nax by providing examples.
An example usually consists of several parts.

– Introducing data definitions to describe the data of interest. Recursive data
is introduced in two stages. We must be careful to separate parameters from
indices when using indices to describe static properties of data.
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– Introduce macros, either by explicit definition, or by automatic fixpoint
derivation to limit the amount of explicit notation that must be supplied
by the programmer.

– Write a series of definitions that describe how the data is to be manipulated.
Deconstruction of recursive data can only be performed with Mendler-style
combinators to ensure strong normalization.

2.1 Two-level types

Non recursive datatypes are introduced by the data declaration. The data decla-
ration can include arguments. The kind and separation of arguments into param-
eters and a indices is inferred. For example, the three non-recursive data types,
Bool , Either , and Maybe, familiar to many functional programmers, are intro-
duced by declaring the kind of the type, and the type of each of the constructors.
This is similar to the way GADTs are introduced in Haskell.

data Bool : ∗
where

False : Bool
True : Bool

data Either : ∗ → ∗ → ∗
where

Left : a → Either a b
Right : b → Either a b

data Maybe : ∗ → ∗
where

Nothing : Maybe a
Just : a → Maybe a

Note the kind information (Bool :∗) declares Bool to be a type, (Either :∗ →
∗ → ∗) declares Either to be a type constructor with two type arguments, and
(Maybe :∗ → ∗) declares Maybe to be a type constructor with one type argument.

To introduce a recursive type, we first introduce a non recursive datatype
that uses a parameter where the usual recursive components occur. By design,
normal parameters of the introduced type are written first (a in L below) and
the type argument to stand for the recursive component is written last (the r of
N , and the r of L below).

-- The fixpoint of N will
-- be the natural numbers.

data N : ∗ → ∗ where
Zero : N r
Succ : r → N r

-- The fixpoint of (L a) will
-- be the polymorphic lists

data L : ∗ → ∗ → ∗ where
Nil : L a r
Cons : a → r → L a r

A recursive type can be defined as the fixpoint of a (perhaps partially applied)
non-recursive type constructor. Thus the traditional natural numbers are typed
by µ[∗ ] N and the traditional lists with components of type a are typed by
µ[∗ ] (L a). Note that the recursive type operator µ[κ ] is itself specialized with a
kind argument inside square brackets ([κ]). The recursive type (µ[κ ] f ) is well
kinded only if the operand f has kind κ → κ, in which case the recursive type
(µ[k ] f ) has kind κ. Since both N and (L a) have kind ∗ → ∗, the recursive
types µ[∗ ] N and µ[∗ ] (L a) have kind ∗. That is, they are both types, not type
constructors.
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2.2 Creating values

Values of a particular data type are created by use of constructor functions. For
example True and False are nullary constructors (or, constants) of type Bool .
(Left 4) is a value of type (Either Int a). Values of recursive types (i.e., those

values with types such as (µ[k ] f ) are formed by using the special In[κ ] con-

structor expression. Thus Nil has type L a and (In[∗ ] Nil) has type (µ[∗ ] (L a)).

In general, applying the operator In[k ] injects a term of type f (µ[k ] f ) to the
recursive type (µ[k ] f ). Thus a list of Bool could be created using the term

(In[∗ ] (Cons True (In[∗ ] (Cons False (In[∗ ] Nil))))). A general rule of thumb, is

to apply In[k ] to terms of non-recursive type to get terms of recursive type. Writ-
ing programs using two level types, and recursive injections has definite benefits,
but it surely makes programs rather annoying to write. Thus, we have provided
Nax with a simple but powerful synonym (macro) facility.

2.3 Synonyms, constructor functions, and fixpoint derivation

We may codify that some type is the fixpoint of another, once and for all, by
introducing a type synonym (macro).

synonym Nat = µ[∗ ] N

synonym List a = µ[∗ ] (L a)
In a similar manner we can introduce constructor functions that create recur-

sive values without explicit mention of In· at their call sites (potentially many),
but only at their site of definition (exactly once).

zero = In[∗ ] Zero

succ n = In[∗ ] (Succ n)

nil = In[∗ ] Nil

cons x xs = In[∗ ] (Cons x xs)
This is such a common occurrence that recursive synonyms and recursive con-

structor functions can be automatically derived. Automatic synonym and con-
structor derivation using Nax is both concise and simple. The clause “deriving fixpoint List”
(below right) causes the synonym for List to be automatically defined. It also
defines the constructor functions nil and cons. By convention, the constructor
functions are named by dropping the initial upper-case letter in the name of the
non-recursive constructors to lower-case. To illustrate, we provide side-by-side
comparisons of Haskell and two different uses of Nax.

Haskell Nax with synonyms Nax with derivation
data List a

= Nil
| Cons a (List a)

x = Cons 3 (Cons 2 Nil)

data L : ∗ → ∗ → ∗ where
Nil : L a r
Cons : a → r → L a r

synonym List a = µ[∗ ] (L a)

nil = In[∗ ] Nil

cons x xs = In[∗ ] (Cons x xs)

x = cons 3 (cons 2 nil)

data L : ∗ → ∗ → ∗ where
Nil : L a r
Cons : a → r → L a r

deriving fixpoint List

x = cons 3 (cons 2 nil)
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2.4 Mendler combinators for non-indexed types

There are no restrictions on what kind of datatypes can be defined in Nax.
There are also no restrictions on the creation of values. Values are created us-
ing constructor functions, and the recursive injection (In[k ]). To ensure strong
normalization, analysis of constructed values has some restrictions. Values of
non-recursive types can be freely analysed using pattern matching. Values of
recursive types must be analysed using one of the Mendler-style combinators.
By design, we limit pattern matching to values of non-recursive types, by not
providing any mechanism to match against the recursive injection (In[k ]).

To illustrate simple pattern matching over non-recursive types, we give a Nax
multi-clause definition for the ¬ function over the (non-recursive) Bool type, and
a function that strips off the Just constructor over the (non-recursive) Maybe
type using a case expression.

¬ True = False
¬ False = True

unJust0 x = case{ } x of Just x → x
Nothing → 0

Analysis of recursive data is performed with Mendler-style combinators. In
our implementation we provide 5 Mendler-style combinators: MIt· (fold or cata-
morphism or iteration), MPr· (primitive recursion), McvIt· (courses of values
iteration), and McvPr· (courses of values primitive recursion), and MsfIt· (fold
or catamorphism or iteration for recursive types with negative occurrences).

A Mendler-style combinator is written in a manner similar to a case expres-
sion. A Mendler-style combinator expression contains patterns, and the variables
bound in the patterns are scoped over a term. This term is executed if the pattern
matches. A mendler-style combinator expression differs from a case expression
in that it also introduces additional names (or variables) into scope. These vari-
ables play a role similar in nature to the operations of an abstract datatype, and
provide additional functionality in addition to what can be expressed using just
case analysis.

For a visual example, compare the case expression to the MIt· expression. In
the case, each clause following the of indicates a possible match of the scrutinee
x . In the MIt·, each equation following the with, binds the variable f , and
matches the pattern to a value related to the scrutinee x .

case{ } x of Nil → e1
Cons x xs → e2

MIt{ } x with f (Cons x xs) = e1

f Nil = e2

The number and type of the additional variables depends upon which family
of Mendler combinators is used to analyze the scrutinee. Each equation specifies
(a potential) computation in an abstract datatype depending on whether the
pattern matches. For the MIt· combinator (above) the abstract datatype has the
following form. The scrutinee, x is a value of some recursive type (µ[∗ ] T ) for
a non-recursive type constructor T . In each clause, the pattern has type (T r),

for some abstract type r . The additional variable introduced ( f ) is an operator
over the abstract type, r , that can safely manipulate only abstract values of type
r .
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Different Mendler-style combinators are implemented by different abstract
types. Each abstraction safely describes a class of provably terminating com-
putations over a recursive type. The number (and type) of abstract operations
differs from one family of Mendler combinators to another. We give descriptions
of three families of Mendler combinators, their abstractions, and the types of
the operators within the abstraction, below. In each description, the type ans
represents the result type, when the Mendler combinator is fully applied.

MIt{ } x with

f pi = ei

x : µ[∗ ] T
f : r → ans

pi : T r
ei : ans

MIt{ψ} ϕ (In[∗ ] x )

= ϕ (MIt{ψ} ϕ) x

MPr{ } x with

f cast pi = ei

x : µ[∗ ] T
f : r → ans

cast : r → µ[∗ ] T
pi : T r
ei : ans

MPr{ψ} ϕ (In[∗ ] x )

= ϕ (MPr{ψ} ϕ) (In[∗ ]) x

McvIt{ } x with

f project pi = ei

x : µ[∗ ] T
f : r → ans
project : r → T r
pi : T r
ei : ans

McvIt{ψ} ϕ (In[∗ ] x )

= ϕ (McvIt{ψ} ϕ) out x

where out (In[∗ ] x ) = x

A Mendler-style combinator implements a (provably terminating) recursive
function applied to the scrutinee. The abstract type and its operations ensure
termination. Note that every operation above includes an abstract operator, f :
r → ans. This operation represents a recursive call in the function defined by the
Mendler-style combinator. Other operations, such as cast and project , support
additional functionality within the abstraction in which they are defined (MPr·

and McvIt· respectively). The equations at the bottom of each section provide
an operational understanding of how the operator works. These can be safely
ignored until after we see some examples of how a Mendler-style combinator
works in practice.

length y = MIt{ } y with len Nil = zero
len (Cons x xs) = (succ zero) + len xs

tail x = MPr{ } x with tl cast Nil = nil
tl cast (Cons y ys) = cast ys

factorial x = MPr{ } x with fact cast Zero = succ zero
fact cast (Succ n) = times (succ (cast n)) (fact n)

fibonacci x = McvIt{ } x with fib out Zero = succ zero

fib out (Succ n) = case{ } (out n) of
Zero → succ zero
Succ m → fib n + fib m

The length function uses the simplest kind of recursion where each recursive
call is an application to a direct subcomponent of the input. Operationally,

278



length works as follows. The scrutinee, y , has type (µ[∗ ] (L a)), and has the form

(In[∗ ] x ). The type of y implies that x must have the form Nil or (Cons x xs).

The MIt· strips off the In[∗ ] and matches x against the Nil and (Cons x xs)
patterns. If the Nil pattern matches, then 0 is returned. If the (Cons x xs)
pattern matches, x and xs are bound. The abstract type mechanism gives the
pattern (Cons x xs) the type (L a r), so (x : a) and (xs : r) for some abstract
type r . The abstract operation, (len : r → Int), can safely be applied to xs,
obtaining the length of the tail of the original list. This value is incremented,
and then returned. The MIt· abstraction provides a safe way to allow the user
to make recursive calls, len, but the abstract type, r , limits its use to direct
subcomponents, so termination is guaranteed.

Some recursive functions need direct access, not only to the direct subcom-
ponents, but also the original input as well. The Mendler-style combinator MPr·

provides a safe, yet abstract mechanism, to support this. The Mendler MPr·

abstraction provides two abstract operations. The recursive caller with type
(r → ans) and a casting function with type (r → µ[k ] T ). The casting operation
allows the user to recover the original type from the abstract type r , but since
the recursive caller only works on the abstract type r , the user cannot make
a recursive call on one of these cast values. The functions factorial (over the
natural numbers) and tail (over lists) are both defined using MPr·.

Note how in factorial the original input is recovered (in constant time) by
taking the successor of casting the abstract predecessor, n. In the tail function,
the abstract tail, ys, is cast to get the answer, and the recursive caller is not
even used.

Some recursive functions need direct access, not only to the direct subcom-
ponents, but even deeper subcomponents. The Mendler-style combinator McvIt·

provides a safe, yet abstract mechanism, to support this. The function fibonacci
is a classic example of this kind of recursion. The Mendler McvIt· provides two
abstract operations. The recursive caller with type (r → ans) and a projection
function with type (r → T r). The projection allows the programmer to observe
the hidden T structure inside a value of the abstract type r . In the fibonacci
function above, we name the projection out . It is used to observe if the abstract
predecessor, n, of the input, x , is either zero, or the successor of the second pre-
decessor, m, of x . Note how recursive calls are made on the direct predecessor,
n, and the second predecessor, m.

Each recursion combinator can be defined by the equation at the bottom
of its figure. Each combinator can be given a naive type involving the concrete
recursive type (µ[∗ ] T ), but if we instead give it a more abstract type, abstracting
values of type (µ[∗ ] T ) into some unknown abstract type r , one can safely
guarantee a certain pattern of use that insures termination. Informally, if the
combinator works for some unknown type r it will certainly also work for the
actual type (µ[∗ ] T ), but because it cannot assume that r has any particular
structure, the user is forced to use the abstract operations in carefully proscribed
ways.
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2.5 Types with static indices

Recall that a type can have both parameters and indices, and that indices can be
either types or terms. We define three types below each with one or more indices.
Each example defines a non-recursive type, and then uses derivation to define
synonyms for its fix point and recursive constructor functions. By convention, in
each example, the argument that abstracts the recursive components is called r .
By design, arguments appearing before r are understood to be parameters, and
arguments appearing after r are understood to be indices. To define a recursive
type with indices, it is necessary to give the argument, r , a higher-order kind.
That is, r should take indices as well, since it abstracts over a recursive type
which takes indices.

data Nest : (∗ → ∗)→ ∗ → ∗ where
Tip : a → Nest r a
Fork : r (a, a)→ Nest r a

deriving fixpoint PowerTree

data V : ∗ → (Nat → ∗)→ Nat → ∗ where
Vnil : V a r {‘zero}
Vcons : a → r {n } → V a r {‘succ n }

deriving fixpoint Vector

data Tag = E | O
data P : (Tag → Nat → ∗)→ Tag → Nat → ∗ where

Base : P r {E } {‘zero}
StepO : r {O } {i } → P r {E } {‘succ i }
StepE : r {E } {i } → P r {O } {‘succ i }

deriving fixpoint Proof

Note, to distinguish type indices from term indices (and to make parsing un-
ambiguous), we enclose term indices in braces ({...}). We also backquote (‘)
variables in terms that we expect to be bound in the current environment. Un-
backquoted variables are taken to be universally quantified. By backquoting succ,
we indicate that we want terms, which are applications of the successor func-
tion, but not some universally quantified function variable5. For non-recursive
types without parameters, the kind of the fixpoint is the same as the kind of
the recursive argument r . If the non-recursive type has parameters, the kind of
the fixpoint will be composed of the parameters → the kind of the recursive
argument r . For example, study the kinds of the fixpoints for the non-recursive
types declared above in the table below.

5 In the design of Nax we had a choice. Either, explicitly declare each universally
quantified variable, or explicitly mark those variables not universally quantified.
Since quantification is much more common than referring to variables already in
scope, the choice was easy.
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non-recursive type Nest V P
recursive type PowerTree Vector Proof
kind of T ∗ → ∗ ∗ → Nat → ∗ Tag → Nat → ∗
kind of r ∗ → ∗ Nat → ∗ Tag → Nat → ∗
number of parameters 0 1 0
number of indices 1 (type) 1 (term) 2 (term,term)

Recall, indices are used to track static properties about values with those types.
A well-formed (PowerTree x ) contains a balanced set of parenthesized binary
tuples of elements. The index, x , describes what kind of values are nested in
the parentheses. The invariant is that the number of items nested is always an
exact power of 2. A (Vector a {n }) is a list of elements of type a, with length
exactly equal to n, and a (Proof {E } {n }) witnesses that the natural number
n is even, and a (Proof {O } {m }) witnesses that the natural number m is odd.
Some example value with these types are given below.

tree1 : PowerTree Int = tip 3
tree2 : PowerTree Int = fork (tip (2, 5))
tree3 : PowerTree Int = fork (fork (tip ((4, 7), (0, 2))))

v2 : Vector Int {succ (succ zero)} = (vcons 3 (vcons 5 vnil))

p1 : P {O } {succ zero} = stepE base
p2 : P {E } {succ (succ zero)} = stepO (stepE base)

Note that in the types of the terms above, the indices in braces ({...}) are
ordinary terms (not types). In these example we use natural numbers (e.g.,
succ (succ zero)) and elements (E and O) of the two-valued type Tag . It is
interesting to note that sometimes the terms are of recursive types (e.g., Nat
which is a synonym for µ[∗ ] N ), and some are non-recursive types (e.g., Tag).

2.6 Mendler-style combinators for indexed types

Mendler-style combinators generalize naturally to indexed types. The key obser-
vation that makes this generalization possible is that the types of the operations
within abstraction have to be generalized to deal with the type indices in a con-
sistent manner. How this is done is best first explained by example, and then
later abstracted to its full general form.

Recall, a value of type (PowerTree Int) is a set of integers. This set is
constructed as a balanced binary tree with pairs at the leaves (see tree2 and
tree3 above). The number of integers in the set is an exact power of 2. Con-
sider a function that adds up all those integers. One wants a function of type
(PowerTree Int → Int). One strategy to writing this function is to write a more
general function of type (PowerTree a → (a → Int)→ Int). In Nax, we can do
this as follows:

genericSum t = MIt{a. (a→Int)→Int } t with
sum (Tip x ) = λf → f x
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sum (Fork x ) = λf → sum x (λ(a, b)→ f a + f b)

sumTree t = genericSum t (λx → x )

In general, the type of the result of a function over an indexed type, can depend
upon what the index is. Thus, a Mendler-style combinator over a value with an
indexed type, must be type-specialized to that value’s index. Different values of
the same general type, will have different indices. After all, the role of an index is
to witness an invariant about the value, and different values might have different
invariants. Capturing this variation is the role of the clause {a . (a → Int)→ Int }
following the keyword MIt·. We call such a clause, an index transformer. In
the same way that the type of the result depends upon the index, the type of
the different components of the abstract datatype implementing the Mendler-
style combinator also depend upon the index. In fact, everything depends upon
the index in a uniform way. The index transformer captures this uniformity.
One cannot abstract over the index transformer in Nax. Each Mendler-style
combinator, over an indexed type, must be supplied with a concrete clause (inside
the braces) that describe how the results depend upon the index. To see how
the transformer is used, study the types of the terms in the following paragraph.
Can you see the relation between the types and the transformer?

The scrutinee t has type (PowerTree a) which is a synonym for ((µ[∗→∗ ] Nest) a).
The recursive caller sum has type (∀ a . r a → (a → Int)→ Int), for some ab-
stract type constructor r . Recall r has an index, so it must be a type constructor,
not a type. The patterns (Tip x ) and (Fork x ) have type (Nest r a) and the right
hand sides of the equations: (λf → f x ) and (λf → sum x (λ(a, b)→ f a +f b)),
have type ((a → Int) → Int). Note that the dependency of ((a → Int) → Int)
on the index a, appears in both the result type, and the type of the recursive
caller. If we think of an index transformer, like {a . (a → Int) → Int }, as
a function: ψ a = (a → Int) → Int , we can succinctly describe the types of
the abstract operations in the MIt· Mendler abstraction. In the table below, we
put the general case on the left, and terms from the genericSum example, that
illustrate the general case, on the right.

MIt{ψ} x with
f pi = ei

ψ : κ→ ∗ {a . (a → Int)→ Int } : ∗ → ∗
T : (κ→ ∗)→ κ→ ∗ Nest : (∗ → ∗)→ ∗ → ∗
x : (µ[κ→∗ ] T ) a t : (µ[∗→∗ ] Nest) a
f : ∀ (a : κ) . r a → ψ a sum : ∀ (a : ∗) . r a → (a → Int)→ Int
pi : T r a Fork x : Nest r a
ei : ψ a λf → f x : (a → Int)→ Int

The same scheme for MIt· generalizes to type constructors with term indices,
and with multiple indices. To illustrate this we give the generic schemes for type
constructors with 2 or 3 indices. In the table the variables κ1, κ2, and κ3, stand
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for arbitrary kinds (either kinds for types, like ∗, or kinds for terms, like Nat or
Tag).

T : (κ1 → κ2 → ∗)→ (κ1 → κ2 → ∗)
ψ : κ1 → κ2 → ∗
x : (µ[κ1→κ2→∗ ] T ) a b
f : ∀ (a : κ1) (b : κ2) . r a b → ψ a b
pi : T r a b
ei : ψ a b

T : (κ1 → κ2 → κ3 → ∗)→ (κ1 → κ2 → κ3→∗)
ψ : κ1 → κ2 → κ3 → ∗
x : (µ[κ1→κ2→κ3→∗ ] T ) a b c
f : ∀ (a : κ1) (b : κ2) (c : κ3) . r a b c → ψ a b c
pi : T r a b c
ei : ψ a b c

The simplest form of index transformation, is where the transformation is a con-
stant function. This is the case of the function that computes the integer length of
a natural-number, length-indexed, list (what we called a Vector). Independent of
the length the result is an integer. Such a function has type: Vector a {n } → Int .
We can write this as follows:

vlen x = MIt{{i }. Int } x with len Vnil = 0
len (Vcons x xs) = 1 + len xs

Let’s study an example with a more interesting index transformation. A term
with type (Proof {E } {n }), which is synonymous with the type (µ[Tag→Nat→∗ ] P {E } {n }),
witnesses that the term n is even. Can we transform such a term into a proof
that n + 1 is odd? We can generalize this by writing a function which has both
of the types below:
Proof {E } {n } → Proof {O } {‘succ n }, and
Proof {O } {n } → Proof {E } {‘succ n }.
We can capture this dependency by defining the term-level function flip, and
using an MIt· with the index transformer: {{t } {i } . Proof { ‘flip t } {‘succ i }}.

flip E = O
flip O = E

flop x = MIt{{t } {i }.Proof { ‘flip t } { ‘succ i }} x with
f Base = stepE base
f (StepO p) = stepE (f p)
f (StepE p) = stepO (f p)

For our last term-indexed example, every length-indexed list has a length,
which is either even or odd. We can witness this fact by writing a function with
type: Vector a {n } → Either (Even {n }) (Odd {n }). Here, Even and Odd
are synonyms for particular kinds of Proof . To write this function, we need the
index transformation: {{n } . Either (Even {n }) (Odd {n })}.
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synonym Even {x } = Proof {E } {x }
synonym Odd {x } = Proof {O } {x }

proveEvenOrOdd x = MIt{{n }.Either (Even {n }) (Odd {n })} x with
prEOO Vnil = Left base

prEOO (Vcons x xs) = case{ } prEOO xs of
Left p → Right (stepE p)
Right p → Left (stepO p)

2.7 Recursive types of unrestricted polarity but restricted
elimination

In Nax, programmers can define recursive data structures with both positive
and negative polarity. The classic example is a datatype encoding the syntax
of λ-calculus, which uses higher-order abstract syntax (HOAS). Terms in the
λ-calculus are either variables, applications, or abstractions. In a HOAS repre-
sentation, one uses Nax functions to encode abstractions. We give a two level
description for recursive λ-calculus Terms, by taking the fixpoint of the non-
recursive Lam datatype.

data Lam : ∗ → ∗ where
App :: r → r → Lam r
Abs :: (r → r)→ Lam r

deriving fixpoint Term

apply = abs (λf → abs (λx → app f x ))

Note that we don’t need to include a constructor for variables, as variables are
represented by Nax variables, bound by Nax functions. For example the lambda
term: (λf.λx.f x) is encoded by the Nax term apply above.

Note also, the recursive constructor: abs : (Term → Term) → Term, in-
troduced by the deriving fixpoint clause, has a negative occurrence of the
type Term. In a language with unrestricted analysis, such a type could lead to
non-terminating computations. The Mendler MIt· and MPr· combinators limit
the analysis of such types in a manner that precludes non-terminating com-
putations. The Mendler-style combinator, McvIt·, is too expressive to exclude
non-terminating computations, and must be restricted to recursive datatypes
with no negative occurrences.

Even though MIt· and MPr· allow us to safely operate on values of type Term,
they are not expressive enough to write many interesting functions. Fortunately,
there is a more expressive Mendler-style combinator that is safe over recursive
types with negative occurrences. We call this combinator MsfIt·. This combinator
is based upon an interesting programming trick, first described by Sheard and
Fegaras [7], hence the “sf” in the name MsfIt·. The abstraction supported by
MsfIt· is as follows:
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MsfIt{ } x with
f inv pi = ei

x : µ[∗ ] T
f : r → ans
inv : ans → r
pi : T r
ei : ans

To use MsfIt· the inverse allows one to cast an answer into an abstract value.
To see how this works, study the function that turns a Term into a string. The
strategy is to write an auxiliary function, showHelp that takes an extra inte-
ger argument. Every time we encounter a lambda abstraction, we create a new
variable, xn (see the function new), where n is the current value of the integer
variable. When we make a recursive call, we increment the integer. In the com-
ments (the rest of a line after -- ), we give the type of a few terms, including
the abstract operations sh and inv .

-- cat : List String → String
-- new : Int → String

new n = cat ["x", show n ]
-- showHelp : Term → (Int → String)
-- sh : r → (Int → String)
-- inv : (Int → String)→ r
-- (λn → new m) : Int → String

showHelp x =

MsfIt{ } x with
sh inv (App x y) = λm → cat ["(", sh x m, " ", sh y m, ")"]
sh inv (Abs f ) = λm → cat ["(fn ",new m, " => ",

sh (f (inv (λn → new m))) (m + 1), ")"]
showTerm x = showHelp x 0

showTerm apply : List Char = "(fn x0 => (fn x1 => (x0 x1)))"

The final line of the example above illustrates applying showTerm to apply .
Recall that apply = abs (λf → abs (λx → app f x )), which is the HOAS
representation of the λ-calculus term (λf.λx.f x).

2.8 Lessons from Nax

Nax is our first attempt to build a strongly normalizing, sound and consistent
logic, based upon Mendler-style iteration. We would like to emphasize the lessons
we learned along the way.

– Writing types as the fixed point of a non-recursive type constructor is quite
expressive. It supports a wide variety of types including the regular types
(Nat and List), nested types (PowerTree), GADTs (Vector), and mutually
recursive types (Even and Odd).

– Two-level types, while expressive, are a pain to program with (all those µ[κ ]

and In[κ ] annotations), so a strong synonym or macro facility is necessary.
With syntactic support, one hardly even notices.
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– The use of term-indexed types allows programmers to write types that act as
logical relations, and form the basis for reasoning about programs. We have
formalized this is the paper System Fi: a higher-order polymorphic λ-calculus
with erasable term indices[2] which we have submitted to POPL.

– Using Mendler-style combinators is expressive, and with syntactic support
(the with equations of the Mendler combinators), is easy to use. In fact Nax
programs are often no more complicated than their Haskell counterparts.

– Type inference is an important feature of a programming language. We hope
you noticed, that apart from index transformers, no type information is
supplied in any of the Nax examples. The Nax compiler reconstructs all
type information.

– Index transformers are the minimal information needed to extend Hindley-
Milner type inference over GADTs. One can always predict where they
are needed, and the compiler can enforce that the programmer supplies
them. They are never needed for non-indexed types. Nax faithfully extends
Hindley-Milner type inference.

3 Nax

We describe Nax by comparing it to System Fi, which is the calculus Nax is
based on (see §4 for additional information). Along with this submission, a draft
of the paper on System Fi, which we submitted to POPL recently, is included
as a supplementary material. For simplicity, we Nax with just one Mendler-style
combinator MIt.

3.1 Language definition

The Nax language definition is described in Fig. 3 and Fig. 4. Fig. 3 illustrates
syntax, reduction rules, and well-formedness conditions for typing contexts.
Fig. 4 illustrates sorting, kinding, and typing rules.

Typing contexts The typing context of Nax is separated into three zones. In ad-
dition to the two zones of Fi(the type level context ∆ and the term level context
Γ ), we have top level contexts (Σ). The top level contexts can contain three kinds
of bindings: type constructor bindings (T : κ), data constructor bindings (C : σ),
and top level variable bindings (‘x : σ). These bindings are introduced from dec-
larations (D). Type constructor bindings (T : κ) and data constructor bindings
(C : σ) are introduced from datatype declarations (data T : . . . where . . . ).
Top level variable bindings (‘x : σ) are introduced from top level definitions
(‘x = t). The rules for well-formed contexts in Nax are similar to those rules in
Fi.

Kinds and their sorting rules The kind syntax of Nax is exactly the same as the
kind syntax of Fi. The sorting rules are the same as Fi except we judge the sorts
of kinds under the top level context (Σ).
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Syntax:

Kinds κ ::= ∗ | κ→ κ | A→ κ

Type Constructors F,G,A,B ::= X | T | µκ(T τ) | F G | F {s} | A→ B

Type Schemes σ ::= A | ∀X.σ | ∀i.σ

Terms r, s, t ::= x | ‘x | i | λx.t | r s | let x = s in t | ϕψ | MIt x.ϕψ | Inκ

Program Prog ::= D; t

Declarations D ::= data T : K → ∗ where C : A→ T τ | ‘x = t

List of Declarations D ::= · | D,D
Kind Arguments K ::= κ | A
Type Arguments τ ::= G | {s}
Type Argument Variables ι ::= X | i
Index Transformers ψ ::= · | ι.B
Case Branches ϕ ::= C x→ t

Contexts Σ ::= · | Σ,T : κ | Σ,C : σ | Σ, ‘x : σ

∆ ::= · | ∆,Xκ | ∆, iσ

Γ ::= · | Γ, x : σ

Well-formed contexts:

` Σ ` ·
` Σ Σ ` κ : �
` Σ,T : κ

(
T /∈ dom(Σ)

)
` Σ Σ; · ` σ : ∗
` Σ,C : σ

(
C /∈ dom(Σ)

) ` Σ Σ; · ` σ : ∗
` Σ, ‘x : σ

(
‘x /∈ dom(Σ)

)
Σ ` ∆ ` Σ

Σ ` ·
Σ ` ∆ Σ ` κ : �

Σ ` ∆,Xκ

(
X /∈ dom(∆)

) Σ ` ∆ Σ; · ` σ : ∗
Σ ` ∆, iσ

(
i /∈ dom(∆)

)
Σ;∆ ` Γ Σ ` ∆

Σ;∆ ` ·
Σ;∆ ` Γ Σ;∆ ` A : ∗

Σ;∆ ` Γ, x : A

(
x /∈ dom(Γ )

)

Reduction: t t′
(λx.t) s [s/x]t let x = s in t [s/x]t

C x→ t ∈ ϕ
ϕψ(C t) [t/x]t MIt x.ϕψ (Inκt) [MIt x.ϕψ/x]ϕψ t

‘x = t ∈ D
‘x t

t t′

λx.t λx.t′
r  r′

r s r′ s

s s′

r s r s′
ti  t′i

C t1 · · · ti · · · tn  C t1 · · · t′i · · · tn

s s′

let x = s in t let x = s′ in t

t t′

let x = s in t let x = s in t′
ϕψ  ϕ′ψ

MIt x.ϕψ  MIt x.ϕ′ψ

ti  t′i

(C1 x1 → t1; · · · ;Ci xi → ti; · · · ;Cn xn → tn)ψ  (C1 x1 → t1; · · · ;Ci xi → t′i; · · · ;Cn xn → tn)ψ

Fig. 3. Syntax and Reduction rules of Nax
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Sorting:

Σ ` κ : � (A)
Σ ` ∗ : �

(R) Σ ` κ : � Σ ` κ′ : �
Σ ` κ→ κ′ : �

(Ri)
Σ; · ` A : ∗ Σ ` κ : �

Σ ` A→ κ : �

Kinding: Σ;∆ ` σ : κ (∀) Σ;∆,Xκ ` σ : ∗
Σ;∆ ` ∀X.σ : ∗ (∀i) Σ;∆, iA ` σ : ∗

Σ;∆ ` ∀i.σ : ∗

Σ;∆ ` F : κ (V ar)
Xκ ∈ ∆ Σ ` ∆
Σ;∆ ` X : κ

(TCon)
T : κ ∈ Σ Σ ` ∆

Σ;∆ ` T : κ
(µ)

Σ;∆ ` T τ : κ→ κ

Σ;∆ ` µκ(T τ) : κ

(@)
Σ;∆ ` F : κ→ κ′ Σ;∆ ` G : κ

Σ;∆ ` F G : κ′
(@i)

Σ;∆ ` F : A→ κ Σ;∆; · ` s : A

Σ;∆ ` F {s} : κ

(→)
Σ;∆ ` A : ∗ Σ;∆ ` B : ∗

Σ;∆ ` A→ B : ∗ (Conv)
Σ;∆ ` A : κ Σ ` κ = κ′ : �

Σ;∆ ` A : κ′

Typing:

Σ ` Prog : A (·; t) Σ; ·; · ` t : A

Σ ` ·; t : A
(D)

Σ ` D V Σ′ Σ′ ` D; t : A

Σ ` D,D; t : A

Σ;∆;Γ ` t : A (=)
Σ;∆;Γ ` t : A Σ;∆ ` A = B : ∗

Σ;∆;Γ ` t : B

(:)
x : σ ∈ Γ Σ;∆ ` A ≺ σ Σ;∆ ` Γ

Σ;∆;Γ ` x : A
(: i)

iσ ∈ ∆ Σ;∆ ` A ≺ σ Σ;∆ ` Γ
Σ;∆;Γ ` i : A

(: C)
C : σ ∈ Σ Σ;∆ ` A ≺ σ Σ;∆ ` Γ

Σ;∆;Γ ` C : A
(: ‘)

‘x : σ ∈ Σ Σ;∆ ` A ≺ σ Σ;∆ ` Γ
Σ;∆;Γ ` ‘x : A

(→I)
Σ;∆;Γ, x : A ` t : B

Σ;∆;Γ ` λx.t : A→ B
(→E)

Σ;∆;Γ ` r : A→ B Σ;∆;Γ ` s : A

Σ;∆;Γ ` r s : B

(let)

Σ;∆, ιK ;Γ ` s : A
Σ;∆;Γ, x : ∀ ι.A ` t : B

Σ;∆;Γ ` let x = s in t : B

(
ι ∩ FV(s) = ∅
ι ∩ FV(Γ ) = ∅

)
(case)

Σ;∆;Γ `ψ ϕ : ∀ ι.F ι→ ψ(ι)

Σ;∆;Γ ` ϕψ : F τ → ψ(τ)

(MIt)
Σ;∆,Xκ;Γ, x : ∀ ι′.Xι′ → ψ(ι′) `ψ ϕ : ∀ ι.F X ι→ ψ(ι)

Σ;∆;Γ ` MIt x.ϕψ : µκ F τ → ψ(τ)

(
X /∈ FV(Γ )

)
(In)

Σ;∆;Γ ` Inκ : F (µκF ) τ → µκF τ

Σ;∆;Γ `ψ ϕ : σ
Σ|T = Ck : σk

k=1..n
Σ;∆ ` A→ T τ τk ≺ σk Σ;∆;Γ, x : A ` t : ψ(τk)

k=1..n

Σ;∆;Γ `ψ Ck x→ t
k=1..n

: ∀ ι.T τ ι→ ψ(ι)

Extending the Global Context: Σ ` D V Σ′

(Σ,T )
Σ,T : κ; ιK ` A→ T τ : ∗

Σ ` data T : κ where C : A→ T τ V Σ,T : κ,C : ∀ ι.A→ T τ

(Σ, ‘x)
Σ; ιK ; · ` t : A

Σ ` ‘x = tV Σ, ‘x : ∀ ι.A
(
ι ∩ FV(t) = ∅

)
Fig. 4. Typing rules of Nax
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Type constructors and their kinding rules The syntax for type constructors of
Nax is similar to Fi, but different from Fi in two aspects.

Firstly, polymorphic types are separate out as type schemes (σ) in Nax since
the type system of Nax is in flavour of Hindley-Milner to support type inference
(or, reconstruction).

Secondly, there are no type level abstractions and index abstractions in Nax.
Instead of defining type constructors expecting type arguments by abstrac-
tion and index abstraction at type level, Nax supports datatype declarations
(data T : κ where . . . ) and recursive type operators (µκ) as language con-
structs.

Intuitively, the kinding rule for the recursive type operator should be Σ `
µκ : (κ→ κ)→ κ. However, we restrict the recursive type operator (µκ) only to
be applied to datatypes (T τ). This restriction is evident in both the type con-
structor syntax in Fig. 3 and the kinding rule (µ) in Fig. 4. What this restriction
really excludes are nested applications of recursive type operators. For instance,
µκ(µκ→κF ) where F : (κ → κ) → κ → κ is not allowed although it would be
well-kinded under the less restrictive kinding rule (Σ ` µκ : (κ → κ) → κ).
Motivation behind this restriction is type inference. In order to infer a type for
a Mendler style iterator, we need to restrict the form of its body since the body
must be polymorphic over the indices (see (MIt) rule). In general, we do not
want polymorphic types to be first class since we want type inference. One sim-
ple design choice is to allow case branches (ϕ) to have polymorphic types, or
type schemes, and annotate case branches with index transformers (ϕψ). For
the exact same reason (i.e., type inference), we restrict the body of the Mendler
style iterators be case terms (i.e., (MIt x.ϕψ) instead of (MIt x.t)).

Terms and their typing rules The term syntax of Nax has six additional term
constructs than Fi: data constructors (C), top level variables (‘x), polymorphic
let bindings (let x = s in t), eliminators for datatypes (ϕψ), Mendler style it-
erators (MIt x.ϕψ), and constructors for recursive types (Inκ). Typing rules for
them are provided in Fig. 4.

The typing rules (: C) and (: ‘) are for data constructors (C) and top level
variables (‘x) bound in the top level context (Σ). Data constructors (C) are in-
troduced from datatype declarations (data T : κ where . . . ) by the rule (Σ,T ),
and top level variables (‘x) are introduced from top level definitions (‘x = t) by
the rule (Σ, ‘x). The typing rules (: C) and (: ‘) behave similar to the rule (:)
for the variables and the rule (: i) for index variables. All these four rules (:),
(: i), (: C), and (: ‘) for identifiers look up a certain context (one of the three
zones Σ, ∆, and Γ ). Since the Nax type system is in flavour of Hindley-Milner,
identifiers are bound to type schemes (σ) and the typing rules for the identifiers
instantiate type schemes to types (A). Note, a type instantiation (Σ;∆ ` A ≺ σ)
is a judgement under the top level context (Σ) and the type level context (∆),
since the instantiated type needs to be well-kinded under Σ and ∆.

Polymorphic let bindings in Nax are just the usual polymorphic bindings of
Hindley-Milner type system for generalizing types of local definitions into type
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schemes. In Nax, we generalize over term indices as well as types. The typing
rule for let bindings is the (let) rule.

Eliminators for datatypes (ϕψ), or case-terms, are case branches (ϕ) anno-
tated by index transformers (ψ). For non-indexed types, case-terms are the usual
single level pattern matching expressions in functional languages. For example,
a Nax case-term applied to non-indexed typed term (ϕ· s) corresponds to a
Haskell case-expression over that term (case s of {ϕ}). Note, we give trivial
index transformer annotation (i.e., ψ = ·) for non-indexed types (e.g., booleans,
natural numbers) since there are no indices to worry about. For indexed types,
the indexed transformer annotations proivide useful information for type recon-
struction. For example, consider the following datatype declaration:

data Judgement : Bool→ ∗ where TJ : Formula→ Judgement {True};
FJ : Formula→ Judgement {False}

The datatype Judgement is index by boolean terms (e.g., True and False of
type Bool). The data constructor TJ contains a formula expected to be true
and the data constructor FJ contains a formula expected to be false. We can
define a function, which produces an inverted judgement by negating the formula
contained in a given judgement, as follows6:(
TJ x→ FJ(neg x);
FJ x→ TJ(neg x)

)i . Judgement {‘not i}
where neg is a function that produces negated formula

and ‘not is a top level function that negates booleans.

Note that the index transformer (i . Judgement {‘not i}) captures the idea that
the resulting inverted judgement has opposite expectations from the given judge-
ment. The types of such case-terms involving indexed types can also be inferred
when we annotate the case-terms with appropriate index transformers. Reduc-
tion rules for case-terms (Fig. 3) are standard.

Mendler style iterators (MIt x.ϕψ) are eliminators for recursive types. A case-
term expects a datatype argument (of type T τ). A Mendler style iterator expects
a recursive type argument (of type µκ(T τ)). Intuitively, Mendler style iterators
open up the recursive type (µκ(T τ)) and case branch over its base datatype
structure (of type T τ). This intuition is captured by the reduction rule for
Mendler style iterators (Fig. 3): MIt x.ϕψ (Inκt)  [MIt x.ϕψ/x]ϕψ t. Note that
a Mendler style iterator (MIt x.ϕψ) applied to a term of recursive type (Inκt) con-
structed by the Inκ constructor reduces to a case-term ([MIt x.ϕψ/x]ϕψ) applied
to the base structure (t) contained in the Inκ constructor. The variable (x) bound
by MIt is a label for the recursive call. Note that the case-term ([MIt x.ϕψ/x]ϕψ)
appearing in the reduction rule substitutes x with the Mendler style iterator it-
self. However, unlike the fixpoint operator for unrestricted general recursion,
Mendler style iterators are guaranteed to normalize because of their carefully
designed typing rule (MIt) due to Mendler.

The constructors for recursive types (Inκ) are standard (see rule (In) in
Fig. 4). The kind annotation κ on the Inκ constructor aids kind inference. If

6 case branches are laid out in multiple lines for better readability

290



we were to simulate the recursive type operator µκ and its constructor Inκ in a
functional language like Haskell (with GADT and kind annotation extensions),
we would simulate them by the following recursive datatype:

data µκ : (κ→ κ)→ κ where Inκ : X(µκX)ι→ µκX ι

However, such a simulation of µκ by a recursive datatype cannot guarantee nor-
malization of the language, since unlimited elimination of Inκ via case branches
is already powerful enough to encode non-terminating computation even without
using any recursion at term level. Thus, Nax provides µκ and Inκ as primitive
language constructs, and only allow elimination of Inκ via Mendler style itera-
tion.

Nax programs and their typing rules A Nax program (D; t) is a list of declarations
(D) followed by a term (t). A declaration can be either a datatype declaration
(data T : κ where . . . ) or a top level definition (‘x = t). The list of declarations
(D) are processed by the rules (Σ,T ) and (Σ, ‘x) before type checking the term
(t). The kinding and typing information from the datatype declarations and the
top level definitions preceding the term are captured into the top level context
(Σ) according to the rules (Σ,T ) and (Σ, ‘x). The top level context extended by
these rules are used for type checking the term following the list of declarations.
Therefore, the sorting, kinding, and typing rules of Nax (Fig. 4) involves Σ in
addtion to ∆ and Γ , while the corresponding rule of Fi (Fig. ??) involves ∆ and
Γ only.

Reduction rules Reduction rules are defined in Fig. 3. First five rules are the
redex rules that makes an actual reduction step on redexes. A redex is be one
of the following: a lambda term applied to an argument, a let binding, a case
term applied to a constructor term, a Mendler style iterator applied to an Inκ-
constructed term, and a top level variable.

Note, the reduction rule for ‘x mentions D). Although we illustrate the re-
duction as a relation on terms (t  t′), we implicitly assume that there exists
some fixed list of declarations (D) for the reduction relation ( ). In order to
make a reduction step for top level variables, we need to know the top level
definition for ‘x, which should be contained in D. Since the list of declarations
are given by the input program (D; t) to type check, it is non-ambiguous which
D to use for reducing ‘x. In case when it is ambiguous, we could use a notation

like t
D
 t′ to make it more precise.

The other rules, following the top level variable reduction rule (‘x t), are
context rules to make a reduction step for the terms whose redexes appear inside
their subterms.

3.2 Syntax-directed type system and type inference

The kinding and typing rules of Nax illustrated in Fig. 4 is not syntax directed
since the conversion rules (Conv) and (=) are not syntax directed. These con-
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version rules can apply to anywhere regardless of the syntactic category of terms
and types.

We can easily adapt the system to be syntax directed by embedding the con-
version rules into application-like rules (e.g., (@i), (→E)). Among the kinding
rules, the only place where conversion is truly necessary is in the index appli-
cation rule (@i). We can define the syntax directed application rule (@i)s as
follows:

(@i)s
Σ;∆ `s F : A→ κ Σ;∆; · `s s : A′ Σ; · `s A = A′ : ∗

Σ;∆ `s F {s} : κ

Among the typing rules, we need to embed conversion into the (→E) rule and
probably the rules (let) and (MIt), and the branch checking rule as well. Once
we finish describing the syntax directed type system, we should prove that it is
equivalent to the typing rules in Fig. 4. We are still working on describing the
type inference algorithm. Then, we would need to prove the correctness of the
type inference algorithm with respect to the syntax directec typing rules.

4 Embedding Nax into strongly normalizing calculus

Our approach to formalizing the Nax as a logical language, is to embed each
logical feature of Nax into a lower level language, System Fi, which we have
proven to be strongly normalizing and logically consistent[2]. We have designed
System Fi, which is an extension of Fω with erasable term indices, and proved
its properties.7 Our approach of distinguishing type and term indices is unique,
and requires the extension of some previous work on normalizing calculi.

5 Implementation

We used Haskell and its libraries (e.g., unbound [10]) to implement a prototype
of Nax as an interpreter.

6 Future Work

Nax is one thread of research in the Trellys project, a collaborative initiative
to design a dependently-typed programming language with simple support for
general recursion and other convenient but logically unsound features, yet still
maintain a logically sound core. Here is a partial list of ongoing and future work
in the Nax thread.

– Embedding all of Nax into a strongly normalizing calculus
We can embed datatypes of Nax and the MIt and MsfIt combinator families

7 We submitted a paper on System Fi on POPL recently. Along with this submission,
the draft of that paper on System Fi is included as a supplimentary material.
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into System Fi. But, other combinator families, such as MPr, are only known
to be embeddable into a different calculus, System Fixω [1], which does not
support term indices. We believe we can similarly extend Fixω with erasable
term indices – we call this calculus Fixi, which can then embed MPr over
datatypes with term indices. Properties of Fixi needs to be checked but we
strongly believe that the desired properties, i.e., strong normalization and
logical consistency, will hold in Fixi as well as in Fi.

– Including both a programatic and a logical fragment
In the future we want Nax programs to include both a logical fragment and
a non-logical (or programatic) fragment, and we want the type system to
separate the two. We believe that we can extend the proof principles out-
lined in the paper Step-Indexed Normalization for a Language with General
Recursion [4].

– Large eliminations
The current prototype of Nax only supports a limited form of large elim-
ination (i.e. mapping indices from argument types to result types) due to
the limited syntax of the index transformer. We hope to enrich the index
transformer syntax to support more expressive large eliminations (e.g., if-
then-else, or more generally, case expressions in index transformers) and
still maintain our design goals of having both type inference and a logically
consistent type system. Again, we will make sure that such new features are
safe by embedding the new feature into the calculus Nax is based on, such
as System Fi.
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Abstract
The purpose of this paper is to introduce a foundational type sys-
tem, System Fi, for the design of programming languages with
first-class term-indexed datatypes – higher-order datatypes whose
parameters range over data such as Natural Numbers or Lists.

To do this, we have devised a minimal extension of System Fω
that incorporates term indices. While term-indexed datatypes are
expressible in rich type theories, like the Implicit Calculus of Con-
structions (ICC), these systems typically come coupled with or-
thogonal features such as large eliminations and full type depen-
dency. We argue that there are important pedagogical benefits of
isolating the minimal features to support term-indexing. We show
that System Fi provides a theory for analysing programs with term-
indexed types and also argue that it constitutes a basis for the de-
sign of logically-sound light-weight dependent programming lan-
guages.

In terms of expressivity, System Fi sits in between System Fω
(the prototypical logical calculus for functional programming) and
ICC (a full-featured dependent type theory). Indeed, we relate Sys-
tem Fi to System Fω and ICC as follows. We establish erasure
properties of Fi-types that capture the idea that term indices are
discardable in that they are irrelevant for computation. Index era-
sure projects typing in System Fi to typing in System Fω; so Sys-
tem Fi inherits the strong-normalisation property from System Fω .
The logical consistency of System Fi is established by embedding
it into a subset of ICC.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—data types and struc-
tures; F.4.1 [Mathematical Logic and Formal Languages]: Math-
ematical Logic—lambda calculus and related systems

General Terms Languages, Theory

Keywords term-indexed data types, generalized algebraic data
types, higher-order polymorphism, type-constructor polymorphism,
higher-kinded types, impredicative encoding

1. Introduction
We wish to incorporate dependent types into ordinary programming
languages. We are interested in two kinds of dependent types. Full

[Copyright notice will appear here once ’preprint’ option is removed.]

dependency, where the type of a function can depend upon the
value of its run-time parameters, and static dependency, where
the type of a function can depend only upon static (or compile-
time) parameters. Static dependency is sometimes referred to as
indexed typing. The first is very expressive, while the second is
often much easier to learn and use especially for those who are
familiar to functional programming languages like Haskell or ML.
Indexed types come in two flavors: type-indexed and term-indexed
types. Type indexing includes parametric polymorphism, but it
also includes more sophisticated typing as found in Generalized
Algebraic Datatypes (GADTs). An example of type indexing using
GADTs is a type representation:
data TypeRep t where

Int :: TypeRep Int
Bool:: TypeRep Bool
Pair:: TypeRep a -> TypeRep b -> TypeRep(a,b)

Here, a value of type (TypeRep t) is isomorphic in “shape” with
the type t. For example (Pair Int Bool) is isomorphic in shape
with its type (Int,Bool).

On the other hand, term-indexed types include indices that range
over data structures, such as Natural Numbers (like Z, (S Z)) or
Lists (like Nil or (Cons Z Nil)). The classic example of a term
index is the second parameter to the length-indexed list type Vec (as
in (Vec Int (S Z))). In languages such as Haskell, which support
GADTs with type indexing, term-indices are not first-class; they
are “faked” by reflecting data at the type level with uninhabited
type constructors (see §6 for a very recent GHC extension, which
enable term-indices be first class). For example,
data Succ n
data Zero

data Vector t n where
Cons :: a -> Vector a n -> Vector a (Succ n)
Nil :: Vector a Zero

This comes with a number of problems. First, there is no way
to say that types such as (Succ Int) are ill-formed, and second
the costs associated with duplicating the constructor functions of
data to be used as term-indices. Nevertheless, “faked” term-indexed
GADTs have become extremely popular as a light-weight, type-
based mechanism to raise the confidence of users that software
systems maintain important properties.

A salient example is Guillemette’s thesis [11] encoding the clas-
sic paper by Morrisett et al. [18] completely in Haskell. This im-
pressive system embeds a multi-stage compiler, from System F
all the way to typed assembly language using indexed datatypes
(many of them “faked” term-indices) to show that every stage pre-
serves type information. As such, it provides confidence but no
guarantees. Indeed, since in Haskell the non-terminating compu-
tation can be assigned any type, it is in principle possible that the
type-preservation property is a consequence of a non-terminating
computation in the program code.

short description of paper 1 2012/7/25
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This drawback is absent in approaches based on strongly nor-
malizing logical calculi; like, for instance, System Fω , the higher-
order polymorphic lambda calculus, which is rich enough to ex-
press a wide collection of data structures. Unfortunately, the term-
indexed datatypes that are necessary to support Guillemette’s sys-
tem are not known to be expressible in System Fω .

In his CompCert system, Leroy [13] showed that the much
richer logical Calculus of Inductive Constructions (CIC), which
constitutes the basis of the Coq proof assistant, is expressive
enough to guarantee type preservation (and more) between com-
piler stages. This approach, however, comes at a cost. Programmers
must learn to use both dependent types and a new programming
paradigm, programming by code extraction.

Some natural questions thus arise: Is there an expressive system
supporting term-indexed types, say, sitting somewhere in between
System Fω and fully dependent calculi? If only term-indexed types
are needed to maintain properties of interest, is there a language
one can use? Can one program, rather than extract code? The goal
of this paper is to develop the theory necessary to begin answering
these and related questions.

Our approach in this direction is to design a new foundational
calculus, System Fi, for functional programming languages with
term-indexed datatypes. In a nutshell, System Fi is obtained by
minimally extending System Fω with type-indexed kinds. Notably,
this yields a logical calculus that is expressive enough to embed
non-dependent term-indexed datatypes and their eliminators. Our
contributions in this development are as follows.

• Identifying the features that are needed for a higher-order poly-
morphic λ-calculus to embed term-indexed datatypes (§2), in
isolation from other features normally associated with such
calculi (e.g., general recursion, large elimination, dependent
types).
• The design of the calculus, System Fi (§3), and its use to

study properties of languages with term-indexed datatypes, by
embedding these into the calculus (§4). For instance, one can
use System Fi to prove that the Mendler-style eliminators for
GADTs of [3] are normalizing.
• Showing that System Fi enjoys a simple erasure property and

inherits meta-theoretic results (strong normalization and logical
consistency) from well-known calculi (System Fω and ICC)
that enclose System Fi (§5).

2. From System Fω to System Fi, and back
It is well known that datatypes can be embedded into polymorphic
lambda calculi by means of functional encodings (e.g., [1]), such
as the Church and Boehm-Berarducci encodings.

In System F, for instance, one can embed regular datatypes [4],
like homogeneous lists:

Haskell: data List a = Cons a (List a) | Nil

System F: List A , ∀X.(A→ X → X)→ X → X

In such regular datatypes, constructors have algebraic structure that
directly translates into polymorphic operations on abstract types as
encapsulated by universal quantification.

In the more expressive System Fω , one can encode more general
type-indexed datatypes that go beyond the algebraic class. For
example, one can embed powerlists with heterogeneous elements
in which an element of type a is followed by an element of the
product type (a,a):

Haskell: data Powl a = PCons a (Powl(a,a)) | PNil

System Fω: Powl , λA∗.∀X∗→∗.
(A→ X(A×A)→ XA)→ XA→ XA

Note the non-regular occurrence (Powl(a,a)) in the definition of
(Powl a), and the use of universal quantification over higher-order
kinds.

What about term-indexed datatypes? What extension to Sys-
tem Fω is needed to embed these, as well as type-indexed ones?
Our answer is System Fi.

In a functional language supporting term-indexed datatypes, we
envisage that the classic example of homogeneous length-indexed
lists would be defined along the following lines:

data Nat = S Nat | Z

data Vec (a:*) {i:Nat} where
VCons : a -> Vec a {i} -> Vec a {S i}
VNil : Vec a {Z}

Here the type constructor Vec is defined to admit parameter-
isation by both type and term indices. For instance, the type
(Vec (List Nat) {S (S Z)}) is that of two-dimensional vec-
tors of lists of natural numbers. By design, our syntax directly
reflects the different type and term indexing by indicating the latter
in curly brackets. This feature has been directly transferred from
System Fi, where it is used as a mechanism for guaranteeing the
static nature of term indexing.

The encoding of the vector datatype in System Fi is as follows:

Vec , λA∗.λiNat.∀XNat→∗.

(∀jNat.A→ X{j} → X{S j})→ X{Z} → X{i}

where Nat, Z, and S respectively encode the Natural Numbers,
zero and successor. Without going into the details of the formal-
ism, which are given in the next section, one sees that such a cal-
culus incorporating term-indexing structure needs four additional
constructs.

1. Type-indexed kinding (A→ κ) (as in (Nat→*) in the example
above) where the compile-time nature of term-indexing will be
reflected in the enforcement that A be a closed type (rule (Ri)
in Figure 1).

2. Term-index abstraction λiA.F (as λiNat. · · · in the example
above) for constructing (or introducing) type-indexed kinds
(rule (λi) in Figure 1).

3. Term-index application F{s} (as X{Z}, X{j}, and X{S j}
in the example above) for destructing (or eliminating) type-
indexed kinds, where the compile-time nature of indexing will
be reflected in the enforcement that the index be statically
typed (rule (@i) in Figure 1) .

4. Term-index polymorphism ∀iA.B (as ∀jNat. · · · in the example
above) where the compile-time nature of polymorphic term-
indexing will be reflected in the enforcement that the variable i
be static of closed type A (rule (∀Ii) in Figure 1).

As exemplified above, System Fi maintains a clear-cut separa-
tion between higher-order kinding and term indexing. This adds a
level of abstraction to System Fω and yields types that in addition
to structural invariants also keep track of indexing invariants. Being
static, all term-index information can be erased. This projects Sys-
tem Fi into System Fω fixing the latter. For instance, the erasure of
the Fi-type Vec is the Fω-type List, the erasure of which (when
regarded as an Fi-type that is) is in turn itself. Since, as already
mentioned, typing in System Fi imposes structural and indexing
constraints on terms one expects that the structural projection from
System Fi to System Fω provided by index erasure preserves typ-
ing. This is established in §5 and used to deduce the strong normal-
ization of System Fi.
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3. System Fi
System Fi is a higher-order polymorphic lambda calculus designed
to extend System Fω by the inclusion of term indices. The syntax
and rules of System Fi are described in Figures 1 and 2. The
extensions new to System Fi, which are not originally part of
System Fω , are highlighted by grey boxes . Eliding all the grey
boxes from Figures 1 and 2, one obtains a version of System Fω
with Curry-style terms and the typing context separated into two
parts (type-level context ∆ and term-level context Γ).

In this section, we first discuss the rational for our design
choices (§3.1) and then introduce the new constructs of System Fi
(§3.2).

3.1 Design of System Fi

Terms in Fi are Curry style. That is, term level abstractions are
unannotated (λx.t), and type generalizations (∀I) and type instan-
tiations (∀E) are implicit at term level. A Curry-style calculus gen-
erally has an advantage over its Church-style counterpart when
reasoning about properties of reduction. For instance, the Church-
Rosser property naturally holds for β-, η-, and βη-reduction in the
Curry style, but may not hold in the Church style. This is due to the
presence of annotations in abstractions [16].1

Type constructors, on the other hand, remain Church style in Fi.
That is, type level abstractions are annotated by kinds (λXκ.F ).
Choosing type constructors to be Church style makes the kind of
a type constructor visually explicit. The choice of style for type
constructors is not as crucial as the choice of style for terms, since
the syntax and kinding rules at type level are essentially a simply
typed lambda calculus. Annotating the type level abstractions with
kinds makes kinds explicit in the type syntax. Since Fi is essentially
an extension of Fω with a new formation rule for kinds, making
kinds explicit is a pedagogical tool to emphasize the consequences
of this new formation rule. As a notational convention, we write A
and B, instead of F and G, where A and B to are expected to be
types (i.e., nullary type constructors) of kind ∗.

In a language with term indices, terms appear in types (e.g., the
length index (n + m) in the type Vec Nat {n + m}). Such terms
contain variables. The binding sites of these variables matter. In
Fi, we expect such variables to be statically bound. Dynamically
bound index variables would require a dependently typed calculus,
such as the calculus of constructions. To reflect this design choice,
typing contexts are separated into type level contexts (∆) and term
level contexts (Γ). Type level (static) variables (X , i) are bound
in ∆ and term (dynamic) variables (x) are bound in Γ. Type level
variables are either type constructor variables (X) or term variables
to be used as indices (i). As a notational convention, we write i,
instead of x, when term variables are to be used as indices (i.e.,
introduced by either index abstraction or index polymorphism).

In contrast to our design choice, System Fω is most often for-
malized using a single context, which binds both type variables (X)
and term variables (x). In such a formalization, the free type vari-
ables in the typing of the term variable must be bound earlier in the
context. For example, if X and Y appear free in the type of f , they
must appear earlier in the single context (Γ) as below:

Γ = . . . , X∗, . . . , Y ∗, . . . , (f : ∀Z∗.X → Y → Z), . . .

In such a formalization, the side condition (X /∈ Γ) in the (∀I)
rule of Figure 1 is not necessary, since such a condition is already a
part of the well-formedness condition for the context (i.e., Γ, Xκ is
well-formed whenX /∈ FV(Γ)). Thus, for Fω , it is only a matter of

1 The Church-Rosser property, in its strictest sense (i.e., α-equivalence over
terms), generally does not hold in Church-style calculi , but may hold
under certain approximations, such as modulo ignoring the annotations in
abstractions.

taste whether to formalize the system using a single context or two
contexts, since they are equivalent formalizations with comparable
complexity.

However, in Fi, we separate the context into two parts to distin-
guish term variables used in types (which we call index variables,
or indices, and are bound as ∆, iA) from the ordinary use of term
variables (which are bound as Γ, x : A). The expectation is that
indices should have no effect on reduction at the term level. Al-
though it is imaginable to formalize Fi with a single typing context
and distinguish index variables from ordinary term variables using
more general concepts (e.g., capability, modality), we think that
splitting the typing context into two parts is the simplest solution.

3.2 System Fi compared to System Fω

We assume readers to be familiar with System Fω and focus on
describing the new constructs of Fi. These appear in grey boxes.

Kinds. The key extension to Fω is the addition of term-indexed
arrow kinds of the form A→ κ . This allows type constructors
to have terms as indices. The rest of the development of Fi flows
naturally from this single extension.

Sorting. The formation of indexed arrow kinds is governed by the
sorting rule (Ri) . The rule (Ri) specifies that an indexed arrow
kind A → κ is well-sorted when A has kind ∗ under the empty
type level context (·) and κ is well-sorted.

Requiring the use of the empty context avoids dependent kinds
(i.e., kinds depending on type level or value level bindings). The
type A appearing in the index arrow kind A → κ must be well-
kinded under the empty type level context (·). That is, A should to
be a closed type of kind ∗, which does not contain any free type
variables or index variables. For example, (ListX → ∗) is not a
well-sorted kind, while ((∀X∗. ListX)→ ∗) is a well-sorted kind.

Typing contexts. Typing contexts are split into two parts. Type
level contexts (∆) for type level (static) bindings, and term level
contexts (Γ) for term level (dynamic) bindings. A new form of
index variable binding (iA) can appear in type level contexts in
addition to the traditional type variable bindings (Xκ). There is
only one form of term level binding (x : A) that appears in term
level contexts.

Well formed typing contexts. A type level context ∆ is well-
formed if (1) it is either empty, or (2) extended by a type variable
binding Xκ whose kind κ is well-sorted under ∆, or (3) extended
by an index binding iA whose type A is well-kinded under the
empty type level context at kind ∗. This restriction is similar to
the one that occurs in the sorting rule (Ri) for term-indexed arrow
kinds (see the paragraph Sorting). The consequence of this is that,
in typing contexts and in sorts, A must be a closed type (not a type
constructor!) without free variables.

A term level context Γ is well-formed under a type level context
∆ when it is either empty or extended by a term variable binding
x : A whose type A is well-kinded under ∆.

Type constructors and their kinding rules. We extend the type
constructor syntax by three constructs, and extend the kinding rules
accordingly for these new constructs.

λiA.F is the type level abstraction over an index (or, index
abstraction). Index abstractions introduce indexed arrow kinds by
the kinding rule (λi) . Note, the use of the new form of context

extension, iA, in the kinding rule (λi).
F {s} is the type level index application. In contrast to the

ordinary type level application (F G) where the argument (G) is
a type constructor, the argument of an index application (F {s})
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Syntax:

Sort �

Term Variables x, i

Type Constructor Variables X

Kinds κ ::= ∗ | κ→ κ | A→ κ

Type Constructors A,B, F,G ::= X | A→ B | λXκ.F | F G | ∀Xκ.B | λiA.F | F {s} | ∀iA.B

Terms r, s, t ::= x | λx.t | r s

Typing Contexts ∆ ::= · | ∆, Xκ | ∆, iA

Γ ::= · | Γ, x : A

Well-formed typing contexts:

` ∆ ` ·
` ∆ ` κ : �
` ∆, Xκ

(
X /∈ dom(∆)

) ` ∆ · ` A : ∗
` ∆, iA

(
i /∈ dom(∆)

)
∆ ` Γ ` ∆

∆ ` ·
∆ ` Γ ∆ ` A : ∗

∆ ` Γ, x : A

(
x /∈ dom(Γ)

)

Sorting: ` κ : � (A) ` ∗ : �
(R) ` κ : � ` κ′ : �

` κ→ κ′ : �
(Ri) · ` A : ∗ ` κ : �

` A→ κ : �

Kinding: ∆ ` F : κ (V ar) Xκ ∈ ∆ ` ∆
∆ ` X : κ

(→) ∆ ` A : ∗ ∆ ` B : ∗
∆ ` A→ B : ∗

(λ)
` κ : � ∆, Xκ ` F : κ′

∆ ` λXκ.F : κ→ κ′
(@) ∆ ` F : κ→ κ′ ∆ ` G : κ

∆ ` F G : κ′
(∀)
` κ : � ∆, Xκ ` B : ∗

∆ ` ∀Xκ.B : ∗

(λi)
· ` A : ∗ ∆, iA ` F : κ

∆ ` λiA.F : A→ κ
(@i)

∆ ` F : A→ κ ∆; · ` s : A

∆ ` F {s} : κ
(∀i)

· ` A : ∗ ∆, iA ` B : ∗
∆ ` ∀iA.B : ∗

(Conv) ∆ ` A : κ ∆ ` κ = κ′ : �
∆ ` A : κ′

Typing: ∆; Γ ` t : A (:)
(x : A) ∈ Γ ∆ ` Γ

∆; Γ ` x : A
(: i) iA ∈ ∆ ∆ ` Γ

∆; Γ ` i : A

(→I)
∆ ` A : ∗ ∆; Γ, x : A ` t : B

∆; Γ ` λx.t : A→ B
(→E)

∆; Γ ` r : A→ B ∆; Γ ` s : A

∆; Γ ` r s : B

(∀I)
` κ : � ∆, Xκ; Γ ` t : B

∆; Γ ` t : ∀Xκ.B
(X /∈ FV(Γ)) (∀E)

∆; Γ ` t : ∀Xκ.B ∆ ` G : κ

∆; Γ ` t : B[G/X]

(∀Ii)
· ` A : ∗ ∆, iA; Γ ` t : B

∆; Γ ` t : ∀iA.B

(
i /∈ FV(t),
i /∈ FV(Γ)

)
(∀Ei)

∆; Γ ` t : ∀iA.B ∆; · ` s : A

∆; Γ ` t : B[s/i]

(=)
∆; Γ ` t : A ∆ ` A = B : ∗

∆; Γ ` t : B

Reduction: t t′
(λx.t) s t[s/x]

t t′

λx.t λx.t′
r  r′

r s r′ s

s s′

r s r s′

Figure 1. Syntax, Typing rules, and Reduction rules of Fi
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Kind equality: ` κ = κ′ : � ` ∗ = ∗ : �
` κ1 = κ′1 : � ` κ2 = κ′2 : �

` κ1 → κ2 = κ′1 → κ′2 : �
· ` A = A′ : ∗ ` κ = κ′ : �
` A→ κ = A′ → κ′ : �

` κ = κ′ : �
` κ′ = κ : �

` κ = κ′ : � ` κ′ = κ′′ : �
` κ = κ′′ : �

Type constructor equality: ∆ ` F = F ′ : κ
∆, Xκ ` F : κ′ ∆ ` G : κ

∆ ` (λXκ.F )G = F [G/X] : κ′
∆, iA ` F : κ ∆; · ` s : A

∆ ` (λiA.F ) {s} = F [s/i] : κ

∆ ` X : κ
∆ ` X = X : κ

∆ ` A = A′ : ∗ ∆ ` B = B′ : ∗
∆ ` A→ B = A′ → B′ : ∗

` κ : � ∆, Xκ ` F = F ′ : κ′

∆ ` λXκ.F = λXκ.F ′ : κ→ κ′
∆ ` F = F ′ : κ→ κ′ ∆ ` G = G′ : κ

∆ ` F G = F ′G′ : κ′
` κ : � ∆, Xκ ` B = B′ : ∗

∆ ` ∀Xκ.B = ∀Xκ.B′ : ∗

· ` A : ∗ ∆, iA ` F = F ′ : κ

∆ ` λiA.F = λiA.F ′ : A→ κ

∆ ` F = F ′ : A→ κ ∆; · ` s = s′ : A

∆ ` F {s} = F ′ {s′} : κ

· ` A : ∗ ∆, iA ` B = B′ : ∗
∆ ` ∀iA.B = ∀iA.B′ : ∗

∆ ` F = F ′ : κ

∆ ` F ′ = F : κ

∆ ` F = F ′ : κ ∆ ` F ′ = F ′′ : κ

∆ ` F = F ′′ : κ

Term equality: ∆; Γ ` t = t′ : A
∆; Γ, x : A ` t : B ∆; Γ ` s : A

∆; Γ ` (λx.t) s = t[s/x] : B

∆; Γ ` x : A

∆; Γ ` x = x : A

∆ ` A : ∗ ∆; Γ, x : A ` t = t′ : B

∆; Γ ` λx.t = λx.t′ : B

∆; Γ ` r = r′ : A→ B ∆; Γ ` s = s′ : A

∆; Γ ` r s = r′ s′ : B

` κ : � ∆, Xκ; Γ ` t = t′ : B

∆; Γ ` t = t′ : ∀Xκ.B
(X /∈ FV(Γ))

∆; Γ ` t = t′ : ∀Xκ.B ∆ ` G : κ

∆; Γ ` t = t′ : B[G/X]

· ` A : ∗ ∆, iA; Γ ` t = t′ : B

∆; Γ ` t = t′ : ∀iA.B

(
i/∈FV(t),

i/∈FV(t′),
i/∈FV(Γ)

)
∆; Γ ` t = t′ : ∀iA.B ∆; · ` s : A

∆; Γ ` t = t′ : B[s/i]

∆; Γ ` t = t′ : A

∆; Γ ` t′ = t : A

∆; Γ ` t = t′ : A ∆; Γ ` t′ = t′′ : A

∆; Γ ` t = t′′ : A

Figure 2. Equality rules of Fi

is a term (s). We use the curly bracket notation around an index
argument in a type to emphasize the transition from ordinary type
to term, and to emphasize that s is an index term, which is erasable.
Index applications eliminate indexed arrow kinds by the kinding
rule (@i) . Note, we type check the index term (s) under the
current type level context paired with the empty term level context
(∆; ·) since we do not want the index term (s) to depend on any
term level bindings. Allowing such a dependency would admit true
dependent types.
∀iA.B is an index polymorphic type. The formation of in-

dexed polymorphic types is governed by the kinding rule ∀i ,
which is very similar to the formation rule (∀) for ordinary poly-
morphic types.

In addition to the rules (λi), (@i), and (∀i), we need a conver-
sion rule (Conv) at kind level. This is because the new extension
to the kind syntax A → κ involves types. Since kind syntax in-
volves types, we need more than simple structural equality over
kinds. The new equality over kinds is the usual structural equal-
ity extended by type constructor equality when comparing indexed
arrow kinds (see Figure 2).

Terms and their typing rules The term syntax is exactly the same
as other Curry-style calclui. We write x for ordinary term variables
introduced by term level abstractions (λx.t). We write i for index
variables introduced by index abstractions (λiA.F ) and by index
polymorphic types (∀iA.B). As discussed earlier, the distinction
between x and i is for the convenience of readability.

Since Fi has index polymorphic types (∀iA.B), we need typing
rules for index polymorphism: (∀Ii) for index generalization and

(∀Ei) for index instantiation.
The index generalization rule (∀Ii) is similar to the type gen-

eralization rule (∀I), but generalizes over index variables (i) rather
than type consturctor variables (X). The rule (∀Ii) has two side
conditions while the rule (∀I) has only one side conditions. The
additional side condition i /∈ FV(t) in the (∀Ii) rule prevents
terms from accessing the type level index variables introduced by
index polymorphism. Without this side condition, ∀-binder would
no longer behave polymorphicaly, but instead would behave as a
dependent function, which are usually denoted by the Π-binder in
dependent type theories. The rule (∀I) for ordinary type general-
ization does not need such additional side condition because type
variables cannot appear in the syntax of terms. The side conditions
on generalization rules for polymorphism is fairly standard in de-
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(λi)
· ` A : ∗

(@i)
∆, iA ` F : A→ κ

(: i)
iA ∈ ∆, iA ∆ ` ·

∆, iA; · ` i : A

∆, iA ` F{i} : κ

∆ ` λiA.F{i} : A→ κ

Figure 3. Kinding derivation for an index abstraction

pendently typed languages supporting distinctions between poly-
morphism (or, erasable arguments) and dependent functions (e.g.,
IPTS[17], ICC[16]).

The index instantiation rule (∀Ei) is similar to the type instan-
tiation rule (∀Ei), except that we type check the index term s to be
instantiated for i in the current type level context paired with the
empty term level context (∆; ·) rather than the current term level
context. Since index terms are at type level, they should not depend
on term level bindings.

In addition to the rules (∀Ii) and (∀Ei) for index polymor-
phism, we need an additional variable rule (: i) to be able to ac-
cess the index variables already in scope. Terms (s) used at type
level in index applications (F{s}) should be able to access index
variables already in scope. For example, λiA.F{i} should be well-
kinded under a context where F is well-kinded, justified by the
derivation in Figure 3.

4. Embedding datatypes and their eliminators
System Fi can express a rich collection of datatypes. First, we il-
lustrate embeddings for both non-recursive and recursive datatypes
using Church encodings [6] to define data constructors (§4.1).
Second, we illustrate a more involved embedding for recursive
datatypes based on two-level types (§4.2). Lastly, we discuss an
encoding of equality over term indices (§4.3).

4.1 Embedding datatypes using Church-encoded terms
Church [6] invented an embedding of the natural numbers into the
untyped λ-calculus, which he used to argue that the λ-calculus
was expressive enough for the foundation of logic and arith-
metic. Church encoded the data constructors of natural num-
bers, successor and zero, as higher-order functions, succ =
λx.λxs.λxz.xs(xxsxz) and zero = λxs.λxz.xz . The heart of
the Church encoding is that a value is encoded as an elimination
function. The bound variables xs and xz (of both succ and zero)
stand for the operations needed to eliminate the successor case
and the zero case respectively. The Church encodings of successor
states: to eliminate succx, “apply xs to the elimination of the pre-
decessor (xxsxz)”; and, to eliminate zero, just “return xz”. Since
values are elimination functions, the eliminator can be defined as
applying the value itself to the needed operations. One for each of
the data constructors. For instance, we can define an eliminator for
the natural numbers as elimNat = λx.λxs.λxz.x xsxz . This is just
an η-expansion of the identity function λx.x. The Church encoded
natural numbers are typable in a polymorphic λ-calculi, such as
System Fω , as follows:

Nat = ∀X∗.(X → X)→ X → X

S : Nat→ Nat = λx.λxs.λxz.xs(xxsxz)

Z : Nat = λxs.λxz.xz

elimNat : Nat→ ∀X∗.(X → X)→ X → X

= λx.λxs.λxz.x xsxz
In a Similar fashion, other datatypes are also embeddable into

polymorphic λ-calculi. Embeddings of some well-known non-
recursive datatypes are illustrated in Figure 4, and embeddings

Bool = ∀X.X → X → X

true : Bool = λx1.λx2.x1

false : Bool = λx1.λx2.x2

elimBool : Bool→ ∀X.X → X → X

= λx.λx1.λx2.x x1 x2 (if x then x1 else x2)

A1 ×A2 = ∀X.(A1 → A2 → X)→ X

pair : ∀A∗1.∀A∗2.A1 ×A2 = λx1.λx2.λx
′.x′ x1 x2

elim(×) : ∀A∗1.∀A∗2.A1 ×A2 → ∀X.(A1 → A2 → X)→ X

= λx.λx′.x x′

(by passing appropriate values to x′, we get

fst = λx.x(λx1.λx2.x1), snd = λx.x(λx1.λx2.x2) )

A1 +A2 = ∀X∗.(A1 → X)→ (A2 → X)→ X

inl : ∀A∗1.∀A∗2.A1 → A1 +A2 = λx.λx1.λx2.x1 x

inr : ∀A∗1.∀A∗2.A2 → A1 +A2 = λx.λx1.λx2.x2 x

elim(+) : ∀A∗1.∀A∗2.(A1 +A2)→
∀X∗.(A1 → X)→ (A2 → X)→ X

= λx.λx1.λx2.x x1 x2

(case x of {inl x′ → x1 x
′; inr x′ → x2 x

′})

Figure 4. Embedding non-recursive datatypes

of the list-like recursive datatypes, which we discussed earlier as
motivating examples (§2), are illustrated in Figure 5. Note that
the term encodings for the constructors and eliminators of the list-
like datatypes in Figure 5 are exactly the same. For instance, the
term encodings for nil, pnil, and vnil are all the same term:
λxs.λxz.xz . The nil and cons terms capture the linear nature of
lists, so they are the same for all list like structures. But, the types
differ, capturing different invariants about lists – shape of the ele-
ments (Powl), and length of the list (Vec).

4.2 Embedding recursive datatypes as two-level types
We can divide a recursive datatype definition into two parts – a re-
cursive type operator and a base structure. The operator “weaves”
recursion into the datatype definition, and the base structure de-
scribes its shape (i.e., number of data constructors and their types).
One can program with two-level types in any functional language
that supports higher-order polymorphism2, such as Haskell. In Fig-
ure 6, we illustrate this by giving an example of a two level defini-
tion for ordinary lists (all the other types in this paper have similar
definitions).

The use of two-level types has been recognized as a useful
functional programming pearl [21], since two-level types separate
the two concerns of (1) recursion on recursive sub components
and (2) handling different cases (by pattern matching over the
shape of the (non-recursive) base structure). An advantage of such
an approach, is that a single eliminator can be defined once for
all datatypes of the same kind. For example, the function mitκ
describes Mendler-style iteration3 for the recursive types defined
by µκ. Although it is possible to write programs using two level
datatypes in a general purpose functional language, one could not
expect logical consistency in such systems.

2 a.k.a. higher-kinded polymorphism, or type-constructor polymorphism
3 An iteration is a principled recursion scheme guaranteed to terminate for
any well-founded input. Also known as fold, or catamorphism.
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List = λA∗.∀X∗.(A→ X → X)→ X → X

cons : ∀A∗.A→ ListA→ ListA

= λxa.λx.λxc.λxn.xc xa (x xc xn)

nil : ∀A∗.ListA = λxc.λxn.λxn

elimList : ∀A∗.ListA→ ∀X∗.(A→ X → X)→ X → X

= λx.λxc.λxn.x xc xn (foldr xz xc x in Haskell)

Powl = λA∗.

∀X∗→∗.(A→ X(A×A)→ XA)→ XA→ XA

pcons : ∀A∗.A→ Powl(A×A)→ PowlA

= λxa.λx.λxc.λxn.xc xa (x xc xn)

pnil : ∀A∗.PowlA = λxc.λxn.λxn

elimPowl : ∀A∗.PowlA→
∀X∗→∗.(A→ X(A×A)→ XA)→ XA→ XA

= λx.λxc.λxn.x xc xn

Vec = λA∗.λiNat.

∀XNat→∗.(∀iNat.A→ X{i} → X{S i})→
X{Z} → X{i}

vcons : ∀A∗.∀iNat.A→ VecA {i} → VecA {S i}
= λxa.λx.λxc.λxn.xc xa (x xc xn)

vnil : ∀A∗.VecA {Z} = λxc.λxn.xn

elimVec : ∀A∗.∀iNat.VecA {i} →
∀XNat→∗.(∀iNat.A→ X{i} → X{S i})→

X{Z} → X{i}
= λx.λxc.λxn.x xc xn

Figure 5. Embedding recursive datatypes

Interestingly, there exist embeddings of the recursive type op-
erator µκ, its data constructor Inκ, and the Mendler-style iterator
mitκ for each kind κ into the higher-order polymorphic λ-calculus
Fi, as illustrated in Figure 7. In addition to illustrating the general
form of embedding µκ, we also fully expand the embeddings for
some instances (µ∗, µ∗→∗ , µNat→∗ ), which are used in Figure 6.
These embeddings support the embedding of arbitrary type- and
term-indexed recursive datatypes into System Fi. Thus we can rea-
son about these datatypes in a logically consistent calculus.

However, it is important to note that there does not exist an em-
bedding of the arbitrary destruction (or, pattern matching away) of
the Inκ constructor. It is known that combining arbitrary recursive
datatypes with the ability to destruct (or, unroll) their values is pow-
erful enough to define non-terminating computations in a type safe
way, leading to logical inconsistency. Some systems maintain con-
sistency by restricting which recursive datatypes can be defined, but
allow arbitrary unrolling. In System Fi, we can define any datatype,
but restrict unrolling to Mendler style operators definable in Fi.
Such operators are quite expressive, capturing at least iteration,
primitive recursion, and courses of values recursion.

Example 1. The datatype of λ-terms in context

data Lam ( C: Nat -> * ) { i: Nat } where
LVar : C{i} -> Lam{i}
LApp : Lam{i} -> Lam{i} -> Lam{i}
LAbs : Lam{S i} -> Lam{i}

newtype µ∗ (f :: * -> *)
= In∗ (f (µ∗ f))

data ListF (a::*) (r::*)
= Cons a r | Nil

type List a = µ∗ (ListF a)
cons x xs = In∗ (Cons x xs)
nil = In∗ Nil

mit∗ :: (∀ r.(r->x) -> f r -> x) -> Mu0 f -> x
mit∗ phi (In∗ z) = phi (mit∗ phi) z

newtype µ(∗→∗) (f :: (*->*) -> (*->*)) (a::*)

= In(∗→∗) (f (Mu(∗→∗) f)) a

data PowlF (r::*->*) (a::*)
= PCons a (r(a,a)) | PNil

type Powl a = µ(∗→∗) PowlF a

pcons x xs = In(∗→∗) (PCons x xs)

pnil = In(∗→∗) PNil

mit(∗→∗) :: (∀ r a.(∀a.r a->x a) -> f r a -> x a)

-> µ(∗→∗) f a -> x a

mit(∗→∗) phi (In(∗→∗) z) = phi (mit(∗→∗) phi) z

-- above is Haskell (with some GHC extensions )
-- below is Haskell -ish pseudocode

newtype µ(Nat→∗) (f::(Nat ->*)->(Nat ->*)) {n::Nat}

= In(Nat→∗) (f (µ(Nat→∗) f)) {n}

data VecF (a::*) (r::Nat ->*) {n::Nat} where
VCons :: a -> r n -> VecF a r {S n}
VNil :: VecF a r {Z}

type Vec a {n::Nat} = µ(Nat→∗) (VecF a) {n}

vcons x xs = In(Nat→∗) (VCons x xs)

vnil = In(Nat→∗) VNil

mit(Nat→∗)::(∀ r n.(∀n.r{n}->x{n})->f r {n}->x{n})

-> µ(Nat→∗) f {n} -> x{n}

mit(Nat→∗) phi (In(Nat→∗) z) = phi (mit(Nat→∗) phi) z

Figure 6. 2-level types and their Mendler-style iterators in Haskell

is encoded as:

Lam , λCNat→∗λiNat.∀XNat→∗.

(∀jNat. C{j} → X{j})
→ (∀jNat. X{j} → X{j} → X{j})
→ (∀jNat. X{S j} → X{j})
→ X{i}

For a concrete representation one can consider Lam Fin where

data Fin { i: Nat } where
FZ : Fin{S i}
FS : Fin{i} -> Fin{S i}

This is encoded as

Fin , λiNat. ∀XNat→∗.

(∀jNat. X{S j})→ (∀jNat. X{j} → X{S j})
→ X{i}
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notation: λIκ.F = λIκ1
1 . · · · .λIκnn .F ∀Iκ.B = ∀Iκ1

1 . · · · .∀Iκnn .B F I = FI1 · · · In F
κ→→→→→→→→→ G = ∀Iκ.F I→ GI

where κ = κ1 → · · · → κn → ∗ and Ii is an index variable (ii) when κi is a type,
I = I1, . . . . . . , In a type constructor variable (Xi) otherwise.

µκ : (κ→ κ)→ κ = λFκ→κ.λIκ.∀Xκ.(∀Xrκ.(Xr
κ→→→→→→→→→ X)→ (FXr

κ→→→→→→→→→ X))→ XI
µ∗ : (∗ → ∗)→ ∗ = λF ∗→∗. ∀X∗.(∀Xr∗.(Xr → X)→ (F Xr → X))→ X

µ∗→∗ : ((∗ → ∗)→ (∗ → ∗))→ (∗ → ∗)

= λF (∗→∗)→(∗→∗).λX∗1 .∀X∗→∗.(∀Xr∗→∗.(∀X∗1 .XrX1 → XX1)→ (∀X∗1 .F XrX1 → XX1))→ XX1

µNat→∗ : ((Nat→ ∗)→ (Nat→ ∗))→ (Nat→ ∗)

= λF (Nat→∗)→(Nat→∗).λiNat1 .∀XNat→∗.(∀XrNat→∗.(∀iNat1 .Xri1 → Xi1)→ (∀iNat1 .F Xri1 → Xi1))→ Xi1

Inκ : ∀Fκ→κ.F (µκF )
κ→→→→→→→→→ µκF = λxr.λxϕ.xϕ (mitκ xϕ)xr

mitκ : ∀Fκ→κ.∀Xκ.(∀Xrκ.(Xr
κ→→→→→→→→→ X)→ (FXr

κ→→→→→→→→→ X))→ (µκF
κ→→→→→→→→→ X) = λxϕ.λxr.xr xϕ

Figure 7. Embedding of the recursive operators (µκ), their data constructors (Inκ), and the Mendler-style iterators (mitκ).

4.3 Leibniz index equality
The quantification over type-indexed kinding available in Sys-
tem Fi allows the definition of Leibniz-equality type constructors
EqA : A→ A→ ∗ on closed types A, defined as follows:

EqA , λi
A. λjA. LEqA{i}{j} × LEqA{j}{i} ,

where LEqA , λi
A. λjA. ∀XA→∗. X{i} → X{j} .

For FA ∈ {EqA, LEqA}, observe that the following types are
inhabited:

(Reflexive) ∀iA. FA{i}{i}
(Transitive) ∀iA.∀jA. ∀kA. FA{i}{j} → FA{j}{k} → FA{i}{k}
(Logical) ∀iA. ∀jA. FA{i}{j} → ∀fA→B . FB{f i}{f j}

∀fA→B .∀gA→B . FA→B{f}{g} → ∀iA. FB{f i}{g i}

Hence Leibniz equality is a congruence; in that, in addition to the
above one also has the inhabitation of the type

(Symmetric) ∀iA.∀jA. EqA{i}{j} → EqA{j}{i}

In applications, the types LEqA are useful in constraining the
term-indexing of datatypes. A general such construction is given by
the type constructors RanA,B : (A→ B)→ (A→ ∗)→ B → ∗.
These are defined as

RanA,B , λf
A→B . λXA→∗. λjB .∀iA. LEqB{j}{f i} → X{i}

and are in spirit right Kan extensions, a notion that is being exten-
sively used in programming, e.g. [2, 12]. One of their usefulness
comes from the fact that the following type is inhabited by a sec-
tion

∀Y B→∗.∀XA→∗.∀fA→B .(
∀iA. Y {f i} → X{i}

)
→

(
∀jB . Y {j} → (RanA,B{f}X){j}

)
This allows one to represent functions from input datatypes with
constrained indices as plain indexed functions, and vice versa. For
instance, by means of the iterators of the previous section one can
define a vector tail function of type

∀X∗. ∀jNat. VecX {j} →
(
RanNat,Nat {S}(VecX)

)
{j}

and retract it to one of type

∀X∗. ∀iNat. VecX {S i} → VecX {i} .

Analogously, one can use an iterator to define a single-variable
capture-avoiding substitution function of type

∀iNat. (Lam Fin){i}
→

(
RanNat,Nat{S}(λjNat. Lam Fin{j} → Lam Fin{j})

)
{i}

and then retract it to one of type

∀iNat. (Lam Fin){S i} → (Lam Fin){i} → (Lam Fin){i} .
Type constructors LanA,B : (A→ B)→ (A→ ∗)→ B → ∗,

which are in spirit left Kan extensions, permit the encoding of func-
tions of type (∀iA. F{i} → G{t i}), for F : A→ ∗, G : B → ∗,
and t : A→ B, as functions of type (∀jB . (LanA,B{t}F ){j} →
G{j}). Left Kan extensions are dual to right Kan extensions, but
to define them as such one needs existential and product types. In
formalisms without them, these have to be encoded. This can be
done as follows:

LanA,B , λfA→B . λXA→∗. λjB .

∀Z∗. (∀iA. LEqB{f i}{j} → X{i} → Z)→ Z

The type

∀XA→∗.∀Y B→∗. ∀fA→B .
(∀iA. X{i} → Y {f i})→ (∀jB . (LanA,B{f}X){j} → Y {j})

is thus inhabited by a section, providing a retractable coercion
between the two functional representations.

Left Kan extensions come with a canonical section of type
∀fA→B . ∀XA→∗. ∀iA. X{i} → (LanA,B{f}X){f i} that, ac-
cording to a reindexing function t : A→ B, embeds an A-indexed
type F (at index s) into the B-indexed type LanA,B{t}F (at index
t s). For instance, the type constructor LanA,A×A{λx. pairxx}
embeds arrays of types into matrices along the diagonal; while the
type constructors LanA×A,A{fst} and LanA×A,A{snd} respec-
tively encapsulate matrices of types as arrays by columns and by
rows.

5. Metatheory
The expectation is that System Fi has all the nice properties of
System Fω , yet is more expressive because of the addition of term-
indexed types.

We show some basic well-formedness properties for the judg-
ments of Fi in §5.1. We prove erasure properties of Fi, which cap-
tures the idea that indices are erasable since they are irrelevant for
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reduction in §5.2. We show strong normalization, logical consis-
tence, and subject reduction for Fi by reasoning about well-known
calculi related to Fi in §5.3.

5.1 Well-formedness properties and substitution lemmas
We want to show that the sorting, kinding, and typing deriva-
tions give well-formed results under well-formed contexts. That
is, sorting derivations result in well-formed sorts (Proposition 1),
kinding derivations result in well-sorted kinds under well-formed
type level contexts (Proposition 2), and typing derivations result in
well-kinded types under well-formed type and term level contexts
(Proposition 3).

Since the definitions of sorting, kinding, and typing rules are
mutually recursive, these three properties are considered as one big
property (illustrated below) in order to be more rigorous abouts the
induction principle used in the proof.

Proposition (The big well-formedness property of Fi, roughly4 ).

case ` κ : � ` κ : s
s = �

(Proposition 1)

case ∆ ` F : κ ` ∆ ∆ ` F : κ
` κ : �

(Proposition 2)

case ∆; Γ ` t : A
∆ ` Γ ∆; Γ ` t : A

∆ ` A : ∗
(Proposition 3)

The big well-formedness property has one of the three forms –
` κ : � (sorting), ∆ ` F : κ (kinding), and ∆; Γ ` t : A

typing. That is, a derivation for a judgment of either sorting, kind-
ing, or typing results in either a well-formed sort (when it is a
sorting judgment), a well-sorted kind (when it is a kinding judg-
ment), or a well-kinded type (when it is a typing judgment), under
well-formed contexts for the judgment (no context for sorting judg-
ments, ∆ for kinding judgments, and ∆; Γ for typing judgments).

We can prove the big well-formedness property of Fi by induc-
tion on the derivation of a judgment, which can be any one of the
three forms. Here, we illustrate the proof for the three propositions
as if they were separate proofs. Because it provides a more intuitive
proof sketch, during the proof description, the proof for each propo-
sition references the other properties (which are yet another appli-
cation of the induction hypothesis of the big well-formedness prop-
erty). So, when we say “by induction” during the proofs, what we
really mean is the induction hypothesis of the big well-formedness
property.

Proposition 1 (sorting derivations result in well-formed sorts).
` κ : s
s = �

Proof. Obvious since � is the only sort in Fi. �

Proposition 2 (kinding derivations under well-formed contexts
result in well-sorted kinds).

` ∆ ∆ ` F : κ
` κ : �

Proof. By induction on the derivation.

4 Technically, this is not yet completely rigorous since there are three more
forms of judgments in the mutually recursive definition. The kind equality,
type considered equality, and term equality rules are part of the mutually
recursive definition along with the sorting, kinding, and typing rules. So,
the complete description of the big well-formedness property will consist
of six cases, which correspond to Proposition 1, Proposition 2, Proposition
3, Lemma 1, Lemma 2, and Lemma 3.

case (V ar) Trivial by the second well-formedness rule of ∆.
case (Conv) By induction and Lemma 1.
case (λ) By induction and Proposition 1 we know that ` κ : �.

By the second well-formedness rule of ∆, we know that `
∆, Xκ since we already know that ` κ : � and ` ∆ from
the property statement.
By induction, we know that ` κ′ : � since we already know
that ` ∆, Xκ and that ∆, Xκ ` F : κ′ from induction
hypothesis.
By the sorting rule (R), we know that ` κ → κ′ : � since we
already know that ` κ : � and ` κ′ : �.

case (@) By induction, easy.
case (λi) By induction we know that · ` A : ∗. By the third well-

formedness rule of ∆, we know that ` ∆, iA since we already
know that · ` A : ∗ and that ` ∆ from the property statement.
By induction, we know that ` κ : � since we already know that
` ∆, iA and that ∆, iA ` F : κ from the induction hypothesis.
By the sorting rule (Ri), we know that ` A → κ : � since we
already know that · ` A : ∗ and ` κ : �.

case (@i) By induction and Proposition 3, easy.
case (→) Trivial since ` ∗ : �.
case (∀) Trivial since ` ∗ : �.
case (∀i) Trivial since ` ∗ : �. �

The basic structure of the proof for the following proposition
on typing derivations is similar to above. So, we illustrate the proof
for most of the cases, which can be done by applying the induction
hypothesis, rather bravely. We elaborate more on interesting cases
(∀E) and (∀Ei) which involve substitutions in the types resulting
from the typing judgments.

Proposition 3 (typing derivations under well-formed contexts re-
sult in well-kinded types).

∆ ` Γ ∆; Γ ` t : A

∆ ` A : ∗

Proof. By induction on the derivation.

case (:) Trivial by the second well-formedness rule of Γ.
case (: i) Trivial by the third the well-formedness rule of ∆.
case (=) By induction and Lemma 2.
case (→I) By induction and well-formedness of Γ.
case (→E) By induction.
case (∀I) By induction and well-formedness of ∆.
case (∀E) By induction we know that ∆ ` ∀Xκ.B : ∗.

By the kinding rule (∀), which is the only kinding rule able to
derive ∆ ` ∀Xκ.B : ∗, we know that ∆, Xκ ` B : ∗.
Then, we use the type substitution lemma (Lemma 4(1)).

case (∀Ii) By induction and well-formedness of ∆.
case (∀Ei) By induction we know that ∆ ` ∀iA.B : ∗.

By the kinding rule (∀i), which is the only kinding rule able to
derive ∆ ` ∀iA.B : ∗, we know that ∆, iA ` B : ∗.
Then, we use the index substitution lemma (Lemma 4(2)). �

Lemma 1 (kind equality is well-sorted). ` κ = κ′ : �
` κ : � ` κ′ : �

Proof. By induction on the derivation of kind equality and using
the sorting rules. �

Lemma 2 (type constructor equality is well-kinded).

∆ ` F = F ′ : κ

∆ ` F : κ ∆ ` F ′ : κ
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Proof. By induction on the derivation of type constructor equality
and using the kinding rules. Also use the type substitution lemma
(Lemma 4(1)) and the index substitution lemma (Lemma 4(2)). �

Lemma 3 (term equality is well-typed).
∆,Γ ` t = t′ : A

∆,Γ ` t : A ∆,Γ ` t′ : A

Proof. By induction on the derivation of term equality and using the
typing rules. Also use the term substitution lemma (Lemma 4(3)).

�

The proofs for the three lemmas above are straightforward once
we have dealt with the interesting cases for the equality rules in-
volving substitution. We can prove those interesting cases by ap-
plying the substitution lemmas. The other cases fall into two cat-
egories: firstly, the equality rules following the same structure of
the sorting, kinding, and typing rules; and secondly, the reflexive
rules and the transitive rules. The proof for the equality rules fol-
lowing the same structure of the sorting, kinding, and typing rules
can be proved by induction and applying the corresponding sorting,
kinding, and typing rules. The proof for the reflexive rules and the
transitive rules can be proved simply by induction.

Lemma 4 (substitution).

1. (type substitution)
∆, Xκ ` F : κ′ ∆ ` G : κ

∆ ` F [G/X] : κ′

2. (index substitution)
∆, iA ` F : κ ∆; · ` s : A

∆ ` F [s/i] : κ

3. (term substitution)
∆; Γ, x : A ` t : B ∆; Γ ` s : A

∆,Γ ` t[s/x] : B

The substitution lemma is fairly standard, comparable to substi-
tution lemmas in other well-known systems such as Fω or ICC.

5.2 Erasure properties
We define a meta-operation of index erasure that projects Fi-types
to Fω-types.

Definition 1 (index erasure).

κ◦ ∗◦ = ∗ (κ1 → κ2)◦ = κ1
◦ → κ2

◦ (A→ κ)◦ = κ◦

F ◦ X◦ = X (A→ B)◦ = A◦ → B◦

(λXκ.F )◦ = λXκ◦ .F ◦ (λiA.F )◦ = F ◦

(F G)◦ = F ◦ G◦ (F {s})◦ = F ◦

(∀Xκ.B)◦ = ∀Xκ◦ .B◦ (∀iA.B)◦ = B◦

∆◦ ·◦ = · (∆, Xκ)◦ = ∆◦, Xκ◦ (∆, iA)◦ = ∆◦

Γ◦ ·◦ = · (Γ, x : A)◦ = Γ◦, x : A◦

Example 2. The meta-operation of index erasure simply discards
all indexing information. The effect of this on most datatypes is to
project the indexing invariants while retaining the type structure.
This is clearly seen for the vector type constructor Vec whose index
erasure is the list type constructor List, see Figure 5. One can
however build pathological examples. For instance, the type PA ,
∀iA. ∀jA. LEqA{i}{j} has index erasure Unit , ∀X∗. X → X .

Theorem 1 (index erasure on well-sorted kinds). ` κ : �
` κ◦ : �

Proof. By induction on the sorting derivation. �

Remark 1. For any well-sorted kind κ in Fi, κ◦ is a kind in Fω .

Theorem 2 (index erasure on well-formed type level contexts).
` ∆
` ∆◦

Proof. By induction on the derivation for well-formed type level
context and using Theorem 1. �

Remark 2. For any well-formed type level context ∆ in Fi, ∆◦ is
a well-formed type level context in Fω .

Theorem 3 (index erasure on kind equality). ` κ = κ′ : �
` κ◦ = κ′◦ : �

Proof. By induction on the kind equality judgement. �

Remark 3. For any well-sorted kind equality ` κ = κ′ : � in Fi,
` κ◦ = κ′◦ : � is a well-sorted kind equality in Fω .

The three theorems above on kinds are rather simple to prove
since there is no need to consider mutual recursion in the defini-
tion of kinds due to the erasure operation on kinds. Recall that the
erasure operation on kinds discards the type (A) appearing in the
index arrow type (A → κ). So, there is no need to consider the
types appearing in kinds and the index terms appearing in those
types, after the erasure.

Theorem 4 (index erasure on well-kinded type constructors).
` ∆ ∆ ` F : κ

∆◦ ` F ◦ : κ◦

Proof. By induction on the kinding derivation.

case (V ar) Use Theorem 2.
case (Conv) By induction and using Theorem 3.
case (λ) By induction and using Theorem 1.
case (@) By induction.
case (λi) We need to show that ∆◦ ` (λiA.F )◦ : (A→ κ)◦, which

simplifies to ∆◦ ` F ◦ : κ◦ by Definition 1.
By induction, we know that (∆, iA)◦ ` F ◦ : κ◦, which
simplifies ∆◦ ` F ◦ : κ◦ by Definition 1.

case (@i) We need to show that ∆◦ ` (F {s})◦ : κ◦, which
simplifies to ∆◦ ` F ◦ : κ◦ by Definition 1.
By induction we know that ∆◦ ` F ◦ : (A → κ)◦, which
simplifies to ∆◦ ` F ◦ : κ◦ by Definition 1.

case (→) By induction.
case (∀) We need to show that ∆◦ ` (∀Xκ.B)◦ : ∗◦, which

simplifies to ∆◦ ` ∀Xκ◦ .B◦ : ∗ by Definition 1.
Using Theorem 1, we know that ` κ◦ : �.
By induction we know that (∆, Xκ)◦ ` B◦ : ∗◦, which
simplifies to ∆◦, Xκ◦ ` B◦ : ∗ by Definition 1.
Using the kinding rule (∀), we get exactly what we need to
show: ∆◦ ` ∀Xκ◦ .B◦ : ∗.

case (∀i) We need to show that ∆◦ ` (∀iA.B)◦ : ∗◦, which
simplifies to ∆◦ ` B◦ : ∗ by Definition 1.
By induction we know that (∆, iA)◦ ` B◦ : ∗◦, which
simplifies ∆◦ ` B◦ : ∗ by Definition 1. �

Theorem 5 (index erasure on type constructor equality).

∆ ` F = F ′ : κ

∆◦ ` F ◦ = F ′◦ : κ◦
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Proof. By induction on the derivation of type constructor equality.
Most of the cases are done by applying the induction hypothesis

and sometimes using Proposition 2.
The only interesting cases, which are worth elaborating on, are

the equality rules involving substitution. There are two such rules.

∆, Xκ ` F : κ′ ∆ ` G : κ

∆ ` (λXκ.F )G = F [G/X] : κ′

We need to show ∆◦ ` ((λXκ.F )G)◦ = (F [G/X])◦ : κ′◦,
which simplifies to ∆◦ ` (λXκ◦ .F ◦)G◦ = (F [G/X])◦ : κ′◦ by
Definition 1.

By induction, we know that (∆, Xκ)◦ ` F ◦ : κ′◦, which
simplifies to ∆◦, Xκ◦ ` F ◦ : κ′◦ by Definition 1.

Using the kinding rule (λ), we get ∆◦ ` λXκ◦ .F ◦ : κ◦ → κ′◦.
Using the kinding rule (@), we get ∆◦ ` (λXκ◦ .F ◦)G◦ : κ′◦.
Using the very equality rule of this case,

we get ∆◦ ` (λXκ◦F ◦)G◦ = F ◦[G◦/X] : κ′◦.
All we need to check is (F [G/X])◦ = F ◦[G◦/X], which is

easy to see.

∆, iA ` F : κ ∆; · ` s : A

∆ ` (λiA.F ) {s} = F [s/i] : κ

By induction we know that ∆◦ ` F ◦ : κ◦.
The erasure of the left hand side of the equality is

((λiA.F ) {s})◦ = (λiA.F )◦ = F ◦.
All we need to show is (F [s/i])◦ = F ◦, which is obvious since

index variables can only occur in index terms and index terms are
always erased. Recall the index erasure over type constructors in
Definition 1; in particular, (λiA.F )◦ = F ◦, (F{s})◦ = F ◦, and
(∀iA.B)◦ = B◦. �

Remark 4. For any well-kinded type constructor equality ∆ `
F = F ′ : κ in Fi, ∆◦ ` F ◦ = F ′◦ : κ◦ is a well-kinded type
constructor equality in Fω .

The proofs for the two theorems above on type constructors
need not consider mutual recursion in the definition of type con-
structors due to the erasure operation. Recall that the erasure oper-
ation on type constructors discards the index term (s) appearing in
the index application (F {s}). So, there is no need to consider the
index terms appearing in the types after the erasure.

Theorem 6 (index erasure on well-formed term level contexts).
∆ ` Γ

∆◦ ` Γ◦

Proof. By induction on Γ.

case (Γ = ·) It trivially holds.
case (Γ = Γ′, x : A), we know that ∆ ` Γ′ and ∆ ` A : ∗ by the

well-formedness rules and that ∆◦ ` Γ′◦ by induction.
From ∆ ` A : ∗, we know that ∆◦ ` A◦ : ∗ by Theorem 4.
We know that ∆◦ ` Γ′◦, x : A◦ from ∆◦ ` Γ′◦ and ∆◦ ` A◦ :
∗ by the well-formedness rules.
Since Γ′◦, x : A◦ = (Γ′, x : A)◦ = Γ◦ by definition, we know
that ∆◦ ` Γ◦.

�

Theorem 7 (index erasure on index-free well-typed terms).
∆ ` Γ ∆; Γ ` t : A

∆◦; Γ◦ ` t : A◦
(dom(∆) ∩ FV(t) = ∅)

Proof. By induction on the typing derivation. Interesting cases are
the index related rules (: i), (∀Ii), and (∀Ei). Proofs for the other
cases are straightforward by induction and applying other erasure
theorems corresponding to the judgment forms.

case (:) By Theorem 6, we know that ∆◦ ` Γ◦ when ∆ ` Γ.
By definition of erasure on term-level context, we know that
(x : A◦) ∈ Γ◦ when (x : A) ∈ Γ.

case (: i) Vacuously true since t does not contain any index variables
(i.e., dom(∆) ∩ FV(t) = ∅).

case (→I) By Theorem 4, we know that · ` A◦ : ∗. By induction,
we know that ∆◦; Γ◦, x : A◦ ` t◦ : B◦. Applying the (→I)
rule to what we know, we have ∆◦; Γ◦ ` λx.t◦ : A◦ → B◦.

case (→E) Straightforward by induction.
case (∀I) By Theorem 1, we know that ` κ◦ : �. By induction, we

know that ∆◦, Xκ◦ ; Γ◦ ` t : B◦. Applying the (∀I) rule to
what we know, we have ∆◦; Γ◦ ` t : ∀Xκ◦ .B◦.

case (∀E) By induction, we know that ∆◦; Γ◦ ` t : ∀Xκ◦ .B◦. By
Theorem 4, we know that ∆◦ ` G◦ : κ◦. Applying the (∀E)
rule, we have ∆◦; Γ◦ ` t : B◦[G◦/X].

case (∀Ii) By Theorem 4, we know that · ` A◦ : ∗. By induction,
we know that ∆◦; Γ◦ ` t : B◦, which is what we want since
(∀iA.B)◦ = B◦.

case (∀Ei) By induction, we know that ∆◦; Γ◦ ` t : B◦, which is
what we want since (B[s/i])◦ = B◦.

case (=) By Theorem 5 and induction. �

Example 3. The theorem yields that the pathological type PA
of Example 2 is not inhabited, as it is impossible to have both t : PA
and t : (PA)◦ = Unit. It follows as a corollary that the implication
of Theorem 7 does not admit a converse.

In this context for A = Void, note that even though one has
iVoid; · ` λx. i : ∀jVoid. ∀XVoid→∗. X{i} → X{j}, this open
term cannot be closed by rule (∀Ii) because of its side condition.
This is in stark contrast to what is possible in calculi with full
type dependency. In System Fi, the index variables in type level
context ∆ cannot appear dynamically at term level. Conversely,
term variables in the term level context Γ cannot be used for
instantiation of index polymorphic types (rule (∀Ei)).

Similar considerations to the above show that LEqA is not
symmetric, in that the type (Symmetric) in §4.3 is not inhabited.

We introduce an index variable selection meta-operation that
selects all the index variable bindings from the type level context.

Definition 2 (index variable selection).

·• = · (∆, XA)• = ∆• (∆, iA)• = ∆•, i : A

Theorem 8 (index erasure on well-formed term level contexts
prepended by index variable selection).

∆ ` Γ
∆◦ ` (∆•,Γ)◦

Proof. Straightforward by Theorem 6 and the typing rule (: i). �

The following result is the appropriate version of Theorem 7
without the side condition therein.

Theorem 9 (index erasure on well-typed terms).

∆ ` Γ ∆; Γ ` t : A

∆◦; (∆•,Γ)◦ ` t : A◦

Proof. The proof is almost the same as that of Theorem 7, except
for the (: i) case. The proof for the rule (: i) case is easy since
(i : A) ∈ ∆• when iA ∈ ∆ by definition of the index variable
selection operation. The indices from ∆ being prepended to Γ do
not affect the proof for the other cases. �
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5.3 Strong normalization and logical consistency
Strong normalization is a corollary of the erasure property since we
know that System Fω is strongly normalizing. Logical consistency
is immediate since System Fi is a strict subset of the restricted
implicit calculus [15], which is in turn a restriction of ICC [16].
Subject reduction is also immediate for the same reason.

6. Related work
System Fi is most closely related to Curry-style System Fω[1, 2, 9]
and the Implicit Calculus of Constructions (ICC) [16]. All terms
typable in a Curry-style System Fω are typable (with the same type)
in System Fi and all terms typable in Fi are typable (with the same
type5) in ICC.

We can derive strong normalization, logical consistency, and
subject reduction of System Fi, from both System Fω and a subset
of ICC. In fact, ICC is more than just an extension of System Fiwith
dependent types and stratified universes. ICC includes η-reduction
and the extensionality typing rule. We do not foresee any problems
adding η-reduction and the extensionality typing rule to System Fi.
Although System Fi accepts fewer terms than ICC, it enjoys sim-
pler erasure properties (Theorem 7 and Theorem 9), which ICC
cannot enjoy due to its support for full dependent types. In Sys-
tem Fi, index terms appearing in types (e.g., s in F{s}) are al-
ways erasable. Mishra-Linger and Sheard [17] generalized the ICC
framework to one which describes erasure on arbitrary Church-
style calculi (EPTS) and Curry-style calculi (IPTS), but they only
consider β-equivalence for type conversion.

We mentioned (§3.1) that Curry-style calculi enjoy better reduc-
tion properties (e.g. βη-reduction is Church-Rosser) than Church-
style calculi. For Church-style terms with βη-reduction, Nederpelt
[19] gave a counterexample to the Church-Rosser property. Geu-
vers [8] proved that βη-reduction is Church-Rosser in functional
PTSs, which are special classes of Church-style calculi. Seldin [20]
discusses the relationship between the Church-style typing and the
Curry-style typing.

In the practical setting of programming language implementa-
tions, Yorgey et al. [27], inspired by McBride [14], designed an
extension to Haskell, allowing datatypes to be used as kinds. For
instance, Bool is promoted to a kind (i.e., Bool : �) and its data
constructors True and False are promoted to types. To support
this, they extended System FC (The Glasgow Haskell Compiler’s
(GHC) intermediate core language), naming the extension System
F ↑C . The key difference between F ↑C and Fi is the kind syntax, as
illustrated below:

F ↑C kinds : κ ::= ∗ | κ→ κ | F~κ | X | ∀X .κ | · · ·
Fi kinds : κ ::= ∗ | κ→ κ | A→ κ

In F ↑C , all type constructors (F ) are promotable to the kind level
and become kinds when fully applied to other kinds (F~κ). On the
other hand, in Fi, a type can only appear as the domain of an in-
dex arrow kind (A → κ). This seemingly small difference allows
F ↑C to be a much more expressive language than Fi. The promotion
of a type constructor, for instance, List : ∗ → ∗ to a kind con-
structor List : � → � enables type-level data structures such as
[Nat, Bool, Nat→ Bool] : List ∗. Type-level data structures mo-
tivate type-level computations over promoted data. This is made
possible by type families6. The promotion of polymorphic types
naturally motivates kind polymorphism (∀X .κ), which is known
to break strong normalization and cause logical inconsistency [10].
In a functional programming language, inconsistency is not an is-

5 The ∗ kind in Fω and Fi corresponds to Set in ICC
6 A GHC extension to define type-level functions in Haskell.

sue. However, when studying term-indexed datatypes in a logically
consistent calculi, we need a more conservative approach, as in Fi.

System Fi is the smallest possible extension to Fω that we could
devise that maintains normalization and consistency. An alternative
is to restrict a system with full-spectrum dependent types. Swamy
et al. [24] developed F ∗, a language for secure distributed pro-
gramming with value dependent types. Terms appearing in depen-
dent types in F ∗ are restricted to first-order values, similar to the
value restriction of ML type inference. Taming dependent types
with this restriction, they were able to have a usable programming
language and self-certify [22] their compiler by implementing F ∗

type checker in F ∗.
The Literature about type equality constraints in systems sup-

porting GADTs is vast. We list just a few. System FC [23] is ar-
guably the most influential system, being the core language of
GHC. Vytiniotis and Weirich [25] proved parametricity of Sys-
tem Rω [7] (an extension to Curry-style System Fω with the type-
representation datatype and its primitive recursor), so that one may
derive free theorems [26] in the presence of type equalities.

7. Conclusion and Future work
System Fi is a strongly-normalizing, logically-consistent, higher-
order polymorphic lambda calculus that was designed to support
the definition of datatypes indexed by both terms and types. In
terms of expressivity, System Fi sits between System Fω and ICC.
We designed System Fi as a tool to reason about programming
languages with term-indexed datatypes.

We have applied this tool to the design of the programming lan-
guage Nax (not yet published). Nax is given semantics in terms of
System Fi. In Nax, Mendler style operators are primitive operators
with their own typing rules. Nax has been designed to be expres-
sive over the Hindley-Milner subset of System Fi. It supports type
inference with minimal typing annotations. We believe this is an ad-
vantage made possible because our extensions to Fω are all static.
This would be made much more difficult had we restricted ICC.

Typing annotations in Nax are necessary only on case state-
ments (for non-recursive term-indexed datatypes) and Mendler-
style operators (for recursive term-indexed datatypes). Programs
involving only type-indexing require no annotations elsewhere. A
typing annotation takes a limited form of a large elimination, which
is an abstraction over both type- and term-indices to types (e.g.,
X, i1, i2 7→ FX{i1 + i2}), which is somewhat similar to the con-
voy pattern idiom [5] found in Coq scripts to aid type checking de-
pendent case expressions. Future work includes richer form of large
elimination, which enables selection of different type constructors
for the result type of case statements and Mendler-style operators
(e.g., X, i1, i2 7→ if i1 < i2 then F1 X {i1} else F2 X {i2} ).
Enriching the type annotations in Nax will motivate us to identify
the features needed to extend Fi to support a notion of large elimi-
nations.
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Abstract
We consider how to improve error diagnosis for a security analysis
defined for a simply-typed call by value lambda calculus extended
with lists, pairs and the security specific constructs declassify and
protect. We first provide a non-standard type system in which
types are annotated with security levels, and discuss its associated
constraint-based implementation. We can then define and motivate
heuristics that help diagnose inconsistencies among the constraints,
and show their effect on a selection of security incorrect programs.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features—Polymorphism;
F.3.2 [Logics and Meanings of Programs]: Semantics of Program-
ming Languages—Program analysis; F.3.3 [Logics and Meanings
of Programs]: Studies of Program Constructs—Functional con-
structs, Type structure

General Terms Languages, Theory

Keywords type-based program analysis, security analysis, error
feedback

1. Introduction
We take for granted that a compiler for a strongly-typed language
refuses to generate code for a program that is not type correct.
Nowadays, we also expect the compiler to provide a reasonable
explanation of what is wrong, as long as the languages features
we use are not very experimental. This has not always been the
case. As the literature study of Heeren [12] documents, the problem
of type error diagnosis for the Hindley-Milner type system, and
several extensions thereof, has been extensively studied, and we
believe that this work has had its effects on modern compilers of,
say, Haskell. Thus far, however, most effort in this area has been
directed to the intrinsic type systems of functional programming
languages, and not to other validation-oriented type based analyses
such as security analysis [30].

Consider the following expression (taken from [13]; this is not
code anyone would care to write) for which we have provided
explicit type and security annotations:

[Copyright notice will appear here once ’preprint’ option is removed.]

if (True :: BoolH) then (True :: BoolL)
else (False :: BoolL) :: BoolL

In this expression, an annotation H means that the expression to
which it is attached, delivers values that are highly confidential.
Expressions annotated with L deliver values of low confidential-
ity. The purpose of security analysis is to verify that data is never
leaked to expressions that may also evaluate to less confidential
data. Intuitively, in a security correct program no value may inad-
vertently influence a value of a lesser security level. In the expres-
sion above, this is not the case: because the value of the condition
decides whether the then or else part must be evaluated, so observ-
ing the value of the low confidentiality result reveals information
about the highly confidential conditional. Therefore, the expression
is not security type correct (although it is type correct) and it should
be rejected. The problem can be fixed by changing the annotation
on the condition to L, or by changing the annotation on the com-
plete expression to H.

King et al [17] observed that information-flow reporting tech-
niques are inadequate to explain security type errors. In their work
they assign information-flow blame, and provide traces of the Java
programs they analyze to show how values of high confidentiality
end up in locations that may only expose values of lower confiden-
tiality. Their work, however, does not transfer easily to a functional
setting: their analysis is (largely) context-insensitive (i.e., mono-
variant), the language they consider is first-order, there is no discus-
sion of parametric polymorphism, and their trace-like explanation
does not seem so natural for a higher-order functional language.
Moreover, as the authors themself suggest, their work has not been
combined with heuristics to further prune the traces they provide
(see, e.g., [15] on the CQual tool, and [9] for work on Hindley-
Milner).

The paper offers the following contributions:

• We address the problem of security type error diagnostics for
a polyvariant lambda-calculus extended with recursion, lists
and tuples, and special security specific constructs, declassify
and protect. This language is strongly influenced by Flow-
Caml [24].
• We are the first to combine the type error slicing approach of

Haack and Wells [8] with the heuristic approach of Heeren [12].
• We introduce and motivate a number of heuristics, divided into

four essentially different categories, as described in Section 2.
We provide a substantial number of example programs that how
our approach works, and
• provide a prototype implementation of our work obtainable at
http://www.cs.uu.nl/people/jur/sfunplusplus.zip
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F i l e ” Login . fml ” , l i n e 11 , c h a r a c t e r s 0−144:
Th i s e x p r e s s i o n g e n e r a t e s t h e f o l l o w i n g

i n f o r m a t i o n f low :
r o o t < e v e r y o n e
which i s n o t l e g a l .

Figure 1. Error message for FlowCaml.

The paper is structured as follows. We describe our approach in
Section 2. In Section 3 we define the subject language, specify the
security annotated type system and indicate how the type system
can be transformed into an inference algorithm. In Section 4 we
then describe the heuristics we have devised, and Section 5 gives
further examples as a first step in validating our work. In Section 6
we discuss related work, and Section 7 concludes. For reasons of
space we omit many details, in particular, example code for the
FlowCaml system and SecLib library, and the complete inference
algorithm and constraint solver that implement the security type
system. These details can be obtained from [33]; substantial parts
have also been included in the supplemental material as appendices
as a courtesy to the reviewers.

2. Approach
In this section we describe our approach and the heuristics that
come into play, described at a high level. The type based security
analysis we provide error diagnosis for is polyvariant and includes
a rule for subeffecting, but not full subtyping. The rule for subef-
fecting is somewhat more restrictive than that of full subtyping, but
this is not relevant for our work here (and note that the loss preci-
sion is to a large extent compensated for by the polyvariance of the
analysis). Our source language is a higher-order polymorphic func-
tional language, very much akin to FlowCaml, an implementation
based on the Core ML language [23, 24].

In a FlowCaml program the programmer describes the relations
that must hold in the lattice of security levels, e.g., !everyone <
!root . If, during analysis, the analyzer finds that !root<!everyone ,
then an error has occurred, and this is communicated to the pro-
grammer. An example error message of this kind is given in Fig-
ure 1. The message explains there is an illegal flow, and the loca-
tion points to the line where the definition where the inconsistency
is detected begins. Although correct, the message does not explain
how the flow was derived, which subexpressions were responsible,
and what the programmer can do to fix the problem. For reasons
of space, we omit the example program written in FlowCaml and
further discussion (see Appendix A for details).

Essentially, our work combines the approaches of Hage and
Heeren [9, 12], and Haack and Wells [8]. Like Haack and Wells,
we first compute a (security) type error slice when a security type
error has been found. A security type error slice is a program slice
(or fragment) that only contains those parts of the program that
contribute to the error. The constraints that are needed to construct
such a slice together form a minimal unsatisfiable set of constraints:
remove any of its elements, and it becomes satisfiable. If a program
contains multiple errors, then the next error will be revealed only
after the first one has been corrected.

For completeness, we repeat the details on how to compute
a minimal unsatisfiable set of constraints from the complete set
of constraints. Haack and Wells [8], and Stuckey, Sulzmann and
Wazny [28] both present an algorithm for computing such a set. We
follow the algorithm presented by Stuckey, Sulzmann and Wazny
in Section 7 of [28], as displayed in Figure 2. The algorithm takes
an unsatisfiable set of constraints D and constructs a minimal un-
satisfiable set of constraints M iteratively. The algorithm consists
of two nested while loops: the inner loop adds a constraint from

minUnsat (D) = do
M = { }
while satisfiable M {
C = M
while satisfiable C {

let e ∈ D − C
C = C ∪ {e }
}
D = C
M = M ∪ {e }
}
return M

Figure 2. Computing a minimal unsatisfiable set of constraints

the original set D minus C, to a copy, called C, of the unsatisfiable
set collected thus far. When C becomes unsatisfiable in the inner
loop, then the last added constraint is known to contribute to the
error, and it is then added to the minimal unsatisfiable set M . This
process continues until the set M becomes unsatisfiable.

Displaying the security type error slice is a first approximation
for the type error, but in some cases there may be strong evidence
that a smaller set of locations will do just as well, or that we can
suggest a fix for the mistake. In Section 4, we present a number of
heuristics that inspect the constraints in the minimal unsatisfiable
set to determine whether certain constraints/locations should never
be marked as the cause of a security type error or, just the oppo-
site, a particular constraint should be blamed for the mistake. In the
latter case, a very specific security type error message can be pro-
vided. Because a compiler cannot know what the intentions of the
programmer are, we are taking a risk here. This risk can be miti-
gated by, for example, offering various security error messages and
allowing the programmer to scan through these. Our implementa-
tion currently offers only one error message. Adding a facility such
as we just described is only a matter of engineering.

There are two good reasons to start from a minimal unsatisfiable
set of constraints. First, it is impossible to blame a constraint that
cannot be responsible for the mistake (which may be considered
a “soundness property” for the heuristics). Second, the heuristics
need only look at a restricted set of constraints, which we may hope
is much smaller than the complete set of constraints.

In the end, we will be left with a set of constraints that will
receive the blame for the mistake. When a constraint is generated,
meta information about the AST node where it was generated is
added to the constraint. The collection of AST nodes associated
with the constraints in the minimal unsatisfiable subset together
form the program slice. This slice can in itself be presented as an
error message, with some explanation on the nature of the error [8].

Because our analysis is polyvariant, simplification/solving of
constraints will take place for every definition, i.e., at any point
that generalisation is to take place. During this process of simpli-
fication (a call to simplify in the algorithm, see the definition of
generalisation in Section 3), the error diagnosis process we have
just sketched will be invoked whenever simplification results in an
inconsistency.

The heuristics we have implemented can be divided into four
categories:

• generic heuristics that borrow heavily from earlier work and
apply just as well in the current setting, e.g., a heuristic that
filters out constraints that equate the security level of a let-
expression with that of the let-body.
• propagation heuristics that prevent blaming code that only prop-

agates the security levels of their inputs. For example, blaming a
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function inc that increments an integer value (and that implic-
itly maintains the level of confidentiality of its input) cannot
be sensibly blamed for an inconsistency. In practice, we expect
most functions to be of this kind. Changes in levels of confiden-
tality are most likely to arise from implicit control-flow (see the
example in the introduction), from security specific operations
like protect and declassify and from values explicitly provided
with security annotations.
• heuristics derived from the assumption that programmers may

be used to dealing with the intrinsic type system, and will be un-
aware of the subtle differences that arise from the fact that a se-
curity type system is in fact a dependency analysis [2]. We sys-
tematically derive these heuristics from observable differences
between the specification of security typing and the underlying
intrinsic type system.
• heuristics that are specific to security analysis, in particular the

operations of declassify and protect.

Although, we have no evidence to support this, we believe that
many of the heuristics and our approach can be reused in other
settings besides security analysis. For example, the heuristics in the
third category are also likely to apply to other dependency analyses.

3. Security type system
The language we use is based upon the Fun language (see Chap-
ter 3 of [20]), a simply typed, call-by-value lambda calculus. We
have extended Fun with a few special purpose security program
constructs as well as some additional features to make the analy-
sis and examples more interesting. We call this extended language
sFun++.

In this paper we employ the following syntactic categories

n ∈ Nat natural numbers ,
b ∈ Bool booleans ,
e ∈ Exp expressions ,

f , x ∈ Var variables ,
u,⊕ ∈ Op’,Op unary and binary operators ,

p ∈ Prog program ,
d ∈ Decl declarations ,
s ∈ Sec security levels

Most categories should speak for themselves. We note that the
category Sec ranges over security levels, which we assume to form
a lattice [4], meaning that given a finite non-empty set S of security
levels, there is a unique lowest security level that is at least as secure
as each element of S. The join operator of this lattice is, as usual,
denoted by t.

The abstract syntax of our language is defined as:

p ::= d∗

d ::= f = e1
e ::= n | b | x | fn x ⇒ e0 | fun f x ⇒ e0

| e0 e1 | if e0 then e1 else e2
| let x = e0 in e1 | e1 ⊕ e2 | u e1
| Cons e1 e2 | Nil | (e1, e2)
| fst e1 | snd e1 | null e1 | hd e1 | tl e1
| declassify e0 s | protect e0 s

A program p is a list of declarations, and each declaration binds
an expression to an identifier. As in [20], fn x ⇒ e0 defines a non-
recursive function and fun f x ⇒ e0 a recursive one. In the latter,
the identifier f refers to the recursively defined function. Function
application is left associative. Local definitions let x = e0 in e1
are non-recursive. Top level declarations are syntactic sugar for a
nested let. This means that a declaration can only use functions that
are declared earlier in the program. For data types we have pairs

(e1, e2), and lists are built from Cons and Nil as usual. Pairs are
destructed by fst and snd, and hd and tl destruct lists. Finally, we
can test for the empty list with the null predicate.

The two security constructs are protect and declassify. The ex-
pression protect e0 s increases the level of protection (security)
of an expression e0 to level s . It is important to note that this con-
struct can only increase the security level of e0, so level s has to
be at least as secure as the level at which e0 was previously pro-
tected. The expression declassify e0 s does exactly the opposite:
it decreases the security level of e0 to level s . The presence of this
construct implies that our analysis is not sound with respect to con-
fidentiality. However, without some form of declassification it will
be hard to write useful programs. For example, we cannot write a
valid program that informs an unauthorised user that he or she en-
tered an invalid password (assuming the password information is
confidential).

3.1 The sFun++ type language
As usual, we specify the security type system as an annotated type
system ([19], and Chapter 5 of [20]). Our security analysis is poly-
variant, which means that we can quantify over annotation vari-
ables. The relations between annotation variables, and restrictions
on them are expressed as constraints. These constraints may be
added to types, in the style of qualified types [16].

We introduce the following new syntactic categories:

α ∈ TyVar type variables
β ∈ AnnVar annotation variables
π ∈ Constr constraints
l ∈ Levels security levels
ϕ ∈ Ann security annotations
τ ∈ Ty annotated types
ρ ∈ Qualified Types qualified types
σ ∈ TyScheme annotated type schemes
C ∈ Constraints constraint set
Γ ∈ TyEnv type environments

The sets of annotation variables, AnnVar, and type variables,
TyVar are assumed to be mutually disjoint. An annotation is either
some security level l (taken from any given security lattice), or an
annotation variable β. Constraints relate two security levels, where
we take ϕ1 v ϕ2 to mean that ϕ2 is at least as secure as ϕ1.

ϕ ::= l | β
π ::= ϕ1 v ϕ2

We then define a three-layer type language:

τ ::= Int | Bool | List τϕ
| (τ1

ϕ, τ2
ϕ) | τ1ϕ → τ2

ϕ | α
ρ ::= π ⇒ ρ | τ
σ ::= ∀α. σ | ∀β. σ | ∃β. σ | ρ

The first layer, τ , consists of annotated types for the primitive
types, lists, pairs and function types. We introduce type variables in
order to be able to construct type schemes. Qualified types ρ consist
of a type and a sequence of constraints that further restrict the type.
Finally, type schemes allow us to quantify universally over type
and annotation variables, and existentially only over annotation
variables. The latter facility is used to deal with annotation type
variables that may be constrained in some way, but that are not
exposed as part of the type (see also [7]). Note that in contrast to
FlowCaml [24] we do have annotations on pairs. These only exists
for reasons of uniformity with other data types.

A type environment Γ is a mapping from variables x to a pair
consisting of a type scheme σ and a top-level annotation for x .

Γ ::= ∅ | Γ [x 7→ (σ, ϕ)]
C ::= ∅ | {π1, . . . , πn} ∪ C
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The pair associated with a variable x in an environment Γ
is written Γ (x ); it returns a pair associated with the rightmost
occurrence of x . Note that top level annotations are not present in
type schemes, but are stored separately in the type environment. As
a result, we can not quantify over these annotations, and therefore
declarations will never be polyvariant in their top level annotation.
Although one might think that this causes a loss of expressivity, the
presence of a rule for sub-effecting will counter this loss. Constraint
sets C will be used to store a constraint environment in our typing
judgment.

3.2 The security type system
In Figure 3 we give the non syntax directed type rules for our
security analysis. The main judgment is Γ, C ` e : σϕ, which
reads “under the type environment Γ and constraint environment
C, the expression e can have type σ and is protected at level
ϕ”. The constraint environment C contains the relations between
security levels that define the security lattice proper, as well as the
constraints that should hold for e .

We note that some of the rules in Figure 3 may specify a
family of rules. For example, in the rule [t-true], ϕ ranges over
the elements of the chosen lattice, and thereby provides a single
rule for each such element. In the case of [t-list], we have a rule for
each combination of choices for ϕ1 and ϕ2. Also note that the rule
t-int specifies an infinite family of rules: for every combination of
an integer n and an element of the security lattice ϕ. We shall now
discuss the more interesting rules one by one.

As seen in rules [t-Nil] and [t-Cons], lists have separate security
annotations for the elements and the structure of the list. Moreover,
these annotations are independent: we can, say, protect the length
of a list at a higher level than the actual contents, and vice versa.
Obviously, for the Cons case, the annotation on the new element
ϕ1 should correspond to the annotation on the elements of the list,
and the annotation on the argument list ϕ propagates to the result
list. For rules [t-null], [t-hd] and [t-tl] we note that the functions
null, hd and tl all reveal information about the structure of the
list, and hd additionally reveals information about the contents of
the list; hence the least upper bound in the consequent of [t-hd].
As mentioned before, for reasons of consistency pairs also have a
top level annotation, although we learn nothing from knowing the
structure of a pair that the type hasn’t already conveyed (see [t-
Pair], [t-fst] and [t-snd]).

Function application ([t-app]) requires the annotation of the
provided argument to be equal to the annotation of the expected
argument. The annotation of the application result is the least up-
per bound of the security level of the result, and of the result of
applying the function. The reason for the former, is that applying a
function may reveal information about that function. Functions de-
clared at top level are assigned the lowest security level ⊥, so then
the annotation of the application only depends on the annotation on
the result of the body; the same reasoning applies to operators in
the rules [t-Bin-op] and [t-Un-op].

For the rule [t-if ], recall from the Introduction that the security
annotation on the condition should also propagate to the security
level of the result of the conditional. Otherwise, the outcome may
leak secure information accessed during the evaluation of the con-
dition.

The influence of protect and declassify on the security levels
are expressed in the rules [t-protect] and [t-declass], respectively.
The expression protect e0 ϕ0 is protected at level ϕ0, under the
condition that e0 is at most as secure as ϕ0. Declassification does
exactly the opposite, lowering the level of security.

As evidenced by many of our rules, we typically insist that
different subexpressions have exactly the same annotated type. In
the rule [t-if ], for example, the condition, the then part and the

else part need to have exactly the same security level. This is by
itself too restrictive, making reasonable programs unanalysable.
Therefore, a rule for subeffecting, [t-sub], is introduced that may
increase the level of protection for an expression.

The rules for annotation generalisation and instantiation, [t-ann-
gen] and [t-ann-ins], are analogous to the standard rules [t-gen] and
[t-ins]. The rule [t-gen] uses the function ftv(x ) to compute the
free type variables in x , and [t-ann-gen] uses a similar function
fav to compute the free annotation variables. The functions are
straightforward, and we omit the details.

Qualification ([t-qual]) allows us to move a constraint from
the constraint set into the (qualified) type, and resolution ([t-res])
allows us to do the opposite. In Figure 4 rules for reasoning with
constraints are provided. The rule [c-in] states that if π is in C then
π holds. Transitivity is provided through the rule of [c-trans], and
reflexivity through [c-reflex]. The rules [c-bot] and [c-top] state that
any ϕ is above ⊥ and below >.

Our type system specification follows those described in [2, 24].
We are confident therefore that — omitting the rule for declassifica-
tion —, the security type system satisfies a non-interference result.
Intuitively, noninterference imples that replacing a expression of
some confidentiality with any other (of the same level of confiden-
tiality), does not change the values of any expression of lower con-
fidentiality. Since these properties are well-known, and our focus
in this paper is on deriving heuristics from the security type sys-
tem, we forego the definition of semantics that we need to formally
specify the non-interference result.

3.3 Towards an algorithm
In this section we follow Chapter 5 of [20]. In order to arrive at
an algorithm, we first turn the type system of Figure 3 into a type
system that is completely syntax-directed.

As usual, we replace the rules [t-var], [t-ins] and [t-ann-ins]
with a single rule for variables that immediately instantiates all
quantified type and annotation variables (with a fresh variable of
the right kind), thereby resulting in a type (and not a type scheme).
Similarly, generalisation is merged into the rule [t-let], in that it
takes the monotype found for the let-definition, generalises over all
free type and annotation variables, and attaches the resulting type
scheme to the let-defined identifier in the environment so that it may
be used inside the let-body. We give more details on the function
gen that performs the generalisation later in this section.

The syntax-directed type system can then be transformed into
an inference algorithm in the style of algorithm W [3]. Here we
follow the standard approach of dealing with annotations on types:
the traversal of the abstract syntax tree computes the underlying
types of the expressions, and introduces fresh annotation variables
wherever necessary. Annotations in types are restricted to annota-
tion variables, so that unification of annotated types is much sim-
plified. At this time, the security annotations themselves are not yet
computed, but, instead, concrete security information is expressed
by constraints between annotations, which are collected during the
traversal. These constraints can then later be solved by a worklist
algorithm, yielding the concrete security annotations for the expres-
sions in the program. For example, for the rule [t-app] we introduce
a fresh annotation variable, β say, to represent the security level of
the applcation e1 e2, and express its security level by constraints
ϕ v β and ϕ1 v β. In this way, we can express the entire analysis
in terms of constraints of the form v .

However, we must make one further adjustment to this process,
because the process we have just decribed only works for mono-
variant analysis.

Let-generalisation is performed on the annotated type of a let-
defined identifier before it is stored inside an annotated type envi-
ronment and passed to the body of the let. At this time, we have not
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Typing judgements Γ, C ` e : σϕ

Γ, C ` n : Intϕ
[t-int]

Γ, C ` true : Boolϕ
[t-true]

Γ, C ` false : Boolϕ
[t-false]

Γ, C ` Nil : (List τϕ2)ϕ1
[t-Nil]

Γ, C ` e1 : τϕ1 Γ, C ` e2 : (List τϕ1)ϕ

Γ, C ` Cons e1 e2 : (List τϕ1)ϕ
[t-Cons]

Γ, C ` e1 : τ1
ϕ1 Γ, C ` e2 : τ2

ϕ2

Γ, C ` (e1, e2) : (τ1
ϕ1 , τ2

ϕ2)ϕ
[t-Pair]

Γ (x ) = (σ, ϕ)

Γ, C ` x : σϕ
[t-var]

Γ [x 7→ (τx, ϕx)], C ` e0 : τ0
ϕ0

Γ, C ` fn x ⇒ e0 : τx
ϕx →ϕ τ0

ϕ0
[t-fn]

Γ [f 7→ (τx
ϕx → τ0

ϕ0 , ϕ)] [x 7→ (τx, ϕx)], C ` e0 : τ0
ϕ0

Γ, C ` fun f x ⇒ e0 : τx
ϕx →ϕ τ0

ϕ0
[t-fun]

Γ, C ` e1 : τ2
ϕ2 →ϕ τ0

ϕ0 Γ, C ` e2 : τ2
ϕ2

Γ, C ` e1 e2 : τ0
ϕtϕ0

[t-app]
Γ, C ` e0 : Boolϕ Γ, C ` e1 : τϕ Γ, C ` e2 : τϕ

Γ, C ` if e0 then e1 else e2 : τϕ
[t-if ]

Γ, C ` e1 : σϕ Γ [x 7→ (σ, ϕ)], C ` e2 : τ2
ϕ2

Γ, C ` let x = e1 in e2 : τ2
ϕ2

[t-let]

Γ, C ` e1 : τ1⊕
ϕ Γ, C ` e2 : τ2⊕

ϕ

Γ, C ` e1 ⊕ e2 : τ⊕
ϕ [t-Bin-op]

Γ, C ` e1 : τ1⊕
ϕ

Γ, C ` u e1 : τ⊕
ϕ [t-Un-op]

Γ, C ` e1 : (τ1
ϕ1 , τ2

ϕ2)ϕ

Γ, C ` fst e1 : τ1
ϕtϕ1

[t-fst]
Γ, C ` e1 : (τ1

ϕ1 , τ2
ϕ2)ϕ

Γ, C ` snd e1 : τ2
ϕtϕ2

[t-snd]

Γ, C ` e1 : (List τϕ1)ϕ

Γ, C ` null e1 : Boolϕ
[t-null]

Γ, C ` e1 : (List τϕ1)ϕ

Γ, C ` hd e1 : τϕ1tϕ [t-hd]
Γ, C ` e1 : (List τϕ1)ϕ

Γ, C ` tl e1 : (List τϕ1)ϕ
[t-tl]

Γ, C ` e : τϕ C ` ϕ0 v ϕ
Γ, C ` declassify e ϕ0 : τϕ0

[t-declass]
Γ, C ` e : τϕ C ` ϕ v ϕ0

Γ, C ` protect e ϕ0 : τϕ0
[t-protect]

Γ, C ` e : τϕ1 C ` ϕ1 v ϕ
Γ, C ` e : τϕ

[t-sub]

Γ, C ` e : σϕ β /∈ fav(Γ) ∪ fav(C) ∪ fav(ϕ)

Γ, C ` e : (∀β. σ)ϕ
[t-ann-gen]

Γ, C ` e : (∀β. σ)ϕ

Γ, C ` e : ([β 7→ ϕ1 ] σ)ϕ
[t-ann-ins]

Γ, C ` e : σϕ α /∈ ftv(Γ)

Γ, C ` e : (∀α. σ)ϕ
[t-gen]

Γ, C ` e : (∀α. σ)ϕ

Γ, C ` e : ([α 7→ τ ] σ)ϕ
[t-ins]

Γ, C ∪ {π} ` e : ρϕ

Γ, C ` e : (π ⇒ ρ)ϕ
[t-qual]

Γ, C ` e : (π ⇒ ρ)ϕ C ` π
Γ, C ` e : ρϕ

[t-res]

Figure 3. Non-syntax directed rules for security analysis

Typing judgements C ` π

π ∈ C
C ` π [c-in]

C ` ϕ1 v ϕ2 C ` ϕ2 v ϕ3

C ` ϕ1 v ϕ3
[c-trans]

C ` ϕ v ϕ [c-reflex]

C ` ⊥ v ϕ [c-bot]
C ` ϕ v > [c-top]

Figure 4. Rules for constraints

Submitted draft to IFL 2012 5 2012/6/29

313



only an annotated type for the identifier, but also a set of constraints
C that constrains the annotation variables within the annotated type
(and maybe some others as well). In order to establish over which
annotation variables we should universally or existentially quantify,
we must first simplify, or solve,C; this explains the use of simplify
in the definition of gen given in Figure 5. The task of simplify is
to decide whether the constraint set is still consistent, and, if this
is the case, remove trivially satisfied constraints, and return a parti-
tion (C′, C′′) of the remaining constraints. The latter contains con-
straints that involve annotation variables that are free in the environ-
ment Γ, while C′ contains the remaining constraints. We quantify
universally over the type and annotation variables that occur free
in τ , and quantify existentially over the remaining free annotation
variables (from C′). The constraints from C′ can be stored in the
type scheme, because they only involve annotation variables that
we just quantified over, while the constraints in C′′ are returned for
further propagation.

gen Γ ϕ τ C =
(∀α1 . . . αn.∀β1 . . . βm. ∃βm+1 . . . βp. C

′ ⇒ τ , C′′) where
(C′, C′′) = simplify C
{α1, . . . , αn} = ftv(τ)− ftv(Γ)
{β1, . . . , βm} = fav(τ)− fav(Γ)− fav(ϕ)
{βm+1, . . . , βp} = fav(C′)− fav(τ)− fav(Γ)− fav(ϕ)

Figure 5. The generalisation function gen

Note that the non-syntax-directed rule [t-sub] can be handled
by generating fresh annotation variables in various places, and
relating these by constraints. For example, in the case for [t-if ]
we generate a fresh annotation variable for the annotated type for
the conditional, say β, and relate the annotation variable on the
then part, say β1, by the constraint β1 v β; the else part and the
conditional can be treated similarly.

For reasons of space, we do not provide further details of the
syntax-directed type system, the algorithm and the solver in this
paper, but refer instead to Appendix C.

4. Heuristics
This section discusses the various heuristics we have developed,
organized into four different categories: generic heuristics, propa-
gation heuristics, dependency analysis specific heuristics, and se-
curity specific heuristics. We motivate and describe the heuristics
themselves, and define the order in which they are applied, and
why. In Section 5 we provide additional examples. We note that
whatever the heuristics do, they will never remove all constraints
from the current set. This would imply that no constraint can be
blamed for the inconsistency.

We note that having had to refashion some of our code to fit the
columns of the paper, the location information may not be correct
in all cases.

4.1 Generic heuristics
The heuristics in this section are generally applicable heuristics that
have also been employed in other work on heuristics-based type
error diagnosis.

Majority heuristic
Johnson and Walz introduced the idea to look at the amount of
evidence for a constraint to the source of an inconsistency [14]. We
use this idea to point to a possible mistake in a value that is involved
in a security error. The majority heuristic retrieves all constraints
from an expression that is used as an argument but is considered to
be too secure. Then it computes for each security level the number

one = protect 1 Low
two = protect 2 Low
three = protect 3 Low
four = protect 4 Low
five = protect 5 High
fifteen = print (one + two + three + four + five)

Figure 6. Example program: majority of Low values in faulty
subexpression

E r r o r i n a p p l i c a t i o n :
” ( p r i n t ( ( ( ( one + two ) + t h r e e ) + f o u r ) +

f i v e ) ) ” a t : ( l i n e 6 , column 12)
Expec ted an argument p r o t e c t e d a t a t most

l e v e l : Low
The argument i s p r o t e c t e d a t l e v e l : High
Because o f t h e f o l l o w i n g s u b e x p r e s s i o n ( s ) :
” f i v e ” a t : ( l i n e 6 , column 46)

Figure 7. Error generated by the majority heuristic in Figure 6

of constraints that imply that the expression should at least have
that security level. If the amount of constraints that testify that the
expression should have a lower security level is substantially larger
than the amount of constraints demanding a higher security level,
then the subexpressions where the latter were generated might be
the actual cause of the inconsistency. As a result, a mention of those
subexpressions will be added to the type error message, stating that
they caused the security level to be so high. Note, that we do not
propose that these expressions are at fault.

In Figure 6, the first five lines declare some values, where the
first four are protected at level Low and the last value is protected at
level High . The declaration fifteen on the sixth line computes the
sum of the five values and passes the result to the print function.
The latter expects a value that is protected at level Low , but the
sum of the five values is protected at level High . The only value
that causes the sum to be protected at level High is five , all four
other values are protected at the level Low . The heuristic blames
the application of print . As there is very little evidence stating
that the sum should be protected at level High the heuristic also
explains what caused the expression to be protected at this level.
The programmer can now decide whether the use of five in this
place was incorrect or whether the use of print was at fault.

The least trusted constraint
All constraints are assigned a certain amount of trust based on the
AST-node they are generated at. We believe that there is good a
reason to have more trust in certain programming constructs than
others, because some constructs are more often the cause of an in-
consistency or are less intuitive. Constraints that result from instan-
tiating the type of a program variable receive a higher trust value
than constraints that were generated locally. The constraints that
are generated at these sites belong to the declaration of that par-
ticular variable and were found to be consistent when generalising
the type of that program variable. Constraints that are generated at
application sites receive the least amount of trust, because this con-
struct is considered most likely to introduce inconsistencies. Later
in this section, in Figure 16, we discuss an example of a program
where the least trusted constraint heuristic accurately blames the
application. In Figure 18 the error that is generated is given.
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secureVal :: IntHigh

incr :: ∀β1. ∀β2. β1 v β2 ⇒ Intβ1 → Intβ2

id :: ∀α.∀β1.∀β2. β1 v β2 ⇒ αβ1 → αβ2

print :: ∀α. αLow → αLow

print (incr (incr (id secureVal)))

Figure 8. Propagating security levels through incr and id

Irrefutable constraints
At some nodes of the abstract syntax tree we generate a con-
straint for reasons of uniformity with the rest of the type system.
We know that such constraints can never be wrong, and therefore
should never be blamed. The irrefutable constraints heuristic re-
moves these constraints from the current set of constraints. This
is achieved by setting the trust for such constraints to infinity. Our
type system, for example, generates a constraint at let bindings stat-
ing that the let binding is at least as protected as the body of the let
binding. This constraint is, for obvious reasons, always true, and
should never be blamed. This heuristic was introduced by Heeren
in Section 8.3 of [12].

4.2 The propagation heuristic
Many of the generated constraints only propagate security levels.
Consider for example the program in Figure 8. The highly secure
secureVal is passed through the identity function once and then
twice in succession incr before being passed to the print function.
Both functions, incr and id , are polyvariant and propagate the se-
curity annotation from their argument to their result. An algorithm
will generate explicit constraints to, step-by-step, propagate the se-
curity level of secureVal to the print function. Since the print
function expects a value of low confidentiality, the program is in-
consistent. When we want to assign blame, it makes no sense to
blame the application of functions like id and incr , because they
do not affect the security levels of their argument. What we want
then is that the constraints responsible for the propagation of se-
curity levels are never blamed for an inconsistency. Therefore we
have devised a heuristic that will remove such constraints from the
current constraint set. Of course, it may well be possible to replace
a function like id by a function that does change the security prop-
erties (like declassify in this particular case). But since there is no
way that we can decide which function should be replaced and with
what it should be replaced, this can only serve to confuse the pro-
grammer. We will thus have to accept that the sequence of calls to
security agnostic functions is correct, which is attained by delet-
ing all propagation constraints from the minimal unsatisfiable con-
straint set.

Note that the usefulness of this heuristic stems from the poly-
variance of the analysis, and is independent of the fact that the un-
derlying language is polymorphic or monomorphic.

4.3 Heuristics for dependency analyses
Security analysis is an instance of a dependency analysis [2], which
makes some of the type rules that govern security annotations
slightly and subtly different from those of the intrinsic type system
that the programmer will most likely be used to. In this section we
describe a few heuristics that are constructed with this in mind.
For example, the heuristic for the conditional considers that a
programmer may believe that the security level of the condition
does not contribute to that of the whole conditional, although the
type rule in Figure 3 says otherwise. The heuristic tries to discover
whether such a misunderstanding explains an inconsistency among
the constraints.

log = fn x ⇒ protect x Medium

hVal = protect True High

mVal = protect 1 Medium

lVal = protect 2 Low

error = log (if hVal then lVal else mVal)

Figure 9. Secure information leaks through conditional

We have systematically compared the constraints on security
annotations and the constraints on the underlying types in each of
the rules of Figure 3. For most of the discrepancies we have found,
we have implemented a corresponding heuristic. We shall consider
all of these below, but in the interest of conciseness, we only
provide details and examples for the heuristic for the conditional.

The first discrepancy is that the security level of an application
may be influenced by the security level on the function itself.
Specifically, in the rule [t-app], the ϕ on the arrow of the type of
e1 contributes to the security level of the application e1 e2. In the
underlying type system, only the result type of the function type
contributes to the type of e1 e2. We note that functions are usually
created at the lowest security level, but it is still possible to increase
the security level by protecting it at a higher level.

The second discrepancy can be found in the rule [t-hd]. In the
underlying type system, only the element type of the list determines
the type of the result of hd, but since successfully applying hd
to a list also provides some information about the structure of its
argument list (it is not empty), the security level ϕ attached to the
structure of the list also contributes to the security level of the result
of hd. We note that in the case of fst and snd the same reasoning
applies, but that the annotations on pairs are there for reasons of
uniformity of presentation only. However, it is possible to explicitly
increase the security level on a pair by using protect, which will
then indeed influence the security level on the result of fst and snd.
It is easy to add such heuristics to our prototype, but currently these
have not been implemented.

The final and arguably most striking discrepancy arises for
the conditional statement. As explained in the introduction, the
outcome of a conditional may reveal information about the value
of the condition, and therefore if the condition is highly secure, the
result of the conditional will be highly secure, even if the then and
else parts themselves are not as secure. This fact can be gleaned
from the rule [t-if ], in which the annotation on e0 contributes to the
security annotation on the conditional, but that only the type τ of
the then and else parts determine the type of the conditional.

The heuristic determines whether the security level of the con-
dition is the reason that the whole expression is protected at a level
higher than expected. If so it will report this to the programmer and
will also explain why the conditional expression has a high security
level. In Figure 9 we present a program where secure information
is leaked through the conditional. The error presented in Figure 10
is generated by our heuristic. This is an example of a program that
uses a lattice consisting of values Low, Medium and High, with the
expected relations Low v Medium and Medium‘sub High . The
message describes why the conditional is protected at level High ,
and that this is inconsistent with the security level expected by the
function log .

4.4 Security specific heuristics
The sFun++ language has two constructs to explicitly change the
security level, declassify and protect. It is not unlikely that a
programmer, at first, will confuse the two. For example, he may
try to declassify an expression e by using the protect statement,
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The c o n d i t i o n a l : hVal o f t h e i f s t a t e m e n t :
i f hVal t h e n l V a l e l s e mVal a t ( l 9 , c 14)

u s e s a v a l u e : hVal p r o t e c t e d a t l e v e l : High .
Th i s c a u s e s t h e whole i f e x p r e s s i o n :

i f hVal t h e n l V a l e l s e mVal a t ( l 9 , c 14)
t o be p r o t e c t e d a t l e v e l : High .
I n s t e a d a v a l u e p r o t e c t e d a t l e v e l : Medium was

e x p e c t e d by : l o g .

Figure 10. Error generated by the if-heuristic for the program in
Figure 9

secureValue = protect True High

printSecure = printValue (protect secureValue Low)

Figure 11. Example program: misuse of protect statement

You t r y t o p r o t e c t t h e e x p r e s s i o n : ” p r o t e c t
s e c u r e V a l u e Low” a t ( l i n e 3 , column 27)
t o l e v e l : Low

But t h e e x p r e s s i o n you a r e p r o t e c t i n g i s
p r o t e c t e d a t l e v e l : High .

Try d e c l a s s i f y t o a s s i g n t h e e x p r e s s i o n t h e
l e v e l : Low

Figure 12. Error generated by sibling heuristic for the program in
Figure 11

and provide a security level lower than the level inferred for e , or
vice versa. In this section we describe in more detail the situation
that a protect may need to be replaced by declassify. The inverse
situation follows dually, and we will not discuss it further. Both
have been implemented in the prototype.

In Figure 11 we present an expression that contains a mis-
take. The value secureValue has type BoolHigh and the function
printValue prints a value that is protected at level Low . The pro-
grammer of the program tried to declassify secureValue by pro-
tecting it at level Low . Our heuristic will generate the error message
presented in Figure 12. The error suggests to replace protect with
declassify, and this indeed results in a security correct program.

It may seem that this heuristic can always be applied whenever
we have an inconsistency involving protect, but that is not the
case: it is essential that the level explicitly provided is lower than
the inferred level, because that provides the additional hint to the
system that declassify was intended.

The heuristic requires that there are currently only two con-
straints in the constraint set, each containing one non-variable an-
notation. It will then consider the nodes where the constraints orig-
inate from, and if this includes a protect node, and the explicitly
provided level is lower than the inferred security level of the argu-
ment to protect, then the heuristic will be applicable and generate
a suitable error message.

We note that these heuristics are instances of the sibling heuris-
tic introduced by Heeren et al [11].

4.5 How heuristics are applied
In our prototype heuristics are applied in sequence, and in a partic-
ular order. One can easily come up with various common-sense
reasons why a given heuristic should be tried after another. For
example, it makes sense to first filter out irrefutable constraints,
and to keep the less-focused heuristics to later. As a rule, we pre-
fer to try the heuristics that pinpoint a particular often-made mis-

S o r t o f e r r o r : use o f s e c u r e v a l u e as l e s s
s e c u r e argument , e n d p o i n t s Low vs . High

p r i n t ( ( . . ) + f i v e )

Figure 13. Program slice error from the program in Figure 6

take early on. In general, however, the “best” order very much de-
pends on programmer preference. This is why we made it easy to
change the order in which heuristics are considered in our pro-
totype (to be precise, the identifier heuristics defined in module
Heuristics / Heuristics.hs). For the examples in this paper, we
have used the following ordering that corresponds to the ordering
in our downloadable prototype:

1. remove irrefutable constraints,

2. select constraints with heuristics for dependency analyses (if,
head, application) (we omitted heuristics for fst and snd, be-
cause they are not likely to be useful)

3. remove propagation constraints,

4. security specific heuristics,

5. select constraint based on majority heuristic,

6. select least trusted constraint,

7. pick among the remainder, the constraint that is “earliest” in the
program (first come, first blamed)

The motivation for this particular order is as follows: we first
delete all irrefutable constraints, because we know that blaming
such a constraint will seem very silly. It makes sense to remove
propagation constraints at this point, because blaming any of these
will not make sense either. In our implementation, however, it
is much easier to delete such constraints after we know that the
dependency-analysis based heuristics are known not to apply. Hav-
ing removed the propagation constraints, we move on to the last of
the specific heuristics, that specifically targets declassify or protect
invocations in the program. The remaining heuristics are more
generic, starting with the heuristic that targets specific constraints
to blame, followed by weaker heuristics that filter out constraints
that are less likely to be to blame.

On the occasion that after applying heuristics 1 through 6 we
have not yet found a single cause of the error, it is still possible to
present a program slice. Since some of the heuristics will have fil-
tered out various constraints, such a slice is typically much smaller
than the original minimal unsatisfiable set of constraints. The pro-
gram presented in Figure 6 would, for example, result in the slice
presented in Figure 13, which indeed only shows those point of
the program that contribute to the inconsistency. The explanation
of the slice, on the first line, is determined by the kind of AST-node
that forms the root of the slice. The endpoints refer to the expected
and the provided security levels. Thus when we are not able to find
the cause of the inconsistency presenting the program slice may
still provide a useful error message. Our prototype implementation
cannot present program slices, but it can list all program points
that contribute to an inconsistency. We believe that it is possible to
construct a program slice from this information. However, because
we cannot easily display a type error slice, we resort to a catch-all
heuristic (no. 7) that picks from the remaining constraint the one
that occurs earliest in the program, and bases the error report on
that constraint.

5. Further examples
Although we much prefer to follow the approach of Lerner et al
[18] to perform our validation, security facilities have not found
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their way yet to mainstream functional languages. An exception
may be the Jif system [17], but that is a Java based system, a context
in which we have no polyvariance and no higher-order functions
(see Section 6 for a more detailed discussion). We therefore resort
to discussing a number of examples, and variations thereof. Our
implementation (see the introduction) provides additional example
programs.

In Figure 14 we present a security type correct login program
written in sFun++ (similar to the programs presented in Sections A
and B). In the program user names and passwords are simple
integers, as our language does not support characters and strings.
A password file is an (unprotected) list of pairs, consisting of an
unprotected user name and a protected password. The function
findUser retrieves the user name from the list. Because we do not
have a proper maybe type, we return either a singleton list when the
user is found, or the empty list when the requested user name is not
known. The function login receives a user name and a password as
arguments; it then looks up the user record in the password file. If a
user record is found it compares the password inside with the given
password. If no user was found it returns False . The result of the
password comparison is protected at security level High , the print
function expects a value that is protected no higher than Low . It is
therefore declassified before it is printed.

In Figure 15 we present a variation of the login function
where declassification is forgotten. This means that a highly secure
boolean value is passed to the print function. The corresponding
error message is given in Figure 17. In this case, it is the least
trusted constraint heuristic that correctly blames the application.

A mistake that is easily made is that the programmer tries to
declassify information through the protect statement. In Figure 16
the login function uses protect to declassify information. The error
provided by our prototype is shown in Figure 18. This time one of
the security specific heuristics discovers the mistake, and generates
an error message that suggests to replace protect by declassify.

We now continue with an example of an invocation of hd that
leads to an inconsistency in Figure 19. In this case, the log function
expects a value of confidentiality Low , but the expression hd zl
makes one of the possible arguments to log a value of confidential-
ity High , which can be traced back to the fact that the structure of
the list has High confidentiality and this is inherited by the value
returned by hd; that the contents of the list has confidentiality Low
is not important. The error message that results is can be found
in Figure 20. Strikingly, the error messages changes substantially
when we change the confidentiality level of the subexpression 1
in the definition of zl to Medium . This is because we now have
two sources for the fact that hd zl is not of level Low . so now the
application of log to its argument is blamed. Fortunately, the mes-
sage does still explain that the too high confidentiality arises from
zl . Note that the applications of id are never blamed for anything,
and that how id is exactly implemented has no bearing on what is
derived for it. This is, of course, what we expect.

Another example is the program in Figure 22. Here we have im-
plemented a function and protected the function (and not its return
value) at level High; the default for functions is Low . Because of
the rule for application, a return value of this function will be the
join of the confidentiality of the body and the function itself, which
will in this case always be High . This leads to an inconsistency, be-
cause log expects a value with Low confidentiality. The error report
is shown in Figure 23.

A final example is the program in Figure 24, where we provide
a nested if-statement in which the if in the else part leads to an
inconsistency, because the function fakeId returns a value of High
confidentiality. Note that the message in Figure 25 indeed picks out
this particular subexpression to blame, but also refers to where the
mistake shows up: in the call to log .

passwordFile =
Cons (1, protect 31415 High)

(Cons (2, protect 27182 High) Nil)
findUser =

fun f user ⇒
fn l⇒ if (null l) then Nil

else
let r = hd l
in if ((fst r) ≡ user)
then Cons r Nil
else f user (tl l)

login =
fn u ⇒

fn p ⇒ print (declassify
(let userRecord = (findUser u passwordFile)

in (if (null userRecord)
then False
else ((snd (hd userRecord)) ≡ p))) Low)

Figure 14. An sFun++ login program

login =
fn u ⇒

fn p ⇒ print
(let userRecord = (findUser u passwordFile)

in (if (null userRecord)
then False
else ((snd (hd userRecord)) ≡ p)))

Figure 15. The login function without declassification

login =
fn u ⇒

fn p ⇒ print (protect
(let userRecord = (findUser u passwordFile)

in (if (null userRecord)
then False
else ((snd (hd userRecord)) ≡ p))) Low)

Figure 16. The login function with protection

E r r o r i n a p p l i c a t i o n :
” ( p r i n t l e t u s e r R e c o r d = ( ( f i n d U s e r u )

p a s s w o r d F i l e ) i n i f n u l l u s e r R e c o r d t h e n
F a l s e e l s e ( snd head u s e r R e c o r d == p ) ) ” a t : (
l i n e 12 , column 25)

The f u n c t i o n : ” p r i n t ”
Expec ted an argument p r o t e c t e d a t a t most l e v e l :

Low
But t h e argument : ” l e t u s e r R e c o r d . . . == p ) ”
I s p r o t e c t e d a t a h i g h e r l e v e l .

Figure 17. sFun++ error given for program in Figure 15

You t r y t o p r o t e c t t h e e x p r e s s i o n : ” l e t
u s e r R e c o r d = ( ( f i n d U s e r u ) p a s s w o r d F i l e )
i n i f n u l l u s e r R e c o r d t h e n F a l s e e l s e (
snd head u s e r R e c o r d == p ) ” a t : ” ( l i n e 12 ,

column 32) t o l e v e l : Low
But t h e e x p r e s s i o n you a r e p r o t e c t i n g i s

p r o t e c t e d a t l e v e l : High
Try d e c l a s s i f y t o a s s i g n t h e e x p r e s s i o n t o

t h e l e v e l : Low

Figure 18. sFun++ error given for program in Figure 16
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log = fn x ⇒ protect x Low

boolVal = protect True Low
lVal = protect 2 Low

zl = Cons (protect 1 Low) (protect Nil High)

id = fn x ⇒ let y = x in y

main = log (if id (id boolVal) then id lVal
else hd zl)

Figure 19. Another example

The s t r u c t u r e o f l i s t : z l a t ( l 11 , c 40)
a p p l i e d t o head i n t h e e x p r e s s i o n :

head z l a t ( l 11 , c 37)
i s p r o t e c t e d a t l e v e l : High .
Th i s c a u s e s t h e r e s u l t o f t h e head o p e r a t i o n t o

be p r o t e c t e d a t l e v e l : High .
I n s t e a d a v a l u e p r o t e c t e d a t l e v e l : Low t h a t was

e x p e c t e d by : l o g . . . .

Figure 20. sFun++ error given for program in Figure 19

E r r o r i n a p p l i c a t i o n :
( l o g i f ( i d ( i d boo lVa l ) ) t h e n ( i d l V a l ) e l s e

head z l ) a t ( l 10 , c 8 )
An argument p r o t e c t e d a t a t most l e v e l : Low i s

e x p e c t e d by : l o g . . .
The argument p r o v i d e d :

i f ( i d ( i d boo lVa l ) ) t h e n ( i d l V a l ) e l s e head
z l a t ( l 10 , c 13)

i s p r o t e c t e d a t l e v e l : High
Because o f t h e f o l l o w i n g sub−e x p r e s s i o n s : z l a t (

l 11 , c 40)

Figure 21. sFun++ error given for program in Figure 19

log = fn x ⇒ protect x Low

fLow = fn x ⇒ protect x Low
fHigh = protect fLow High

main = log (fLow 2 + fHigh 3)

Figure 22. An example to show the effect of highly confidential
functions

The f u n c t i o n : fHigh a t ( l 6 , c 22)
i n t h e a p p l i c a t i o n :

( fHigh 3) a t ( l 6 , c 22)
i s p r o t e c t e d a t l e v e l : High .
Th i s c a u s e s t h e r e s u l t o f t h e a p p l i c a t i o n t o be

p r o t e c t e d a t l e v e l : High .
I n s t e a d a v a l u e p r o t e c t e d a t l e v e l : Low t h a t was

e x p e c t e d by : l o g . . . .

Figure 23. sFun++ error given for the program in Figure 22

log = fn x ⇒ protect x Low
lVal = protect 2 Low
fakeId = fn x ⇒ let y = x in (protect y High)

main = log (
if True then
if False then lVal + 2 else 10

else if fakeId False then lVal else lVal + 1)

Figure 24. An example with a nested conditional

The c o n d i t i o n a l : ( f a k e I d F a l s e ) a t ( l 8 , c 12)
o f t h e i f s t a t e m e n t :

i f ( f a k e I d F a l s e ) t h e n l V a l e l s e ( l V a l ) + ( 1 ) a t
( l 8 , c 9 )

u s e s a v a l u e : ’ ( f a k e I d F a l s e ) a t ( l 8 , c 12) ’
p r o t e c t e d a t l e v e l : High .

Th i s c a u s e s t h e whole i f e x p r e s s i o n :
i f ( f a k e I d F a l s e ) t h e n l V a l e l s e ( l V a l ) + ( 1 ) a t

( l 8 , c 9 )
t o be p r o t e c t e d a t l e v e l : High .
I n s t e a d a v a l u e p r o t e c t e d a t l e v e l : Low was

e x p e c t e d by : l o g . . . .

Figure 25. sFun++ error given for program in Figure 24

6. Related work
Sabelfeld and Myers provide a comprehensive overview of the field
of security analysis [27], in particular the part of the field that de-
rives from the work of Volpano, Smith and others [30, 32, 31]. Al-
though the survey also considers other forms of security hazards,
our interest in this paper lies with the issue of program confidential-
ity: to prevent secure information from leaking (partially) through
a non-secure output. In early work on confidentiality all data was
labelled with a security level and checked dynamically; we follow
the static approach that aims to reject programs at compile time.

Heintze, Nevin and Riecke present a small statically typed,
lambda calculus based, language for security analysis called the
Slam calculus [13]. The call by value language employs two kinds
of security annotations, one for direct readers and one for indirect
readers. A variable that has a High secure direct annotation and a
Low secure indirect annotation can be used by someone with low
permissions to make decisions. In the Slam calculus all values are
explicitly annotated with both direct and indirect reader permis-
sions. The type system they present features sub-typing, making
the analysis more accurate. There is also a construct protect avail-
able that allows the programmer to increase the security level of a
computed value. An analogue of declassify is not available.

In [23, 24] a security analysis for a lightweight version of ML
(called Core ML) is presented. This work forms the theoretical
basis for the FlowCaml implementation discussed in this paper. The
language from the paper also forms the basis for the language used
in this paper, although we have omitted some advanced features
such as exceptions and references. Core ML does not have the
protect construct; it is not needed in the present of a subtyping
rule. Instead, a higher than necessary security level for a value
can be set explicitly by the programmer; if, then, the inferred
security level is higher than the explicit annotation, the program
will be rejected. The Core ML specification is polyvariant, and
the underlying language is polymorphic, as it is in this paper. This
allows the programmer to write security agnostic functions.

Security analysis has been shown to be an instance of depen-
dency analysis [2]. This work was later generalized to a polymor-
phic setting [1]. According to the authors, the three advantages for
defining analyses as instances of their Dependency Core Calculus
(DCC) are that it allows one to find out in which sense instances of
dependency analyses differ, the mapping from dependency analysis
to the instance can be used to verify that the expected dependen-
cies do indeed arise, and the encoding of dependency analyses into
DCC yield simple proofs of non-interference for these analyses. A
fourth advantage may be that heuristics that address the peculiari-
ties of dependency-like analyses may also be transferable to other
instances of DCC. Since the other instances of DCC discussed in
[2] are optimising analyses, this may not seem to be of any use.
However, when programmer provided explicit annotated type sig-
natures may be provided, inconsistencies may again arise.
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A lot of work has been done on providing feedback for type er-
rors for polymorphic, higher-order functional languages. The PhD
thesis of Heeren [12] contains a comprehensive overview of the
field up to 2004. Our work in this paper is mainly based on [8],
[28] and [12]. In [12], a framework for type inferencing and type
error reporting is presented. Here the Hindley-Milner type system
is specified in a constraint-based manner (see also [22, 21]). The
way we employ heuristics, and even some of the heuristics them-
selves are described in [9].

Whereas the previous work intends to provide as precise type
errors as possible, [8] take a different approach. When a type error
occurs, a program slice is presented to the user. The slice contains
all positions in the program that may contribute to the error; posi-
tions outside the slice are known not to contribute to the error. Their
work is based on an algorithm for finding a minimal, inconsistent
constraint set, and based on the associations between constraints
and parts of the program, a slice can then be displayed. Recent
work shows that the method scales to a full size language [25].

In this paper we combine the two approaches: when we find an
inconsistency, we first restrict ourselves to the constraints originat-
ing from the associated program slice. Then we apply our heuristics
to these constraint to see if they can come up with a more specific
error message for the error at hand. Our algorithm for computing
the slice is taken from [29].

A third approach is that of the Chameleon Type Debugger [28,
29]. Instead of displaying a type error message, it assists the pro-
grammer by starting an interactive type debugging session. During
this session the programmer will be asked to supply type informa-
tion, in order to find out where the source of the inconsistency lies.
A distinct advantage of this system is that it becomes much easier
to discover mistakes in definitions that were found to be type con-
sistent, but that, as judged from their use later in the program, were
found to be at odds with the intentions of the programmer.

The intentions of the work in this paper are most closely related
to that of [5] and [17]. Both papers investigate security type error
diagnosis, and in contrast to our work, both do so in an imperative
setting. In particular, the work of Deng and Smith [5] works for a
simple imperative language extended with arrays, and develops a
tailormade inference algorithm that additionally provides a recur-
sive trace of the security levels of all the variables involved in the
inconsistency. This is precise, but also verbose. The work by King
et al. [17] is much more mature, and has been implemented in the
Jif information-flow compiler. Their work applies to Java, and by
employing an algorithm similar to the algorithm to compute the
minimal unsatisfiable subset and using the fact that the analysis is
implemented as a dataflow analysis, the system can provide an exe-
cution trace leading up to the inconsistency, but restricted to the se-
curity aspect only. The analysis they provide is context-insensitive,
does not deal with higher-order functions, and also does not seem
to be able to deal with parametric polymorphism. A limited form of
context-sensitivity is attained by essentially duplicating the analy-
ses of pieces of code for use in a secure and a non-secure; moreover
the choice to use either one of these versions has to be made explic-
itly by the programmer. This decreases the usability of the system
and it still remains to be seen how well this extends to larger lat-
tices. Our analysis is context sensitive/polyvariant, and therefore
does not suffer from these issues. Note also that one of our heuris-
tics in particular addresses the diagnostic issues arising from being
context-sensitive (Section 4.2).

Moreover, there is an ad-hoc extension in order to deal with
implicit control-flow, for which they need to introduce additional
security variables (which amounts to analysing an SSA form of
the program). As a result, the type error diagnosis is not always
easy to map back onto the original program. Our work can handle
implicit flows, in fact explicit flows and implicit flows cannot be

distinguished in a higher-order setting. Moreover, some of our
heuristics in particular address issues arising from implicit control-
flow (Section 4.3). The authors suggest adding heuristics to their
work as future work. This is exactly one of the major contributions
of this paper.

A totally different approach to security typing, is to employ an
embedded domain-specific language, SecLib [26]. The library uses
type classes and monads to enforce security. All security levels
and flows are checked by the Haskell type system, illegal flows
are reported as regular type errors. All functions have explicit
types, as the library heavily relies on type classes for which the
programmer has to restrict the instances available. Furthermore the
library requires some language extensions to be enabled (all of
them are related to type classes). The compiler cannot infer the
correct type for all expressions, so we have to help it by providing
explicit types. Although beneficial from the viewpoint of language
engineering, the fact that we embed the security types into normal
types, implies that type errors and security errors cannot easily
be distinguished: normal type errors will also reveal security type
annotations, and vice versa. Also, one may expect that security
errors will only be reported for type correct programs. The work in
this paper presupposes working directly on the security language,
and not through an embedding in a general purpose language. For
that, we suggest the approach of Heeren and Hage [11]. For that
to work it needs to be scaled up to full Haskell, which is far from
trivial.

7. Conclusion and future work
In this paper we combine a heuristics-based approach to type error
diagnosis with a type error slice approach, in order to control and
improve security type error diagnosis. These heuristics that work
directly on the constraint set that relates the security annotations
on expressions and identifiers. Even though the constraints are
generated during type inferencing, type and security errors are
strictly separated, in that security error messages are only provided
if the program is type correct.

In our approach, we (straightforwardly) compute a minimal un-
satisfiable set of constraints, that allows us to determine the loca-
tions in a program that contribute to an error. Since these slices can
be large, we prefer to generate more specific messages by applying
a number of heuristics to this minimal unsatisfiable subset. In Sec-
tion 4 we presented a number of such heuristics, divided into four
categories: generic, propagation, dependency analysis specific and
security analysis specific heuristics.

There are many clear directions for future work: extension to
the source language, in particular explicitly provided security type
signatures, and extending the set of heuristics (particularly for
newly introduced language constructs).

A different kind of extension is to consider solving constraints
beyond a single binding group. For example, when considering
constraints for a module as a whole, our majority heuristic can be
generalized so that it may suggest to change a definition in order
to make the majority of its uses consistent. It should be noted that
such an extension is not entirely without danger: somebody may
change the properties of a definition on purpose only to find out
which parts of the program are affected.

Although we believe we have been able to argue that our heuris-
tics make sense, and we have tried to provide sensible examples of
the quality of our messages, a full scale experimental validation still
needs to be executed. A problem is the absence of a benchmark col-
lection of security incorrect programs, also because security typing
has not made its way yet into the mainstream of (functional) pro-
gramming. Although our use of the minimal unsatisfiable subset as
the baseline for our heuristics, gives a certain guarantee of “sound-
ness”, this still does not mean that our messages generally reflect
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the diagnosis that an expert may come up with. Finally, in this pa-
per we have committed ourselves to a particular order in which the
heuristics are applied. Variations in this order are possible. In our
implementation these are very easy to make, but we have not yet
investigated the effects on the quality of error messages.
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flow ! everyone < !root

type (′α, ′β) pwdEntry =
{

userName : ′α string;
password : ′β string
}

val pwdList : ((!everyone, !root) pwdEntry , !everyone) list
val checkPwd :
′α string→ (!everyone, !root) pwdEntry → ′α bool

Figure 26. Password.fmli

type pwdEntry =
{

userName : string;
password : string
}

let pwdList =
let jimmy : pwdEntry =
{userName = "Jimmy"; password = "1234"} in

. . .
[jimmy ; . . .]

let checkPwd p uRec =
if p = uRec.password then true else false

Figure 27. Password.ml

flow ! everyone < !root

val login : ′α string→ ′α string→ ′α bool
with ! everyone < ′α

Figure 28. Login.fmli

A. FlowCaml example
We now discuss the implementation that can be found in Fig-
ures 26, 27, 28 and 29. Figures 26 and 27 provide the types respec-
tively implementations of the password list information pwdList
and the login function checkPwd . We can conclude from the type
of pwdList that the userName in each password entry is acces-
sible to everyone , but that access to the password is restricted
to root . The function checkPwd takes a password, and considers
whether it corresponds to the password in the password entry that
is its second argument. In the way that this function is used by the
login function in Figure 29, the first argument will be the password
provided by the user (which may have security level everyone),
but the second argument will contain a password from the pwdList
that is at level root . Security analysis would demand that the out-
put of checkPwd have security level root , so in order to be able to
convey the output of the comparison (a boolean), the result of the
comparison must be declassified. This is done within FlowCaml by
writing the checkPwd function in plain OCaml. Note that the code
provided in Figure 29 may look like ordinary OCaml code, but it is
however checked not to violate any of the security types provided.
This a consequence of the presence of the flow statement at the top
of the source file.

Consider now the situation that we had instead provided the type
signature
′α string→ (!everyone, !everyone) pwdEntry → ′α bool

flow ! everyone < !root

let getUserRecord name =
let rec lookUp l ls =

match ls with
[ ]→ None
| u :: us → if u.Password .userName = l

then Some u
else lookUp l us

in
lookUp name Password .pwdList

let login user pwd =
let userRecord = getUserRecord user

in match userRecord with
None → false
| Some u → Password .checkPwd pwd u

Figure 29. Login.fml

F i l e ” Login . fml ” , l i n e 11 , c h a r a c t e r s 0−144:
Th i s e x p r e s s i o n g e n e r a t e s t h e f o l l o w i n g

i n f o r m a t i o n f low :
r o o t < e v e r y o n e
which i s n o t l e g a l .

Figure 30. Error message for FlowCaml.

for checkPwd . Then one would expect the compiler to complain
about passing an insecure pwdEntry into a function that expects
otherwise in the definition of login in Login.fml .

Instead the compiler returns message in Figure 30 telling us that
something invalid was derived.

The message explains there is some illegal flow, and the location
points to the line where the login function begins. The flow that is
found indeed exists within the login function and is illegal, but it is
not explained how the flow was derived, which subexpression was
responsible, and what the programmer can do to fix the problem.
In this particular case it might not be very hard to find the cause
of the problem, but in more complicated programs error messages
like these are not very helpful.

B. SecLib example
The situation is completely difference for SecLib [26]. For our
example we defined a lattice with three security levels (although
only one is used explicitly), and we only used the non IO security
monad. The library uses type classes and monads to enforce secu-
rity. All security levels and flows are checked by the Haskell type
system, illegal flows are reported as regular type errors.

In the code fragment in Figure 31 the user name lookup and
password verification functions are presented. Any declassification
is done in a different library where we have access to a special
function called reveal that removes all security information from a
value.

All functions have explicit types, as the library heavily relies on
type classes for which the programmer has to restrict the instances
available. Furthermore the library requires some language exten-
sions to be enabled (all of them are related to type classes). The
compiler cannot infer the correct type for all expressions, so we
have to help it by providing explicit types (see the verifyPassword
function for example in Figure 31). Having to write explicit types at
so many places makes writing a program much harder and regular
type errors and security errors become harder to read. For example
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{-# LANGUAGE FlexibleContexts #-}
module Spwd
(

getSpwdName,
verifyPassword

)
where

import SecLibTypes
import Sec
import SpwdTypes
import DeclCombinators (hatch, showResult , combine)
import Data.Maybe (fromJust)

verifyPassword :: Less α R ⇒
Sec R Spwd → Sec α Pwd → Sec α Bool

verifyPassword record provided =
let known = fromJust $ ((hatch (λ( , p)→ p) record)

:: Maybe (Sec R Pwd))
in fromJust $ showResult $ ((combine (≡) known provided)

:: (Sec R Bool))

getSpwdName :: Sec α Usr → (Maybe (Sec R Spwd))
getSpwdName nam = findUser nam passWordFile

findUser :: Sec α Usr → [(Usr , Sec R Spwd)]→
Maybe (Sec R Spwd)

findUser usr ((u, r) : xs) =
let match = public $ fromJust $ showResult (matchUser usr u)
in case match of

True → Just r
False → findUser usr xs

findUser [ ] = Nothing

matchUser :: Sec α Usr → Usr → Sec α Bool
matchUser usr u = fromJust $ (hatch ((≡) u) usr)

passWordFile :: [(Usr , Sec R Spwd)]
passWordFile = [("Jimmy", sec ("Jimmy", "1234"))

, ("Steven", sec ("Steven", "5678"))]

Figure 31. Spwd.hs

verifyPassword :: Less α R ⇒
Sec R Spwd → Sec α Pwd → Sec α Bool

verifyPassword record provided =
let known = fromJust $ ((hatch (λ( , p)→ p) record)

:: Maybe (Sec R Pwd))
in combine (≡) known provided

Figure 32. Wrong version of verifyPassword

consider the version of verifyPassword in Figure 32, where the
type signature of combine is given as

combine :: (Less s s ′′,Less s ′ s ′′)⇒
(α→ β → γ)→ Sec s α→ Sec s ′ β → Sec s ′′ γ

This function is correct when only the types are considered, but
inconsistencies arise because instead of the expected Sec α Bool,
the function returns Sec R Bool. GHC [6] provides the error found
in Figure 33. This error provides quite a lot of information, and a
large fragment of code. It accurately blames the expression where
combine is used, but explains the illegal flow of R below α in
terms of type classes and not in terms of secure information flow.

Moreover, when we make a mistake that ordinarily results in
a normal type error, we get a message that also contains (irrele-

Spwd . hs : 3 1 : 1 9 :
Couldn ’ t match e x p e c t e d t y p e ‘ Sec a Bool ’

a g a i n s t i n f e r r e d t y p e ‘ Maybe ( Sec
s ’ Bool ) ’

In t h e e x p r e s s i o n : ( h a t c h ( ( = = ) u ) u s r )
In t h e d e f i n i t i o n o f ‘ matchUser ’ :

matchUser u s r u = ( h a t c h ( ( = = ) u ) u s r
)

Figure 34. Error that GHC gives when fromJust is forgotten in
matchUser .

(θ2.θ1) (τ) ≡ θ2 (θ1 (τ))

Figure 35. Substitution composition

vant) information about the security annotations. In short, the lack
of separation between types and annotations also show up when
programmers make mistakes. In this particular program the type
errors never really get complicated because of the simple nature of
the program. In Figure 34 the result of a small type error is pre-
sented. It is obvious that the problem lies in the inferred Maybe ,
but the difference in the security type variable is incidental and not
problematic.

Note that the issues that arise here are not restricted to security
analysis. Indeed, one of the two major problems of embedding
DSLs into general programming languages is that although the
programming constructs made available to programmers become
domain-specific, the error feedback typically does not follow suit.
There has been research to address this problem, but only for
Haskell 98 [11].

C. Inference Algorithm
In this chapter an algorithmic version of the inference system from
Section 3 is presented. The inferencer is based on AlgorithmW [3].
We will start off by presenting substitutions (Section C.1). We will
discuss our unification algorithm in Section C.2. In Section C.3 we
present our inference algorithm.

C.1 Substitutions
During type inferencing a variable is introduced whenever a type or
annotation cannot be determined, as soon as it can be determined a
substitution, represented by θ, is generated that replaces the type or
annotation variable by the actual type or annotation.

A substitution is a pair of finite mappings from type variables
to types, and annotation variables to annotations. The sets of type
and annotation variables are assumed to be disjoint. Substitutions
are idempotent, this means that θ (θ τ) is equal to θ τ . Two substi-
tutions can be combined by substitution composition. Application
of a composed substitution is defined in Figure 35.

The empty substitution is represented by Id . Type variables that
are not in the domain of the substitution are not changed when
applied to a substitution.

Substitutions are applied recursively to a type τ as presented in
Figure 36. Application of substitutions on annotation is presented
in Figure 37.

Substitutions can be applied to type schemes, and qualified
types as well. We define substitutions on type schemes in Figure 38.
We introduce a new syntactic category all variables:

ζ ∈ TyVar ∪ AnnVar all variables
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Spwd . hs : 1 7 : 1 3 :
Could n o t deduce ( Less R a ) from t h e c o n t e x t ( Less a R)

a r i s i n g from a use o f ‘ combine ’ a t Spwd . hs :17:13−39
P o s s i b l e f i x :

add ( Less R a ) t o t h e c o n t e x t o f
t h e t y p e s i g n a t u r e f o r ‘ v e r i f y P a s s w o r d ’

o r add an i n s t a n c e d e c l a r a t i o n f o r ( Less R a )
In t h e e x p r e s s i o n : combine (==) known p r o v i d e d
In t h e e x p r e s s i o n :

l e t
known = f r o m J u s t

$ ( ( h a t c h (\ ( , p ) −> p ) r e c o r d )
: : Maybe ( Sec R Pwd ) )

i n combine (==) known p r o v i d e d
In t h e d e f i n i t i o n o f ‘ v e r i f y P a s s w o r d ’ :

v e r i f y P a s s w o r d r e c o r d p r o v i d e d
= l e t

known = f r o m J u s t
$ ( ( h a t c h (\ ( , p ) −> . . . ) r e c o r d )

: : Maybe ( Sec R Pwd ) )
i n combine (==) known p r o v i d e d

Figure 33. The error that GHC gives when the version of verifyPassword from Figure 32 is used.

θ Int = Int
θ Bool = Bool

θ (τ1
ϕ1 , τ2

ϕ2) = ((θ τ1)(θ ϕ1), (θ τ2)(θ ϕ2))

θ (τ1
ϕ1 → τ2

ϕ2) = (θ τ1)(θ ϕ1) → (θ τ2)(θ ϕ2)

θ (Listτϕ) = List(θ τ)(θ ϕ)

θ α = θ(α)

Figure 36. Substitution application on types

θ β = θ(β)
θ l = l

Figure 37. Substitution application on annotations

θ (∀α.σ) = ∀α.((θ/α) σ)
θ (∀β.σ) = ∀β.((θ/β) σ)
θ (∃β.σ) = ∃β.((θ/β) σ)

where
(θ/ζ) ζ1 = ζ1 if ζ ≡ ζ1

θ ζ1 otherwise

Figure 38. Substitution application on type schemes

θ (C ⇒ τ) = (θ C ⇒ θ τ)

Figure 39. Substitution application on qualified types

Bound variables can not be substituted, therefore we introduce a
new sort of substitution θ/ζ that prevents the bound variable ζ from
being substituted by θ. In Figure 39 we present substitutions on
qualified types.

Substitutions can also be applied to type environments (Fig-
ure 40). A type environment is defined as a list of mappings from
a program variable to a pair of a type and annotation. A substitu-

θ Γ [x 7→ (τ , ϕ)] = (θ Γ) [x 7→ (θ τ , θ ϕ)]
θ [ ] = [ ]

Figure 40. Substitution application on type environments

θ C = {θ π | π ∈ C }
θ (ϕ1 v ϕ2) = (θ ϕ1 v θ ϕ2)

Figure 41. Substitution application on constraints and constraint
environments

tion updates each of the mappings in the environment, so that all
variables map to substituted types and annotations. In Figure 41 we
define substitutions on constraints and constraint environments.

C.2 Unification
During type inferencing two types are often required to be equal.
To ensure that two types are equal we use a unification algorithm
U . The unification algorithm is defined both for annotated types
and annotations, the result of unification is a substitution. In Fig-
ure 42 we present unification over types. Unification of two Ints
or Bools results in the empty substitution Id . Unification over con-
tainer types (lists, pairs and functions) requires both containers to
be equal, and that unification of its element types and annotations
succeed. The resulting substitution of a unification is always prop-
agated to the remaining elements before they are unified. The end
result of the unification is the composition of the two results. Pairs
and functions are unified similarly. Unification of any type with a
type variable results in a substitution of that variable with the given
type. The type is required not to contain the type variable (unless
the type is the same type variable), if the variable does occur in the
type unification fails. Unification also fails whenever two different
top level type constructors are unified.

In Figure 43 the unification algorithm for security annotations
is listed. Only two annotation variables can be unified. Our infer-
encing algorithm will always assign an annotation variable to an ex-
pression, the relation to a security level is expressed by a constraint.
Annotations for top level bindings are always security levels. Our
var rule introduces a fresh variable and generates a constraint that
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unifyTy :: Type→ Type→ Substitution
unifyTy Int Int = Id
unifyTy Bool Bool = Id
unifyTy Listτ1

ϕ1 Listτ2
ϕ2 =

let θ1 = unify τ1 τ2
θ2 = unify (θ1 ϕ1) (θ1 ϕ2)

in θ2.θ1
unifyTy (τ11

ϕ11 , τ12
ϕ12) (τ21

ϕ21 , τ22
ϕ22) =

let θ1 = unifyTy τ11 τ21
θ2 = unifyAnn (θ1 ϕ11) (θ1 ϕ21)
θ3 = unifyTy (θ2.θ1 τ12) (apply (θ2.θ1) τ22)
θ4 = unifyAnn (θ3.θ2.θ1 ϕ12) (θ3.θ2.θ1 ϕ22)

in θ4.θ3.θ2.θ1
unifyTy τ11

ϕ11 → τ12
ϕ12 τ21

ϕ21 → τ22
ϕ22 =

let θ1 = unifyTy τ11 τ21
θ2 = unifyAnn (θ1 ϕ11) (θ1 ϕ21)
θ3 = unifyTy (θ2.θ1 τ12) (θ2.θ1 τ22)
θ4 = unifyAnn (θ3.θ2.θ1 ϕ12) (θ3.θ2.θ1 ϕ22)

in θ4.θ2.θ2.θ1
unifyTy τ α = if (τ ≡ α ∨ α /∈ (ftv τ))

then [α 7→ τ ]
else fail

unifyTy α τ = if (τ ≡ α ∨ α /∈ (ftv τ))
then [α 7→ τ ]
else fail

unifyTy = fail

Figure 42. Type Unification

unifyAnn :: Annotation→ Annotation→ Substitution
unifyAnn β1 β2 = [β1 7→ β2 ]
unifyAnn = fail

Figure 43. Annotation Unification

restricts the variable to be at least as secure as the security level
in the type environment. This ensures that the invariant of always
assigning any expression an annotation variable as annotation.

C.3 Security Analysis Inference Algorithm
With the inference system presented in Section 3 as a formal spec-
ification we define our inference algorithm Wsec. The algorithm
infers principal type-schemes, security annotations and constraints
on security constraints. The algorithm is based on algorithmW [3].
The algorithm is defined by structural induction on e and has type:

Wsec :: (TyEnv,Exp)→ (Ty,Ann, Subst,Constraints)

The algorithm takes a pair of a type environment Γ and an expres-
sion e as an argument. The type environment Γ maps program vari-
ables to a pair consisting of a type-scheme and an annotation. The
result of the algorithm is a quadruple containing a type τ , an anno-
tation ϕ, a substitution θ and a set of constraints C. Sub-effecting
is handled through the constraints and verified by our constraint
solver described in Section C.4. Our algorithm is listed in the Fig-
ures 44, 45 and 46. In Section 3 we specified the rules of our algo-
rithm; in this section we discuss how we made an algorithm from
the specification. Most alternatives follow straightforwardly from
the inference rules or from other alternatives. We will therefore
only discuss those rules that are special.

The alternatives that type natural numbers and booleans return
a type Int and Bool respectively, a fresh annotation variable,
the empty substitution and an empty constraint set. An annotation

variable is generated because there is no information that insists on
a specific security level at this point. The alternative that types the
empty list, returns the type List αβ1 . The element type cannot
be determined at this point hence the introduction of the type
variable. The annotation variable is generated because there is no
information at this point that insists on a specific security level.

The alternatives for function abstraction and recursive function
abstraction are a bit more involved. The type of the function argu-
ment is not known at this point, we therefore type the function body
with a type environment extended with the variable associated with
a fresh type and annotation variable. During type inference of the
body information about the actual type may be discovered, this then
results in a substitution. The returned substitution is applied to the
domain part of the function type. The returned annotation is a fresh
variable as it cannot be determined yet at what level the function
should be protected. In recursive functions the type of the recursive
call also needs to have a type. The argument of the recursive call
is of the same type as the function’s argument. The result type and
annotation are fresh variables. After inferring the type and annota-
tion of the function body these variables are unified with the type
and annotation of the function body.

The alternative for typing variables straightforwardly follows
the original inference rule. The type scheme and annotation of the
variable is retrieved from in the environment. The type scheme is
instantiated as described in Section 3. The resulting qualified type is
then divided into a type and a constraint environment. To maintain
the invariant of never assigning a security level to an expression we
introduce a fresh annotation variable and restrict it to be at least as
secure as the security level from the type environment.

The function application alternative is a bit more involved. The
type of e2 has to match the type expected by the function. This
type can however not easily be extracted from the inferred type
of e1 and the result type of the whole application can also not
easily be extracted from the type of e1. The types cannot be easily
extracted from the type of e1 because at this point it is not yet
known whether the inferred type τ1 is indeed a function type. We
introduce fresh variables for the result type and annotation as well
as for the argument annotation (sub-effecting). These variables are
combined in a function type together with the inferred type of e2.
This type is then unified with the inferred type of e1. If unification
is successful the type of e2 matches the expected argument type,
and the substitution that is returned by the unification maps the
introduced type and annotation variables to the values that were
inferred for e2.

The alternative for let-bindings deserves a bit more attention as
this is the place where generalisation takes place. First the type of
e1 is inferred. The result is generalised, as explained in Figure re-
finfSecInstGen, resulting in a type scheme and a set of constraints.
The returned constraints contain annotation variables that occur un-
bound in the type environment and therefore are passed on. The
type scheme and annotation variable are added to the type environ-
ment under which e2 will be typed. The resulting type of the whole
let binding is the type of e2. Its annotation is the fresh variable β
which is constrained to be at least as secure as ϕ2.

The alternatives for declassify e ϕ and protect e ϕ are
relatively simple, but crucial for this particular analysis. In both
cases, the type of the whole expression is the inferred type for e ,
and its security level β is at least ϕ. The security level inferred for
e , ϕ1, has to be at least as secure as ϕ in the case of declassify, and
ϕ has to be at least as secure as ϕ1 in the case of protect. These
requirements are enforced by constraints.

C.4 Constraint Solving
The inference system presented in the previous section generates
constraints. Our generalisation algorithm presented in Figure refin-
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Wsec (Γ, e) = (τ , ϕ, θ, C)

Wsec (Γ,n) = let β be fresh in (Int, β, id , ∅)
Wsec (Γ,True) = let β be fresh in (Bool, β, id , ∅)
Wsec (Γ,False) = let β be fresh in (Bool, β, id , ∅)
Wsec (Γ,Nil) = let α, β, β1 be fresh in (List αβ1 , β, id , ∅)
Wsec (Γ,Cons e1 e2) =
let β, β1 be fresh

(τ1, ϕ1, θ1, C1) =Wsec (Γ, e1)
(τ2, ϕ2, θ2, C2) =Wsec (θ1 Γ, e2)
θ3 = U (τ2, θ2 (List τ1

ϕ1))
θ = θ3.θ2.θ1

in (θ (List τ1
β1), β, θ, θ (C1

∪ C2 ∪ {ϕ1 v β1, ϕ2 v β}))
Wsec (Γ, (e1, e2)) =
let β be fresh

(τ1, ϕ1, θ1, C1) =Wsec (Γ, e1)
(τ2, ϕ2, θ2, C2) =Wsec (θ1 Γ, e2)
θ = θ2.θ1

in (θ (τ1
ϕ1 , τ2

ϕ2), β, θ, θ (C1 ∪ C2))
Wsec (Γ, fn x ⇒ e0) =
let αx, βx, β be fresh

(τ1, ϕ1, θ1, C1) =Wsec (Γ [x 7→ (αx, βx)], e0)
in (θ1 (αx

βx → τ1
ϕ1), β, θ1, C1)

Wsec (Γ, fun f x ⇒ e0) =
let αx, αr, βx, βr, β be fresh

(τ0, ϕ0, θ0, C0) =
Wsec (Γ [f 7→ (αx

βx → αr
βr , β)] [x 7→ (αx, βx)], e0)

θ1 = U (τ0, θ0 αr)
θ2 = U (θ1 ϕ0, (θ1.θ0) βr)
θ = θ2.θ1.θ0

in (θ (αx
βx → τ0

ϕ0), (θ2.θ1) β, θ, C0)
Wsec (Γ, x ) =
let β1 be fresh

(σ, ϕ) = Γ (x )
C′ ⇒ τ = inst (σ)

in (τ , β1, id , C
′ ∪ {ϕ v β1})

Wsec (Γ, e1 e2) =
let αr βr βx β be fresh

(τ1, ϕ1, θ1, C1) =Wsec (Γ, e1)
(τ2, ϕ2, θ2, C2) =Wsec (θ1 Γ, e2)
θ3 = U (θ2 τ1, τ2

βx → αr
βr )

θ = θ3.θ2.θ1
C = C1 ∪ C2 ∪ {ϕ2 v βx, ϕ1 v β, βr v β}

in (θ3 αr, β, θ, θ C)

Figure 44. Type and Security Analysis Inference Algorithm

fSecInstGen uses a function simplify that simplifies, partitions, and
verifies satisfiability of a set of constraints. In this section we will
discuss the workings of this function. The simplify function is de-
fined in Figure 47. The function first determines the set of variables
that cannot be instantiated. It then computes the range of allowed
security levels for each annotation variable. After that it verifies
whether the constraint set is satisfiable. The satisfiability check re-
sults in a substitution that replaces the variables that may be instan-
tiated with the optimal (lowest possible) security level. Finally the
constraint set is partitioned. The constraints are partitioned so that
those that restrict the types security annotations can be added to the
type as qualifiers. We discuss all these steps below in more detail.

A constraint set is simplified by instantiating as many annota-
tion variables as possible. Instantiation of a variable can limit the
use of the expression where it was generated, by instantiating it at

Wsec (Γ, e) = (τ , ϕ, θ, C)

Wsec (Γ, if e0 then e1 else e2) =
let β be fresh

(τ0, ϕ0, θ0, C0) =Wsec (Γ, e0)
(τ1, ϕ1, θ1, C1) =Wsec (θ0 Γ, e1)
(τ2, ϕ2, θ2, C2) =Wsec ((θ1.θ0) Γ, e2)
θ3 = U ((θ2.θ1) τ0, Bool)
θ4 = U (θ3 τ2, (θ3.θ2) τ1)
θ = θ4.θ3.θ2.θ1.θ0
C = C0 ∪ C1 ∪ C2

∪ {ϕ0 v β, ϕ1 v β, ϕ2 v β}
in (θ τ2, β, θ, θ C)
Wsec (Γ, let x = e1 in e2) =
let β be fresh

(τ1, ϕ1, θ1, C1) =Wsec (Γ, e1)
(σ,C′) = gen (θ1 Γ, ϕ1, τ1, C1)
(τ2, ϕ2, θ2, C2) =Wsec (θ1 Γ [x 7→ (σ, ϕ1)], e2)

in (τ2, β, θ2.θ1, θ2 (C′ ∪ C2 ∪ {ϕ2 v β}))
Wsec (Γ, e1 ⊕ e2) =
let β be fresh

(τ1, ϕ1, θ1, C1) =Wsec (Γ, e1)
(τ2, ϕ2, θ2, C2) =Wsec (θ1 Γ, e2)
τ1⊕ → τ2⊕ → τ⊕ = Γ⊕ (⊕)
θ3 = U (θ2 τ1, τ

1
⊕)

θ4 = U (θ3 τ2, τ
2
⊕)

θ = θ4.θ3.θ2.θ1
in (τ⊕, β, θ, θ (C1 ∪ C2 ∪ {ϕ1 v β, ϕ2 v β}))
Wsec (Γ, u e1) =
let β be fresh

(τ1, ϕ1, θ1, C1) =Wsec (Γ, e1)
τ1u → τu = Γ⊕ (u)
θ2 = U (τ1, τ

1
u)

in (τu, β, θ2.θ1, θ2 (C1 ∪ {ϕ1 v β}))
Wsec (Γ, fst e1) =
let α1, β1, α2, β2, β be fresh

(τ1, ϕ1, θ1, C1) =Wsec (Γ, e1)
θ2 = U (τ1, (α1

β1 , α2
β2))

in (θ2 α1, β, θ2.θ1, θ2 (C1 ∪ {ϕ1 v β, β1 v β}))
Wsec (Γ, snd e1) =
let α1, β1, α2, β2, β be fresh

(τ1, ϕ1, θ1, C1) =Wsec (Γ, e1)
θ2 = U (τ1, (α1

β1 , α2
β2))

in (θ2 α2, β, θ2.θ1, θ2 (C1 ∪ {ϕ1 v β, β2 v β}))

Figure 45. Type and Security Analysis Inference Algorithm (Con-
tinued)

a security level higher than strictly necessary, or because it further
restricts another annotation variable. Both situations are highly un-
desirable. Therefore only annotation variables that will not restrict
the type that is being generalised will be instantiated, or annotation
variables that occur free in the type environment (these represent
types that will be generalised over at some other time). We call the
annotation variables that occur free in the type τ that is being gen-
eralised over and the annotation variables that occur free in the type
environment Γ the active variables, i.e. fav (τ) ∪ fav (Γ). This set
of active variables is, however, not the complete set of variables
that may not be instantiated. Other variables that do not occur in
the type, but are the result of the inference algorithm can be re-
stricted by active variables. In the constraint β1 v β2, for example,
the variable β2 is restricted to be at least as secure as β1. If β1 is
an active variable it will not be instantiated, and thus it is not clear
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Wsec (Γ, e) = (τ , ϕ, θ, C)

Wsec (Γ, null e1) =
let α1, β1, β be fresh

(τ1, ϕ1, θ1, C1) =Wsec (Γ, e1)
θ2 = U (τ1, List α1

β1)
in (Bool, β, θ2.θ1, θ2 (C1 ∪ {ϕ1 v β}))
Wsec (Γ, hd e1) =
let α1, β1, β be fresh

(τ1, ϕ1, θ1, C1) =Wsec (Γ, e1)
θ2 = U (τ1, List α1

β1)
in (θ2 α1, β, θ2.θ1, θ2 (C1 ∪ {ϕ1 v β, β1 v β}))
Wsec (Γ, tl e1) =
let α1, β1, β be fresh

(τ1, ϕ1, θ1, C1) =Wsec (Γ, e1)
θ2 = U (τ1, List α1

β1)
in (θ2 τ1, β, θ2.θ1, θ2 (C1 ∪ {ϕ1 v β}))
Wsec (Γ, declassify e ϕ) =
let β be fresh

(τ1, ϕ1, θ1, C1) =Wsec (Γ, e)
in (τ1, β, θ1, C1 ∪ {ϕ v ϕ1, ϕ v β})
Wsec (Γ, protect e ϕ) =
let β be fresh

(τ1, ϕ1, θ1, C1) =Wsec (Γ, e)
in (τ1, β, θ1, C1 ∪ {ϕ1 v ϕ,ϕ v β})

Figure 46. Type and Security Analysis Inference Algorithm (Con-
tinued)

simplify(Γ, ϕ, τ , C) = do
active = pseudoActive (fav (Γ) ∪ fav (Ty), C)
ranges = range C
θ = satisfiable (active, ranges)
c′ = θ C
return partition(Γ, c′)

Figure 47. Simplification algorithm

pseudoActive (active, C) = do
vars = {u | (l v u) ∈ C ∧ l ∈ active } ∪ active
if ((vars ∩ active) 6= ∅) then

pseudoActive (vars, C)
else

return vars

Figure 48. Determine set of pseudo active variables

what the lowest possible security level for β2 is. The lowest pos-
sible security level will restrict the use of an expression the least,
we therefore choose to delay instantiation of β2 until β1 is known.
Variables such as β2 are known as pseudo active variables. In Fig-
ure 48 we present a function that computes the set of all pseudo
active variables, given the set of all active variables and a set of
constraints.

All variables that are not (pseudo-) active can be instantiated, if
there exists a non empty range of security levels for every variable.
If, for any variable, it is not possible to choose a value such that all
constraints are satisfied the program contains an error. In that case
the compiler will explain where the problem arises and what caused
it. Error explanation is discussed in Section 4. The range of allowed

values for each variable is computed by a work list algorithm. We
present the algorithm in Figure 49. The algorithm is based on the
work list algorithm presented in Chapter 3 of [20]. The algorithm
first initialises the work list worklist , the result of the algorithm
analysis , and two edge arrays ub and lb. We use two instead of
one edge arrays as we compute both a lower bound and an upper
bound for each variable. The array ub is used to propagate new
values for the upper bound downward. The set ub [β ] contains all
constraints where β is the upper bound. The lb array does exactly
the opposite. The result for all variables that occur in the constraint
set C is initialised with the range (⊥,>). After initialisation the al-
gorithm will compute the actual ranges by taking constraints from
the work list and update the bounds of variables accordingly. A
variable β that had its lower bound changed will add all constraints
in the set lb [β ] to the work list. A variable β that had its upper
bound changed adds all constraints from the set ub [β ] to the work
list. In the algorithm we use the following notational conventions:
banalysis [β]c denotes the current lower bound of the range asso-
ciated with β, and danalysis [β]e returns the upper bound of the
range associated with β. The least upper bound operator is written
as t and greatest lower bound operator as u.

The outcome of the work list algorithm is a set of mappings
from an annotation variable to a range of security levels. The
function satisfiable (presented in Figure 50) processes the results
of the work list algorithm. If all variables have a non empty range
it will result in a substitution that replaces all non (pseudo-) active
variable by the lower bound of the range. If any variable has an
empty range an error has been found and the simplification and
inference process stop.

Partitioning the constraint set is the final step of the simplifica-
tion process. The partition of the constraint set consists of two sets.
The first set contains constraints that contain at least one variable
that is active in Γ. This set of constraints is propagated further by
the inference algorithm. It contains information about annotation
variables that are later generalised over. The other set contains all
other constraints. These constraints will become predicates in the
type that is generalised over. We present the partition algorithm in
Figure 51.

In our security type system we employ qualifiers for storing
constraints in types. The theory of qualified types was developed
by [16]. Another more well-known example of qualified types are
the type classes of Haskell, where qualifiers can be used to impose
restrictions on let-polymorphic types, e.g., the equality operator has
the type ∀α.Eq α ⇒ α → α → bool, i.e., it is only well-typed
for those types α that are instances of the Eq type class. In this
paper, the predicates we store in types are only meant to relate
the security annotations of the various parts that make up a type.
In [10], the same technique was used to exploit qualified types to
model polyvariance, but then in the context of usage analysis.
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range(C) = do
worklist = { }
analysis = [ ]
ub = [ ]
lb = [ ]

for all π in C do worklist := worklist ∪ {π}
for all β in fav(C) do

analysis = analysis[β 7→ (⊥,>)]
ub = ub[β 7→ { }]
lb = lb[β 7→ { }]

for all π@(β1, β2) in C do
ub[β2 ] = ub[β2 ] ∪ {π}
lb[β1 ] = lb[β1 ] ∪ {π}

while worklist 6= { } do
let C1 ∪ {π} = worklist
worklist = C1

case C of
(β1 v β2)⇒

if (analysis[β1 ] 6= analysis[β1 ] u danalysis [β2]e) then
worklist = worklist ∪ ub[β1 ]
analysis[β1 ] = analysis[β1 ] u danalysis [β2]e

if (analysis[β2 ] 6= analysis[β2 ] t banalysis [β1]c) then
worklist = worklist ∪ lb[β2 ]
analysis[β2 ] = analysis[β2 ] t banalysis [β1]c

(ϕ v β) ⇒
if (analysis[β ] 6= analysis[β ] t ϕ) then

worklist = worklist ∪ lb[β ]
analysis[β ] = analysis[β ] t ϕ

(β v ϕ) ⇒
if (analysis[β ] 6= analysis[β ] u ϕ) then

worklist = worklist ∪ ub[β ]
analysis[β ] = analysis[β ] u ϕ

return analysis

Figure 49. Worklist algorithm for range computation

satisfiable(active, analysis) = do
substitution = Id

for all [β 7→ (l, u)] in analysis do
if (l v u) then
if (β /∈ active ∨ l ≡ u) then

substitution = [β 7→ l ].substitution
else skip

else error
return substitution

Figure 50. Checking satisfiability

partition (Γ, C) = do
active = fav(Γ)
prop = {(l v u) ∈ C | (l ∈ active ∨ u ∈ active)}
qual = {π ∈ C | π /∈ prop}
return (prop, qual)

Figure 51. Partitioning of constraints
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Abstract. We present a monovariant flow analysis for System F (with
recursion). The flow analysis yields both control-flow information, ap-
proximating the λ- and Λ-expressions that may be bound to variables,
and type-flow information, approximating the type expressions that may
instantiate type variables. Moreover, the two flows are mutually bene-
ficial: the control flow determines which Λ-expressions may be applied
to which type expressions (and, hence, which type expressions may in-
stantiate which type variables), while the type flow filters the λ- and
Λ-expressions that may be bound to variables (by keeping only those
expressions with a static type that is compatible with the static type
of the variable with respect to the type flow). As is typical for a mono-
variant control-flow analysis, control-flow information is expressed as an
abstract environment mapping variables to sets of (syntactic) λ- and Λ-
expressions that appear in the program under analysis. Similarly, type-
flow information is expressed as an abstract environment mapping type
variables to sets of (syntactic) types that appear in the program under
analysis. Compatibility of static types (with free type variables) with re-
spect to a type flow is decided by interpreting the abstract environment
as productions for a regular-tree grammar and asking if the languages
generated by taking the types in question as starting terms have a non-
empty intersection.

1 Introduction

Control-flow analysis is an important enabling technology for the compilation
and optimization of functional languages. Because functional languages have
first-class functions, the control flow of a functional program is not syntactically
apparent: in an application expression, the function can itself be the result of
a computation and may not be available until run time. Indeed, during the
execution of a program, many different functions may be applied at the same
(source-program) application expression. A control-flow analysis [21,44,43,32,27]
approximates, at compile time, the flow of first-class functions in a program:
which first-class functions might be bound to a given variable or returned by a
given expression at run time. This approximate control-flow information can be
used to enable optimizations of a functional language.

328



2 Matthew Fluet

Control-flow analyses are typically formulated for dynamically- or simply-
typed functional languages.1 However, most statically-typed functional lan-
guages have rich type systems that include polymorphic types. Indeed, Sys-
tem F [13,38], the polymorphic lambda calculus, and extensions thereof are
commonly used as typed intermediate languages in compilers for functional lan-
guages [47,34,45]. Typed intermediate languages provide a number of benefits.
First, explicit type information can support type-dependent optimizations, such
as using a specialized representation for known types rather than a universal
representation. Second, explicit type information can support validation of opti-
mizations, by detecting when an optimization transforms a well-typed program
to an ill-typed program. Since optimizations are performed on a typed inter-
mediate language and optimizations are enabled by control-flow analyses, it is
natural to seek a control-flow analysis that is formulated for System F.

While one could naïvely adopt an existing control-flow analysis that is formu-
lated for a dynamically- or simply-typed functional language and ignore the Sys-
tem F features of type abstraction and type application, such an approach fails
to take advantage of the static information provided by a well-typed program.
Intuitively, a control-flow analysis for System F should exploit the well-typedness
of the program under analysis in order to obtain more precise control-flow in-
formation. For instance, if a control-flow analysis asserts that a variable x might
be bound to a function of type int→ int, a function of type bool→ bool, and a
function of type string→ string (and no other functions), but the static type of x
is int→ int, then the type soundness of the language guarantees that x will only
be bound to functions of type int → int at run time and the control-flow result
may be soundly refined to assert that x might be bound to only the function of
type int → int. However, if the static type of x is α → α (where the type vari-
able α is bound by a type abstraction in the program under analysis), then it is
unclear whether or not the control-flow result may be soundly refined, because
the type variable α may be soundly instantiated at any type.

Given additional information that asserts that the type variable α might be
instantiated at the type int and the type bool (and no other types), then the
control-flow result may be soundly refined to assert that x might be bound to
only the function of type int→ int and the function of type bool→ bool. This ad-
ditional information may be obtained by a type-flow analysis that approximates,
at compile time, the flow of types in a program: which types might instantiate
a given type variable at run time. As demonstrated by the example above, this
approximate type-flow information can be used to increase the precision of a
control-flow analysis. Furthermore, this approximate type-flow information can
be used to enable type-dependent optimization, such as guiding the specializa-
tion of a polymorphic function that is used at a small number of distinct types or

1 Although there are many type-based [33] control-flow analyses, whereby the analy-
ses themselves are expressed as a sophisticated type systems (e.g., type-and-effect
systems [9,31,19], type systems with polymorphic types [36], type systems with
union/intersection types [49,29]), the language under analysis is typically a simply-
typed language.
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eliminating type operations in a language with intensional polymorphism [14].
Just as a control-flow analysis yields useful information because, for a given
program, it is unlikely that a given variable is bound to every function during
execution, a type-flow analysis yields useful information because it is unlikely a
given type variable is instantiated at that every type during execution.

Although type-flow information and control-flow information might be ob-
tained by independent analyses, the two kinds of information can be mutually
beneficial, particularly for the higher-rank impredicative polymorphism of Sys-
tem F. Control-flow analysis supports type-flow analysis by yielding information
about the type abstractions which may be applied at type applications and,
hence, about the types at which type variables may be instantiated. The type-
flow information soundly refines the control-flow information by rejecting flows
that are incompatible with the static typing of the program under analysis; be-
cause the static typing may be expressed in terms of syntactic types with free
type variables, the type-flow information is used to determine the compatibility
of types. When the type-flow information refines the control-flow information
by rejecting the flow of a type abstraction, the type-flow information itself may
be refined because the type abstraction may be applied at fewer type applica-
tions, and, hence, there may be fewer types at which the type variable may be
instantiated.2

In a combined type- and control-flow analysis, the type-flow information
soundly refines the control-flow information by determining when types are
compatible. In the presence of recursion and higher-rank impredicative poly-
morphism, the type-flow information must approximate complex relationships
between type variables and types and the compatibility or incompatibility of
types with respect to the type-flow information may not be obvious. Indeed,
during the execution of a program that is well-typed in System F (with recur-
sion), a type variable may be instantiated at an infinite number of types. In
order to obtain a computable analysis, the type-flow information must use a
finite representation that approximates the (potentially infinite) set of ground
types that may instantiate a type variable and the compatibility of types with
respect to the type-flow information must be a decidable property.

Most control-flow analyses approximate the (potentially infinite) set of first-
class functions that might be bound to a variable at run time by a (necessarily
finite) set of function expressions (possibly with free variables) that appear in
the program under analysis. Similarly, a type-flow analysis may approximate the
(potentially infinite) set of ground types that may instantiate a type variable at
run time by a (necessarily finite) set of type expressions (possibly with free
type variables) that appear in the program under analysis. For instance, if a
type-flow analysis asserts that a type variable α might be instantiated at the
type expression int → int and the type expression int → α (and no other type
expressions), then, by interpreting the type-flow information as productions for a

2 In practice, though, a flow analysis is computed by adding information that is con-
sistent with existing information (i.e., ascending a lattice) rather than removing
information that is inconsistent with existing information (i.e., descending a lattice).
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regular-tree grammar [12,2,7], the type-flow analysis may be seen to be asserting
that the type variable α might be instantiated at the infinite set of ground
types: {int → int, int → int → int, int → int → int → int, . . .}. Furthermore, if
the type-flow analysis asserts that a type variable β might be instantiated at the
type expression int→ bool and the type expression int→ β (and no other type
expressions) and a control-flow analysis asserts that a variable x might be bound
to a function of type int→ int, a function of type bool→ int, a function of type
string → int, a function of type int → α, and a function of type int → β (and
no other functions), but the static type of x is α, then the control-flow result
may be soundly refined to assert that x might be bound to only the function
of type int → int and the function of type int → α, because the types of these
two functions are compatible with the type α (with respect to the type-flow
information), while the types of the other three functions are incompatible with
the type α.

Two types are compatible (with respect to the type-flow information) if there
exists a ground type that is a member of the sets of ground types at which the
types might be instantiated; conversely, two types are incompatible if there does
not exist a ground type that is a member of the sets of ground types at which
the types might be instantiated. The type soundness of the language guarantees
that a variable will only be bound to a well-typed closed function of a ground
type at run time; hence, if there is no ground type at which both the static type
of a variable and the static type of a function might be instantiated, then that
variable will never be bound to that function at run time. For example, the types
int→ α and α are compatible because the type int→ α, interpreted as a starting
term for the regular-tree grammar corresponding to the type-flow information,
represents the infinite set of ground types {int→ int→ int, int→ int→ int→ int,
. . .}, which has a non-empty intersection with the infinite set of ground types
that might instantiate the type variable α (given above). Similarly, the types
int→ β and α are incompatible because the type int→ β represents the infinite
set of ground types {int → int → bool, int → int → int → bool, . . .}, which has
an empty intersection with the infinite set of ground types that might instantiate
the type variable α. Since regular-tree grammars are closed under intersection
and the emptiness of a regular-tree grammar is decidable, the compatibility of
types with respect to the type-flow information is a decidable property.

Overview

We present a monovariant3 type- and control-flow analysis for System F extended
with recursive functions. Our flow analysis is a variation on 0CFA, the classic
monovariant control-flow analysis [32]. For a given program, the flow analysis
computes an abstract environment that maps variables to (finite) sets of λ- and
Λ-expressions that appear in the program and maps type variables to (finite)
sets of type expressions that appear in the program.

3 i.e., context insensitive
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Soundness of the analysis is proven with respect to an operational seman-
tics for System F given in the style of the administrative-normal-form (ANF)
environment- and continuation-based CaEK abstract machine [10], where the
(concrete) environment component of the abstract machine maps variables to clo-
sures (pairs of λ- or Λ-expressions and an environment, which captures the free
variables and type variables of the λ- or Λ-expression) and maps type variables
to type closures (pairs of type expressions and an environment, which captures
the free type variables of the type expression). A sound flow analysis computes
an abstract environment that approximates every concrete environment that
arises during evaluation. To simplify the soundness proof, the machine transition
rules are instrumented with explicit type-equality conditions; these conditions
are necessarily satisfied by a well-typed program, but are the concrete analogue
of the type-compatibility conditions used in the flow analysis. We present both
the run-time type-equality and the analysis-time type-compatibility predicates
as judgements; this yields a declarative specification of type compatibility, for
which the regular-tree-grammar interpretation gives an algorithmic implemen-
tation.

Our formulation of the type- and control-flow analysis as a refinement of
the syntax-directed constraint-based formulation of 0CFA establishes that the
combined type- and control-flow analysis can be more precise than 0CFA. Al-
though not as precise as a type-directed polyvariant4 control-flow analysis [20],
our monovariant type- and control-flow analysis nonetheless rejects some similar
classes of spurious flows and furthermore has the benefits of handling full (i.e.,
impredicative) System F and terminating for all well-typed programs.

2 Language and Semantics

Our source language is a variant of System F, extended with recursive functions
and presented in (a restriction of) administrative normal form (ANF). The static
semantics of the language is entirely standard, but given for completeness. The
operational semantics of the language is presented as an abstract machine, but
deviates in some ways from a straightforward adaptation of the environment- and
continuation-based CaEK abstract machine to an ANF variant of System F.

2.1 Syntax

The syntax of our ANF variant of System F is given in Figure 1.
Types include function types, type variables, and universal types; in the

universal type ∀α. τ , the type variable α is bound in the type τ . Type equality
is syntactic identity (up to α-conversion of bound type variables).

Expressions include variables, let-bindings of values, let-bindings of non-
tail function applications, and let-bindings of non-tail type applications; in the
let-binding expressions let x:τx = · · · in e, the variable x is bound in e. Val-
ues include recursive functions and recursive type abstractions; in the recursive
4 i.e., context sensitive
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Types Type 3 τ ::= τ → τ | α | ∀α. τ
Type variables TyVar 3 α, β

Expressions Exp 3 e ::= x | let x:τ = v in e |
let x:τ = x x in e |
let x:τ = x [τ] in e

Values Value 3 v ::= µx:τ.λx:τ.e | µx:τ.Λα.e
Variables Var 3 x, y, z, f, g

Programs Prog 3 P ::= e

Fig. 1. Syntax of ANF System F

function µf:τf.λx:τx.eb, the variables f and x are bound in the expression eb
and in the recursive type abstraction µf:τf.Λα.eb, the variable f and the type
variable α are bound in the expression eb. Programs are (closed, well-typed)
expressions.

The language is Church-style, in which every bound variable is annotated
with its type. In contrast to some presentations of ANF-like languages [39,8,10]
but in concert with some others [46,48,5], we restrict the constituents of function
applications and type applications to variables, rather than allowing a larger
class of “trivial” expressions, and we restrict function applications and type
applications to non-tail calls, rather than allowing tail calls. Neither of these
restrictions is essential for the forthcoming type- and control-flow analysis; we
adopt them simply to reduce the number of inference rules and helper functions
in the static semantics, operational semantics, and flow analysis.

We let TyVarP be the (finite) set of Λ-bound type variables, VarP be the
(finite) set of let-, µ-, and λ-bound variables, TypeP be the (finite) set of types,
and ValueP be the (finite) set of values that occur in a given program P ; distin-
guishing syntactically identical sub-terms can be defined formally using paths or
unique labellings.

Finally, we define a function last(·) on expressions, which returns the variable
that yields the expression’s value:

last(·) :: Exp → Var
last(x) = x

last(let x:τx = v in e) = last(e)
last(let x:τx = xf xa in e) = last(e)

last(let x:τx = xf [τa] in e) = last(e)

2.2 Static Semantics

The standard static semantics for System F, adapted to our ANF variant, are
given in Figure 2. A type-variable context ∆ records free type variables and
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Type-variable contexts TCtxt 3 ∆ ::= ∅ | ∆,α:?
Variable contexts Ctxt 3 Γ ::= ∅ | Γ, x:τ

∆ ` τ

∆ ` τa ∆ ` τb
∆ ` τa → τb

∆(α) = ?

∆ ` α
∆,α:? ` τb
∆ ` ∀α. τb

∆;Γ ` v : τ

∆ ` τf ∆ ` τz ∆;Γ, f :τf , z:τz ` eb : τb
τf = τa → τb τz = τa

∆;Γ ` µf:τf.λz:τz.eb : τa → τb

∆ ` τf ∆,β:?;Γ, f :τf ` eb : τb
τf = ∀β. τb

∆;Γ ` µf:τf.Λβ.eb : ∀β. τb

∆;Γ ` e : τ

Γ (x) = τx

∆;Γ ` x : τx

∆;Γ ` v : τv
∆ ` τx τx = τv ∆;Γ, x:τx ` e : τ

∆;Γ ` let x:τx = v in e : τ

Γ (xf ) = τa → τb Γ (xa) = τa
∆ ` τx τx = τb ∆;Γ, x:τx ` e : τ

∆;Γ ` let x:τx = xf xa in e : τ

Γ (xf ) = ∀β. τb ∆ ` τa
∆ ` τx τx = [β � τa](τb) ∆;Γ, x:τx ` e : τ

Γ ` let x:τx = xf [τa] in e : τ

` P : τ

∅; ∅ ` e : τ
` e : τ

Fig. 2. Static Semantics of ANF System F

334



8 Matthew Fluet

Run-time types RType 3 π ::= 〈τ ;φ〉
Run-time type environments RTEnv 3 φ ::= ∅ | φ, α 7→ π

Run-time values RValue 3 w ::= 〈v;φ; ρ〉
Run-time value environments REnv 3 ρ ::= ∅ | ρ, x 7→ w

Continuations Kont 3 κ ::= • | 〈x; τ ; e;φ; ρ〉::κ
States State 3 ς ::= 〈e;φ; ρ;κ〉

ς −→ ς

ρr(xr) = wr ` wr :≡ 〈τz;φ〉

〈xr;φr; ρr; 〈z; τz; e;φ; ρ〉::κ〉
−→ 〈e;φ; ρ, z 7→ wr;κ〉

w = 〈v;φ; ρ〉
〈let x:τx = v in e;φ; ρ;κ〉

−→ 〈e;φ; ρ, x 7→ w;κ〉

ρ(xf ) = wf wf = 〈µf:τf.λz:τz.eb;φf ; ρf 〉
ρ(xa) = wa ` wa :≡ 〈τz;φf 〉

〈let x:τx = xf xa in e;φ; ρ;κ〉
−→ 〈eb;φf ; ρf , f 7→ wf , z 7→ wa; 〈x; τx; e;φ; ρ〉::κ〉

ρ(xf ) = wf wf = 〈µf:τf.Λβ.eb;φf ; ρf 〉
πa = 〈τa;φ〉

〈let x:τx = xf [τa] in e;φ; ρ;κ〉
−→ 〈eb;φf , β 7→ πa; ρf , f 7→ wf ; 〈x; τx; e;φ; ρ〉::κ〉

Fig. 3. Operational Semantics of ANF System F

the judgement ∆ ` τ asserts that all of the free type variables of type τ are
recorded in ∆. A variable context Γ records free variables and their types and
the judgements ∆;Γ ` v : τ and ∆;Γ ` e : τ assert that value v and expression
e have type τ in ∆ and Γ ; in the rule for type applications, we write [β� τa]τb
for the capture-avoiding substitution of τa for free occurrences of β in τb. The
judgement ` P : τ asserts that program P is closed and has type τ .

2.3 Operational Semantics

The operational semantics for our ANF-variant of System F is presented as an
adaptation of the environment- and continuation-based CaEK machine [10] and
is given in Figure 3.

A machine state ς has four components: a control expression, a run-time type
environment, a run-time value environment, and a continuation.

A run-time type environment φ is a map from type variables to run-time
types and a run-time value environment ρ is a map from variables to run-time
values. A run-time type π is a “type closure”: a pair of a (possibly open) type and
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a run-time type environment; the run-time type environment captures the free
type variables of the type. A run-time value w is a “function closure” or a “type-
abstraction closure”: a triple of a (possibly open) value (a recursive function or a
recursive type abstraction), a run-time type environment, and a run-time value
environment; the run-time type environment captures the free type variables of
the value and the run-time value environment captures the free variables of the
value.

A continuation κ is a stack of frames, each of the form 〈x; τx;φ; ρ; e〉, where x
is the variable receiving the result w of a non-tail function application or non-tail
type application, τx is the (static, syntactic) type of x, and e is the expression to
be evaluated in the environments φ and ρ extended with x bound to w to yield
the result of the frame.

Ignoring the shaded terms, the machine transition rules are straightforward.
The first rule returns a result to the top-most frame of the continuation when
the control expression has been reduced to a variable. The second rule creates
function closures and type-abstraction closures. The third and fourth rules ex-
tract the expression body, run-time type environment, and run-time value en-
vironment from the applied function closure or type-abstraction closure, extend
the closure’s run-time value environment with f bound to the applied function
closure or type-abstraction closure (making the recursive function or recursive
type-abstraction available to the expression body), extend the closure’s run-time
type environment with the run-time value argument (in the case of a function
application) or extend the closure’s run-time type environment with the run-time
type argument (in the case of a type application), and push a frame onto the
continuation to receive the result of the function application or type application.
Note that the machine transitions are syntax directed and deterministic.

We now consider the shaded terms in the first and third rules and the judge-
ments and rules in Figure 4. In essence, the shaded terms perform a kind of
run-time type checking at the point where a run-time value environment is ex-
tended with a non-local run-time value. In the first rule, the result wr must have
a run-time type equal to 〈τz;φ〉, the run-time type of the variable receiving the
result. In the third rule, the argument wa must have a run-time type equal to
〈τz;φf 〉, the run-time type of the variable receiving the argument.

The rules for the judgement ` w :≡ π simply form the run-time type of the
recursive function or recursive type abstraction from the (static, syntactic) type
of the µ-bound variable and the run-time type environment of the closure; note
that there is no type checking of the value using the typing judgements from the
static semantics. The judgement ∆ ` π1 ≡ π2 asserts that the run-time types π1
and π2 are equal under ∆. The first and second rules expand a Λ-bound type
variable according to the appropriate run-time type environment. The third rule
asserts that two function types are equal when their argument types are equal
and their result types are equal. The fifth rule asserts that two universal types
(sharing the same ∀-bound type variable via α conversion) are equal when their
range types are equal. The fourth rule asserts that two ∀-bound type variables
are equal when they are the same type variable. Note that the first and second
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∆ ` π ≡ π

φ1(α1) = π′
1 ∅ ` π′

1 ≡ π2

∆ ` 〈α1;φ1〉 ≡ π2

φ2(α2) = π′
2 ∅ ` π1 ≡ π′

2

∆ ` π1 ≡ 〈α2;φ2〉

∆ ` 〈τz1;φ1〉 ≡ 〈τz2;φ2〉 ∆ ` 〈τb1;φ1〉 ≡ 〈τb2;φ2〉
∆ ` 〈τz1 → τb1;φ1〉 ≡ 〈τz2 → τb2;φ2〉

∆(α1) = ? ∆(α2) = ? α1 = α2

∆ ` 〈α1;φ1〉 ≡ 〈α2;φ2〉
∆,α:? ` 〈τb1;φ1〉 ≡ 〈τb2;φ2〉

∆ ` 〈∀α. τb1;φ1〉 ≡ 〈∀α. τb2;φ2〉

` w :≡ π

∅ ` 〈τf ;φ〉 ≡ π
` 〈µf:τf.λz:τz.eb;φ; ρ〉 :≡ π

∅ ` 〈τf ;φ〉 ≡ π
` 〈µf:τf.Λβ.eb;φ; ρ〉 :≡ π

Fig. 4. Run-time Type Equality

rules assert the equality of the expanded type under the empty type-variable
context; this is because the expanded run-time type type is not in the scope of
the ∀-bound type variables appearing in ∆.

We emphasize that the shaded terms and the judgements in Figure 4 are
instrumentation that simplifies the proof of flow soundness in Section 3.1. The
presence of these terms does not change the evaluation of well-typed programs,
a fact that is established in Section 2.4.

2.4 Type Soundness

Theorem 1 (Type Soundness).
If ` e : τ and 〈e; ∅; ∅; •〉 −→∗ ς ′, then either ς ′ = 〈x′;φ′; ρ′; •〉 or ς ′ −→ ς ′′.

A syntactic proof [50], using Progress and Preservation theorems, is given in a
companion technical report [11]. In addition to the judgements of Figure 2,
we introduce judgements that assert the “well-typedness” of run-time types
( ` π V τ), run-time type environments ( ` φ : θ), run-time values ( ` w : τ),
run-time value environments ( ` ρ : Γ ), continuations ( ` τ � κ : τ), and states
( ` ς : τ). Of note is the judgement ` φ : θ that asserts that the run-time type
environment φ corresponds to a substitution θ; the domains of φ and θ are
equal, but whereas φ maps a type variable to a run-time type (a pair of a (pos-
sibly open) type and a run-time type environment), θ maps a type variable to a
closed type obtained by (recursively) expanding the (possibly open) type by the
run-time type environment.
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Preservation is entirely straightforward, but Progress requires showing that
the shaded terms of Figure 2 can always be satisfied with well-typed configura-
tions. A key lemma is the following, which establishes that two run-time types
may be judged equal if their induced expansions are syntactically equal:

Lemma 1 (Syntactic Type Equality of Expansions implies Run-Time Type Equality).
If ` φ1 : θ1, dom(φ1) ∩ dom(∆) = ∅, ∆ ` θ1(τ1),
` φ2 : θ2, dom(φ2) ∩ dom(∆) = ∅, ∆ ` θ2(τ2),
and θ1(τ1) = θ2(τ2),
then ∆ ` 〈τ1;φ1〉 ≡ 〈τ2;φ2〉.

An immediate corollary to Type Soundness is that, for well-typed programs,
the operational semantics of Figure 3 with the shaded terms is equivalent to the
operational semantics without the shaded terms.

3 Type- And Control-Flow Analysis

Our type- and control-flow analysis is presented as an adaptation of the syntax-
directed 0CFA, the classic monovariant control-flow analysis [32, Section 3.3],
and is given in Figure 5.

The result of our type- and control-flow analysis is a pair of abstract envi-
ronments. An abstract type environment φ̂ is a map from type variables to sets
of abstract types, where an abstract type is simply a (possibly open) type.5 An
abstract value environment ρ̂ is a map from variables to sets of abstract values,
where an abstract value is simply a (possibly open) recursive function or re-
cursive type abstraction.6 Abstract type and value environments form complete
lattices.

The judgements φ̂; ρ̂ � P , φ̂; ρ̂ � e, and φ̂; ρ̂ � v assert that a pair of abstract
environments is an acceptable type- and control-flow analysis of the program
P , expression e, and value v, respectively. An acceptable type- and control-flow
analysis is one that soundly approximates the run-time behavior of the program,
in a sense made precise in Section 3.1; intuitively, acceptable abstract type and
value environments must describe every run-time type and value environment
that arises during evaluation of the program.

Ignoring the shaded terms, the constraints asserted by the rules are standard
for a monovariant control-flow analysis. The rules for values assert that the value
itself is included in the set of abstract values mapped from the µ-bound variable
f (corresponding to the f 7→ wf binding in the operational semantics at makes
5 We introduce abstract types in preparation for future extensions of the analysis; for
example, we may wish to introduce a > abstract type to represent an unknown type
coming from outside the scope of the analysis.

6 Again, we introduce abstract values in preparation for future extensions of the anal-
ysis; for example, we may wish to introduce a > abstract value to represent an
unknown value coming from outside the scope of the analysis or we may wish to
introduce [m,n] abstract values to incorporate an interval/range data-flow analy-
sis [6,15].
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Abstract types AType 3 π̂ ::= τ

Sets of abstract types P(AType) 3 Π̂
Abstract values AValue 3 ŵ ::= v

Sets of abstract values P(AValue) 3 Ŵ

Abstract type environments ATEnv 3 φ̂ ∈ TyVar → P(AType)
Abstract value environments AEnv 3 ρ̂ ∈ Var → P(AValue)

φ̂1 v φ̂2
def= ∀α ∈ TyVar .φ̂1(α) ⊆ φ̂2(α)(⊔

i∈I φ̂i
)

(α) def=
⋃
i∈I φ̂i(α)(d

i∈I φ̂i
)

(α) def=
⋂
i∈I φ̂i(α)

φ̂⊥(α) def= {}
φ̂>(α) def= AType

ρ̂1 v ρ̂2
def= ∀x ∈ Var .ρ̂1(x) ⊆ ρ̂2(x)(⊔

i∈I ρ̂i
)

(x) def=
⋃
i∈I ρ̂i(x)(d

i∈I ρ̂i
)

(x) def=
⋂
i∈I ρ̂i(x)

ρ̂⊥(x) def= {}
ρ̂>(x) def= AValue

φ̂; ρ̂ � v

ρ̂(f) ⊇ {µf:τf.λz:τz.eb} φ̂; ρ̂ � eb
φ̂; ρ̂ � µf:τf.λz:τz.eb

ρ̂(f) ⊇ {µf:τf.Λβ.eb} φ̂; ρ̂ � eb
φ̂; ρ̂ � µf:τf.Λβ.eb

φ̂; ρ̂ � e

φ̂; ρ̂ � x
φ̂; ρ̂ � v ρ̂(x) ⊇ {v} φ̂; ρ̂ � e

φ̂; ρ̂ � let x:τx = v in e

∧
µf:τf .λz:τz.eb∈ρ̂(xf )

(
ρ̂(z) ⊇ {ŵa ∈ ρ̂(xa) | ` φ̂⇒⇒ ŵa :∼∼∼ τz }

∧ ρ̂(x) ⊇ {ŵb ∈ ρ̂(last(eb)) | ` φ̂⇒⇒ ŵb :∼∼∼ τx }

)
φ̂; ρ̂ � e

φ̂; ρ̂ � let x:τx = xf xa in e

∧
µf:τf .Λβ.eb∈ρ̂(xf )

(
φ̂(β) ⊇ {τa}
∧ ρ̂(x) ⊇ {ŵb ∈ ρ̂(last(eb)) | ` φ̂⇒⇒ ŵb :∼∼∼ τx }

)
φ̂; ρ̂ � e

φ̂; ρ̂ � let x:τx = xf [τa] in e

φ̂; ρ̂ � P

φ̂; ρ̂ � e
φ̂; ρ̂ � e

Fig. 5. Type- and Control-Flow Analysis of ANF System F
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∆ ` φ̂⇒⇒ π̂ ∼∼∼ π̂

π̂′
1 ∈ φ̂(α1) ∅ ` φ̂⇒⇒ π̂′

1 ∼∼∼ π̂2

∆ ` φ̂⇒⇒ α1 ∼∼∼ π̂2

π̂′
2 ∈ φ̂(α2) ∅ ` φ̂⇒⇒ π̂1 ∼∼∼ π̂′

2

∆ ` φ̂⇒⇒ π̂1 ∼∼∼ α2

∆ ` φ̂⇒⇒ τz1 ∼∼∼ τz2 ∆ ` φ̂⇒⇒ τb1 ∼∼∼ τb2
∆ ` φ̂⇒⇒ τz1 → τb1 ∼∼∼ τz2 → τb2

∆(α1) = ? ∆(α2) = ? α1 = α2

∆ ` φ̂⇒⇒ α1 ∼∼∼ α2

∆,α:? ` φ̂⇒⇒ τb1 ∼∼∼ τb2
∆ ` φ̂⇒⇒ ∀α. τb1 ∼∼∼ ∀α. τb2

` φ̂⇒⇒ ŵ :∼∼∼ π̂

∅ ` φ̂⇒⇒ τf ∼∼∼ π̂
` φ̂⇒⇒ µf:τf.λz:τz.eb :∼∼∼ π̂

∅ ` φ̂⇒⇒ τf ∼∼∼ π̂
` φ̂⇒⇒ µf:τf.Λβ.eb :∼∼∼ π̂

Fig. 6. Analysis-time Type Compatibility

the recursive function or recursive type-application available to the expression
body) and that the abstract environments are acceptable for the expression body.
Each of the rules for let-binding expressions let x:τx = · · · in e assert that
the abstract environments are acceptable for the expression e. The rule for let-
bindings of values asserts that the abstract environments are acceptable for the
value v and that the value v is included in the set of abstract values mapped
from the variable x. The rule for let-bindings of non-tail function applications
assert that, for all recursive functions in the set of abstract values mapped from
the variable xf , the abstract values mapped from the actual argument xa flow to
the formal argument z and the abstract values from the function result last(eb)
flow to the receiving variable x. Similarly, the rule for let-bindings of non-tail
type applications assert that, for all recursive type abstractions in the set of
abstract values mapped from the variable xf , the actual type argument τa flows
to the formal type argument β and the abstract values from the function result
last(eb) flow to the receiving variable x.

We now consider the shaded terms in the third and fourth rules of the φ̂; ρ̂ � e
judgement and the judgements and rules in Figure 6. In essence, the shaded
terms perform a kind of analysis-time type checking at the point where there is
a non-local flow of abstract values. In the third rule, each abstract argument ŵa
that flows to the formal argument z must have an abstract type compatible with
τz, the static type of formal argument; this is the abstract analogue of the run-
time type equality condition in the function application rule of the operational
semantics. Similarly, in the third and fourth rules, each abstract result ŵb that
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flow to the receiving variable x must have an abstract type compatible with
τx, the static type of the receiving variable; this is the abstract analogue of the
run-time type equality condition in the return rule of the operational semantics.

The rules for the judgement ` φ̂⇒⇒ ŵ :∼∼∼ π simply form the abstract type of
the recursive function or recursive type abstraction from the (static, syntactic)
type of the µ-bound variable. The judgement ∆ ` φ̂⇒⇒ π̂1 ≡ π̂2 asserts that the
abstract types π̂1 and π̂2 are compatible under φ̂ and ∆. The first and second
rules expand a Λ-bound type variable according to the (global) abstract type
environment; note that these rules must “guess” a satisfying abstract type from
among the set of abstract types mapped from the type variable, unlike the cor-
responding rules in the judgement ∆ ` π1 ≡ π2, where the expansion is uniquely
determined by the (local) run-time type environment. The third rule asserts that
two function types are compatible when their argument types are compatible and
their result types are compatible. The fifth rule asserts that two universal types
(sharing the same ∀-bound type variable via α conversion) are compatible when
their range types are compatible. The fourth rule asserts that two ∀-bound type
variables are compatible when they are the same type variable. Note that the
first and second rules assert the compatibility of the expanded abstract type
under the empty type-variable context; this is because the expanded abstract
type is not in the scope of the ∀-bound type variables appearing in ∆.

3.1 Flow Soundness

We now show that every acceptable (with respect to a given program) pair
of abstract environments soundly approximates the run-time behavior of the
program. To formalize the approximation, we introduce “shallow” abstraction
functions that take run-time types and values to abstract types and values and
that take run-time type and value environments to abstract type and value
environments:7

| · | :: RType → AType | · | :: RValue → AValue
|〈τ ;φ〉| = τ |〈v;φ; ρ〉| = v

| · | :: RTEnv → ATEnv | · | :: REnv → AEnv

|φ|(α) =
{
{} if α /∈ dom(φ)
{|π|} if φ(α) = π

|ρ|(x) =
{
{} if x /∈ dom(ρ)
{|w|} if ρ(x) = w

Theorem 2 (Flow Soundness).
If φ̂; ρ̂ � e and 〈e; ∅; ∅; •〉 −→∗ 〈e′;φ′; ρ′;κ′〉, then |φ′| v φ̂ and |ρ′| v ρ̂.

A proof, using a Preservation (aka, subject reduction) theorem, is given in a
companion technical report [11]. In addition to the judgements of Figure 5,
7 These abstraction functions are “shallow” in the sense that they do not abstract
and join the embedded run-time type and value environments of run-time types and
values.
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we introduce judgements that assert the acceptability of abstract environments
with respect to run-time types (φ̂ ` π), run-time type environments (φ̂ ` φ),
run-time values (φ̂; ρ̂ ` w), run-time value environments (φ̂; ρ̂ ` ρ), continua-
tions (φ̂; ρ̂ ` x� κ), and states (φ̂; ρ̂ ` ς). The judgements φ̂ ` φ and φ̂; ρ̂ ` ρ
assert that the abstract environments are “deep” abstractions of the run-time
environments.

Preservation is straightforward, simplified by the explicit run-time type
equality conditions in the operational semantics and the following lemma, which
establishes that type compatibility soundly approximates type equality:

Lemma 2 (Run-Time Type Equality implies Analysis-Time Type Compatibility).
If φ̂ � φ1, φ̂ � φ2, and ∆ ` 〈τ1;φ1〉 ≡ 〈τ2;φ2〉, then ∆ ` φ̂⇒⇒ τ1 ∼∼∼ τ2.

It is perhaps surprising to note that Flow Soundness of our type- and control-
flow analysis does not require a well-typed source program. In essence, the
explicit run-time type equality conditions in the instrumented operational se-
mantics ensure that a machine state is “just well-typed enough” to preserve
the acceptability of abstract environments across a taken machine transition.
A well-typed source program and Type Soundness ensure that machine transi-
tions may be repeatedly taken. This suggests an alternate presentation in which
we adopt an uninstrumented operational semantics (i.e., Figure 3 without the
shaded terms) and require a well-typed source program for Flow Soundness;
Progress (for Type Soundness) would become straightforward, but Preservation
(for Flow Soundness) would require a lemma (essentially, a chaining of Lemma 1
and Lemma 2) that establishes that the abstractions of two run-time types may
be judged compatible if their induced expansions are syntactically equal, forgo-
ing the run-time type equality judgement entirely. The necessary preconditions
for this lemma would be obtained from the well-typedness of the machine state
undergoing transition.

3.2 Existence of Minimum, Finite Flows

As is typical for a flow analysis, for a given program, there may be many accept-
able pairs of abstract environments. One intuitively acceptable pair of abstract
type- and value-environments is the one that maps every Λ-bound type variable
that occurs in the program to the set of types that occur in the program and
that maps every let-, µ-, and λ-bound variable that occurs in the program to
the set of values that occur in the program:

φ̂P>(α) =
{
{} if α /∈ TyVarP
TypeP if α ∈ TyVarP

ρ̂P>(x) =
{
{} if x /∈ VarP
ValueP if x ∈ VarP

Note that these abstract environments are “finite”, in the sense that they map a
finite set of elements to finite sets (and the remaining elements to empty sets).

The following theorem establishes that minimum, finite acceptable abstract
environments exist for every program:
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Theorem 3 (Minimum, Finite Flows Exist).
For all programs P ,
there exist minimum abstract environments φ̂min v φ̂P> and ρ̂min @ ρ̂P>
such that φ̂min; ρ̂min � P .

A proof is given in a companion technical report [11], first showing that φ̂P> and
ρ̂P> are an acceptable pair of abstract environments and then showing that the
greatest lower bound of a (possibly infinite) set of acceptable pairs of abstract
environments is an acceptable pair of abstract environments. Furthermore, for a
given program P , we may restrict ourselves to considering abstract type environ-
ments φ̂P ∈ ATEnvP = TyVarP → P(TypeP ) and abstract value environments
ρ̂P ∈ AEnvP = VarP → P(ValueP ), which form finite, complete lattices.

3.3 Computability of Minimum, Finite Flows

While Theorem 3 establishes that minimum, finite acceptable abstract envi-
ronments exist for every program, we would like such abstract environments
to be computable. The key concern is the decidability of the ∆ ` φ̂⇒⇒ τ1 ∼∼∼ τ2
judgement. Even simply verifying that a pair of abstract environments is ac-
ceptable for a given program requires showing that constraints of the form
ρ̂(z) ⊇ {ŵ ∈ ρ̂(x) | ` φ̂⇒⇒ ŵ :∼∼∼ τz} are satisfied; this, in turn, requires show-
ing, for each an abstract value ŵ that is an element of ρ̂(x) but not an element
of ρ̂(z), that the judgement ` φ̂⇒⇒ ŵ :∼∼∼ τz is not derivable.8

Due to “recursion” in the abstract type environment, whereby a type vari-
able may be mapped to a set of abstract types in which the type vari-
able itself occurs free, we cannot exhaustively apply the first and second
rules of the ∆ ` φ̂⇒⇒ τ1 ∼∼∼ τ2 judgement in order to search for a derivation.
Consider deciding whether or not ∅ ` φ̂‡ ⇒⇒ int→ β ∼∼∼ α is derivable where
φ̂‡(α) = {int→ int, int→ α} and φ̂‡(β) = {int→ bool, int→ β}.9 We must avoid
getting “stuck” exploring the infinite non-derivation:

int→ α ∈ φ̂‡(α)

∅ ` φ̂‡ ⇒⇒ int ∼∼∼ int

int→ β ∈ φ̂‡(β)

...
∅ ` φ̂‡ ⇒⇒ int→ β ∼∼∼ α

∅ ` φ̂‡ ⇒⇒ β ∼∼∼ α
∅ ` φ̂‡ ⇒⇒ int→ β ∼∼∼ int→ α

∅ ` φ̂‡ ⇒⇒ int→ β ∼∼∼ α

To circumvent this issue, we take inspiration from the theory and implemen-
tation of regular-tree grammars [12,2,7], which has been used extensively for

8 Note, however, that this does not require showing, for each abstract value ŵ that is
an element of both ρ̂(x) and ρ̂(z), that the judgement ` φ̂⇒⇒ ŵ :∼∼∼ τz is derivable;
the constraint is satisfied whether or not the judgement is derivable.

9 It is not derivable.
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flow analysis [23,22,17,16] (including type inference [28,3]), but whereas previ-
ous work has applied regular-tree grammars to the analysis of values, we apply
regular-tree grammars to the analysis of types.

Given an abstract type environment φ̂, we interpret it as a regular-
tree grammar as follows: dom(φ̂) is the set of non-terminals and
{α⇒ π̂ | α ∈ dom(φ̂) ∧ π̂ ∈ φ̂(α)} is the set of productions. The lan-
guage Lφ̂(π̂) generated by the grammar φ̂ for the starting term π̂ is
Lφ̂(π̂) def= {π̂′ ∈ AType | π̂ ⇒∗

φ̂
π̂′}, where AType is the set of closed abstract

types and π̂1 ⇒φ̂ π̂2 is the relation that (capture-avoidingly) substitutes for
one (free) non-terminal of π̂1 the right-hand side of one of its productions to
obtain π̂2.10

Intuitively, ∅ ` φ̂‡ ⇒⇒ int→ β ∼∼∼ α is not derivable because

Lφ̂‡(int→ β) = {int→ int→ bool, int→ int→ int→ bool, . . .}
Lφ̂‡(α) = {int→ int, int→ int→ int, int→ int→ int→ int, . . .}

and Lφ̂‡(int→ β) ∩ Lφ̂‡(α) = ∅; there is no closed type that is generated by φ̂‡
from both int→ β and α. Formally,

Theorem 4 (Analysis-Time Type Compatibility iff Languages Intersect).
∅ ` φ̂⇒⇒ π̂1 ∼∼∼ π̂2 if and only if Lφ̂(π̂1) ∩ Lφ̂(π̂2) 6= ∅.

A proof is given in a companion technical report [11].
An immediate corollary to Theorem 4 is the the decidability of type compat-

ibility, since regular-tree grammars are closed under intersection and the empti-
ness of a regular-tree grammar is decidable [12,28]. In turn, we have that the
minimum, finite acceptable abstract environments are computable for every pro-
gram. Furthermore, given a program P , it is straightforward to read the analysis
of Figure 5 as defining a monotone function from abstract environments to ab-
stract environments; the “input” abstract environments are used for terms of the
form ŵ ∈ ρ̂(x) and ` φ̂ ⇒⇒ ŵ :∼∼∼ τ , while the “output” abstract environments
are formed from the “input” abstract environments joined with φ̂⊥[β 7→ Π̂] and
φ̂⊥[x 7→ Ŵ ] for terms of the form φ̂(β) ⊇ Π̂ and ρ̂(x) ⊇ Ŵ . The least fixed
point of this monotone function, computable using a standard fixed-point com-
putation, is the minimum, finite acceptable pair of abstract environments for the
program P . Further considerations regarding the implementation of our type-
and control-flow analysis are given in Section 5.

We briefly sketch implementations of testing emptiness and intersection of
regular-tree grammars, based on those given by Aiken and Murphy [2]. Recall
that, for a given program P , we may restrict ourselves to finite abstract type
environments φ̂P ∈ ATEnvP .

10 There are some subtleties in the treatment of ∀-bound type variables, which are
perhaps best dealt with by adopting a locally-nameless representation [4] for types.
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We define the function Ψ as follows:

Ψ :: AEnv → (TyVar → B)
Ψ(φ̂) = lfpF

where F :: (TyVar → B)→ (TyVar → B)

F (ψ)(α) =
{
> if ∃π̂ ∈ φ̂(α). ∀β ∈ FTV(π̂). ψ(β) = >
⊥ if ∀π̂ ∈ φ̂(α). ∃β ∈ FTV(π̂). ψ(β) = ⊥

If φ̂ is finite, then Ψ(φ̂) is computable using a standard fixed-point computation.
The language Lφ̂(π̂) is non-empty if and only if ∀β ∈ FTV(π̂). ψ(β) = >.

In order to intersect the languages generated by the finite regular-tree gram-
mar φ̂ for the starting terms π̂1 and π̂2, we extend φ̂ with finitely many additional
non-terminals and productions to obtain φ̂? and generate a starting term π̂? such
that Lφ̂(π̂1) ∩ Lφ̂(π̂2) = Lφ̂?(π̂?). The idea is that each new non-terminal repre-
sents the intersection of a type variable in dom(φ̂) and a type; a global mapping
from pairs of type variables and types to new non-terminals is maintained to
ensure that the same new non-terminal is used whenever the same pair is en-
countered.

To illustrate the technique, consider intersecting the languages generated
by φ̂‡ for the starting terms int → β and α. First, extend the gram-
mar with a new non-terminal Z and no productions (i.e., extend φ̂‡ with
the mapping Z 7→ {}); the non-terminal Z will serve as starting term for
an empty language. We are trying to intersect int → β and α; since α
is a non-terminal, generate a new non-terminal A0 mapped from the pair
〈int→ β;α〉, add the triple 〈A0; {int→ β}; φ̂‡(α)〉 to a work list; and return
A0 as the result of intersecting int → β and α. The work list contains
new non-terminals whose productions should be generated by intersecting all
pairs of elements from the two sets. Therefore, we next add productions cor-
responding to A0 ⇒ int→ β ? int→ int and A0 ⇒ int→ β ? int→ α}. Inter-
secting int→ β and int→ int generates a new non-terminal A1 mapped from
〈β; int〉, adds 〈A1; φ̂‡(β); {int}〉 to the worklist, and returns int→ A1. Inter-
secting int→ β and int→ α generates a new non-terminal A2 mapped from
〈β;α〉, adds 〈A1; φ̂‡(β); φ̂‡(α)〉 to the worklist, and returns int→ A2. There-
fore, we extend with the mapping A0 7→ {int→ A1} ∪ {int→ A2}. Returning to
the work list, we next add productions corresponding to A1 ⇒ int→ bool ? int
and A1 ⇒ int→ β ? int. Intersecting int→ bool and int returns Z (since
clearly the intersection of the languages generated from these two start-
ing terms is empty), as does intersecting int→ β and int; therefore, we ex-
tend with the mapping A1 7→ {Z} ∪ {Z}. Returning to the work list, we
next add productions corresponding to A2 ⇒ int→ bool ? int→ int (this in-
tersection returns Z), A2 ⇒ int→ bool ? int→ α (this intersection generates
a new non-terminal A3 mapped from 〈bool;α〉, adds 〈A3; {bool}; φ̂‡(α)〉 to
the worklist, and returns int→ A3), A2 ⇒ int→ β ? int→ int (this intersec-
tion returns int→ A1, using the global map), and A2 ⇒ int→ β ? int→ α
(this intersection returns int→ A2); therefore, we extend with the mapping
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A2 7→ {Z} ∪ {int→ A3} ∪ {int→ A1} ∪ {int→ A2}. Finally, we add produc-
tions corresponding to A3 ⇒ bool ? int→ int (this intersection returns Z) and
A3 ⇒ bool ? int→ α (this intersection returns Z); therefore, we extend with the
mapping A3 7→ {Z} ∪ {Z}. In summary, we have

Global map
〈int→ β;α〉 7→ A0

〈β; int〉 7→ A1
〈β;α〉 7→ A2

〈bool;α〉 7→ A3

New productions
A0 7→ {int→ A1} ∪ {int→ A2}
A1 7→ {Z} ∪ {Z}
A2 7→ {Z} ∪ {int→ A3} ∪ {int→ A1} ∪ {int→ A2}
A3 7→ {Z} ∪ {Z}
Z 7→ {}

To conclude, we return φ̂? equal to φ̂‡ extended with the new productions
and π̂? equal to A0. Finally, note that Ψ(φ̂?)(π̂?) = ⊥, confirming that
Lφ̂‡(int→ β) ∩ Lφ̂‡(α) = ∅.

4 Related Work

There is surprisingly little work on control-flow analyses for statically-typed
languages with polymorphic types. Control-flow analyses have typically been
formulated for dynamically- or simply-typed languages.11 Production implemen-
tations of control-flow analyses for Standard ML, a language with rank-1 poly-
morphism (i.e., “let”-polymorphism), typically handle the polymorphism either
by monomorphisation [5] (explicitly eliminating the polymorphism before anal-
ysis) or by polyvariance [16] (implicitly eliminating the polymorphism during
analysis).

The most closely related work is the “Type-Directed Flow Analysis for Typed
Intermediate Languages” of Jagannathan, Weeks, and Wright [20], which de-
scribes a framework for polyvariant flow analyses of Λi, the predicative subset
of System F extended with recursive procedures. A specific analysis called SRT
uses types to control polyvariance; essentially, SRT introduces a distinct poly-
variance context for each closed type at which a polymorphic function is applied.
Furthermore, SRT respects types, meaning that if v̂ ∈ F (x) (the abstract value
v̂ is assigned to x by the analysis) and x : σ (the type scheme σ is assigned
to x by the type system), then Jv̂K ⊆ JσK, where J·K denotes a set of values.
Unfortunately, SRT does not terminate on programs that use polymorphic re-
cursion [30,18,24]; such programs may instantiate a polymorphic function at
an infinite number of closed types during execution. In contrast, our type- and
control-flow analysis is computable for all programs in (impredicative) System F
extended with recursive functions.

Another closely related work is the “Type-sensitive Control-Flow Analysis”
of Reppy [37], which describes an extension of Serrano’s version of 0CFA [42]

11 Again, we draw a distinction between flow analyses expressed as sophisticated type
systems and flow analyses of languages with sophisticated type systems.
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that uses a program’s type information to compute more precise results. Ser-
rano’s and Reppy’s analyses are modular and use an abstract value > to denote
an unknown value; variables bound outside the unit of analysis are assigned >,
as are the parameters of functions that escape the unit of analysis. Reppy’s in-
sight is that values of an abstract type can only be created within their defining
module; hence, “unknown” values of the abstract type can be soundly approxi-
mated by the set of escaping values of the abstract type (a subset of the set of
values of the abstract type created within the defining module). This leads to a
type-indexed family of abstract values for unknown values, in addition to the >
abstract value. Reppy’s analysis is formulated for a simply-typed language with
top-level abstract types; he suggests extending the analysis to a language with
polymorphism by mapping type variables to the > abstract value. Our type-
and control-flow analysis is a whole-program analysis, but has a more precise
treatment of type variables.

5 Future Work

There are many directions for future work.
While Section 3.3 established the computability of the minimum, finite ac-

ceptable pair of abstract environments for every program, we would our type-
and control-flow analysis to be efficiently computable. A popular approach for
computing control-flow analyses is as a constraint-based analysis [1]; an initial
phase generates constraints that a solution to the analysis must satisfy, while
a subsequent phase solves the constraints.12 The syntax-directed 0CFA that we
adapt to our type- and control-flow analysis has an O(n3) algorithm following
this approach [32, Section 3.4]. However, algorithms for solving a set of con-
straints are sensitive to the syntax of constraints; the filtering of sets by the
derivability of the type-compatibility judgement may prove problematic, espe-
cially since the derivability of the type-compatibility judgement depends upon
the abstract type environment.

Independent of the overall approach to computing our type- and control-flow
analysis, it seems clear that we will need to efficiently decide the derivability
of type-compatibility judgements with respect to abstract type environments.
Section 3.3 established that this decision could be made by intersecting and
testing the emptiness of regular-tree grammars. Both operations are (worst-
case) quadratic time in the size of the regular-tree grammar. Aiken and Mur-
phy [2, Section 4] suggest maintaining a regular-tree grammar with an invariant
that makes testing the emptiness (of a non-terminal) constant time. Aiken and
Murphy [2, Section 5.3] also suggest that the algorithm given previously, which
generates only the intersections necessary to express the result, performs well
in the typical case. We further observe that, for a fixed abstract type environ-
ment, we can maintain the global map from pairs of type variables and types
to new non-terminals (where each new non-terminal represents the intersection
12 More sophisticated approaches exist where additional constraints are generated dur-

ing the solving phase.
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of the expansions of the type variable under the abstract type environment and
the type) across decisions of the derivability of type-compatibility. Hence, the
(worst-case) quadratic time bounds all queries with a given abstract type envi-
ronment, not each query. We may also be able to exploit the fact that we are
computing the emptiness of an intersection of regular-tree grammars and are not
interested in the intersection itself.

Another direction of future work is to extend the type- and control-flow
analysis to handle unknown and escaping values. It should be straightforward
to introduce a > abstract type and a > abstract value; conservatively, the >
abstract type should be judged compatible with any other abstract type. A
more interesting direction is to consider primitives that make essential use of
higher-rank polymorphism, such as Haskell’s runST [25,26].

Yet another direction is to extend the monovariant type- and control-flow
analysis to a polyvariant analysis.

Finally, we would like to extend type- and control-flow analysis to languages
with even more sophisticated type systems. Of particular interest is System F
with guarded algebraic data types (GADTs), as we are interested in combining
the flow-directed defunctionalization of Cejtin, Jagannathan, and Weeks [5] with
the polymorphic typed defunctionalization of Pottier and Gauthier [35]. Also of
interest is System Fω, the higher-order polymorphic lambda-calculus: System Fω
has used as a target language for the elaboration of a full-featured, higher-
order ML-like module language [41] and System Fω extended with type equality
coercions [45] is used as a typed intermediate language in the Glasgow Haskell
Compiler (GHC).
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Abstract. Operational semantics is a well-known tool used to describe
the semantics of a programming language. For operational rules in the
syntactic well-behaved GSOS format it is possible to generically prove
adequacy of operational and denotational semantics. This has been pi-
oneered by Turi and Plotkin in a categorical setting. This paper con-
tributes an implementation of their framework in the theorem prover
Coq and presents a formal proof of the adequacy theorem. The main
advantages of having a Coq formalization are that it facilitates both
formal reasoning about, and experimentation with the semantics of pro-
gramming languages.

1 Introduction

Operational and denotational semantics are two well-known tools for assigning
a formal meaning to programming languages and process algebras. Both are
crucial for a complete description of the semantics and should be consistent.
Around 15 years ago, Turi and Plotkin [19] developed a framework that unifies
both styles of semantics. Using the language of category theory, they managed to
strip away language-specific details such as concrete syntax and behavior. Given
a set of operational rules, they derived both the operational and denotational
semantics from a distributive law corresponding to a set of operational rules. It
is imperative that these operational rules adhere to the syntactic, well-behaved
GSOS format [5].

Turi and Plotkin’s work has attracted a great deal of attention since its
introduction. Since then, the framework has been extended, for example to deal
with general recursion and to support syntax with variable binding; [10] offers
an overview. The proofs and even the examples in recent papers which apply
this framework are becoming increasingly complex. We therefore believe that it
is worth the effort to formalize the framework in a functional language that has
theorem proving support.

This paper implements Turi and Plotkin’s original work as two Coq pro-
grams: one corresponding to the operational semantics, and the other to the
denotational semantics, and we verify that these programs (functions) are ex-
tensionally equal. This adequacy proof is important, as it allows the user to de-
velop meta-theoretical concepts as well as properties of specific programs based
on either operational or denotational semantics. Theorem proving approaches
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to operational and denotational semantics have traditionally been more ad hoc,
the consistency is usually proved about a specific language, see e.g. [3, 4]. More-
over, as Coq is in fact a fully-fledged programming language which enables the
execution of the semantics provided by the user our implementation facilitates
further experimentation.

Implementations of Turi and Plotkin’s work in Haskell have been developed
by Jaskelioff, Hutton and Ghani in [9] and by Hutton in [7]. An important tenet
of most theorem provers, including Coq, is that every function must terminate,
otherwise the underlying logic would be inconsistent. This seemingly superficial
difference with Haskell has profound implications for the development pre-
sented in this paper. In order to satisfy syntactic checks which Coq performs on
definitions to guarantee termination, the types representing the syntax and be-
havior of the language must be carefully chosen carefully. As we will see, Coq’s
support for dependent types can be put to good use. The semantic domain po-
tentially consists of infinite objects, as shown in the examples provided in this
paper. In contrast to Haskell, there is a clear distinction between finite and
infinite worlds in Coq. The standard (syntactic) equality of Coq is not general
enough for serious proofs about infinite objects. We have based the Coq formal-
ization on the use of setoids, i.e. types packaged with a user-defined notion of
equality and a proof of well-behavedness of the equality.

This paper is arranged as follows. Sections 2 and 3 serve as an overview of
the computational side of Turi and Plotkin’s framework, illustrating operational
and denotational styles of semantics using a simple language for streams as its
running example. To make the content in this paper accessible to readers with
no prior experience with Coq, we use Haskell in these two sections. A more
involved example featuring non-determinism is provided towards the end of this
paper in Section 5. We switch to Coq in Section 4, and explain what setoids are
and how they are applied in the equational reasoning within our formalization.
We then develop a modular, reusable theory of terms, allowing us to prove
properties about the terms “once and for all”. We also discuss how to deal
with higher-order type constructors that are used in the Haskell specifications,
but which cannot be translated directly into Coq. The proof of the adequacy
theorem will be given in Section 4. We do this first for a simple rule format and
then extend the proof to the GSOS format in Section 5. An overview of related
work is provided in Section 6 and finally conclusions are drawn in Section 7.

The reader is expected to have a modest familiarity with category theory. All
notions and properties given in this paper, including those specified in Haskell
(see Section 2), have been formalized and proven in Coq. The files of the
development are available on the web via http://www.cs.ru.nl/~kmadlene/

adequacy/.

2 A Simple Stream Language

In this section we discuss the relation between operational and denotational
semantics similar to the way they arise in the framework of Turi and Plotkin [19].
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a
a−→ a b

b−→ b

x
l−→ x′ y

m−→ y ′

alt(x, y)
l−→ alt(y ′, x′)

Fig. 1. A simple language for streams.

We use a simple language about streams as our running example; a more involved
language featuring non-determinism will be given in Section 5. Since we expect
that the reader might not be familiar with Coq, we start with using Haskell
as specification language; in Section 4 we switch to Coq.

Consider the simple stream language defined by the operational rules in Fig-
ure 2. These rules inductively define a transition relation →⊆ T×L×T, where
T are the closed terms and L := {a, b} is the set of labels.. The operations a and
b generate the elementary streams aaaa · · · and bbbb · · ·, and the operation alt,
provided with two streams, produces the alternation between them.

We can specify the syntax of the language by a signature: a set of function
symbols each equipped with a fixed arity. Such a signature is encoded as a
functor which we will call the signature functor. The signature functor of our
stream language, and the terms generated from this signature are:

data Σ p = AS | BS | Alt p p

instance Functor Σ where
fmap f AS = AS
fmap f BS = BS
fmap f (Alt p1 p2) = Alt (f p1) (f p2)

data T = App (Σ T)

The separation of Σ from T will be important in the rest of the paper. To encode
the transition relation we also have to represent the behavior of the system. This
is again done with a special functor, which we call the behavior functor. The data
type L corresponds to our label set.

data L = A | B
data B p = L : ∗ : p

instance Functor B where
fmap f (x : ∗ : y) = x : ∗ : f y

We can now define a transition system as a B-coalgebra, i.e. a pair consisting of
an object X and a structure map X → B X .

OM :: T→ B T
OM (App app) = fmap App

case app of
AS → A : ∗ : AS
BS → B : ∗ : BS

354



Alt p1 p2 → let
(p1a : ∗ : p1p) = OM p1
(p2a : ∗ : p2p) = OM p2

in p1a : ∗ : Alt p2p p1p

One may think of OM as a model of the operational semantics of the language in
question, as it specifies for each state what the next step would be. A term can
be run by (coiteratively) unfolding it to obtain a stream of labels. The streams
are actually the greatest fixpoint of the present behavior functor. This leads to
the following definitions:

data N f = N (f (N f ))

unfold :: Functor b⇒ (x → b x)→ x → N b
unfold g = N ◦ fmap (unfold g) ◦ g

run :: T→ N B
run = unfold OM

In this paper we will be interested in behavior functors B that admit a final
coalgebra. We encode such functors by an additional class constraint containing
this (unique) coalgebra named out

class Functor f ⇒ FinCoAlg f where
out :: (N f )→ f (N f )

instance FinCoAlg B where
out (N (x : ∗ : y)) = x : ∗ : y

Indeed, now we can show

Lemma 1. The coalgebra out for the functor B is final.

Thus, there is a unique function making the following diagram1 commute, and
this function is run (= unfold OM).

T
unfoldOM //___________

OM

��

NB

out

��
BT

B (unfoldOM)
// B (NB)

The intuition behind the above diagram is that splitting a label off the stream
generated by unfolding OM is the same as performing one step and unfolding
OM on the resulting term. The finality statement in Lemma 1 is actually more
general in the sense that OM can be replaced by an arbitrary B-coalgebra. See
also [8] for more background information about coalgebras.

1 In the diagrams of this paper we will adopt the ‘categorical notation’ for functors
by writing F instead of fmap, for some functor F, i.e., we explicitly indicate the
instance type, and leave fmap itself implicit.
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As in [19] we consider the denotational semantics as a dual version of the oper-
ational semantics. The underlying denotational model actually operates directly
on elements of the semantic domain of our language, i.e. N B. For the present
example this means that it prescribes how the operations of the language, when
applied to streams, yield new streams. The semantic functions corresponding to
the operations of Σ are:

semAS, semBS :: N B
semAS = N (A : ∗ : semAS)
semBS = N (B : ∗ : semBS)

semAlt :: N B → N B → N B
semAlt (N (s1h : ∗ : s1t)) (N ( : ∗ : s2t)) = N (s1h : ∗ : semAlt s2t s1t)

It is now trivial to define the denotational model:

DM :: Σ (N B)→ (N B)
DM AS = semAS
DM BS = semBS
DM (Alt s1 s2) = semAlt s1 s2

Evaluation of terms is dual to run: instead of unfolding the coalgebra OM , we
fold the algebra DM over a given term.

fold :: (Σ a→ a) → T→ a
fold h (App app) = h (fmap (fold h) app)

eval :: T→ N B
eval = fold DM

Lemma 2. The initial algebra for the functor Σ (previously called in) is App.

Thus, there is a unique function making the following diagram commute, and
this function is eval (= fold DM).

Σ T
Σ (foldDM) //

App

��

Σ (NB)

DM

��
T

foldDM
//___________ NB

The adequacy statement for the present example says that executing run and
eval on the same term yields the same stream. With the definitions as they stand
a proof would proceed by induction on T, and would be rather ad hoc. A more
structured development will be laid out in the rest of this paper, where we use a
distributive law, derived from a set of operational rules, as the common source
for both operational and denotational models.
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3 Turi and Plotkin’s Framework

The present section generalizes the example of the previous section.

3.1 Generalized Terms

A more general version of T that does not directly depend on a specific signature
is obtained by making T parametric in the signature. Moreover, to allow for open
terms (used later on to represent meta-variables in the operational rules) a Var
constructor has been added.

data T f x = Var x | App (f (T f x))

It is straightforward to make these terms into a Functor, by defining:

instance Functor f ⇒ Functor (T f ) where
fmap f (Var x) = Var (f x)
fmap f (App app) = App (fmap (fmap f ) app)

Likewise, we generalize the fold defined in Section 2.

fold :: Functor f ⇒ (a→ b)→ (f b→ b)→ (T f a)→ b
fold k h (Var x) = k x
fold k h (App app) = h (fmap (fold k h) app)

The fold operation provides a recursive definition principle that avoids explicit
recursion (e.g. see also [13]): one only has to specify a mapping of the variables
k :: a→ b, and an algebra h :: f b → b. This result is attributed to the following
lemma.

Lemma 3. Let k ::a→ b, and h :: f b → b. Then fold k h is the unique function
making the following diagram commute:

a
Var //

∀ k
&&LLLLLLLLLLLLL T f a

∃! fold k h

���
�
� f (T f a)

f(fold k h)

��

Appoo

b f b∀ h
oo

If we choose the empty type for a, we obtain the set of closed terms as in
Section 2. In Haskell2:

data Empty

empty :: Empty → a
empty = ⊥

Now the left part of the diagram can then be ignored and the remaining square
says precisely that App :: f (T f Empty)→ T f Empty is the initial algebra for
functor f. Observe that the diagram in Lemma 2 can be obtained by taking N B
for b, and Σ for f.

2 Not standard Haskell; requires the compiler option -XEmptyDataDecls of GHC.
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3.2 Distributive Laws

It is common in the field of process algebra to enforce well-behavedness of the
semantics through syntactic formats on the operational rules. In particular, the
GSOS format [5] is important, as it enjoys the adequacy property while being
sufficiently liberal to express a wide variety of semantics. Lenisa, Power and
Watanabe [12] (refining the work of Turi and Plotkin) have shown that the
GSOS format corresponds precisely to a distributive law of a monad over a
functor. We will first consider simpler distributive laws, ones that distribute a
functor over another functor, leaving GSOS to Section 5. Distributive laws of
the latter type are functions of the type Σ (B a) → B (Σ a) that happen to be
natural transformations (see Section 4.1).

We will replace the the operational as well as the denotational model in-
troduced in the previous section with models that are derived from a common
distributive law SM , which corresponds to the operational rules.

SM :: (Σ (B a))→ B (Σ a)
SM AS = A : ∗ : AS
SM BS = B : ∗ : BS
SM (Alt (s1h : ∗ : s1t) (s2h : ∗ : s2t)) = s1h : ∗ : Alt s2t s1t

The function SM takes an operation (an element from the signature) as argu-
ment. In the case of Alt this operation is applied to two arguments that both
consist of a pairing of an action and a variable. This corresponds to premise of a
rule. The result is a pairing of an action and an operation applied to variables,
corresponding to the target of the conclusion of each rule. The polymorphism in
a ensures that SM does not depend on a concrete choice of the set of variables.

In summary, the type of SM says that each operation in the language, as
it is applied to behaviors on the variables, yields a behavior on an operation
applied to variables. Therefore, SM can be seen as the (semantic) model of the
language.

As said before, each set of operational rules has its own semantic model SM .
For each concrete SM it should be verified that it is a natural transformation;
see Section 4.

3.3 Operational and denotational models

In the standard relational approach to operational semantics, the validity of a
transition step is proved by the construction of a derivation tree. The nodes
correspond to applications of the operational rules, and the leafs correspond
applications of the hypotheses.

We can mimic this with the help of the definition principle for terms (the
fold operation) combined with the semantic model. Suppose that we have a map
Γ :: a → B a, representing the behavior environment : the hypotheses about the
variables in the premises. If we encounter an application of an operation, then
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we apply SM , and if we encounter a variable we apply Γ. In a diagram,

a
Var //

Γ

��

TΣa

OM Γ

���
�
� Σ(TΣa)

Σ (OM Γ)

��

Appoo

Ba BVar
// B(TΣa) B(Σ(TΣa))

BApp
oo Σ(B(TΣa))

SM
oo

which concretely is

OM :: (a→ B a)→ T Σ a→ B (T Σ a)
OM Γ = fold (fmap Var ◦ Γ) (fmap App ◦ SM)

The denotational model can be obtained in a dual fashion, i.e. by unfolding
the semantic model. Recall that the dual of App is out.

Σ(NB)
DM //_______

Σ out

��

NB

out

��

Σ(B(NB))

SM

��
B(Σ(NB))

BDM
// B(NB)

Concretely,

DM :: Σ (N B)→ N B
DM = unfold (SM ◦ fmap out)

The denotational model operates directly on elements of the semantic domain.
It tells how the operations of the language, applied to denotations, form new
denotations. Observe that the set of hypotheses does not play a role in the
denotational model, but will come into play when we construct the evaluation
function eval. Running a term according to the operational model, and evaluating
a term according to the denotational model is defined in same way as in Section 2:

run, eval :: (a→ B a)→ (T Σ a)→ N B
run Γ = unfold (OM Γ)
eval Γ = fold (unfold Γ) DM

The distributivity property of SM will be needed prove adequacy of run end
eval. There are many sensible operational rules that do not fit in the format
described by rules in the “plain” format of SM . For example, suppose we extend
our simple stream language with an operation zip that merges two input streams.
This operation differs slightly from alt in the sense that at each transition it does
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not discard the head element of the second stream. The corresponding transition
rule is:

x
l−→ x′

zip(x, y)
l−→ zip(y , x′)

If we try to encode this rule in our semantic model, for instance by adding the
following alternative to SM :

SM (Zip (s1h : ∗ : s1t) s) = s1h : ∗ : Zip s s1t

then the model does not type check anymore. The main problem is that variables
used on both the left- and right-hand sides should receive a polymorphic type,
which is not the case for the variable s. Also replacing s by a pattern match, as
in the case for Alt will not work because then we have to reconstruct the first
argument of Zip on the right-hand side out of the constituents. In Section 5 we
discuss the more liberal GSOS rule format admitting operations like Zip.

4 Formalizing semantics in Coq

In this section we will discuss the formalization of the semantic framework intro-
duced in the preceding section in Coq. However, due to the different natures of
Haskell and (the specification language of) Coq not all notions and concepts
can be translated directly. More specifically, higher-order type constructors and
(possibly) infinite data structures will require a special treatment in Coq. But
first we will take a closer look on how to deal with infinite objects.

4.1 Equational Reasoning with Setoids

Infinite objects, as in most theorem provers, live in a world separate from fi-
nite objects, and do not adhere to Coq’s standard notion of equality. One often
works instead with bisimulation, a weaker notion of equality on infinite objects.
Coq does not support user-defined extensions of its standard notion of equality
(i.e. quotient types) as it would endanger the decidability of type checking. To
overcome this issue, it is common practice to work with setoids, types that are
packaged with a user-defined notion of equality and a proof of well-behavedness
of the equality. The commuting diagrams in Section 2 use bisimulation as the
underlying notion of equality in the Coq formalization. Finally, setoid mor-
phisms are functions whose domain and codomain are setoids and respect those
equalities.

The recent addition of type-classes to Coq [16] enables the use of canonical
names for standard mathematical notation. These type classes are first-class as
they are powered by proof search and implicit arguments. Declaring instances
of the Equiv , Setoid and Setoid Morphism type classes enables fluent rewriting
modulo setoid equality in proofs. In this paper we tacitly overload the canonical
name “=” with setoid equality.
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First, we introduce setoid counterparts for the standard categorical notions
of functor and natural transformation. The setoid functor is taken from the
MathClasses library [20, 17]. It consists of an object map M and two classes:
a class containing a function map and a class carrying properties about the
object map and the function map3.

Class SFmap (M : Type → Type) :=
sfmap : ∀ {X } {Y } (f : X → Y ), M X → M Y

Class SFunctor (M : Type → Type)
‘{∀‘{Equiv X }, Equiv (M X)}‘{SFmap M } := { ...}

For reasons of space, we omit the full definition of SFunctor. In brief, it carries
two sanity properties stating that the object map makes a setoid on X into a
setoid on M X , and that the function map is a setoid morphism in its function
argument (allowing us to rewrite equivalent functions with one another), and
the following two familiar properties about the function map4.

sfmapM id = id

sfmapM (f ◦ g) = sfmapM f ◦ sfmapM g

Moreover, the types in the diagrams will be written in a right-associative manner,
and type arguments of functions are written as subscript, as above.

Given two object maps M and N , one can define a family of functions:

Notation M ⇒ N := ∀ X , M X → N X (at level 90, right associativity)

The family of functions η : M → N is a setoid natural transformation if ηX is a
setoid morphism whenever X is a setoid, and if it satisfies a commutation law:

ηY ◦ sfmapM f = sfmapN f ◦ ηX (1)

Again for reasons of brevity, we no not include the corresponding type class
definition SNatural.

4.2 Encoding terms

Attempting to encode terms as is done in the Haskell code in Section 2 directly
in Coq will result in an error, as this definition violates Coq’s syntactic check
for positivity (which guarantees termination of structurally recursive functions).

We can bypass this issue by exploiting the fact that signatures of binding-free
languages have a fairly simple structure. That is, a term on such a signature is

3 Unlike Haskell, Coq admits variable names starting with an uppercase letter.
Furthermore, the backtick causes Coq to automatically generalize missing variables.

4 To avoid confusion, we use the convention to add the object map (M in this case)
as a subscript to the function map (here sfmap). We will use this notation also for
other mappings, particularly in properties and diagrams
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essentially a general tree, in which each parent node has an arbitrary number of
child nodes, dictated by the arity of the operation corresponding to the parent
node. A leaf of the tree is either a parent node with zero children nodes, or a
variable, if we consider open terms.

We introduce an auxiliary type family fin representing the set of natural
numbers up to some natural number.

Inductive fin : nat→ Set :=
| first : ∀ n, fin (S n)
| next : ∀ n, fin n→ fin (S n)

The signature is nothing more than an assignment of an arity to each of the
language’s operations, of which there are size many.

Variable size : nat
Variable ar : fin size → nat
Definition Σ X := {i : fin size & vector X (ar i)}

A parent node in the tree is described by a dependent pair, consisting of the
index i corresponding to an operation together with a vector of length the arity
of the operation (this is essentially a richly typed version of list, akin to fin).
One can think of the notation “{ & }” as a type-theoretic variant of set
comprehension. Dependent pairs can be crafted using the notation “( & )”.
Finally, we can provide a type for the open terms. The parameter X represents
variables.

Inductive T X := var : X → T | app : Σ T→ T

In Section 2 we defined a instance of Σ for the functor class. The adjusted
instance for the setoid version, SFmap, is:

Instance : SFmap Σ :=
λX Y (f : X → Y ) (σ : Σ X)→

match σ with (s & v)⇒ (s & map f v) end

The proofs of the setoid functor properties are contained in a separate instance
of SFunctor. Now, we can show that the following property holds:

Lemma 4. Σ is a setoid functor.

The proof of Lemma 3 is obtained by use of the full (dependently-typed)
induction principle for T. The full principle has been used in our development
to prove the properties in this section by induction on the structure of T.

In the remainder of this section we show that T is a monad in the categorical
sense. To this end, we need to show that it has a unit (which is simply var : X →
T X) and a multiplication operation

Definition join X : T (T X)→ T X := fold id (appX )

and show that it satisfies the two standard coherence conditions of monads.
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Lemma 5. The functor T is a monad, i.e. the following identities hold:

joinX ◦ sfmapT joinX = joinX ◦ joinT X

joinX ◦ sfmapT varX = joinX ◦ varT X = id

We call this monad the term monad.

It is a well-known fact from category theory that the category of Σ-algebras
is isomorphic to the category of algebras for the term monad. These are “plain”
algebras h for the functor T, with two additional properties:

h ◦ varY = id

h ◦ sfmapT h = h ◦ joinY

A T-algebra homomorphism is a homomorphism of the underlying algebra.

We end this section by giving an auxiliary definition principle for open terms,
similar to Lemma 3.

Lemma 6. Let k : X → Y, and h : T Y → Y. Set f = fold k (h ◦ appY ◦
sfmapΣ varY). Then f is the unique function making the following diagram com-
mute:

X
varX //

∀ k
&&LLLLLLLLLLLL TX

∃! f

���
�
� T2X

T f

��

joinXoo

Y TY∀ h
oo

We have now set up a theory for syntax. Similarly, we could develop a the-
ory for behavior. We do not pursue this goal for two reasons. First, since our
presentation is essentially a deep embedding of SOS rules, most of it hinges on
a structured encoding of the terms. Secondly, one may expect that more varia-
tion in the behavior is desired to model phenomena such as time or probability
(see [1]; see also [10] for an overview). Moreover, finality proofs such as Lemma 1
can be tricky to carry out in Coq due to guardedness restrictions that it puts
on corecursive definitions.

4.3 Adequacy theorem (for rules in plain format)

We have introduced a structured way to obtain the operational and denotational
models from a single semantic model. Now we are ready to prove the adequacy
theorem. Suppose that we have a coalgebra Γ : X → B X representing the
hypotheses on the variables. We can combine the diagrams of the operational
and denotational models as indicated in the following diagram.
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ΣBTX ΣTX ΣZ ΣBZ

TX Z

BΣTX BTX BZ BΣZ

X

BX

Σ OMoo

SMTX

��

appX

��

OM

��

BappX

//

Σ out //

DM

��
SMZ

��

BDM
oo

out

��

Σ run //
Σ eval //

eval //
run //

Brun
//

Γ��

varX

ddJJJJJJJ unfold Γ

::tttttttt

B varX

zztttttt B (unfold Γ)

$$JJJJJJ

The following theorem holds for open terms, which is a mild generalization of
what has been presented in the literature [19, 10, 1].

Theorem 1 (Adequacy).
run = eval.

Proof. Consider the following diagram in the category of B-coalgebras. That is,
the objects are pairs (consisting of the object and the structure map) and the
arrows are coalgebra homomorphisms.

〈X, Γ〉 varX //

unfold Γ ((PPPPPPPPPPPPP 〈TX, OM〉

run

��

〈ΣTX,B (app X) ◦ SMTX ◦ Σ OM〉

Σ run

��

appXoo

〈Z, out〉 〈ΣZ, SMZ ◦ Σ out〉
DM

oo

Except for the arrow Σ run, it is trivial to see that each of the arrows are in fact
coalgebra homomorphisms, as it can be directly read off the complete diagram
above. To show this for Σ run, one uses naturality of SM and the fact that run
is a coalgebra homomorphism. Commutativity of the diagram follows from the
finality of out. The theorem then follows from applying the forgetful functor to
the above diagram and the definition principle used to define eval. ut

5 Rules in GSOS Format

So far we have considered “plain” laws that distribute a signature functor over
a behavior functor. There are many sensible operational rules that do not fit in
this format.
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!a
a−→ done

x→� y
l−→ y′

x • y l−→ y′

x
l−→ x′

x • y l−→ x′ • y

x
l−→ x′

x t y
l−→ x′

y
l−→ y′

x t y
l−→ y′ done→�

Fig. 2. A process algebra.

Consider the process algebra language of Figure 5. The parallel composition
operation “t” and the possibility of a state not having any outgoing transitions
clearly make this a non-deterministic language. We can reuse the fin type family
from Section 4.2 to define the behavior functor.

Definition B X := {n : nat & fin n→ A × X }

The object of the corresponding final are the cotrees (also known as rose trees):

CoInductive cotree := node : B cotree → cotree

Just like for the streams, we can prove the following lemma.

Lemma 7. cotree is the object of the final coalgebra for the functor B.

We remark that it is perhaps more straightforward to set B X := list (A × X),
but this does not seem to work. We were unable to provide a guarded corecursive
definition of unfold for that choice of B.

We run into problems when we attempt to encode the rules for the sequencing
operation “•” as a plain distributive law. The first rule has the variable y ′ as the
outgoing state of its conclusion, which is not in the required form of an operation
applied to some variables. Thus we would like to have the liberty of writing terms
for outgoing states, in which case we can apply var y ′. The second rule refers
to y in the outgoing state of the conclusion, which again is not possible in the
plain format. We need the arguments of the operation to be pairings of both the
variable and the behavior on that variable. The following type will allow us to
encode our process language:

ρ : Σ ◦ D ⇒ B ◦ T

where we have used the notation D X := X × B X . We call natural transfor-
mations of this type rules in abstract GSOS format5.

The implementation of the corresponding rules is fairly complicated to read
but we include it for reference.

5 Literature on process algebra often refers to the specialization of B being a finite
powerset as the the GSOS format. We call this format abstract GSOS to avoid
confusion.
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Definition ρ : Σ ◦ D ⇒ B ◦ T =
λX σ →

match σ with
| ! a ⇒ (1 & (λ → (a, app done)))
| x t y ⇒ ( & merge ([ id, var ] ◦ projT2 (snd x))

([ id, var ] ◦ projT2 (snd y)))
| ( , (0 & )) • ( , b) ⇒ sfmap B var b
| ( , b) • (y , ) ⇒ sfmap B (λx′ → app (var x′ • var y)) b
| done ⇒ (0 & case0 )

end

Here merge and case0 have the obvious meaning (we omit the code):

Definition merge‘(f : fin n→ X)‘(g : fin m→ X) : fin (n + m)→ X
Definition case0 (f : fin 0→ Type) (i : fin 0), f i

5.1 From GSOS rules to a distributive law

The symmetry of the (co)domains was vital to for the adequacy theorem. The
rules ρ have to undergo a two-step transformation to obtain a distributive law
of T over D. First expand ρ’s codomain:

Definition τ : Σ ◦ D ⇒ D ◦ T :=
λX σ → (appX (sfmapΣ (varX ◦ fst) σ), ρ σ)

To obtain SM we apply fold.

Definition SM : T ◦ D ⇒ D ◦ T :=
λX → fold (sfmapB (varX )) (sfmapB (joinX ) ◦ τ(T X))

A general proof in the Coq development shows that the definition principle for
terms yields natural transformations. From this fact, together with the assump-
tion that ρ is a natural transformation, it is straightforward to show that SM is
natural as well.

The obtained distributive law, which distributes the term monad over the
functor D, enjoys more structure than the plain distributive laws.

Proposition 1. The following two identities hold:

SMX ◦ varD X = sfmapD varX

SMX ◦ joinD X = sfmapD joinX ◦ SMT X ◦ sfmapT SMX.

The intuition behind the second identity is that applying SM to a joined term
is the same as applying SM to both the inner and outer term and then joining
the result. The previous proposition is a key ingredient in proving the next two
lemmas.
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5.2 Adequacy theorem for rules in GSOS format

Recall that we used the definition principle of terms to obtain an operational
model from the plain distributive laws. We repeat this construction for our new
distributive laws, with the difference that we use the alternative definition prin-
ciple. Before we can do so, we need to verify the following fact:

Lemma 8. sfmapD joinX ◦ SMTX is an algebra for the term monad.

The D-coalgebras are isomorphic to the B-coalgebras, and it is straightfor-
ward to verify that if 〈Z, out〉 is a final B-coalgebra, then 〈Z, 〈id, out〉〉 is a final
D-coalgebra. Hence, the denotational model for GSOS rules and run GSOS can
be obtained by finality, analogous to Section 3.2. We obtain eval GSOS by mak-
ing use of the alternative definition principle for terms, and thus we need to
verify the following fact:

Lemma 9. DM is an algebra for the term monad.

We have now arrived at a situation that is entirely analogous to Section 4.3.
That is, in the main diagram B should be replaced with D, Σ replaced with T,
and app replaced with join. The rest of the adequacy theorem for GSOS rules is
along the lines of the proof of Theorem 1.

Theorem 2 (Adequacy for GSOS rules).

run GSOS = eval GSOS.

6 Related Work

The work of Turi and Plotkin [19] proves the adequacy result for the more
general situation of a distributive law of a monad over a comonad. Although
these laws provide the most abstract perspective of well-behaved rules, they
have not yet been applied in concrete studies of rule formats [10]. Lenisa, Power
and Watanabe [11] show that rules in the abstract GSOS format correspond
precisely to distributive laws of a free monad over a cofree copointed functor.

Bartels’ PhD thesis [1] provides an elaborate overview of rule formats and
their categorical meaning. The aforementioned papers are part of a field called
bialgebraic semantics, where bialgebras, which inherit both an algebra and a
coalgebra structure, play an important role.

An implementation of Turi and Plotkin’s work [19] has been developed by
Hutton [7] in Haskell and extended for modularity by Jaskelioff, Ghani and
Hutton [9]. Both implementations define the terms and the object of the final
coalgebra (i.e. streams and cotrees in this paper) as the greatest fixpoint of a
functor. Analogous definitions are not possible in Coq as it would interfere with
the ability to guarantee that each function terminates, required by the underlying
logic.

Niqui [14] extends the class of productive specifications definable in Coq
by developing the λ-coiteration scheme in Coq. In the further work section of
his paper he mentions that adding monadic, pointed or cofree structure on the
bialgebraic nature of λ-coiteration can help to build even more powerful schemes.
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7 Conclusions and Further Work

We have shown how operational and denotational semantics can be obtained in
a structured way in Coq, if one provides an encoding of operational rules in the
syntactic GSOS format. The adequacy theorem, which has been formally proved,
says that these functions are extensionally equivalent. Our work allows one to
both execute semantics inside Coq and enables formal reasoning. We therefore
expect that it will be useful to others who wish to work in the field of bialgebraic
semantics.

Further work on the formalization is needed to support syntax with variable
binding. Work in this direction has already been done by Fiore, Plotkin and
Turi [6], but an implementation does not yet exist. A modular theory of terms
was presented in this paper, the development of a similar general theory on the
side of behavior is left for future work. Another interesting direction of further
work would be to develop a theory for language extensions through modular
operational rules [9].

Acknowledgements The authors wish to thank Robbert Krebbers for his help
proving Lemma 7.

References

1. F. Bartels. On generalised coinduction and probabilistic specification formats. PhD
thesis, CWI, Amsterdam, April 2004.

2. G. Barthe, V. Capretta, and O. Pons. Setoids in type theory. J. Funct. Program.,
13(2):261–293, 2003.

3. Y. Bertot, V. Capretta, and K. D. Barman. Type-theoretic functional semantics.
In TPHOLs, volume 2410 of LNCS, pages 83–98. Springer, 2002.
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1 Extended abstract

In 2006, Herbert Gintis [2] announced the discovery of a mechanism that would
explain price formation and disequilibrium adjustment without requiring the
presence of a central authority or omniscience on part of the agents, as is cur-
rently assumed in mainstream economics. Gintis’ results were, as he put it
“empirical rather than theoretical: we have created a class of economies and
investigated their properties for a range of parameters.” They were obtained
by computer simulations. Due to the importance of this result, two groups of
researchers, one at PIK, the other in Chalmers [1], independently attempted
to do something which should perhaps be routine, but is hardly ever done: to
re-implement the model described in the paper and reproduce the results. Af-
ter initial attempts failed and Gintis graciously provided the source code, both
groups discovered several ways that his implementation diverged from the de-
scription in the paper, only one of which could be called a “bug”. Much more
problematic was the ambiguity left open by the model description given in the
paper, which consisted of a mixture of prose and mathematical equations.

The example of the Gintis model was chosen because it is well documented
in recent literature, not because it is unique. It is quite typical for scientists
to believe that the mathematical equations used to develop a model are suffi-
cient specification for the implementation of that model, but that is rarely the
case. Discretizations, approximations, choices of integration methods, and many
other similar steps come between the mathematical description and the program.
This is a gap that must be bridged if we are to be able to check correctness of
implementations, re-implement models, or replicate results.

Sooner or later, everyone who considers this problem comes to constructive
mathematics and Martin-Löf’s type theory, which seems to be made to order
for this purpose. Here is for example a quote from the programmatic article
“Constructive Mathematics and Computer Programming” (Martin-Löf, 1982):

Now, it is the contention of the intuitionists (or constructivists, I shall use
these terms synonymously) that the basic mathematical notions, above
all the notion of function, ought to be interpreted in such a way that
the cleavage between mathematics, classical mathematics, that is, and
programming that we are witnessing at present disappears.
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Specifications are also mentioned explicitly:

[Type theory] provides a precise notation not only, like other program-
ming languages, for the programs themselves but also for the tasks that
the programs are supposed to perform. Thus the correctness of a pro-
gram written in the theory of types is proved formally at the same time
as it is being synthesized.

The ideal of correctness put forward here is very enticing, assuming that
type theory has the expressive power to formulate the usual mathematical con-
cepts which modelers use as specifications. In the next section we show that
this assumption is indeed justified. Together with economists at PIK, we have
formalized basic building blocks of economic theory, used in almost all economic
models today, concepts such as Pareto efficiency, Walrasian equilibrium, Nash
equilibrium, and a host of others, together with the relations between them (for
example, Walrasian equilibria are Pareto efficient). The resulting formalizations
are pleasantly close to the mathematical formulations the modelers are used
to, so we can hope they could use them in specifications. Moreover, as it often
happens, the effort to formalize improves ones understanding and can lead to
discovery of errors (or at least dubious formulations) even in such elementary
contexts.

The bad news is most of these concepts are classical in nature: economics is
currently a non-constructive theory (and even the so-called “computable general
equilibrium models” turn out to be non-computable). Therefore, the specifica-
tions turn out to be non-implementable and the distance between the mathe-
matics and the programming is still there.

But, as we argue in the rest of the paper, we are now in a better position to
decrease it. First, the constructively valid parts can be separated from the non-
constructive ones and can be implemented in the verified way that corresponds
to Martin-Löf’s ideal. For example, non-linear optimization is in most cases non-
computable, but it is computable over finite (or at least “reasonably-sized”) sets.
Second, the typical approximations going from the mathematical descriptions to
the implementations can be made completely explicit, so that ambiguities such as
in the Gintis description do not arise, and their use can then be at least partially
checked. For example, continuous optimization problems are routinely replaced
with discrete ones, but the assumption that the discrete problem has the same
solution as the continuous one is rarely stated (perhaps because it rarely holds).
In such cases, we can postulate this property, forcing the type checker to accept
the solution of the discrete problem. The advantage is that the type checker
can then ensure that we do the correct thing with this (potentially incorrect)
solution. (A similar example arises every time one uses an external, non-verified
library function.) Third, the postulated properties are clearly highlighted points
for further improvement. For example, one could replace the requirement that
the discrete problem has the exact same solution with the continuous one by
the weaker (and in many applications actually achievable) requirement that the
distance between them is smaller than a given tolerance. Finally, we would be in
a better position to communicate with the constructive mathematics community
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and to take advantage of advances made in the area of numerical methods (such
as might come out, for example, from the ForMath project).

We close the paper with a discussion of some consequences of this approach.
First, there are immediate constraints on the implementation of type theory to be
used. A postulational mechanism that still allows the compilation and execution
of programs is essential, as is a foreign function interface that allows users to
take advantage of the standard numerical libraries they are used to. Moreover,
there are consequences on the programming style. Two styles have emerged in
the relatively recent dependently-typed programming community, which can be
named after the two major textbooks where they are presented: the Nordström et
al. style suggests developing the proof within the implementation, the Thompson
style advocates developing the proof alongside the implementation. The former is
easier for proofs, the latter seems easier for newcomers and apparently fits better
here. Unfortunately, adopting the Thompson style leads to difficulties in doing
the proofs, and in the absence of a powerful reflection mechanism, sometimes
prevents one from doing the proofs altogether.

References
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Abstract. This paper explores the recent addition to Agda enabling
reflection, in the style of Lisp, MetaML, and Template Haskell. It illus-
trates several applications of reflection that arise in dependently typed
programming.

1 Introduction

The dependently typed programming language Agda [1,2] has recently been
extended with a reflection mechanism for compile time meta programming in
the style of Lisp [3], MetaML [4], Template Haskell [5], and C++ templates [6].
Agda’s reflection mechanisms make it possible to convert a program fragment
into its corresponding abstract syntax tree and vice versa. In tandem with Agda’s
dependent types, this provides promising new programming potential.

This paper starts exploring the possibilities and limitations of this new re-
flection mechanism. It describes several case studies, exemplative of the kind
of problems that can be solved using reflection. More specifically it makes the
following contributions:

– This paper documents the current status of the reflection mechanism. The
existing documentation is limited to a paragraph in the release notes [7] and
comments in the compiler’s source code. In Section 2 we give several short
examples of the reflection API in action.

– This paper illustrates how to use Agda’s reflection mechanism to automate
certain categories of proofs (Section 3). The idea of proof by reflection is
certainly not new, but still worth examining in the context of this new tech-
nology.

– In the final version of this paper, we will also show how to guarantee type
safety of meta-programs. To illustrate this point, we will develop a type safe
translation from the simply typed lambda calculus to combinatory logic.

– Finally, the final version will also discuss some of the limitations of the
current implementation of reflection.

The code and examples presented in this paper all compile using the latest
version of Agda 2.3.0.1 and are available on github.1

1 http://www.github.com/toothbrush/reflection-proofs
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2 Reflection in Agda

Agda’s reflection API defines several data types which represent terms, types,
and sorts. These definitions take into account various features, including hidden
arguments and computationally irrelevant definitions. An overview of the core
data types involved has been included in Figure 1. In addition to these data
types that represent terms, there is some support for reflecting definitions as
opposed to terms.

There are several new keywords that can be used to quote and unquote Term
values: quote, quoteTerm, quoteGoal, and unquote. The quote keyword allows
the user to access the internal representation of any identifier. This internal
representation can be used to query the type or definition of the identifier. The
examples discussed in this paper will not illustrate quote. The other quotation
forms, quoteTerm and quoteGoal, will be used.

The easiest example of quotation uses the quoteTerm keyword to turn a
fragment of concrete syntax into a Term data type. Note that the quoteTerm
keyword reduces like any other function in Agda. As an example, the following
unit test type checks:

example : quoteTerm (λ x → x) ≡ lam visible (var 0 [ ])
example = refl

Furthermore, quoteTerm type checks and normalizes its term before returning
the required Term, as the following example demonstrates:

example : quoteTerm ((λ x → x) 0) ≡ con (quote Data.Nat.N.zero) [ ]
example = refl

The quoteGoal is slightly different. It is best explained using an example:

exampleQuoteGoal : N
exampleQuoteGoal = quoteGoal e in { !!}

The quoteGoal keyword binds the variable e to the Term representing the type
of the current goal. In this example, the value of e in the hole will be def N [ ],
i.e., the Term representing the type N.

The unquote keyword converts a Term data type back to concrete syntax.
Just as quoteGoal and quoteGoal, it type checks and normalizes the Term before
it is spliced into the program text.

3 Proof by Reflection

The idea behind proof by reflection is simple: given that type theory is both
a programming language and a proof system, it is possible to define functions
that compute proofs. Reflection is an overloaded word in this context, since in
programming language technology reflection is the capability of converting some

374



postulate Name : Set

-- Arguments may be implicit, explicit, or inferred
data Visibility : Set where

visible hidden instance : Visibility

-- Arguments can be relevant or irrelevant.
data Relevance : Set where

relevant irrelevant : Relevance

-- Arguments.
data Arg A : Set where

arg : (v : Visibility) (r : Relevance) (x : A)→ Arg A
-- Terms.
mutual

data Term : Set where
-- A bound variable applied to a list of arguments
var : (x : N) (args : List (Arg Term))→ Term
-- Constructor applied to a list of arguments
con : (c : Name) (args : List (Arg Term))→ Term
-- Identifier applied to a list of arguments
def : (f : Name) (args : List (Arg Term))→ Term
-- Lambda abstraction
lam : (v : Visibility) (t : Term)→ Term
-- Dependent function types
pi : (t1 : Arg Type) (t2 : Type)→ Term
-- Sorts
sort : Sort→ Term
-- Anything else
unknown : Term

data Type : Set where
el : (s : Sort) (t : Term)→ Type

data Sort : Set where
-- A Set of a given (possibly neutral) level.
set : (t : Term)→ Sort
-- A Set of a given concrete level.
lit : (n : N)→ Sort
-- Anything else.
unknown : Sort

Fig. 1. The data types for reflecting terms
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piece of concrete program syntax into a syntax tree object which can be ma-
nipulated in the same system. Here we will present two case studies illustrating
proof by reflection and how Agda’s reflection mechanism can make the technique
more usable and accessible.

3.1 Simple Example: Evenness

As a first example, we will cover an example taken from Chlipala [8], where we
develop a procedure to prove that a number is even automatically. We start by
defining the property Even below. There are two constructors: the first construc-
tor says that zero is even; the second constructor states that if n is even, then
so is 2 + n.

data Even : N→ Set where
isEvenZ : Even 0
isEvenSS : {n : N} → Even n→ Even (2 + n)

Using these rules to produce the proof that some large number n is even
can be very tedious: the proof that 2 × n is even requires n applications of the
isEvenSS constructor. For example, here is the proof that 6 is even:

isEven6 : Even 6
isEven6 = isEvenSS (isEvenSS (isEvenSS isEvenZ))

To automate this, we will show how to compute the proof required. We start
by defining a predicate even? that returns the unit type when its input is even
and bottom otherwise:

even? : N→ Set
even? zero = >
even? (suc zero) = ⊥
even? (suc (suc n)) = even? n

Next we need to show that the even? function is sound. To do so, we prove
that when even? n returns >, the type Even n is inhabited. This is done in the
function soundnessEven. What is actually happening here is that we are giving
a recipe for constructing proof trees, such as the one we manually defined for
isEven6.

soundnessEven : {n : N} → even? n→ Even n
soundnessEven {0} tt = isEvenZ
soundnessEven {1} ()
soundnessEven {suc (suc n)} s = isEvenSS (soundnessEven s)

Note that in the case branch for 1, we do not need to provide a right-hand
side of the function definition. The assumption, even? 1, is uninhabited, and we
discharge this branch using Agda’s absurd pattern ().
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Now that this has been done, if we need a proof that some arbitrary n is
even, we only need to instantiate soundnessEven. Note that the value of n is an
implicit argument to soundnessEven. The only argument we need to provide to
our soundnessEven lemma is a proof that even? n is inhabited. For any closed
term, such as the numbers 28 or 8772, this proof obligation can be reduced to
proving >, which is proven by the single constructor it has, tt.

isEven28 : Even 28
isEven28 = soundnessEven tt

isEven8772 : Even 8772
isEven8772 = soundnessEven tt

Now we can easily get a proof that arbitrarily large numbers are even, without
having to explicitly write down a large proof tree. Note that it’s not possible to
write something with type Even 27, or any other uneven number, since the
parameter even? n cannot be instantiated, thus tt would not be accepted where
it is in the Even 28 example. This will produce a > !=< ⊥ type error at compile-
time.

Since the type > is a simple record type, Agda can infer the tt argument,
which means we can turn the assumption even? n into an implicit argument,
meaning a user could get away with writing just soundnessEven as the proof,
letting the inferrer do the rest. For clarity this is not done here, but the complete
implementation available on github does use this trick.

3.2 Second Example: Boolean Tautologies

Another application of the proof by reflection technique is boolean expressions
which are a tautology. We will follow the same recipe as for even naturals, with
one further addition. In the previous example, the input of our decision procedure
even? and the problem domain were both natural numbers. As we shall see, this
need not always be the case.

Take as an example the boolean formula in equation 1.

(p1 ∨ q1) ∧ (p2 ∨ q2)⇒ (q1 ∨ p1) ∧ (q2 ∨ p2) (1)

It is trivial to see that this is a tautology, but proving this using deduction
rules for booleans would be rather tedious. It is even worse if we want to check
if the formula always holds by trying all possible variable assignments, since this
will give 2n cases, where n is the number of variables.

To automate this process, we will follow a similar approach to the one given
in the previous section. We start by defining an inductive data type to represent
boolean expressions with n free variables.

data BoolExpr (n : N) : Set where
Truth : BoolExpr n
Falsehood : BoolExpr n
And : BoolExpr n→ BoolExpr n→ BoolExpr n
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Or : BoolExpr n→ BoolExpr n→ BoolExpr n
Not : BoolExpr n → BoolExpr n
Imp : BoolExpr n→ BoolExpr n→ BoolExpr n
Atomic : Fin n → BoolExpr n

There is nothing surprising about this definition; we use the type Fin n to
ensure that variables (represented by Atomic) are always in scope. If we want
to evaluate the expression, however, we will need some way to map variables to
values. Enter Env n, it has fixed size n since a BoolExpr n has n free variables.

Env : N→ Set
Env = Vec Bool

Now we can define our decision function, which decides if a given boolean
expression is true or not, under some assignment of variables. It does this by
evaluating the formula’s AST. For example, And is converted to the boolean
function _∧_, and its two arguments in turn are recursively interpreted.

J_`_K : ∀ {n : N} (e : Env n)→ BoolExpr n→ Bool
J env ` Truth K = true
J env ` Falsehood K = false
J env ` And be be1 K = J env ` be K ∧ J env ` be1 K
J env ` Or be be1 K = J env ` be K ∨ J env ` be1 K
J env ` Not be K = ¬ J env ` be K
J env ` Imp be be1 K = J env ` be K⇒ J env ` be1 K
J env ` Atomic n K = lookup n env

Recall our decision function even? in the previous section. It returned > if the
proposition was valid, ⊥ otherwise. Looking at J_`_K, we see that we should just
translate true to the unit type and false to the empty type, to get the analogue
of the even? function.

We call this function P, the string parameter serving to give a clearer type
error to the user, if possible.

data Error (e : String) : Set where
So : String→ Bool→ Set
So true = >
So err false = Error err
P : Bool→ Set
P = So "Argument expression does not evaluate to true."

Now that we have these helper functions, it is easy to define what it means to
be a tautology. We quantify over a few boolean variables, and wrap the formula
in our P decision function. If the resulting type is inhabited, the argument to P
is a tautology, i.e., for each assignment of the free variables the entire equation
still evaluates to true. An example encoding of such a theorem is Figure 3.2.
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exampletheorem : Set
exampletheorem = (p1 q1 p2 q2 : Bool)→ P ((p1 ∨ q1) ∧ (p2 ∨ q2)

⇒ (q1 ∨ p1) ∧ (q2 ∨ p2)
)

Fig. 2. Example encoding of a tautology.

Here a complication arises, though. We are quantifying over a list of boolean
values outside of the decision function P, so proving P to be sound will not
suffice. We just defined a decision function (J_`_K) to take an environment, an
expression, and return a boolean. In Figure 3.2, though, we effectively quantified
over all possible environments. We are going to need a way to lift our decision
function to arbitrary environments.

The way we do this is the function foralls. This function represents the real
analogue of even? in this situation: it returns a type which is only inhabited if
the argument boolean expression is true under all variable assignments. This is
done by generating a full binary tree of unit values >, the single possible value
which only exists if the interpretation function J_`_K evaluates to true in every
leaf. This corresponds precisely to b being a tautology.

The Diff argument is unfortunately needed to prove that forallsAcc will even-
tually produce a tree with depth equal to the number of free variables in an
expression.

forallsAcc : {n m : N} → BoolExpr m→ Env n→ Diff n m→ Set
forallsAcc b acc (Base ) = P J acc ` b K
forallsAcc b acc (Step y) =

forallsAcc b (true :: acc) y × forallsAcc b (false :: acc) y
foralls : {n : N} → BoolExpr n→ Set
foralls {n} b = forallsAcc b [ ] (zeroleast 0 n)

Now we finally know our real decision function, we can set about proving its
soundness. Following the evens example, we want a function something like this.

sound : {n : N} → (b : BoolExpr n)→ foralls b→ ...

What should the return type of the sound lemma be? We would like to prove
that the argument b is a tautology, and hence, the sound function should return
something of the form (b1 ... bn : Bool) → P B, where B is an expression in the
image of the interpretation J_`_K. For instance, the statement exampletheorem
is a statement of this form.

The function proofObligation, given a BoolExpr n, generates the corresponding
proof obligation. That is, it gives back the type which should be equal to the
theorem one wants to prove. It does this by first introducing m universally
quantified boolean variables. These variables are accumulated in an environment.
Finally, when m binders have been introduced, the BoolExpr is evaluated under
this environment.
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proofObligation : (n m : N)→ Diff n m→ BoolExpr m→ Env n→ Set
proofObligation .m m (Base ) b acc = P J acc ` b K
proofObligation n m (Step y) b acc =
(a : Bool)→

proofObligation (suc n) m y b (a :: acc)

Now that we can interpret a BoolExpr n as a theorem using proofObligation,
and we have a way to decide if something is true for a given environment, we
still need to show the soundness of our decision function foralls. That is, we need
to be able to show that a formula is true if it holds for every possible assignment
of its variables to true or false.

soundnessAcc : {m : N} → (b : BoolExpr m)→
{n : N} → (env : Env n)→
(d : Diff n m)→ forallsAcc b env d→
proofObligation n m d b env

soundnessAcc bexp env Base H with J env ` bexp K
soundnessAcc bexp env Base H | true = H
soundnessAcc bexp env Base H | false = Error − elim H
soundnessAcc {m} bexp {n} env (Step y) H =
λ a→ if {λ b→ proofObligation (suc n) m y bexp (b :: env)} a
(soundnessAcc bexp (true :: env) y (proj1 H))
(soundnessAcc bexp (false :: env) y (proj2 H))

soundness : {n : N} → (b : BoolExpr n)→ foralls b
→ proofObligation 0 n (zeroleast 0 n) b [ ]

soundness {n} b i = soundnessAcc b [ ] (zeroleast 0 n) i

If we look closely at the definition of soundnessAcc (which is where the work
is done – soundness merely calls soundnessAcc with some initial input, namely
the BoolExpr n, an empty environment, and the proof that the environment is
the size of the number of free variables) – we see that we build up a function
that, when called with the values assigned to the free variables, builds up the
environment and eventually returns the leaf from foralls which is the proof that
the formula is a tautology in that specific case.

Now, we can prove theorems by calling soundness b p, where b is the rep-
resentation of the formula under consideration, and p is the evidence that all
branches of the proof tree are true. Agda is convinced that the representation
does in fact correspond to the concrete formula, and also that soundness gives
a valid proof. In fact, we need not even give p explicitly; since the only valid
values of p are pairs of tt, the argument can be inferred automatically, if it is
inhabited.

If the module passes the type checker, we know our formula is both a tautol-
ogy, and that we have the corresponding proof object at our disposal afterwards,
as in the following example.
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rep : BoolExpr 2
rep = Imp (And (Atomic (suc zero)) (Atomic zero)) (Atomic zero)

someTauto : (p q : Bool)→ P (p ∧ q⇒ q)
someTauto = soundness rep

The only part we still have to do manually is to convert the concrete Agda
representation (p ∧ q⇒ q, in this case) into our abstract syntax (rep here). This
is unfortunate, as we end up typing out the formula twice. We also have to count
the number of variables ourselves and convert them the to De Bruijn indices.
This is error-prone given how cluttered the abstract representation can get for
formulae containing many variables. It would be desirable for this process to be
automated. In Sec. 3.3 a solution is presented using Agda’s recent reflection API.

3.3 Adding Reflection

We can get rid of the aforementioned duplication using Agda’s reflection API.
More specifically, we will use the quoteGoal keyword to inspect the current goal.
Given the Term representation of the goal, we can convert it to its corresponding
BoolExpr.

The conversion between a Term and BoolExpr is achieved using the concrete2abstract
function:

concrete2abstract : (t : Term)→ (n : N)
→ {pf : isSoExprQ (stripPi t)}
→ {pf2 : isBoolExprQ n (stripPi t) pf}
→ BoolExpr n

Note that not every Term can be converted to a BoolExpr. The concrete2abstract
function requires additional assumptions about the Term: it should only contain
functions such as _∧_ or _∨_, and boolean variables. This is ensured by the
assumptions isBoolExprQ and friends.

The concrete2abstract function is rather verbose, and is mostly omitted.
A representative snippet is given in Fig. 3.3. The functions isBoolExprQ and
isSoExprQ simply traverse the Term to see if it fulfills the requirements of be-
ing a boolean expression preceded by a series of universally quantified boolean
variables.

All these pieces are assembled in the proveTautology function.

proveTautology : (t : Term)→
{pf : isSoExprQ (stripPi t)} →
let n = freeVars t in
{pf2 : isBoolExprQ n (stripPi t) pf} →
let b = concrete2abstract t n {pf} {pf2} in

foralls b→
proofObligation 0 n (zeroleast 0 n) b [ ]

proveTautology t i =
soundness (concrete2abstract t (freeVars t)) i
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term2boolexpr n (con tf [ ]) pf with tf ?
= −Name quote true

term2boolexpr n (con tf [ ]) pf | yes p = Truth
...
term2boolexpr n (def f [ ]) ()

term2boolexpr n (def f (arg v r x :: [ ])) pf with f ?
= −Name quote ¬_

term2boolexpr n (def f (arg v r x :: [ ])) pf | yes p = Not (term2boolexpr n x pf)
...

Fig. 3. An illustration of converting a Term into a BoolExpr.

The proveTautology function converts a raw Term to a BoolExpr n format and
calls the soundness lemma. It uses a few auxiliary functions such as freeVars,
which counts the number of variables (needed to be able to instantiate the n in
BoolExpr n), and stripSo & stripPi, which peel off the universal quantifiers and
the function So with which we wrap our tautologies. These helper functions have
been ommitted for brevity, since they are rather cumbersome and add little to
the understanding of the subject at hand.

These are all the ingredients required to automatically prove that formu-
lae are tautologies. The following code illustrates the use of the proveTautology
functions; we can omit the implicit arguments for the reasons outlined in the
previous section.

exclMid : (b : Bool)→ P (b ∨ ¬ b)
exclMid = quoteGoal e in proveTautology e
peirce : (p q : Bool)→ P (((p⇒ q)⇒ p)⇒ p)
peirce = quoteGoal e in proveTautology e
mft : exampletheorem
mft = quoteGoal e in proveTautology e

This shows that the reflection capabilities recently added to Agda are quite
useful for automating certain tedious tasks, since the programmer now need not
encode the boolean expression twice in a slightly different format. The conversion
now happens automatically, without loss of expressive power or general appli-
cability of the proofs resulting from soundness. Furthermore, by using the proof
by reflection technique, the proof is generated automatically.

4 Discussion

This paper has presented two simple applications of proof by reflection. In the
final version, we will show how Agda’s reflection API has several other applica-
tions.
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Agda Meets AelerateExtended AbstratPeter Thiemann1 and Manuel M. T. Chakravarty21 University of Freiburg, Germany,thiemann�informatik.uni-freiburg.de2 University of New South Wales, Sydney, Australia,hak�se.unsw.edu.auAbstrat. Embedded languages in Haskell bene�t from a range of typeextensions, suh as type families, that are subsumed by dependent types.However, even with those type extensions, embedded languages for dataparallel programming lak desirable stati guarantees, suh as statibounds heks in indexing and olletive permutation operations.This raises the question whether embedded languages for data parallelprogramming would bene�t from fully-edged dependent types, suh asthose available in Agda. We explored that question by designing and im-plementing an Agda frontend to Aelerate, an embedded language fordata parallel programming aimed at GPUs. We disuss the potential ofdependent types in this domain, desribe some of the limitations that weenountered, and share some insights from our preliminary implementa-tion.Keywords: programming with dependent types, data parallelism1 IntrodutionGenerative approahes to programming parallel hardware promise to ombinehigh-level programming models with high performane. They are partiularlyattrative for targeting restrited arhitetures, suh as GPUs (graphis proes-sor units), that annot eÆiently exeute ode aimed at onventional multioreCPUs. Instead, GPUs require a high degree of data parallelism, restrited ontrolow, and arefully tailored data aess patterns to be eÆient. Previous work|for example, Aelerator [14℄, Copperhead [2℄, and Aelerate [3℄| demon-strates that embedded array languages with a ustom ode generator an meetthose GPU onstraints with arefully designed language onstruts.Given a host languages with an expressive type system, it is attrative toleverage that type system to express stati properties of the embedded language.For example, Aelerate, an embedded array language for Haskell, uses Haskell'sreent support for type-level programming like GADTs and type families in thatmanner [3℄. This design hoie is important for approahes relying on runtimeode generation: ompile-time faults in the embedded language should be avoided1
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beause it orresponds to at appliation runtime. Moreover, stati guarantieshold the potential to improve the preditability of parallel performane.Dependent types are an emerging approah to erti�ed programming, whereinvariants are established in the form of types and proven at ompile time.Many of Haskell's type-level extensions used in Aelerate approximate variousaspets of dependently-typed programming. Hene, it it is natural to ask whetherfully-edged dependent types, suh as those provided by Agda, improve thespei�ation of an embedded language like Aelerate, whether they inreasethe sope of stati guarantees, and whether they may be leveraged to preditperformane more aurately.This paper is a �rst investigation into this topi. It reports on a partial portof Aelerate to a new, dependently-typed host language, Agda [1, 9℄. Agda ispartiularly suited to this port beause of its foreign funtion interfae to Haskell,whih enables it to diretly invoke the funtionality of Aelerate.Our investigation has the following struture. After realling some bak-ground on Agda and Aelerate in Setion 2 and desribing related work inSetion 3, Setion 4 disusses potential uses of dependent types in an array-oriented data parallel language like Aelerate and how they were realized inour implementation. Setion 5 onsiders oneptual problems and limitationsthat we ran into when onstruting the Agda frontend for Aelerate. Setion 6explains some tehnial details of the implementation and disusses some exam-ple ode.2 Bakground2.1 AgdaAgda [1,9℄ is a dependently-typed funtional programming language. Its basis isa dependently-typed lambda alulus extended with indutive data type families,dependent reords, and parameterized modules. At the same time, Agda is alsoa proof assistant for interatively onstruting proofs in an intuitionisti typetheory based on the work of Per Martin-L�of [8℄.One attrative feature of Agda's indutive data type families is the abilityto onstrut indexed data types. A familiar example for suh an indexed datatype is the type Ve A n of vetors of �xed length n and elements of type A.This vetor data types an be equipped with an aess operation that restritsthe index to the atual length of the vetor at ompile time.3data Nat : Set wherezero : Natsu : Nat -> Nat3 An identi�er an be an almost arbitrary string of Uniode haraters exept spaes,parentheses, and urly braes. Agda also supports mix�x syntax with the positionof arguments indiated by undersores in the de�ning ourrene of an identi�er.2
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data Ve (A : Set) : Nat -> Set where[℄ : Ve A zero_::_ : {n : Nat} -> A -> Ve A n -> Ve A (su n)The above de�nes the type Nat of natural numbers and an indexed data typeVe A n where A is a type and n is a natural number. The latter type omeswith two onstrutors, [℄ for the vetor of length zero and _::_ for the in�xons operator that inreases the length by one.One way of writing a safe aess operation �rst de�nes an indexed type thatenodes the required less-than relation on natural numbers.data _<_ : Nat -> Nat -> Set wherez<s : {n : Nat} -> zero < su ns<s : {m n : Nat} -> m < n -> su m < su nLines two and three of the de�nition enode named inferene rules for the asesthat 0 < n+ 1 (for all n) and that m+ 1 < n+ 1 if m < n (for all m;n).The aess operation takes a vetor of length n, an index m, and a proof ofm < n (a derivation tree) to produe an element of the vetor.get : {A : Set} {n : Nat} -> Ve A n -> (m : Nat) -> m < n -> Aget [℄ _ () -- impossible aseget (x :: xs) zero p = xget (x :: xs) (su m) (s<s p) = get xs m pThis ode annot fail at run time beause a aller has to onstrut the proof treefor m < n before invoking get. (In Agda, arguments in urly braes are impliitarguments that will be inferred if omitted in an appliation.) Thus, an \indexout of bounds" error annot happen.2.2 AelerateAelerate [3℄ is a data-parallel array language embedded into Haskell, whih tar-gets GPUs. It is a generative library, as its data-parallel array operations are notexeuted diretly, but instead onstrut abstrat syntax trees (AST) represent-ing an entire data-parallel subomputation. These omputation representationsare exeuted using a run operation that aepts suh a representation (of typeA a), ompiles it to GPU kernels, uploads it to the devie, exeutes it, andretrieves the results.4CUDA.run :: Arrays a => A a -> aThe type lass onstraint Arrays a restrits the result type to a single array ora tuple of arrays.4 To distinguish Haskell ode from Agda ode, we display Haskell ode in blue andwith a vertial bar on the left side. 3
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As omputation representations of type A a are ompiled at appliationruntime, all A ompilation errors are e�etivly runtime errors of the applia-tion. Hene, Aelerate uses a range of Haskell type system extensions to stat-ially type Aelerate expressions, suh that these runtime errors are avoidedwhere possible. In partiular, Aelerate uses GADTs [6℄, assoiated types [4℄,and type families [11℄.As a simple example of an Aelerate program, onsider a funtion imple-menting a dot produt:dotp :: Vetor Float -> Vetor Float -> A (Salar Float)dotp xs ys = let xs' = use xsys' = use ysin fold (+) 0 (zipWith (*) xs' ys')The types Vetor and Salar represent one- and zero-dimensional arrays. Plainarrays, suh as Vetor Float are onventional Haskell arrays, using an unboxedrepresentation to improve performane. However, when they are wrapped intothe onstrutor A, suh as in A (Salar Float), they represent arrays ofthe embedded language and are alloated in GPU memory, whih in urrenthigh-performane GPUs is physially separate from CPU memory.The use operation makes a Haskell array available in the embedded languageby wrapping it into the A onstrutor and opying it to GPU memory.5 The op-erations fold and zipWith represent olletive operations on Aelerate arrays,e�etively produing a representation of an array omputation yielding a valueof Salar Float; i.e., a single oat value. This ode relies heavily on (type lass)overloading: 0, (+), and (*) are overloaded to just onstrut abstrat syntax.The types Salar and Vetor are type synonyms instantiating a shape-parameterised array type to the speial ase of zero and one dimensional arrays:type Salar e = Array DIM0 etype Vetor e = Array DIM1 eThe general type for use isuse :: Elt e => Array sh e -> A (Array sh e)where the lass Elt haraterises all types that may be held in Aelerate arrays.These are urrently primitive types and tuples.Common dimensions, suh as DIM0, DIM1, and so on, are prede�ned, but toenable shape polymorphi omputations, along the lines pioneered in the Haskellarray library Repa [7℄, shapes are indutively de�ned using type-level sno listsbuilt from the data types Z and :.:data Z = Zdata sh :. i = sh :. i5 Aelerate employs a ahing strategy to avoid the transfer of arrays, whih arealready available in GPU memory. 4
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Hene, the de�nitions of the dimensions:type DIM0 = Ztype DIM1 = DIM0 :. Int-- <and so on>3 Related WorkPeebles formalised parts of the API of the Haskell array library Repa usingAgda [10℄. The formalisation uses the same shape struture as we are usingin Aelerate, but array omputations are neither embedded nor an parallelhigh-performane ode be generated.Swierstra and Altenkirh investigated the use of dependent types for dis-tributed array programming [12, 13℄. Their notation for distributed arrays wasinspired by X10 and the main fous is on expressing loality aware algorithms.Dependent ML is an ML dialet with a restrited form of dependent types,whih, among other appliations, may be used to statially hek array boundsin array operations [15℄. However, only simple indexing and array updating areonsidered and not aggregate array operations, suh as those provided by A-elerate.Aelerator [14℄ enables embedded GPU omputations in C# programs; itsubsequently also added F# support. However, no attempt is made to trakproperties of array programs statially. Similarly, Copperhead [2℄ embedded anarray language into Python, but does not attempt to trak information statially.4 Dependent Types for AelerateIn this setion, we investigate the potential uses of dependent typing in a lan-guage like Aelerate and point out how they may be implemented in Agda.First, we review some basis of the embedding.4.1 Embedding of Haskell TypesAelerate supports a wide range of numeri types, haraterized by type lassElt, as base types for array omputations. Almost all of these types have nosuitable ounterpart in Agda, whih only supports natural numbers in unaryenoding. For that reason, our embedding keeps the Haskell types abstrat inAgda. To speify type signatures and in partiular funtions that are polymor-phi in suh a Haskell type or depend on it in some way, we have rei�ed thesetypes in an Agda type Element.data Element : Set whereBool : ElementInt : Element 5
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Float : ElementDouble : ElementPair : Element -> Element -> Element-- and so onCorresponding to Haskell type lasses that are used in Aelerate, our embeddingsupplies prediates that haraterize subsets. For example, the set of numeritypes is de�ned by a prediate IsNumeri.6IsNumeri : Element -> SetIsNumeri Int = >IsNumeri Float = >IsNumeri Double = >IsNumeri _ = ?The embedding delares further subsets all in the same style.4.2 Array TypesTo see the Agda embedding in ation, we translate the dot produt examplefrom Setion 2.2 to Agda.dotp : {E : Element} {{p : IsNumeri E}} {n : Nat}-> PreVetor n E -> PreVetor n E -> Salar Edotp{E} xs ys =let xs' = use xsys' = use ysinfold _+_ ("0" ::: E) (zipWith _*_ xs' ys')Unlike the Aelerate ode, this funtion is polymorphi with respet to thearray element type, provided it is numeri.7 It furthermore takes the length nas a parameter thus ensuring that the two input vetors have the same size.The PreVetor type of the arguments orresponds to the plain Vetor typein Aelerate, whereas the result type Salar E orresponds to A (SalarE)|a piee of abstrat syntax.The use funtion works as before, but its type inludes more information:use : {sh : Shape}{E : Element} -> PreArray sh E -> Array sh ELike E, the index sh is now an element of an ordinary type instead of having torely on type-level sno lists:86 > is a one-element type, whereas ? is a type without elements. These types ustom-arily represent truth and falsity.7 In Agda, arguments in double urly braes are instane arguments [5℄. We use themmuh like type lass onstraints are used in Haskell.8 Reent work on Haskell's type system manages to avoid this issue [16℄.6
389



data Shape : Set whereZ : Shape_:<_> : Shape -> Nat -> ShapeAsking for arrays of equal shape, as in the signature of use, means that thearrays have to have the exat same layout. The PreVetor and Vetor typesare just synonyms as in Haskell:PreVetor n E = PreArray (Z :< n >) EVetor n E = Array (Z :< n >) EThe funtions fold, zipWith, and ::: are disussed in the subsequent subse-tions. The funtions _+_ and _*_ both have the same type:_+_ : {E : Element} {{p : IsNumeri E}} -> Exp E -> Exp E -> Exp EThey are restrited to arguments of numeri type and onstrut abstrat syntaxfor an addition or a multipliation by delegating to the orresponding Aeleratefuntions. The type Exp E, whih denotes an AST of an expression of type E.4.3 Exat Cheking of Array BoundsAelerate's API features expressive type onstraints that desribe the shape ofthe array arguments and results. These onstraints ensure that no shape mis-mathes our (e.g., a one-dimensional array annot be onsidered two-dimensional).However, they do not ensure at ompile time that the sizes of the dimensionsmath up.As an example, onsider the funtion reshape. It takes a target shape shand an array of soure shape sh' and hanges the layout of that array to sh.reshape :: Exp sh -> A (Array sh' e) -> A (Array sh e)For this reshaping to work orretly, the underlying number of elements mustremain the same. For example, while it makes sense to reshape a two-dimensional3 � 4-array to a vetor of size 12 or to a three-dimensional 3 � 2 � 2-array, anattempt to reshape to a 2� 5-array should be rejeted at ompile time.As Shape is an ordinary data type in Agda, we an de�ne a size funtionthat omputes the number of elements stored in an array of a ertain shape.size : Shape -> Natsize Z = 1size (sh :< n >) = size sh * nNow we an state an aurate type for reshape in Agda, whih involves an extraargument with a proof that the soure and target shapes have the same size.reshape : fsh : Shapeg fE : Elementg-> (sh' : Shape) -> Array sh E -> (size sh � size sh')-> Array sh' E 7
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There is a subtle di�erene to the original signature. In Aelerate, the �rstargument is an expression that produes a value of type sh at run time, whereasthe Agda reshape requires a Shape as its �rst argument.Furthermore, funtions like map and zipWith obtain more preise types. Thetype of map tells us that the input shape is idential to the output shape:map : {A B} {sh} -> (Exp A -> Exp B) -> Array sh A -> Array sh BSimilarly, the type of zipWith restrits its input arrays to idential shapes:zipWith : {A B C} {sh} -> (Exp A -> Exp B -> Exp C)-> Array sh A -> Array sh B -> Array sh CThe latter type is more restritive than the Aelerate implementation of zipWith.Instead of heking the sizes of the input arrays, it trunates them to the re-spetive minima. A orresponding Agda type ould be developed easily. It justrequires a binary funtion that omputes the minimum of two shapes, whih isa simple exerise.4.4 Assoiativity of OperationsSome parallel redution operations require their base operation to be assoiativeto return a preditable result. Here are two examples from Aelerate.fold :: (Shape ix, Elt a) =>(Exp a -> Exp a -> Exp a) -> Exp a ->A (Array (ix :. Int) a) -> A (Array ix a)fold1 :: (Shape ix, Elt a) =>(Exp a -> Exp a -> Exp a) ->A (Array (ix :. Int) a) -> A (Array ix a)In both ases, the text of the doumentation says that \the �rst argument needsto be assoiative" and the fold1 doumentation \requires the redued array tobe non-empty". The seond requirement an be enfored by asking for a suitableproof objet on eah all of fold1:fold1 : ... -> Array (sh :< n >) E -> (size sh * n > 0)-> Array sh EThe �rst requirement an be rephrased to saying that the �rst two parametersof fold together form a monoid, whih requires an assoiative operation witha unit element. The onept of a monoid an be formalized in Agda, whih hasindeed been done in the standard library. Unfortunately, the formalization fromthe library annot be used beause Aelerate deals with ASTs, not with values.So, a formalization is required that states that the meaning of an AST-enodedfuntion is assoiative and the meaning of another AST-enoded onstant is itsunit element. Given that Aelerate enodes AST onstrution using higher-order abstrat syntax, suh a formalization is not straightforward. Moreover,8
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even given expressions with a �xed meaning, there is no general shape for asso-iative funtions, so that proofs an only be done for speial ases.In any ase, providing suh information would be done by inluding an ad-ditional argument that holds a suitable proof objet, as infold : {E}{sh}{n} -> (f : Exp E -> Exp E -> Exp E) -> (e : Exp E)-> Array (sh :< n >) E -> IsMonoid f e -> Array sh EwhereIsMonoid : {E} -> (f : Exp E -> Exp E -> Exp E) -> (e : Exp E) -> SetIsMonoid f e = ( IsAssoiative f , IsUnit f e)4.5 Embedding of ConstantsAelerate relies on Haskell's built-in support for the type lasses Num andFrational to embed onstants. The Haskell ompiler reads eah integer literalas a value of type Integer, whih is a built-in type of arbitrary preision integers.To this value, Haskell applies the funtion fromInteger that onverts to the typeexpeted by the ontext. Similarly, oating point onstants are read as valuesof type Rational (Integer frations) and then onverted using fromRational.Aelerate provides instanes of these type lasses that de�ne fromInteger andfromRational to produe suitable AST fragments.Beause of Agda's limited support for numeri data types, we embed moreambitious numeri literals for oating point numbers using a string with anexpliit type annotation that determines the parsing of the string. Here aresome example embeddings:"3.1415926" ::: Float"6.0221415E23" ::: DoubleReall that Float and Double are not types, but rather values of type Element.All magi of the embedding is hidden in the ::: operation:_:::_ : (s : String) -> (E : Element)-> {{nu : IsNumeri E}} -> {p : T (s parsesAs E)} -> Exp Es ::: E = Ex (onstantFromString (EltDit E) (ReadDit E) s)The arguments s and E are expliit, but the remaining ones are to be inferredby Agda. As mentioned before, the argument nu is an instane argument; it isautomatially �lled-in with a suitably typed value that is urrently in sope [5℄.Here, the prediate IsNumeri plays the role of a type lass that haraterizesthe numeri types.The funtion parsesAs dispathes on its \type" argument and heks whetherthe string is a onstant of the expeted type. The funtion onstantFromStringis imported from Aelerate. It is an overloaded funtion that requires twotype ditionaries, whih are omputed from E using the funtions EltDit andReadDit. 9
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5 LimitationsIn a number of plaes, Aelerate's generativity limits the appliability of de-pendent typing. We already mentioned that the formalization of assoiativity orof the onept of a monoid gets unmanageable beause suh properties have tobe asserted for abstrat syntax.For a related problem, onsider an implementation of the filter operationthat takes a prediate and a soure array and returns an array that only ontainsthe elements of the soure array ful�lling the prediate. First of all, �ltering onlymakes sense for one-dimensional arrays, that is, for vetors. To see the seondath, let's try to write down a dependent type signature for filter.filter : {n m : Nat}{E : Element}-> Vetor n E -> (Exp E -> Exp Bool) -> Vetor m EThe problem is that the size of the result annot be determined statially. Infat, the only thing we know about m is that it must be less than or equal to n.However, we annot prove this from the ode beause of a staging restrition.The Aelerate implementation omputes the length of the result only whenthe generated GPU ode is exeuted. The funtion Exp E -> Exp Bool mapsabstrat syntax to abstrat syntax; it does not diretly implement a Booleanprediate. Hene, we annot use the prediate in the result type of filter tomore aurately onstrain the size of the resulting vetor | unless we inludean evaluator for Aelerate expressions.We might ontemplate emplying an existential type likeexists Nat (\ m -> m <= n -> Vetor m E)However, it is not possible to build suh an existential pakage beause theevidene m is not available when the pakage would have to be onstruted.However, an alternative enoding of arrays an be used whih is ompatiblewith �ltering of elements. The idea of this enoding is to keep all elements butmark those whih are no longer present beause they have been �ltered out.There are several ways of implementing this idea. The simplest approah is towrap eah element in a maybe type or pair up eah element with a boolean agthat indiates its presene.9FVetor : Nat -> Element -> SetFVetor n E = Vetor n (Pair Bool E)Now �ltering beomes quite simple beause the length of theFVetor does nothange. Furthermore, �ltering ould be extended to multi-dimensional arrays,although it is not lear if an array that inludes non-existing elements is a sensiblenotion.9 A Maybe type is on one hand the better option, but it has to be oded without usingpattern mathing. 10
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filterF : {n : Nat}{E : Element}-> (Exp E -> Exp Bool) -> FVetor n E -> FVetor n EfilterF {n}{E} pred ve =map g vewhereg : Exp (Pair Bool E) -> Exp (Pair Bool E)g bx = pair ((fst bx) && p (snd bx)) xHowever, mapping beomes more ompliated beause it either has to materializea dummy result for eah absent element in the argument vetor or apply thefuntion to absent elements, too.10mapF : {n : Nat}{E F : Element}-> Exp F -> (Exp E -> Exp F) -> FVetor n E -> FVetor n FmapF {n}{E}{F} defaultF f ve =map g vewhereg : Exp (Pair Bool E) -> Exp (Pair Bool F)g bx = if (fst bx) then (pair (fst bx) (f (snd bx)))else (pair (fst bx) defaultF)On the positive side, some operations an get rid of the absent elements. Inpartiular, a fold operation whih redues a �ltered vetor with a monoid returnsa single value. In Aelerate, suh a value has type Salar, whih is a synonymfor an array of dimension 0.foldF : {n : Nat}{E : Element}-> (Exp E -> Exp E -> Exp E) -> Exp E-> FVetor n E -> Salar EfoldF f e ve =fold f e (map (\ bx -> if (fst bx) then (snd bx) else e) ve)Other operations like fold1 and the san operations present in Aelerate analso be lifted to this representation, but they retain a notion of absent elementsand do not allow to revert to a non-�ltered representation.In the end, suh a representation may not be a loss on a GPU. As long asall omputations take the same path, all proessing elements work in unison.As soon as there are di�erent paths in the same omputation step, then someelements will be idle for part of the omputation step. So it would be mostadvantageous to organize work as uniformly as possible.6 ImplementationOrdinarily, Agda is an interative tool for onstruting proofs and veri�ed pro-grams. Programs may be run, whih amounts to normalizing Agda expressions,but this proess is not very eÆient.10 This ompliation ould be avoided with the Maybe type.11
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Alternatively, an interatively developed programmay be ompiled to Haskellusing the Alonzo ompiler. This ompiler supports a Haskell foreign funtioninterfae (FFI), whih enables Agda programs to invoke Haskell funtions.Using this interfae amounts to delaring a typed identi�er in Agda andthen binding the identi�er to a suitably typed Haskell funtion. As an example,onsider the import of the use funtion.postulateuseHs : {E : Set}-> HsEltDit E -> HsArray HsDIM1 E -> A (AArray HsDIM1 E){-# COMPILED useHs (\ _ -> Ael.use) #-}The �rst three lines introdue the typed identi�er useHs and the last line isa pragma for the Alonzo ompiler that binds the Agda identi�er useHs to theHaskell expression on the right. But wait, this type looks very unpleasant andquite di�erent to the one mentioned in Setion 4.2. This di�erene arises beausethe type translation of Alonzo is unable to ope with the index type Shape. Forthat reason, the interfae uses a simpli�ed array type and adapter funtions arerequired, in the worst ase, both on the Agda side and on the Haskell side of theinterfae.At the foreign funtion interfae level, all arrays are onsidered as one-dimensional arrays. Additional arguments are passed to enode the shape in-formation as far as it is needed. The Agda adapter provides the enoding of thisstruture and the Haskell adapter deodes it again.We believe that these adapations only have a minor performane impatbeause (1) most funtions just manipulate abstrat syntax, so that only ASTonstrution is a�eted, and (2) internally, Aelerate onsiders all arrays asone-dimensional so that operations like reshape are no-ops at run time.Here is the Agda adapter for use:use : {sh : Shape}{E : Element} -> PreArray sh E -> Array sh Euse {sh}{E} (PA y) = Ar (useHs (EltDit E) y)It makes use of two wrapper types. PreArray wraps a one-dimensional Haskellarray using the onstant HsDIM1 (the DIM1 type shown in Setion 2.2 importedfrom Haskell via FFI) and the funtion EltType (not shown), whih interpretsa value of type Element as a Haskell type. The latter types are also importedvia FFI.data PreArray (E : Element) : Shape -> Set wherePA : {sh : Shape} -> HsArray HsDIM1 (EltType E) -> PreArray sh EThe Array type wraps an AST referene for an Aelerate array, where A andAArray are types imported from Haskell.data Array (E : Element) : Shape -> Set whereAr : {sh : Shape} -> A (AArray HsDIM1 (EltType E)) -> Array sh E12
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The EltDit funtion translates a value (E : Element) into a Haskell expres-sion that evaluates to a ditionary for the Haskell type of E for the Haskell typelass Elt. Suh a ditionary is passed, whenever that orresponding Haskellfuntion has type lass onstraints.EltDit : (E : Element) -> HsEltDit (EltType E)The Haskell side of the adapter has several purposes. First, it materializesthe type lass ditionaries from the enoding that we just disussed. Seond, itreonstruts suÆient information about the array shape so that the intendedoperation an exeute. Here is the ode for Ael.use, where the module nameA is a shorthand for Data.Array.Aelerate.use :: EltDit e -> Array A.DIM1 e -> A.A (A.Array A.DIM1 e)use EltDit (ARRAY ar) = (A.use ar)It does not have to reonstrut any information exept the type lass onstraint.This onstraint is materialized using the type EltDit below.data EltDit e whereEltDit :: (A.Elt e) => EltDit eThis datatype is built suh that eah value aptures the Elt ditionary of typee. It remains to build suh values for all types that we want to transport arossthe FFI. These are the values used by the (Agda) EltDit funtion. Here aretwo examples.eltDitBool :: EltDit BooleltDitBool = EltDiteltDitInt :: EltDit InteltDitInt = EltDitAs an example for a funtion that requires more work on either side, onsiderthe fold operation.fold : {E}{sh}{n}-> (Exp E -> Exp E -> Exp E)-> Exp E-> Array (sh :< n >) E-> Array sh Efold {E}{sh}{n} f (Ex e) (Ar a) =Ar (foldHs (EltDit E) (toHsInt (size sh)) (toHsInt n)(unwrap2 f) e a)As values of type Exp also need a wrapper type in Agda (it is not possible toimport type onstrutors via the FFI), there is some unwrapping going on for thee and f arguments. The implementation of fold just alls the foldHs funtionand enodes the information about the shape in two integer arguments. Here,13
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size sh is the size of the result and n is the size of the dimension that is folded.As these values are initially available as Agda natural numbers, they need to beonverted to Haskell numbers using the funtion toHsInt.The foldHs funtion is de�ned via the FFI.postulatefoldHs : {A : Set}-> HsEltDit A-> HsInt-> HsInt-> (AExp A -> AExp A -> AExp A)-> AExp A-> A (AArray HsDIM1 A)-> A (AArray HsDIM1 A){-# COMPILED foldHs (\_ -> Ael.fold) #-}The Haskell adapter reonstruts the Elt ditionary as before, but it also needsto reshape the one-dimensional array representation into a two-dimensional onefor exeuting the fold operation. The two size arguments are required for exatlythis reshape operation. With that insight, the ode is straightforward.fold :: EltDit a-> Int -> Int-> (A.Exp a -> A.Exp a -> A.Exp a)-> A.Exp a-> A.A (A.Array A.DIM1 a)-> A.A (A.Array A.DIM1 a)fold EltDit size2 size1 f e a =(A.reshape (A.lift (A.Z A.:. size2))(A.fold f e(A.reshape (A.lift (A.Z A.:. size2 A.:. size1)) a)))Fortunately, the fold example is about as ompliated as the adapter odegets. There are also many ases where at least one side of the adapter ode istrivial. However, eah ase must be onsidered separately.7 ConlusionWe have build an experimental Agda frontend for the Aelerate language. Thegoal of this experiment was to explore potential uses of dependently-typed pro-gramming for data-parallel languages.At the moment, the outome of the experiment is mixed. It is suessful,beause we have been able to onstrut Agda funtions for a representativesample of Aelerate's funtionality. However, there was less sope for enodingextra information in the dependent types than we had hoped for. Exat mathingof array bounds works, but results in restritions (like the problems with zipWithand �ltering) that were not antiipated.14
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Exploiting algebrai properties did not work out in the intended way, mainlybeause it boils down to asserting that some AST denotes an assoiative funtion.However, these assertions annot be proven: the proof would have to apply thesemantis to the AST, but the AST is an abstrat type in our implementation.An AST representation in Agda might give us a better handle at this problem.In some plaes, the Agda frontend is less dynami than Aelerate. In anumber of plaes, Aelerate aepts a run-time value of type Exp sh for ashape argument, where the Agda frontend requires a value of type Shape. Toaddress this problem, we would have to inlude a Shape-indexed enoding of theShape type in the Element type so that we an desribe the type of an expressionwhose value has a ertain shape.Finally, the type translation of Agda's FFI has many shortomings thataused a number of problems for transporting information between Agda andHaskell. One part of the problem is, unfortunately, the rih type struture ofAelerate whih already enodes muh useful information. An alternative, un-typed (or less-typed) interfae to Aelerate would make the adaptation to anAgda frontend muh simpler.Referenes1. A. Bove, P. Dybjer, and U. Norell. A brief overview of Agda - a funtional languagewith dependent types. In S. Berghofer, T. Nipkow, C. Urban, and M. Wenzel,editors, TPHOLs, volume 5674 of Leture Notes in Computer Siene, pages 73{78, Munih, Germany, 2009. Springer.2. B. Catanzaro, M. Garland, and K. Keutzer. Copperhead: Compiling an embed-ded data parallel language. Tehnial Report UCB/EECS-2010-124, University ofCalifornia, Berkeley, 2010.3. M. M. T. Chakravarty, G. Keller, S. Lee, T. L. MDonell, and V. Grover. Ael-erating Haskell array odes with multiore GPUs. In M. Carro and J. H. Reppy,editors, Workshop on Delarative Aspets of Multiore Programming, DAMP 2011,pages 3{14, Austin, TX, USA, Jan. 2011. ACM.4. M. M. T. Chakravarty, G. Keller, and S. Peyton Jones. Assoiated type synonyms.In B. C. Piere, editor, Proeedings International Conferene on Funtional Pro-gramming 2005, pages 241{253, Tallinn, Estonia, Sept. 2005. ACM Press, NewYork.5. D. Devriese and F. Piessens. On the bright side of type lasses: Instane argumentsin Agda. In O. Danvy, editor, Proeedings International Conferene on FuntionalProgramming 2011, pages 143{155, Tokyo, Japan, Sept. 2011. ACM Press, NewYork.6. S. L. P. Jones, D. Vytiniotis, S. Weirih, and G. Washburn. Simple uni�ation-based type inferene for GADTs. In J. Lawall, editor, ICFP, pages 50{61, Portland,Oregon, USA, Sept. 2006. ACM Press, New York.7. G. Keller, M. M. Chakravarty, R. Leshhinskiy, S. Peyton Jones, and B. Lippmeier.Regular, shape-polymorphi, parallel arrays in Haskell. In ICFP '10: Pro. of the15th ACM SIGPLAN Intl. Conf. on Funtional Programming. ACM, 2010.8. P. Martin-L�of. Intuitionisti Type Theory. Bibliopolis, Napoli, 1984.9. U. Norell. Dependently typed programming in Agda. In P. W. M. Koopman,R. Plasmeijer, and S. D. Swierstra, editors, Advaned Funtional Programming,15
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Abstract

In our formalization in Coq of Moessner’s theorem, we have observed that each instance of
this theorem at index i gives rise to a master lemma that involves each of the monomials
of the binomial expansion of (a+1)i, where a is an accumulator. We have written a code
generator, in ML, mapping an index to a Coq script that states and proves the instance
of Moessner’s theorem at that index. In this paper, we report this experiment and situate
it in the landscape of studies of Moessner’s theorem.

1 Overview

Following Hinze’s study of Moessner’s theorem [2] and Niqui and Rutten proof by co-induction [3],
we are formalizing Moessner’s theorem and its proof in Coq [1]. As a stepping stone, we have
considered its instance at a given index. Given

• stream of ones, a constant stream of the natural number 1, i.e., (1, 1, 1, . . .),

• stream of positive powers of 3, the stream of the successive powers of 3, i.e., (13, 23, 33, . . .),
stream of positive powers of 4, the stream of the successive powers of 4, i.e., (14, 24, 34, . . .),
etc.,

• skip 2, skip 3, skip 4, the stream transducers that respectively skip every second, third,
fourth, etc. element of a given stream,

• sums, the stream transducer that maps a stream to the stream of its partial sums, and
sums aux, a version of sums that uses an accumulator, and

• stream bisimilar, a bisimilarity predicate,

we state and prove, e.g., Moessner’s theorem at index 4, using the master lemma Moessner 4 aux

specified below:

Theorem Moessner_4 :

stream_bisimilar

stream_of_positive_powers_of_4

(sums

(skip_2

(sums

(skip_3

(sums

(skip_4

(sums

stream_of_ones))))))).

1
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Proof.

unfold stream_of_positive_powers_of_4.

unfold sums.

apply (Moessner_4_aux 0).

Qed.

The skeleton of the master lemma at index 4 reads as follows, where we have left the starting
accumulators blank:

Lemma Moessner_4_aux :

forall (a : nat),

stream_bisimilar

(make_stream_of_nats (S a)

(fun i => i * i * i * i)

S)

(sums_aux ???

(skip_2

(sums_aux ???

(skip_3

(sums_aux ???

(skip_4

(sums_aux ???

stream_of_ones))))))).

As it happens, these starting accumulators correspond to the succcessive monomials of New-
ton’s binomial expansion of a + 1 at index 4:

(a + 1)4 = a4 + 4 · a3 + 6 · a2 + 4 · a + 1

Lemma Moessner_4_aux :

forall (a : nat),

stream_bisimilar

(make_stream_of_nats (S a)

(fun i => i * i * i * i)

S)

(sums_aux (a * a * a * a)

(skip_2

(sums_aux (4 * a * a * a)

(skip_3

(sums_aux (6 * a * a)

(skip_4

(sums_aux (4 * a)

stream_of_ ones ))))))).

This property appears to hold for arbitrary indices. The corresponding number and structure
of auxiliary lemmas is so regular that we have characterized them inductively and written, in
ML, a code generator mapping an index to a Coq script that states and proves the instance
of Moessner’s theorem at that index. The full version of this extended abstract will detail
this characterization and situate our experiment in the landscape of studies of Moessner’s
theorem.
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Abstract. In the last decade Java has been extended by some features,
which are well-known from functional programming languages. In Java 8
the language will be expanded by λ–expressions. We have extended a
subset of Java 7 by λ–expressions and function types. We call this lan-
guage Javaλ. For Javaλ we presented a type inference algorithm. In this
contribution we present a prototypical implementation of the type infer-
ence algorithm implemented in Haskell.

1 Introduction

In the late eighties Fuh and Mishra have presented a type inference algorithm for
a small function programming language with subtyping and without overloading
[FM88].
In Javaλ we have a similiar situation. Subtyping is allowed and functions, which
are declared by λ–expressions, are not overloaded.
We have adapted the Fuh and Mishra algorithm to a type inference algorithm
for Javaλ [Plü11]. The main difference is the definition of the subtyping ordering.
Therefore follows that the unification in [FM88] had to be substituted by our
type unification [Plü09].
The type inference algorithm consists of three functions:

TYPE: The function TYPE types each sub-term of the λ–expressions by type
variables and determines corecions (subtype pairs), which have to be solved.

MATCH: The function MATCH adapts the structure of the types of each
subtype pair and reduces the coercions to atomic coercions. An atomic co-
ercion is a subtype pair, where the types consists only of type variables and
type constants.

CONSISTENT: The function CONSISTENT determines iteratively solu-
tions for the atomic coercions. If there is at least one solution, the result
is true. This means that there is a correct typing for the λ–expressions.
Otherwise, the algorithm fails.

The algorithm itself is given as:

WTYPE: TypeAssumptions× class → { WellTyping } ∪ { fail }
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WTYPE(Ass,Class( cl, extends( τ ′ ), fdecls, ivardecls ) ) =
let

({ f1 : a1, . . . , fn : an }, CoeS) =
TYPE(Ass,Class( cl, extends( τ ′ ), fdecls, ivardecls ) )

(σ,AC) = MATCH(CoeS )
in

if CONSISTENT(AC ) then
{ (AC,Ass ` fi : σ( ai )) | 16 i6n }

else fail
The result of the algorithm is the set of well-typings:

{ (AC,Ass ` fi : σ( ai )) | 16 i6n }

where

– AC is a set of coercions,
– Ass is a set of type assumptions,
– fi are function names, and
– σ( ai ) are types.

It is a problem that well-typings are not included in the Java type-system.
If we consider CONSISTENT more detailed, we will recognize, that for all
types, which are in relation with a non-variable type, all possible instances are
determined. We call a function, which gives these instances as result, SOLU-
TIONS. This means that the set of corecions could be reduced to a set AC ′

consisting only type variables. These pairs could be expressed by bounded type
variables in Java. Here is a small extention necessary, e.g. parameters of a func-
tion could also be a bound of another parameter.
Hence the algorithm looks like this:

WTYPE: TypeAssumptions× class → { WellTyping } ∪ { fail }

WTYPE(Ass,Class( cl, extends( τ ′ ), fdecls, ivardecls ) ) =
let

({ f1 : a1, . . . , fn : an }, CoeS) =
TYPE(Ass,Class( cl, extends( τ ′ ), fdecls, ivardecls ) )

(σ,AC) = match(CoeS )
((τ1, . . . , τm), AC ′) = SOLUTIONS(AC )

in
{ (AC ′, Ass ` { fi : τj ◦ σ( ai ) | 16 i6n }) | 16j6m }

2 The language

The language Javaλ is an extension of our language in [Plü07] by λ–expressions
and function types. Javaλ is the core of the language, which is described by
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Source := class∗
class := Class(simpletype, [ extends( simpletype ), ]IVarDecl∗,FunDecl∗)
IVarDecl := InstVarDecl( simpletype, var )
FunDecl := Fun( fname, [type], lambdaexpr )

block := Block( stmt∗ )
stmt := block | Return( expr ) | While( bexpr , block ) |

LocalVarDecl( var [, type] ) | If( bexpr , block [, block ] ) | stmtexpr
lambdaexpr := Lambda( ((var [, type]))∗, (stmt | expr) )

stmtexpr := Assign( vexpr, expr ) | New( simpletype, expr∗ ) | Eval( expr, expr∗ )

vexpr := LocalOrFieldVar( var ) | InstVar( expr , var )
expr := lambdaexpr | stmtexpr | vexp | this | This( simpletype ) | super |

InstFun( expr , fname ) | bexp | sexp

Fig. 1. The abstract syntax of Javaλ

Reinhold’s in [lam10]. In (Fig. 1) an abstract representation is given, where
the additional features are underlined. Beside instance variables functions can
be declared in classes. A function is declared by its name, optionally its type,
and a λ–expression. Methods are not considered in this framework, as methods
can be expressed by functions. A λ–expression consists of an optionally typed
variable and either an statement or an expression. Furthermore, the statement
expressions respectively the expressions are extended by evaluation-expressions,
the λ–expressions, and instances of functions.
The concrete syntax in this paper of the λ–expressions is oriented at [Goe10],
while the concrete syntax of the function types and closure evaluation is oriented
at [lam10].
The optional type annotations [type ] are the types, which can be inferred by
the type inference algorithm.

Definition 1 (Types). Let Typ be a set of Java 5.0 types ([GJSB05], Section
4.5), where BTV is an indexed set of bounded type variables. Then the set of
Javaλ types TypeTS (BTV ) is defined by

– Typ ⊆ TypeTS (BTV )
– For ty, tyi ∈ TypeTS (BTV )

# ty (ty1, . . . , tyn) ∈ TypeTS (BTV )1

Example 1. We consider the class Matrix.

class Matrix extends Vector<Vector<Integer>> {

op = #{ m -> #{ f -> f(Matrix.this, m) } }

}

1 Often function types # ty (ty1, . . . , tyn) are written as (ty1, . . . , tyn) → ty.
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op is a curried function with two arguments. The first one is a matrix and the
second one is a function which takes two matrices and returns another matrix.
The function op applies its second argument to its own object and its first
argument. The function op is untyped. The first argument m and the second
argument f are also untyped. The first idea for a correct typing could be that m
gets the type Matrix and f gets # Matrix (Matrix, Matrix), which mean that
the function f has the type # # Matrix (Matrix, Matrix) (Matrix).

The main difference between Javaλ and the corresponding core of Java 8 [Goe11]
is the typing of λ–expressions. While in Java 8 the types are given as functional
interfaces (Java interfaces with one method) in Javaλ the types of λ–expressions
are given as real function types.

3 Implementation

In the following context it is described how to implement the algorithm WTYPE
in Haskell. The background was explained in the introduction (Section 1). The
algorithm for the Javaλ itself is given in [Plü11].

3.1 Abstract syntax

The data-structure for a class is given as

data Class = Class(SType, --name

[SType], -- extends

[IVarDecl], -- instancevariables

[FunDecl]) -- functiondeclarations

The first argument is the class-name, the second argument the super-class, re-
spectively the implemented interfaces, the third argument the list of instancs
variables, and the fourth argument the function declarations.

data FunDecl = Fun(String, Maybe Type, Expr)

A function is declared by its name, an optionally type and an expression. The
optionally type will be inferred by the type-inference algorithm.
We consider only the new construtions of the data-structures Expr for expres-
sions and StmtExpr for statement-expressions. The data-structure Stmt for state-
ments is unchanged.

data Expr = Lambda([Expr], Lambdabody)

| InstFun(Expr, String, String)

| ...

data Lambdabody = StmtLB(Stmt)

| ExprLB(Expr)
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An expressions could be a λ–expression, the first argument is a list of parameters
and the second argument, the λ–body, is either a statement or an expression.

The other considered constructor is the instance of a function. The first argu-
ment is the expression, which represents the class-instance, which comprises the
function. The second argument represents the class name. This is necessary, as
the algorithm allows no overloading. The third argument finally is the function
name.

data StmtExpr = Eval(Expr, [Expr])

| ...

The first argument of the constructor Eval is an expression, which represents
a function. The second argument is a list of arguments. Eval stands for the
evaluation of the functions application to the arguments.

Example 2. The abstract syntax of the class Matrix (Example 1) is given as:

[Class(TC ("Matrix",[]),

[TC ("Vector",[TC ("Vector",[TC ("Integer",[])])])],

[],

[Fun(

"op",

Nothing,

Lambda([LocalOrFieldVar "m",],

ExprLB(

Lambda([LocalOrFieldVar "f"],

ExprLB(StmtExprExpr(

Eval(LocalOrFieldVar "f",

[ThisStype "Matrix",

LocalOrFieldVar "m"])))))))])]

3.2 Parser

The parser is defined by a HAPPY–File. HAPPY is the LR-parser-generating–tool
of Haskell. The syntax is similar to yacc. In Figure 2 a part of the specification
is given.

Against to yacc in HAPPY the commands of the rules are given as return-
expressions. This means that no $$ is necessary to return a value.

The function divideFuncInstVar divides declarations of instance-variables and
functions, as in Java mixed declarations are allowed.

FType is the constructor for the function type, the representation of
# rettype (argtypes).

TypeSType is the boxed representation of Java 5.0 types in the set of all types.
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classdeclaration : CLASS IDENTIFIER classpara classbody

{ Class(TC($2, $3), [], fst $4, snd $4) }

classbody : LBRACKET RBRACKET { ([], []) }
| LBRACKET classbodydeclarations RBRACKET

{ divideFuncInstVar $2 ([], []) }

fundeclaration : funtype IDENTIFIER ASSIGN expression SEMICOLON

{ Fun($2, Just $1, $4)}
| IDENTIFIER ASSIGN expression SEMICOLON

{ Fun($1, Nothing, $3)}

funtype : SHARP funtypeortype LBRACE funtypelist RBRACE

{ FType($2, $4) }

funtypeortype : funtype { $1 }
| type { TypeSType $1 }

Fig. 2. Part of the Javaλ HAPPY–File

3.3 The function TYPE

The function TYPE introduces fresh type variables to each sub-term of the
expressions and determines the coercions (subtype pairs). The function needs a
set of type-assumptions and a unique number for the next fresh type variable.
We encapsulate these in a monad (Figure 3).

class Monad m where

return :: a -> m a

(>>=) :: m a -> (a -> m b) -> m b

...

data M a = Mon((TypeAssumptions, Int) -> (a, (TypeAssumptions, Int)))

instance Monad (M) where

return coe_lexpr = Mon(\ta_nr -> (coe_expr, ta_nr))

(>>=) (Mon f1) f2 = Mon (\ta_nr ->

let (coe_lexpr, ta_nr’) = f1 ta_nr

in getCont(f2 coe_lexpr) ta_nr’)

getCont:: M a -> ((TypeAssumptions, Int) -> (a, (TypeAssumptions, Int)))

getCont (Mon f) = f

Fig. 3. Monad for the function TYPE

The function return encapsulates a pair (coercion set, expression) to a functions
which takes a pair (type-assumptions, number) and returns the pair of pairs
((coercion set, expression), (type-assumptions, number)).
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The function >>= (bind-operator) takes an encapsulated function and another
function. The result is the encapsulated function, which concatenates both func-
tions. The function getCont decapsulate the content of the monad.
For expressions, statements and statement-expressions in each case a function
is needed, which takes an expression, a statement, or a statement-expression,
respectively and returns a corresponding monad. A Java-program consists of dif-
ferent functions, which are declared by (λ–)expressions. Therefore an additional
function is necessary, which filters the expressions and calls the TYPE–function.
In Figure 4 a part is presented. The main principle of monadic application is

tYPEClass :: Class -> M (CoercionSet, Class)

tYPEClass (Class(this_type, extends, instvar, funs)) =

let

funexprlist = map (\(Fun(op, typ, lambdat) -> lambdat) funs

in

tYPEExprList funexprlist

tYPEExprList :: [Expr] -> M (CoercionSet, [Expr])

tYPEExprList (e : es) = (tYPEExpr e)

>>= (\coe_lexpr1 -> (tYPEExprList es)

>>= \coe_lexp2 ->

return ((fst coe_lexp1) ++ (fst coe_lexp2),

(snd coe_lexp1) : (snd coe_lexp2)))

tYPEExprList [] = return ([], [])

tYPEExpr :: Expr -> M (CoercionSet, Expr)

...

tYPEStmtExpr :: StmtExpr -> M (CoercionSet, StmtExpr)

...

tYPEStmt :: Stmt -> M(CoercionSet, Stmt)

...

Fig. 4. The TYPE–function

shown in function tYPEExprList. First tYPEExpr is applied to the first expres-
sion. By the bind-operator >>= the result is introduced in the recursive call of
tYPEExprList. Finally, the results of both are summarized in the result of the
whole function by dividing the corecions and the typed expressions.

Example 3. If we apply tYPEClass to the class Matrix (Example 1), we get the
set of coercions:

([(FType (TypeSType (TFresh "V3"),[TypeSType (TFresh "V2")]),
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TypeSType(TFresh "V1")),

(FType (TypeSType (TFresh "V8"),[TypeSType (TFresh "V4")]),

TypeSType (TFresh "V3")),

(TypeSType (TFresh "V4"),

FType(TypeSType (TFresh "V7"),

[TypeSType(TFresh "V6"),TypeSType (TFresh "V5")])),

(TypeSType (TFresh "V7"),TypeSType (TFresh "V8")),

(TypeSType (TC ("Matrix",[])),TypeSType (TFresh "V6")),

(TypeSType (TFresh "V2"),TypeSType (TFresh "V5"))]

and the typed class

class Matrix extends Vector<Vector<Integer>> {

V1 op = # { (V2 m) -> # { (V4 f) -> (f).(Matrix.this, m) } };

}

In the abstract representation all typed sub-terms could be considered.

[Class(TC ("Matrix",[]),

[TC ("Vector",[TC ("Vector",[TC ("Integer",[])])])],

[],

[Fun(

"op",

Just(TypeSType (TFresh "V1")),

TypedExpr(

Lambda([TypedExpr(LocalOrFieldVar "m",

TypeSType (TFresh "V2"))],

ExprLB(TypedExpr(

Lambda(

[TypedExpr(LocalOrFieldVar "f",

TypeSType(TFresh "V4"))],

ExprLB(TypedExpr(StmtExprExpr(

TypedStmtExpr(

Eval(TypedExpr(LocalOrFieldVar "f",

TypeSType(TFresh "V4")),

[TypedExpr(ThisStype "Matrix",

TypeSType(TC ("Matrix",[]))),

TypedExpr(LocalOrFieldVar "m",

TypeSType(TFresh "V2"))]),

TypeSType(TFresh "V8"))),

TypeSType(TFresh "V8")))),

TypeSType(TFresh "V3")))),

TypeSType(TFresh "V1")))])]

3.4 The function MATCH

The function MATCH unifies the coercions and reduces them. The result is a
substitution and a set of atomic (reduced) coercions. Atomic coercions consist
of pairs of Java 5.0 types.
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While in the original algorithm of Fuh and Mishra the ordinary unification is
used, for Javaλ our type unification [Plü09] is necessary. Our type unification
processes also wildcard types.
In Figure 5 the data-structures of MATCH are presented. The type Subst repre-

type Subst = [(Type, Type)]

type EquiTypes = [[Type]]

data Rel = Kl | Kl_QM | Eq | Gr | Gr_QM

type CoercionSetMatch = [(Type, Rel, Type)]

--Monade

data M a = Mon((EquiTypes, Int) -> (a, (EquiTypes, Int)))

instance Monad (M) where

return subst_aCoes = Mon(\eq nr -> (subst_aCoes, eq nr))

(>>=) (Mon f1) f2 = Mon (\eq nr ->

let (subst_aCoes, eq nr’) = f1 eq nr

in getCont(f2 subst_aCoes) eq nr’)

getCont:: M a -> ((EquiTypes, Int) -> (a, (EquiTypes, Int)))

getCont (Mon f) = f

Fig. 5. Data-structure of MATCH

sents the substitution. The type EquiTypes is necessary for Java 5.0 types which
can be considered as equivalent. Rel are the different relations, which are used.
QM stands for question mark, the wildcard type in Java.
In the algorithm again a monad is used. (EquiTypes, Int) is the pair of the
equivalent types and the number of the next fresh type variable. subst aCoes

is the result, a substitution and a set of atomic coercions.

The algorithm itself consists of five cases:

mATCH :: CoercionSetMatch -> CoercionSetMatch -> FC

-> M(Subst, CoercionSetMatch)

-- decomposition
mATCH aCoes ((FType(ret1, args1), Kl, FType(ret2, args2)):coes) fc = ...

-- reduce
mATCH aCoes ((TypeSType(TC(n1, args1)), rel,

TypeSType(TC(n2, args2))):coes) fc = ...

-- expansion
mATCH aCoes ((TypeSType(TFresh(name)), rel,

FType(ret2, args2)) : coes) fc = ...

-- atomic elimination
mATCH aCoes (((TypeSType(TFresh(name))), rel,
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javafivetype) : coes) fc = ...

-- recursion base
mATCH aCoes [] fc = (return ([], aCoes))

Decomposition: The function-type constructor is erased and the arguments
respectively the result types are identified.

Reduce: The type-constructors n1 and n2 are reduced.
Expansion: The fresh type variable name is expanded, such that the type can

be unfied with the function type on the right hand side.
Atomic elimination: The types are introduced in the set of equivalent types.

FC respresents the finite closure of the extends-relation [Plü07].

Example 4. mATCH applied to the coercions of Example 3 gives:

The substitution:

[(TypeSType (TFresh "V14") 7→
FType(TypeSType (TFresh "V21"),

[TypeSType (TFresh "V22"),TypeSType (TFresh "V23")])),

(TypeSType (TFresh "V12") 7→
FType(TypeSType (TFresh "V18"),

[TypeSType (TFresh "V19"),TypeSType (TFresh "V20")])),

(TypeSType (TFresh "V4") 7→
FType(TypeSType (TFresh "V15"),

[TypeSType (TFresh "V16"),TypeSType (TFresh "V17")])),

(TypeSType (TFresh "V9") 7→
FType (TypeSType (TFresh "V13"),

[FType (TypeSType (TFresh "V21"),

[TypeSType (TFresh "V22"),TypeSType (TFresh "V23")])])),

(TypeSType (TFresh "V3") 7→
FType (TypeSType (TFresh "V11"),

[FType (TypeSType (TFresh "V18"),

[TypeSType (TFresh "V19"),TypeSType (TFresh "V20")])])),

(TypeSType (TFresh "V1") 7→
FType (FType (TypeSType (TFresh "V13"),

[FType (TypeSType (TFresh "V21"),

[TypeSType (TFresh "V22"),TypeSType (TFresh

"V23")])]),

[TypeSType (TFresh "V10")]))],

If we apply the substitution to the typed in the typed program Matrix, we get:

class Matrix extends Vector<Vector<Integer>> {

##V13(#V21(V22, V23))(V10)

op = # { (V2 m) -> # { (#V15(V16, V17) f) -> (f).(Matrix.this, m) } };

}
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The set of atomic coercions:

[(TypeSType (TFresh "V2"),Kl,TypeSType (TFresh "V5")),

(TypeSType (TC ("Matrix",[])),Kl,TypeSType (TFresh "V6")),

(TypeSType (TFresh "V7"),Kl,TypeSType (TFresh "V8")),

(TypeSType (TFresh "V21"),Kl,TypeSType (TFresh "V18")),

(TypeSType (TFresh "V19"),Kl,TypeSType (TFresh "V22")),

(TypeSType (TFresh "V20"),Kl,TypeSType (TFresh "V23")),

(TypeSType (TFresh "V18"),Kl,TypeSType (TFresh "V15")),

(TypeSType (TFresh "V16"),Kl,TypeSType (TFresh "V19")),

(TypeSType (TFresh "V17"),Kl,TypeSType (TFresh "V20")),

(TypeSType (TFresh "V15"),Kl,TypeSType (TFresh "V7")),

(TypeSType (TFresh "V6"),Kl,TypeSType (TFresh "V16")),

(TypeSType (TFresh "V5"),Kl,TypeSType (TFresh "V17")),

(TypeSType (TFresh "V11"),Kl,TypeSType (TFresh "V13")),

(TypeSType (TFresh "V8"),Kl,TypeSType (TFresh "V11")),

(TypeSType (TFresh "V10"),Kl,TypeSType (TFresh "V2"))])

3.5 The function SOLUTIONS

The function CONSISTENT in the original algorithm is in our approach sub-
stituted by the function SOLUTIONS. CONSISTENT determines iteratively all
possible solutions until it is obvious, that there is a solution. The result is then
true, otherwise false. We extend this algorithm such that all possible solutions
are determined.

sOLUTIONS :: [(Type, Rel, Type)] -> FC -> [[(Type, Type)]]

The input is the set of atomic corecions and the finite closure of the extends-
relation. The result is the list of correct substitutions.
The algorithm itself has two phases. First all type variables are initialized by
’*’. Then in some iterations steps over all coercions all correct instatiations are
determined. The result is a list of substitutions, where all type variables, which
are not in relation to a non-variable type, are remained instantiated by ’*’.
These variables can be instantiated by any type, only constraints are given by
the coercions.

Example 5. The completion of the Matrix example is given by the application
of sOLUTIONS to the result of mATCH (Example 4). There are three different
solutions. Applied to the typed program we get:

class Matrix extends Vector<Vector<Integer>> {

##V13(#V21(Matrix, V23))(V10)

op = #{ (V2 m) -> #{ (#V15(Matrix, V17) f) -> (f).(Matrix.this, m) } };

}

class Matrix extends Vector<Vector<Integer>> {
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##V13(#V21(Vector<Vector<Integer>>, V23))(V10)

op = #{ (V2 m) -> #{ (#V15(Matrix, V17) f) -> (f).(Matrix.this, m) } };

}

class Matrix extends Vector<Vector<Integer>> {

##V13(#V21(Vector<Vector<Integer>>, V23))(V10)

op = #{ (V2 m) ->

#{ (#V15(Vector<Vector<Integer>>, V17) f) -> (f).(Matrix.this, m) } };

}

The type variables V13, V21, V23, V10, V2, V15, and V17 are not in relation to a
non-variable type. This means that these types can be instantiated by an type,
but there are coercions, which contrains the possible instatiations. E.g.
(TypeSType (TFresh "V10"),Kl,TypeSType (TFresh "V23"))

(TypeSType (TFresh "V21"),Kl,TypeSType (TFresh "V13"))

(TypeSType (TFresh "V2"),Kl,TypeSType (TFresh "V17"))

(TypeSType (TFresh "V15"),Kl,TypeSType (TFresh "V13"))

(TypeSType (TFresh "V10"),Kl,TypeSType (TFresh "V2"))

If we compare this result with the assuption in Example 1, we recognize, that
this result is more principal. On the one hand the type of m is a type variable
and on the other hand the first argument of f could be Matrix and
Vector<Vector<Integer>>.

4 Conclusion and Future Work

In this paper we presented the implementation of the adapted Fuh and Mishra’s
type inference algorithm WTYPE to Javaλ. We gave the implementation in
Haskell. We presented the parser done by the generating tool HAPPY and the
functions TYPE, MATCH, and SOLUTIONS, where TYPE and MATCH
are implementated by a state monad.The result is a well-typing. Well-typings
are unknown in Java so far. Constrains of type variables, as the corecions in our
approach, can be given in Java by bounds of parameters of classes and functions.
A bound can only be a non-variable type. This means to introduce well-typings
in the Java type system, the concept of bounds should be extended.
Finally, we show, how the Matrix example could be implemented, with extended
bounds.

class Matrix extends Vector<Vector<Integer>> {

<V10 extends V23, V21 extends V13, V2 extends V17, V15 extends V13,

V10 extends V2, V23, V13, V17>

##V13(#V21(Matrix, V23))(V10)

op = #{ (V2 m) -> #{ (#V15(Matrix, V17) f) -> (f).(Matrix.this, m) } };
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}
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Abstract. We propose a method called user-defined constraints specif-
ically for shape-generic multi-dimensional array programming. Our pro-
posed technique allows programmers to make implicit constraints in the
domain and codomain of functions explicit. This method can help compil-
ers to generate more reliable code, improve performance through better
optimization and improve software documentation.
We propose and motivate a syntax extension for the functional array lan-
guage SaC and describe steps to systematically transform source-level
constraints into existing intermediate code representations. We discuss
ways of statically resolving constraints through aggressive partial evalua-
tion and propose some form of syntactic sugar that blurs the line between
user-defined constraints and fully-fledged dependent types.

1 Introduction

SaC (Single Assignment C) is an array programming language that supports
shape-generic programming[1], i.e., functions may accept argument arrays with
statically unknown size in a statically unknown number of dimensions. This
generic array programming style brings many software engineering benefits, from
ease of program development to ample code reuse opportunities.

However, generic array programming also introduces some subtle pitfalls.
Many array operations are characterized by implicit shape constraints on pa-
rameters or return values. For example, matrix multiplication requires the sec-
ond axis of the first parameter to be as long as the first axis of the second
parameter; in element-wise arithmetic (e.g. sums and products of two arrays) it
is often desirable to ask for shape equality of arguments. If programmers do not
express implicit constraints in the code, merely depending on inferring shape
information of parameters by compiler (which is really hard) is not enough to
generate reliable executable code. Insufficient information about relationship of
function parameters and result values is a problem. Program execution may en-
counter runtime errors, e.g. out-of-bound array indexing, if implicit constraints
are violated, or program execution may simply yield erroneous results.

How to express constraints of functions is a question. For instance, program-
mers may add conditional code around function applications or in the definition
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of the applied function. However, both approaches have their disadvantages. In
the first case, programmers write redundant code for each function application,
which violates software engineering principles. In the second case, compilers have
little opportunity to prove constraints, and most constraints have to be left for
dynamic checks. The lack of distinction between functionally relevant and con-
straint checking code in both scenarios further complicates a compiler’s job.

Therefore, it is useful if programmers can explicitly supply constraints in
code. We propose user-defined constraints that explicitly annotate relations be-
tween parameters and/or return values of functions. This approach facilitates
program error detection and helps to infer more precise type information for
smooth optimization. Using this approach, we obtain the following benefits:

1. User-defined constraints can help a compiler to generate more reliable code.
For instance, a generic function vector add takes two vectors of the same
size as parameters and yields a new vector whose values are the sums of the
corresponding elements of the two argument vectors. In the absence of shape
constraints the only way to avoid potential out-of-bound indexing into one of
the argument vectors is to generate a vector whose length equals that of the
shorter of the two argument vectors. With the proposed user-defined shape
constraints, we instead could exlicitly restrict the domain of the vector add
function.

2. Using annotated code can improve performance through better optimiza-
tion. If the constraints can be statically resolved, corresponding code will
be removed, and resolved constraints can be propagated to facilitate further
optimization.

3. Showing constraints of function, to some extent, can represent software doc-
umentation. Since relationships of return values or parameters are given, it
helps programmers to better understand code, e.g. generic function definition
of matrix multiplication with user defined constraints.

The main contributions of this paper are:

1. a new method called user-defined constraints that explicitly express con-
straints of functions;

2. an outline of syntax of the innovative method;

3. a discussion about where and how to assert the constraints;

4. a practical case is given to show how this approach works.

The paper is structured as follows. We start with a brief introduction to the
array calculus and the type system of SaC in Section 2. Section 3 presents the
motivation of the proposed method. A detailed description and syntax of user-
defined constraints is given in Section 4. Section 5 describes code transformation
of constraints, and Section 6 discusses where and how to insert constraints into
intermediate code. We sketch out some syntactic sugar for shape constraints in
Section 7. Related work is discussed in Section 8. Finally, we draw conclusions
in Section 9.
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2 SAC — Single Assignment C

As the name suggests, SaC is a functional language with a C-like syntax. We
interpret sequences of assignment statements as cascading let-expressions while
branches and loops are nothing but syntactic sugar for conditional expressions
and tail-end recursion, respectively. Details can be found in [1, 2]. The main
contribution of SaC, however, is the array support, which we elaborate on in
the remainder of this section.

2.1 Array calculus

SaC implements a formal calculus of multidimensional arrays. As illustrated in
Fig. 1, an array is represented by a natural number, named the rank, a vector of
natural numbers, named the shape vector, and a vector of whatever data type
is stored in the array, named the data vector. The rank of an array is another
word for the number of dimensions or axes. The elements of the shape vector
determine the extent of the array along each of the array’s dimensions. Hence,
the rank of an array equals the length of that array’s shape vector, and the
product of the shape vector elements equals the length of the data vector and,
thus, the number of elements of an array. The data vector contains the array’s
elements in a flat contiguous representation along ascending axes and indices.
As shown in Fig. 1, the array calculus nicely extends to “scalars” as rank-zero
arrays.

j

k

i

10

7 8 9

1211

4 5

2 3

6

1

rank: 3
shape: [2,2,3]
data: [1,2,3,4,5,6,7,8,9,10,11,12]

1 2 3
4 5 6
7 8 9

 rank: 2
shape: [3,3]
data: [1,2,3,4,5,6,7,8,9]

[ 1, 2, 3, 4, 5, 6 ]
rank: 1
shape: [6]
data: [1,2,3,4,5,6]

42

rank: 0
shape: [ ]
data: [42]

Fig. 1. Calculus of multidimensional arrays
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2.2 Array types

The type system of SaC is polymorphic in the structure of arrays, as illustrated
in Fig. 2. For each base type (int in the example), there is a hierarchy of array
types with three levels of varying static information on the shape: on the first
level, named AKS, we have complete compile time shape information. On the
intermediate AKD level we still know the rank of an array but not its concrete
shape. Last not least, the AUD level supports entirely generic arrays for which
not even the number of axes is determined at compile time. SaC supports over-
loading on this subtyping hierarchy, i.e. generic and concrete definitions of the
same function may exist side-by-side.

...

... ... ......int int[1] int[42]

int[.]

int[  ]

int[.,.]

int[1,1] int[3,7]

rank: dynamic

AUD Class:

shape: static

shape: dynamic

AKD Class:

rank: static

shape: dynamic

AKS Class:

rank: static

*

Fig. 2. Type hierarchy of SaC

2.3 Array operations

SaC only provides a small set of built-in array operations, essentially to retrieve
the rank (dim(array)) or shape (shape(array)) of an array and to select elements
or subarrays (array[idxvec]). All aggregate array operations are specified using
with-loop expressions, a SaC-specific array comprehension:

with {
( lower bound <= idxvec < upper bound) : expr;

...
( lower bound <= idxvec < upper bound) : expr;

}: genarray( shape, default)

This with-loop defines an array of shape shape whose elements are by default set
to the value of the default expression. The body consists of multiple (disjoint)
partitions. Here, lower bound and upper bound denote expressions that must
evaluate to integer vectors of equal length. They define a rectangular (generally
multidimensional) index set. The identifier idxvec represents elements of this
set, similar to induction variables in for-loops. We call the specification of such
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an index set a generator and associate it with some potentially complex SaC
expression that is evaluated for each element of the generator-defined index set.

Based on these with-loops and the support for rank- and shape-invariant pro-
gramming SaC comes with a comprehensive array library that provides similar
functionality as built-in operations in other array languages and beyond. For the
SaC programmer these operations are hardly distinguishable from built-ins, but
from the language implementor perspective the library approach offers better
maintainability and extensibility.

3 Motivation

In this section, we use matrix multiplication (“matmul” for short) as example
to show how to define a function on different levels of abstraction according to
the hierarchy of array types of SaC. We demonstrate the existence of implicit
constraints and motivate the desire for explicit constraints.

3.1 AKS function definition

Fig. 3 shows how to define matrix multiplication for arrays of fixed shapes. We
first transpose array B (line 3) before we use a single with-loop for the standard
text book definition of matrix multiplication (line 4-7).

1 float [3,3] matmul(float [3,5] A, float [5,6] B)

2 {

3 BT = transpose(B);

4 C = with{

5 ([0,0]<=[i,j]<[3,6]): sum(A[i]*BT[j]);

6 }: genarray ([3,6],0f);

7 return(C);

8 }

Fig. 3. Function definition of matrix multiplication with AKS type

Even though it seems that this function definition reveals the well-known
shape constraints on function parameters, it merely does so for the concrete
argument shapes, but it does not reveal the underlying general relationship.
What’s more, this code only works for one pair of array shapes, which very
much limits code reuse. Therefore, a more generic solution is needed.

3.2 AKD function definition

As introduced in Section 2, an AKD type, e.g. float[.,.], defines the number
of axes, but leaves the extent along each axis open. Matrix multiplication can
be written in a shape-generic way, as shown in Fig. 4.
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1 float [.,.] matmul(float [.,.] A, float [.,.] B)

2 {

3 BT = transpose(B);

4 a0 = shape(A)[0];

5 b1 = shape(B)[1];

6 C = with{

7 ([0,0]<=[i,j]<[a0 ,b1]): sum(A[i]*BT[j]);

8 }: genarray ([a0,b1],0f);

9 return(C);

10 }

Fig. 4. Function definition of matrix multiplication with AKD type

In this generic code, we did not supply constraints for function. What hap-
pens if we apply the function to wrongly shaped arguments? We give mismatched
matrices for this function, for instance, two arrays with shape of [3,5] and [6,3],
respectively. Element-wise vector multiplication (e.g. A[i]*BT[j]) is defined in
the SaC standard library. In the absence of shape constraints it is defined to
yield a vector whose length equals the minimum of the lengths of the argument
vectors. This way, out-of-bound array indexing can be avoided at the expense of
an additional minimum computation and obfuscation of the shape relationships,
which is detrimental for further optimization. For our definition of matrix mul-
tiplication this means that we avoid a runtime error and make function matmul

total, but we do this outside the mathematical definition of matrix product.

3.3 AUD function definition

Array programs are composed from general-purpose array operations, and many
operations are rank-generic, i.e. they are applicable to arrays with arbitrary
number of axes. AUD types like float[*] encompass all arrays of a given base
type regardless of their structure. Here we generalise matmul to innerproduct.
As shown in Fig. 5, function innerproduct takes two arrays A and B, where the
last axis of A has to be as long as the first axis of B.

Values al and bl are computed and used in line 10-11 for taking specific axis.
Line 5-6 get first al and last bl axis from two shape of parameters respectively
by using drop function for simple, which comprise shape of final result in line 7.
Line 8-13 do inner product computation with with-loop.

Functions take(sv,a) and drop(sv,a) take and drop as many elements from
array a as indicated by shape vector sv, respectively. Each element of sv corre-
sponds to one axis of a starting from the leftmost one. For positive components
of sv, the elements are taken or dropped from the “beginning”, i.e., starting with
index 0. Otherwise, they are taken or dropped from the “end”, i.e., starting from
the maximum legal index of the corresponding axis.
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1 float [*] innerproduct(float [*] A, float [*] B)

2 {

3 al = dim(A)-1;

4 bl = dim(B)-1;

5 a = drop([-1], shape(A));

6 b = drop ([1], shape(B));

7 v = a++b;

8 C = with{

9 (0*v<=iv <v) {

10 m = take([al],iv);

11 n = take([-bl],iv);

12 var = sum(take(m,A)*take(n,B));}: var;

13 }: genarray(v,0f);

14 return(C);

15 }

Fig. 5. Function definition of inner product with AUD type

3.4 Implicit constraints

Program errors are common in software systems and often hard to detect, es-
pecially the implicit constraints discussed above, which may cause runtime er-
rors, e.g. out-of-bound array access. What’s more, such constraints are enforced
by means of dynamic checks that carry a performance penalty. To avoid this
problem, programmers could add additional conditional statements either in the
callee or in the caller function, but none of them can express constraints in func-
tion level. In the next section, we introduce a user-defined constraints technology,
which can express constraints explicitly. Through existing aggressive partial eval-
uation in SaC, these user-defined constraints may be resolved and removed by
compiler to avoid runtime checks.

4 Proposed user-defined constraints

The constraints in program vary, which not only focus on parameter, but also
return value in generic functions. In this section, a compiler technology called
user-defined constraints is introduced. This technique allows programmers to
express constraints of functions explicitly. While still writing code in a generic
way, programmers can add their desired annotations between function decla-
ration and function body, which indicates compiler constraints on parameters
and/or return value without losing generalization.

According to different usage of constraints, the technology can be divided
into two parts:

1. Precondition (user-defined constraints on parameters): programmers can
specify the limitations of parameters using dedicated expression;

2. Postcondition (user-defined constraints on return values): programmers can
also add constraints on shape or rank information of return value.
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We introduce two key words for SaC: where is used to express the constraints
between function parameters while assert is used to indicate shape or rank
information of return values.

4.1 User-defined constraints on parameters

In this part, we use where to express constraints between parameters. For func-
tion in Fig. 4, because the ranks of parameters are known and equal, program-
mers just need to restrict specific axes of parameters, as demonstrated in Fig. 6.
Using this method, the function matmul documents the constraint clearly: the
second axis of the first parameter has to be as long as the first axis of the second
parameter.

1 float [.,.] matmul(float [.,.] A, float [.,.] B)

2 where(shape(A)[1]== shape(B)[0])

3 {

4 /* Computation */

5 }

Fig. 6. Constraint on dedicated axis of parameters in AKD type

Fig. 6 shows basic usage of user-defined constraints on specific axes of pa-
rameters. There are some other abstract restrictions of function parameters. For
example, the generic array addition function in Fig. 7 requires the shape of array
A to be equal to the shape of array B. Just using the above method — express
axis-wise equality — would be tedious and even impossible for AUD-style func-
tions. Therefore, we directly use the equality of shape vectors of parameters to
express this constraint, as shown in Fig. 7.

1 int [*] addition(int [*] A, int [*] B)

2 where(shape(A)== shape(B))

3 {

4 /* Computation */

5 }

Fig. 7. Constraint on shape of parameters

In Fig. 6, == is used to represent equality of two scalar values, however, here,
vectors appear as operands. In SaC, == is more general operation which can
indicate the equality not only between scalars but also vectors and arrays. How
== will be transformed will be illustrated in next section. shape(A)==shape(B)

means shape of parameters A and B are the same. At the same time, it indicates
that the ranks of the two array have to be equal as well, which is an implicit
constraint inflicted by the user-defined constraint.
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Compared with matrix multiplication, our function innerproduct in Fig. 5
has a similar restriction: the last axis of the first parameter and the first axis of
the second parameter must coincide in length. The built-in function take is used
to retrieve elements from the shape vector. We can extend builtin functions in
where domain as well, as illustrated in Fig. 8.

1 float [*] innerproduct(float [*] A, float [*] B)

2 where(take([-1],shape(A))== take ([1], shape(B)))

3 {

4 /* Computation */

5 }

Fig. 8. Constraints on dedicated axis of parameter in AUD type

Some applications may have other kinds of restrictions among parameters.
For instance, function specialfun in Fig. 9 has a constraint that from the second
element of the shapes of arrays A and B to the sixth, each element must be equal.
These constraints can be expressed as in Fig. 9. The function tile(sv,ov,a) takes
a tile of shape sv from a starting at offset ov from array a.

1 int [*] specialfun(int [*] A, int [*] B)

2 where(tile ([2],[4] , shape(A))== tile ([2] ,[4] , shape(B)))

3 {

4 /* Computation */

5 }

Fig. 9. Constraints on arbitrary shape domain

4.2 User-defined constraints on return values

In some cases, programmers may also want to restrict shapes or ranks of return
values or express shapely relationships between multiple return values. Such
information can prove indispensable to resolve further constraints later in the
code. To express constraints involving return values of functions we need a way
to refer to return values in constraint expressions. However, in SaC functions
can have multiple return values. As shown in Fig. 10, function addsub has a
comma-separated list of return types in front of the function name and return-
statement in the function definition likewise contains a comma-separated list of
expressions. At first glance, we could be tempted to use variables occuring in the
return-statement. However, in practice we must be able to expresss constraints
without having access to the complete function definition. To solve both issues,
we extend the syntax of function definitions to explicitly name return values,
just as function parameters.
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Constraints among return values For generic functions, like addsub in
Fig. 10, shape and rank of parameters and return values are all unknown. assert
expression is used to indicate that the shapes of the two return values should be
equal.

1 int [*] x, int [*] y addsub(int [*] A, int [*] B)

2 where(shape(A)== shape(B))

3 assert(shape(x)== shape(y))

4 {

5 x = A+B;

6 y = A-B;

7 return(x,y);

8 }

Fig. 10. Constraints among return values

Constraints between parameters and return values
In practice, most return values have some shape relationship with parameters.

Take matrix multiplication as an example. The shape of return value contains
two elements. The first element is equal to the first axis of the first parameter,
and the second element is equal to the second axis of the second parameters.
This relationship can be represented as demonstrated in Fig. 11.

1 float [.,.] x matmul(float [.,.] A, float [.,.] B)

2 where(shape(A)[1]== shape(B)[0])

3 assert(shape(x)[0]== shape(A)[0],

4 shape(x)[1]== shape(B)[1])

5 {

6 /* Computation */

7 }

Fig. 11. Constraints between parameters and return values on dedicated axis

4.3 Syntax of user-defined constraints

We introduce a concrete syntax for user-defined constraints as shown in Fig. 12,
+, -, * is extended in SaC to be used in scalar and array operations. Primitive
functions shape, dim, tile, drop, take and concatenate are used in this syntax.
We simplify the syntax and leave out irrelevant SaC features.

5 Transformation of user-defined constraints

Implicit constraints can be expressed explicitly using user-defined constraints.
Before making use of this kind of information, however, we must first transform
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fundef ⇒ rets funid ( args ) [ constraint ] body

rets ⇒ ( ret[ , ret ]* | [ void ])

args ⇒ ( param[ , param ]* | [ void ])
ret ⇒ param

| type

param ⇒ type id

constraint ⇒ [ where ( exprs ) ][ assert ( exprs ) ]

exprs ⇒ expr[ , expr ]*

expr ⇒ info scalar equality expr scalar
| info vector equality expr vector

info scalar ⇒ dim ( id )

| shape ( id ) [const]

info vector ⇒ shape ( id )

| take ( expr vector, shape ( id ) )

| drop ( expr vector, shape ( id ) )

| tile ( expr vector, expr vector, shape ( id ) )

expr scalar ⇒ num op info scalar
| info scalar

| num

| id

expr vector ⇒ num op info vector
| info vector

| concatenate ( expr vector, expr vector )

| array

array ⇒ [expr scalar[ , expr scalar ]* ]

equality ⇒ ==

op ⇒ +
| −
| ∗

Fig. 12. Syntax of user-defined constraints of SaC

these abstract representations into more concrete code using primitive functions.
Since where and assert constraints are comma-separated lists of expressions, we
can distinguish each sub-constraint expression according to comma, for example,
the function in Fig. 10 has an assert expression that contains three constraints.

It is convenient to represent user-defined constraints by primitive functions in
SaC. At compile time, compiler do code transformation to represent user-defined
constraints by primitive function. In the following, the detail of transformation
will be given. Some of where and assert expressions can be transformed into
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builtin functions directly. However, some user-defined constraints may introduce
new implicit constraints. For example, if programmers use shape(A)[2] to query
for the third axis of array A while A actually is a matrix (i.e. 2-dimensional),
the index is out of bounds. Therefore, the compiler must represent these im-
plicitly induced constraints as further explicit constraints to ensure user-defined
constraints are valid.

In the following, we will take where expression as example to show the rep-
resentation of constraints.

5.1 Equality of dimensionality

Even though in previous function definition, we did not introduce the constraint
on rank of array, it may be used in some applications. Lets assume there is a con-
straint on rank of parameters A and B in a generic function, i.e. dim(A)==dim(B).

Here, == is a user-defined overloaded function. SaC compiler resolve over-
loading of operations into vectors or scalar operations depending on type of
arguments. The scalar operation (eq_SxS) just evaluates the equality of scalar
values, while the vector operation (eq_VxV) introduces an implicit constraint, i.e.,
it only compare elements of vectors without checking the size of vectors, because
this tacitly assumes their lengths coincide.

Since the return value of dim(A) is scalar, the constraint can be represented
by primitive function eq_SxS.

where(dim(A)==dim(B)) =⇒ where(eq SxS(dim(A),dim(B)))

5.2 Equality of dedicated axis

The constraint (shape(A)[i]==shape(B)[j]) can be transformed into the equality
of two scalar values as well. To make the example more general, integers i, j,
m, n etc. are used to indicate the index of shape of parameters in the user-
defined constraints. However, be aware of an implicit restriction underlying the
constraint, i.e. the index of shape(A) and shape(B) have to be valid. The following
transformation make the implicit constraints explicitly.

where(shape(A)[i]== shape(B)[j]) ==>

where(gt_SxS(dim(A),i);

gt_SxS(dim(B),j);

eq_SxS(shape(A)[1], shape(B)[j]))

gt_SxS is a builtin function which evaluate to true if its first argument is
greater than the second one.

5.3 Equality of shape

Abstract user-defined constraints is more powerful at representing equality of
dedicated axis. However, because of its abstract and generic there are some
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implicit constraints underlying. To evaluate equality of shape, we should compare
the rank of two parameters first, if that hold, we evaluate their shape equality.
The primitive function eq_VxV evaluates whether two vectors are equal or not.

where(shape(A)== shape(B)) ==>

where(eq_SxS(dim(A),dim(B)),

eq_VxV(shape(A),shape(B)))

5.4 Arbitrary equality of shape axes

Arbitrary equality of shape axes is much more powerful and complicated. The
complexity and further implicit constraints make transformation much more
intricate. Implicit constraints underlying in primitive function tile is shown as
following. Here, ge_SxS is a builtin function which evaluate to true if its first
argument is greater than or equal to the second one.

where(tile([i],[j],shape(A))== tile([m],[n],shape(B))) ==>

where(eq_SxS(i,m),

ge_SxS(dim(A),i+j),

ge_SxS(dim(B),m+n),

eq_VxV(tile([i],[j],shape(A)),

tile([m],[n],shape(B))))

6 Wrap user-defined constraints into program

At some point, user-defined constraints must be inserted into code. There are
several points should be considered to make constraints more useful when assert.
First, only if where constraints evaluate to true, callee function will be executed,
otherwise the program should terminate with an error. Second, if assert con-
straints do not hold, program should terminate with an error message. Third,
user-defined constraints can be resolved as far as possible. Fourth, constraints
should be accessible to compiler optimization, and knowledge gained by evalu-
ating constraints should be propagated as far as possible.

6.1 Where to insert constraints into code

There are several possible strategies to insert and thus evaluate where and
assert constraints. They can be inserted into caller function or callee function
or even both.

Precondition Intuitively, it is feasible to insert the where expression into
the caller function before applying arguments to callee function. Reasons to do
this are as follows:
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1. The callee function will not be executed if where constraints do not hold,
and the program will be terminated.

2. More importantly, putting constraints into the caller function is crucial for
the compiler to resolve constraints statically because shape information on
arguments can only be acquired in the caller function.

However, we have to consider another aspect: can these constraints be used
in callee function? No matter whether where expression evaluates to true or not,
for callee function, these constraints will be treated as statical knowledge, since
once callee function is evaluated, it means the precondition holds. We need to
insert these preconditions into the callee function as statically known knowledge,
which can benefit further optimizations. Therefore, where constraints should be
inserted into both caller and callee functions.

Postcondition The assert expressions include constraints among return
values and constraints between return values and parameters. For assert con-
straints among return values, it is better to insert constraints into callee function
since shape information of return values could be only acquired inside the callee
function body, which is a prerequisite for the compiler to resolve any constraint
statically. For assert constraints between arguments and parameters, it seems
a bit complicated, because information of return values and parameters can be
acquired from callee and caller function, respectively.

In fact, the situation regarding postconditions is quite similar to that of pre-
conditions. Whenever program execution returns to a caller function, this sheer
fact means that the postcondition holds. Thus, we can use the postcondition as
static knowledge in the caller function subsequent to the function application
itself..

Therefore, we use redundant insertion methods to insert both where and
assert constraints into both callee function and caller function.

6.2 How to insert constraints into code

Insert by conditionals The intuitive way to insert constraints is wrapping
user-defined constraints and their implicit constraints into a conditional state-
ment. Using conditional statement, callee function will be evaluated only if pa-
rameters satisfy constraints. Since the where expressions are inserted into caller
function, it is possible to use implicit knowledge of parameters in caller function
to resolve constraints as well. However, with respect to fourth point mentioned
in the beginning of this section, this method is not optimal, because the result
of constraints is only available within the scope of conditional. Optimization or
partial evaluation cannot exploit this additional knowledges. Therefore, this kind
of insertion is not good enough.

Using explicit evidence To avoid that problem, we use explicit evidence[3]
to insert constraints and weave these contracts into the dataflow. We implement
this by using a primitive function guard [4], which return true if its argument
evaluates to true, otherwise it terminates further evaluation and reports the
error.
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1 int[.,.] bar(int x, int y, int z, int w)

2 {

3 ...

4 A = with {([0 ,0] <=[iv]<[x,y]):1f;}: genarray ([x,y]);

5 B = with {([0 ,0] <=[iv]<[z,w]):2f;}: genarray ([z,w]);

6 C = matmul(A,B);

7 ...

8 return C;

9 }

Fig. 13. Function definition of bar which call function matmul

As discussed above, the resolved constraints have to become a property of
program which can be used in the further evaluation. Therefore, we introduce
a new kind of guard function named guard_hold. It always evaluates to true
and mainly serves to provide additional knowledge for further evaluation. Before
code generation guard_hold annotations will uniformly be removed.

1 int[.,.] bar(int x, int y, int z, int w)

2 {

3 ...

4 A = with {([0 ,0] <=[iv]<[x,y]):1f;}: genarray ([x,y]);

5 B = with {([0 ,0] <=[iv]<[z,w]):2f;}: genarray ([z,w]);

6
7 g1 = guard(gt_SxS(dim(A),0);

8 g2 = guard(gt_SxS(dim(B),1);

9 g3 = guard(eq_SxS(shape(A)[1], shape(B)[0]));

10 A = after_guard(A,g1 ,g2 ,g3);

11
12 C = matmul(A,B);

13
14 g4 = guard_hold(gt_SxS(dim(A),0),

15 g5 = guard_hold(gt_SxS(dim(B),1),

16 g6 = guard_hold(gt_SxS(dim(C),1),

17 g7 = guard_hold(eq_SxS(shape(C)[0], shape(A)[0]),

18 g8 = guard_hold(eq_SxS(shape(C)[1], shape(B)[1]));

19 C1 = after_guard(C,g4,g5,g6,g7,g8);

20 ...

21 return C1;

22 }

Fig. 14. Function bar after code transformation

Let’s assume there is a piece of code in Fig. 13 that call function matmul,
as defined in Fig. 11. The caller function in Fig. 14 contains addtional guard
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function, i.e. g1, g2 are constraints introduced by g3. In Fig. 15, g1, g2, g3 become
a static knowledge for callee function, which is used for further evaluation. We
use guard_hold to indicate its argument evaluates to true. after_guard takes two
or more arguments, and the result of it is the first argument if all consecutive
arguments evaluate to true; otherwise, it terminate evaluation.

If the constraints can be resolved at compile time, the guard function may
be removed partially by partial evaluation. Here, guard_hold will stay and con-
ditional removed after partial evaluation.

1 float [.,.] x matmul(float [.,.] A, float [.,.] B)

2 {

3 g1 = guard_hold(gt_SxS(dim(A),0);

4 g2 = guard_hold(gt_SxS(dim(B),1);

5 g3 = guard_hold(eq_SxS(shape(A)[1], shape(B)[0]));

6 A = after_guard(A,g1 ,g2 ,g3);

7
8 BT = transpose(B);

9 a0 = shape(A)[0];

10 b1 = shape(B)[1];

11 C = with {

12 ([0,0] <=[i,j]<[a1 ,b0]): sum(A[i] * BT[j]);

13 }: genarray ([a0,b1],0f);

14
15 g6 = guard(gt_SxS(dim(A),0);

16 g7 = guard(gt_SxS(dim(B),1);

17 g8 = guard(gt_SxS(dim(C),1);

18 g9 = guard(eq_SxS(shape(C)[0], shape(A)[0]),

19 g10 = guard(eq_SxS(shape(C)[1], shape(B)[1]));

20 C1 = after_guard(C,g6,g7,g8,g10);

21
22 return C1;

23 }

Fig. 15. Function matmul after code transformation

7 Syntactic sugar for shape constraints

Our shape constraints are a syntactically restricted form of Boolean expressions.
While this approach provides a certain degree of generality, phrasing of shape
constraints can often be significantly simplified by adding some syntactic sugar
to the specification of types.

The matrix multiplication example discussed throughout the paper illustrates
the common need to access extents of argument arrays along individual axes.
In Fig. 6 we used the term shape(A)[1] to express this. Fig. 16 shows the same
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example with a little bit of syntactic sugar: by using identifiers instead of dots in
AKD types, we can elegantly bind identifiers to the extents of argument arrays
along relevant axes.

1 float [.,.] matmul(float[.,a1] A, float[b0 ,.] B)

2 where (a1==b0)

3 {

4 /* Computation */

5 }

Fig. 16. Matrix multiplication of Fig. 6 with syntactic for sugar constraints

We can even go one step further and express equality constraints by repeat-
edly using the same identifier instead of anonymous dots. Fig. 17 demonstrates
this with a complete description of the inherent shape constraints of matrix mul-
tiplication, without making any use of any explicit where and assert constraints.

1 float[x,z] matmul(float[x,y] A, float[y,z] B)

2 {

3 /* Computation */

4 }

Fig. 17. Fully sugared expression of matrix multiplication shape constraints

Desugaring of the above examples into explicit constraints is a fairly straight-
forward preprocessing step.

8 Related work

Programming errors are common in software system and hard to detect. Much
research attention has been paid to error detection. One popular approach is
design by contract proposed by Bertrand Meyer [5, 6], which is widely used both
in object-oriented programmings language [7, 8] and functional programming
languages [3, 9, 10]. But none of them has concrete shape restrictions on arrays
as described in this paper.

Interpreted array programming languages like Apl[11], J [12] are dynamically
typed. When the interpreter encounters an array operation, it checks whether
its arguments are proper, if so, performs computation by invoking native im-
plementation, otherwise, aborts program with error message. Without a priori
static analysis makes bugs hard to find, and What’s more, this design decision
has a considerable runtime impact [13]. Our proposed compiler technology can
counter these issues. The SaC compiler tries to statically resolve all user-defined

432



constraints. If the constraints do not hold, it reports error message. For the con-
straints that can not be resolved at compile time, we will leave them to dynamic
check.

Our work indeed is similar to Qube [14, 15], a programming language that
combines the expressiveness of array programming with the power of dependent
type. We try to express implicit constraints explicitly and resolve constraints
statically. However, our approach is much more programmer friendly and ex-
pressiveness, and we eliminate the effort of learning new logic with its theorem
prover.

Another related work was carried out by Herhut et al.[4], which focuses on
checking domain constraints for built-in functions. In contrast our approach
targets general user-defined functions and thus more general constraints.

To resolve these constraints, we may adopt symbiotic expressions [16] which
is a method for algebraic simplification within a compiler. Even though currently
symbiotic expression in SaC are compiler-generated expressions, we may be able
to reuse some technology to support our user-defined constraints.

9 Conclusion

This paper proposes a compiler technology called user-defined constraints that
allows programmers to express shape constraints on parameters (where) and
return values (assert) explicitly in function level. It help compiler to generate
more reliable executable code by restrict function definition, improve perfor-
mance through better optimization and provide a means for software documen-
tation, which helps programmers to better understand code. Using this approach,
programmers neither need to add redundant conditional code in caller function,
nor add constraints in callee function. User-defined constraints will be trans-
formed into primitive functions in SaC, and then inserted into program properly
according to their type.

We mainly focus our presentation on introducing user-defined constraints
and its implicit constraints and code transformation in this paper. It remains as
future research to investigate how compiler resolves more constraints statically
and effectively, and whether this technology brings the properties of our type
system close to strongly typed system based on dependent types.
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Abstract

We present a type-inference system for Reduceron template code
– untyped compiled code. No extra annotations are added to the
template code in order to obtain the type information. The purpose
of this type-inference system is to guarantee a form of type safety
at loading time before executing the template code. We use mutated
programs to measure the effectiveness of a prototype checker. We use
a unification algorithm supporting unification of infinite trees. The
infinite trees are represented as set of equations.

1 Introduction

The Reduceron [9] is a graph reduction machine that uses the template in-
stantiation model. The Reduceron evaluates template code, which is com-
piled from a core language called F-lite. In this paper we propose a type-
inference system for template code. We use as baseline the template code
described in §3 of [9]. Our goal is to provide a type-inference system without
requiring any extra annotations in the template code.

This idea of low-level code verification is not new. In the 80’s the work
of Clutterbuck [2] is one of the precursors in low-level code verification. In
the 90’s Proof-Carrying Code [10] and Typed Assembly Language TAL [8]
are both seminal works under this area. More recently, and more similar to
our approach, are the type-inference systems described in [4] and [13].

During the compilation process, F-lite code is transformed to equivalent
template code (See §2 [9]). A well established compiler might be trusted to

∗Supported by scholarship from Conacyt.
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produce safe code. However, template code could be modified at some stage
after compilation and before execution, or template code might be supplied
from some other source. Faulty code could produce a failure at run-time such
as an invalid memory access.

Our idea to is protect against such failures by examination of the low-level
code of the Reduceron. Taking the ideas of PCC [10] and TAL [8, 1] in which
mobile code is verified before its execution, we investigate in this paper how
to build a type-inference system to guarantee safety of the template code
under an unsafe scenario –eg. code produced by hand, or code intercepted
and altered before it reaches the target machine. Unlike [4] and [13], we do
not use any extra annotations but infer types directly from template code.

Mu

Ok

Ok ∩

Ti

T i
Dc Nt

Gp Bp

Figure 1: Classification of mutations (Mu): Well-behaved programs (Ok),
well-typed programs (Ti), good programs (Gp), bad programs (Bp), pro-
grams with dead code (Dc) and, programs with non-termination (Nt).

But how can we verify the effectiveness of low-level type-checking as a
means of ensuring safe execution? Milner [7] offered the slogan well-typed
programs don’t go wrong. In the Reduceron context the meaning of “go-
ing wrong“ is captured by emulating the execution of the template code
and trapping run-time failures, including a conservative approximation of
non-termination. By looking at mutations of test programs we measure the
effectiveness of type-checking for safety.

In Figure 1, we illustrate this idea. There is a universe of mutated
template-code programs Mu. We are interested in the relationship between
two sets of programs : Ok and Ti. The set Ok contains well-behaved pro-
grams, and the set Ti contains well-typed programs. Ideally, Ti and Ok
would be the same sets, but this is hardly attainable. The set Gp contains
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well-behaved “good” programs that are rejected by the type-checker. We
want Gp to be small. The set Bp contains ill-behaved “bad” programs that
are accepted by the type-checker. We also want Bp to be small. Finally, we
identify dead-code (Dc) and non-termination (Nt) by conservative approxi-
mations.
§2 describes F-lite and template code. The contributions of this paper are:

(1) an approach to type inference by examination of Reduceron template code,
in §3; (2) an encoding for primitives and case-table types that can support
inference of recursive algebraic data types (using graph-terms for types to
solve problems related with infinite types), also in §3; (3) preliminary results
measuring the effectiveness of checking, in §4. Our measure of effectiveness
uses mutation testing. Finally, in §5 we summarise our findings so far and
give some ideas to be explored in the future.

2 High-Level Code and Compiled Code

2.1 F-lite : High-Level Code

F-lite is a minimalist-core lazy functional language based on a subset of
Haskell [9]. Its syntax is given in Figure 2. F-lite makes use of uniform
pattern matching (there is a well known correspondence with case expres-
sions – which we use in this paper). F-lite supports let expressions, to bind
expressions to variables, not to patterns. F-lite uses primitive integer op-
erations ((+), (-), (<=), (==)). F-lite is untyped. But type-inference
for F-lite source is possible, and well-typed programs written in F-lite can
be executed by Haskell implementations. Bindings in let expressions may
be recursive. Every program includes a definition main = e where e is an
integer expression.

2.2 Template Code : Compiled Code

F-lite can be compiled to Reduceron template code. Such code could also be
generated by other tools or written by hand. The code is defined in Figure
3 and is closely based on [9]. A program p is coded as a series of templates.
Each template t is a 3-tuple: arity ari , spine application ap, and a list of
off-spine applications aps. Each application is a list of atoms ~a. There are
seven kinds of atoms :
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e ::= ~e (Application)
| case e of ~a (Case Expression)

| let
{
~b
}

in e (Let Expression)

| n (Integer)
| x (Variable)
| p (Primitive)
| f (Function)
| C (Constructor)

| < ~f > (Case Table)
a ::= C~x→ e (Case Alternative)
b ::= x = e (Let Binding)
d ::= f~x = e (Function Definition)

Figure 2: F-lite core syntax.

a ::= FUN i j |ARG i | PTR i | CON i j
| INT i | PRI s | TAB i j k

ap ::= ~a
aps ::= ~ap
t ::= 〈ari, ap, aps〉
p ::= ~t
ari ::= num

Figure 3: A Basic version of Reduceron template code.

FUN i j
Reference to a function of arity i at template address j. The main
function is FUN 0 0, a function of arity zero at address zero.

ARG i A reference to the ith argument of the enclosing template function.

PTR i
A pointer to an off-spine application. Where i is the index of the
application.

CON i j
A constructor of some (unknown) algebraic data type. It is the
jth constructor of the type and has arity i.

INT i A numeric value i.

PRI s A primitive s, where s ∈ {(+),(-),(<=),(==)}.

TAB i j k
A table referencing j templates, representing case alternatives,
starting at template address i, and k is number of free variables
occurring in any alternative.
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−−F− l i t e
lenNat xs = case xs o f {Cons x ys −> Succ ( lenNat ys ) ;

Ni l −> Zero }

−−After Scott / Jansen encoding . El iminate case e x p r e s s i o n s .
lenNat xs = xs <consCase , n i lCase>
consCase x ys t = Succ ( lenNat ys )
n i lCase t = Zero

−−Reduceron template code ( Represented as Haske l l data ) .
lenNat = [ (1 , [ARG 0 , TAB 1 2 0 ] , [ ] ) ,

( 3 , [CON 1 0 ,PTR 0 ] , [ [FUN 1 0 , ARG 1 ] ] ) ,
( 1 , [CON 0 1 ] , [ ] ) ]

Figure 4: The lenNat function at various stages of compilation.

2.3 From F-lite to Template Code : An example

In Figure 4 the example lenNat computes the length of a given list. It
returns the result in a data type Nat instead of an Int. If the expression xs

evaluates to consCase then the result is the application of the successor to
the application of lenNat recursively. If the case subject evaluates to nilCase

then it simply gives the natural number Zero as result.
The case expression is transformed to a Scott/Jansen encoding [9]. The

introduction of a case table <consCase, nilCase> is performed to allow the
use of only one argument instead of many.

Finally, we have the code actually executed by the Reduceron. The tem-
plate code is shown as a list of templates. Template zero is the main function.
Template one is the function lenNat. Templates two and three represent case
alternatives. Note the case table TAB 2 2 0 in template one. There are no
free variables after table.

3 Inspecting Template Code

3.1 Finding Types I

One way to derive appropriate types is to look at each single atom in the
template code, and try to give a type for each of them. To begin with, we
shall consider template code with atoms restricted to FUN, ARG, PRI, INT, and
PTR.

An atom FUN i j, refers to a function at address j with i arguments.
Functional atoms prompt us to introduce types T → T as in Figure 5. An
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T ::= T → T | V | Prim n
Int ::= Prim n → Prim (n− 1)

where n > 0
Int ≡ Prim 0

Figure 5: Template Type Model 1 (TTM1).

atom ARG i is the ith argument of a function. We give the type variable V to
the argument for now. An atom PTR i is simply an indirection to an address
i. The two last atoms are related. The atom PRI "(+)" has type Prim 2,
where 2 is the number of arguments expected. If an argument is applied to
PRI "(+)" then the type is reduced to Prim 1; if other argument is applied
we get Prim 0. Prim 0 Int and Int are equivalent types. In any other
context the type of INT i is just an Int. But in the presence of primitives,
it is a function type denoted by Prim n → Prim (n-1).

3.2 Finding Types II

In this section we explore how to derive types for comparison primitives
PRI "(<=)", PRI "(==)", case tables TAB i j k, and constructors CON i

j. These are all related to a table type denoted by 〈 ~a 〉 – a sequence of
functions representing case alternatives. We shall need to extend our model
to include new types for tables. Under the Scott/Jansen encoding the type of
a constructor CON i j is a function of i+1 arguments. The i+1th argument
is a case table. The alternative j binds to type α1 → · · · → αi → 〈〉 → β,
the notation 〈〉 represents an arbitrary table. The final encoding for the type
of the constructor CON i j is :

α1 → · · · → αi → 〈 j 7→ α1 → · · · → αi → 〈〉 → β〉 → β

In §3.1, we used type Prim n for arithmetic primitives. But now we
need to distinguish between the result type of arithmetic and comparison
primitives. We extend our model (see 6) from Prim n to Prim n T, where
T is the result type. For arithmetic primitives T = Int, and for comparison
primitives T = Bool .

So the type for PRI "(<=)" and PRI "(==)" is Prim 2 Bool. The type
Prim 0 Bool is equivalent to Bool.

3.2.1 The Bool Type

The data type Bool in a high-level representation is given by data Bool =

False | True. However, in template code, constructor atoms take the form
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T ::= T → T | V | Prim n T | 〈 ~a 〉
Int ::= Prim n T → Prim (n− 1) T

where n > 0
Bool ≡ Prim 0 Bool
a ::= n 7→ T

Figure 6: Template Type Model 2 (TTM2).

of CON a i where a is the arity, and i is the index of the constructor in a
given data type. The constructor False is encoded as CON 0 0 and True as
CON 0 1.

These constructors are indistinguishable from those for any other type
whose first two constructors have arity zero. By looking at CON 0 0 we only
know that this is the first constructor of some unknown data type of arity
zero. We can assign it the type 〈 0 7→ 〈〉 → α〉 → α. The meaning of this
encoding is: a function from a table to some type α; the table has at least
one alternative (zero), a function with just a table as argument and the result
type α. In a similar way, we can deduce a type for CON 0 1 which is
〈 1 7→ 〈〉 → α〉 → α.

Until now, we have found separately the types for True and False. The
type of Bool is : 〈 0 7→ 〈〉 → α ; 1 7→ 〈〉 → α〉 → α, is a function from a
table of at least two alternatives, each with result type α, to an α result.

3.2.2 The Unification of Tables

Let us consider the problem of unification of two tables denoted by t1 and
t2. Suppose t1 is 〈 0 7→ 〈〉 → α〉, and t2 is 〈 1 7→ 〈〉 → β〉. How can we unify
those two tables? To unify them, we can treat the tables as extensible records
[12], combining the alternatives of two compatible tables. By doing this, it
is possible to unify the tables t1 and t2 as 〈 0 7→ 〈〉 → α ; 1 7→ 〈〉 → β〉.

A more interesting problem is if t1 is 〈 0 7→ 〈〉 → T0 ; 1 7→ 〈〉 → T1〉,
and t2 is 〈 1 7→ 〈〉 → U1〉. In order to unify t1 and t2, the alternative types
T1 and U1 must unify. In general the alternatives with the same constructor
index must unify.

Now, consider when t1 is 〈 0 7→ 〈〉 → α ; 1 7→ α→ β → 〈〉〉, and t2 is
〈 1 7→ 〈〉 → α〉. As α→ β → 〈〉 and 〈〉 → α cannot be unified, unification of
t1 and t2 fails. The arbitrary table 〈〉 always unifies with any other table.
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3.3 Recursive Data Types

3.3.1 Recursive Type in the Argument

One challenge is the inference of recursive algebraic data types. There has
been recent research in recursive type reconstruction [11], but it is oriented
to a high-level language. Here, we outline how to infer a recursive argument
type. To explain our idea we use the function lenNat described in Figure 4, a
function that computes the length of a given list. Its result has the algebraic
type Nat instead of the primitive Int.

From template 0 we can see that lenNat is a function of one argument
(by the arity 1). So its type is : a→ b for some a and b. From the applica-
tion of ARG 0 to TAB 1 2 0 we infer that the argument is of some algebraic
data type with two constructors. From the first alternative, template 1,
we discover that it has two component arguments – the arity 3 denotes two
arguments and one table (consCase x ys t). In addition, there is a recur-
sive application of template 0 to the second of its components represented
by the application [FUN 1 0, ARG 1]. We assume that recursive argument
types are invariant. The argument (ARG 1) of the function FUN 1 0 and the
argument ARG 0 in template 0 have the same type.

We use the pair term and the list of equations representing substitutions.
Notice the term c is the recursive term in the expression.
lenNat :: a→ b

where
c = 〈 0 7→ e → c → 〈〉 → d ; 1 7→ 〈〉 → d 〉 → d
...
b = h

3.3.2 Recursive Type in the Result

What if the result has a recursive data type? Consider the same function
lenNat. From template 0 we see that it is a function of one argument
by looking at arity 1. So its type is of the form a→ b. We have already
considered the type a. Let us now focus on the type b.

If we look at template 1, there is a construction CON 1 0 applying to one
argument. This argument is a function application [FUN 1 0,ARG 1] that
makes a recursive call to the template 0. The application of CON 1 0 to
its recursive argument represented by [FUN 1 0,ARG 1] gives us a recursive
data type constructor with one argument. So we can see that we have a
recursive algebraic data type in the type result.

Then we may conclude that the result type is represented by the following
term and the set of equations. Notice the term g, which represents the
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recursion in the result type:
lenNat :: a→ b

where
c = 〈 0 7→ e → c → 〈〉 → d ; 1 7→ 〈〉 → d 〉 → d
g = 〈 0 7→ g 〈〉 → h ; 1 7→ 〈〉 → h 〉
h = g → h
b = h
...

3.3.3 Infinite Trees

In the example of lenNat we found that there are equations containing re-
cursive references inside the data types. We explore the idea of finding the
solution for infinite trees proposed by Colmerauer [3] as unification algorithm.
In such representation types are terms together with associated recursive type
equations. By using term-graphs we will be able to infer recursive types in
a more general way. Even if in this example there is only one recursive call
(one for the argument and other for the result type), we could have the case
where multiple recursive terms in a set of equations. The infinite tree is a
tree containing an infinite set of nodes, however Colmerauer’s work is fo-
cused only in rational trees, which are trees that have a finite set of subtrees.
The infinite tree is represented as a set of equations. The method proposed
by Colmerauer has five transformations with several properties, two of our
interest are :

• They preserve equivalence. Two systems of equations are equivalent if
they have the same tree-solution.

• The system obtained as tree-solution is a ‘simplified form‘ of the initial
system.

One advantage of using the first property is that we can decouple the
part of collection equations and the part of finding a solution. In our cur-
rent implementation we use the solver when we collect the equations for a
template, however we can collect the set of equations for a group of tem-
plates and then solve them. By using a simplified tree-solution (the second
property) we can have all the type information for a template or a group
of templates in a concise form. At this stage we are not concerned about
the type error messages. Then, if there is at least one solution that means
that the program is well-typed otherwise the program is ill-typed. We have
extended the algorithm to allow the unification of tables which are described
in §3.2.2, and the unification of primitives descibed in §3.1.

9

443



4 Experiments and Results

4.1 The Implementation

For the experiments we use a prototype (Tyre-Check) written in Haskell.
Although our current implementation of recursive type inference is not com-
plete, we can infer types when the argument has a recursive algebraic data
type and in the result type in functions like length and lengthNat. We infer
the types for reduceron in two stages, first we collect the equations or con-
straints from each template application. Then once we have a complete set
of equations we call our solver. This approach of collecting and then solv-
ing is similar to the one found in [6]. If the solver has at least one solution
then the template is well-typed. The information is stored in the type envi-
ronment, which contains the list of function definitions along with the pair
(term,sys), which represent the the type and the equations representing the
substitutions.

The Reduceron machine (Dynamic-Checker) for our experiments is an
evaluator written in Haskell, which is based in the operational semantics in
§3 of the paper [9]. In the original version of the operational semantics for
Reduceron, there is no way to distinguish the different sources of errors. In
our implementation we have classified the faults in the operational semantics
in order to detect the source of the errors during the execution of template
code.

A conservative test detects when a program seems unlikely to terminate.
Let k be the number of the steps to evaluate the original program before
mutation. After 2 ∗ k steps we assume that the mutated program will not
terminate. The idea is to compare the set of programs that are well-behaved
under evaluation(Dynamic-Checking) and the set of programs that are well-
typed under our static checker (Tyre-Check). In addition we detect dead code
by using a conservative test: if mutant programs don’t use all the templates
during the execution, the unused templates are assumed to be dead code.

4.2 Mutation

We use a simple test framework. We take a program that terminates and
gives a correct result after evaluation. That program is mutated in order to
produce similar programs. By mutation we mean :

• increasing or decreasing a numeric value in an atom – though numbers
interpreted as naturals cannot fall below zero, or

• swapping two contiguous atoms, or
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• deleting an atom.

The idea of mutation is not new, the main research in this field began
in the 70’s [5]. In our experiments we use mutation to emulate a situation
where we have a valid program, and it is altered at some point between the
compilation and the evaluation or a hand-coder makes a mistake. In contrast
to random generation, mutation produces programs close to genuine code,
and not arbitrary inventions.

4.3 Results

Mu = 136

Ok = 73

Ok ∩

Ti = 65

Ti = 62
Dc = 73 Nt = 0

Gp=0 Bp=3

Figure 7: Classification of all single atomic mutations (136) of the lenNat

program.
Mu = 18496

Ok = 5669

Ok ∩

Ti = 4512

Ti = 3969

Dc = 5669 Nt = 0

Gp=0 Bp=543

Figure 8: Classification of all double atomic mutations (18496) of the lenNat
program.
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Recalling the diagram of Figure 1, we present some actual set sizes in
Figure 7. The mutated program is the lenNat program described in Figure
4. The type of mutation is single atomic mutation in numeric values.

For the first example we have a universe of 136 mutations represented by
Mu=136. The set Ok=73 is the obtained by using a dynamic-checking, and
the set Ti=65 is the result of our type-inference prototype. The number of
programs in the intersection set OK ∩ Ti is 62. Zero good programs Gp=0

wrongly stopped by the type-inference, and only three bad program not
detected Bp=3. Recalling that our goal is to have small sets Gp and Bp. We
also detect 73 cases of dead code (Dc=73) and zero cases of Non-termination
(Nt=0).

Figure 8 shows the effect of double atomic mutation. The double mutation
is a mutation over a previous mutation. The results are similar in proportion
with the ones presented in Figure 7. Most of the difference between Ok and
Ti is accounted by dead code.

Most of the problems in the set of mutations Bp in both Figures 7 and 8
are because type-checking a mismatch in the arities. We think we can reduce
the number of Gp and Bp mutants by small changes in our approach to type-
checking. When the mutations are restricted to increments or decrements
of numeric values, the gap between Ok and Ti is minor. But we intend to
experiment more by using the other two type of mutations; deletion and
swapping.

5 Conclusions and Future Work

Although Reduceron template code is untyped, we have shown that:

• It is feasible to type-check template code even without extra annota-
tions. Trying to infer the types without extra annotations is quite hard.
We have used one syntactic annotation in the atom TAB: in the oper-
ational semantics, the Reduceron only uses one argument in the TAB

constructor –the address of the first alternative. For type-inference,
we need to know how many alternatives there are in a case table, and
how many free variables are involved. Our design decision was to pro-
vide two extra arguments in the TAB atom to encode such information.
This is TAB i j k with the extra arguments j and k. Possibly there
are other approaches to avoid this small extra encoding. However, we
want static analysis to be simple.

• Mutations can be used to measure empirically the effectiveness check-
ing. This idea of mutation fits well in our experimentation, because it
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can emulate hundreds of programs altered by hand. Moreover, we can
create mutations of mutations.

• There is a type encoding for Scott-encoded case analysis that can sup-
port inference of algebraic data types.

In our future work we plan to:

• Implement a fast and complete type-inference algorithm to work with
more complex programs. This implementation will include the infer-
ence of recursive data types in result types. To provide a powerful and
elegant approach, we will use term-graphs to represent types.

• Support installation at load time of new component functions in tem-
plate code. This present new challenges, because we need to think for
example, which are the allowed addresses to load a new component,
and what invariants must be respected in order to maintain the safety
of our run-time system.

• Use a minimal amount of extra annotations in the template code to
increase the effectiveness of checking and to reduce its cost. One of
the main objectives of Proof Carrying Code and TAL is to provide fast
checkers in the consumer side. The trusted computing base must be
kept as small as possible.
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Abstract
This paper presents how to build a type debugger without imple-
menting any dedicated type inferencer. Previous type debuggers re-
quired their own type inferencers apart from the compiler’s type in-
ferencer. The advantage of our approach is threefold. First, by not
implementing a type inferencer, it is guaranteed that the debugger’s
type inference never disagree with the compiler’s type inference.
Secondly, we can avoid the pointless reproduction of a type infer-
encer that should work precisely as the compiler’s type inferencer.
It is cumbersome and error-prone for a large language. Thirdly, our
approach is robust to updates of the underlying language. The key
observation of our approach is that the interactive type debugging,
as proposed by Chitil, does not require a type inference tree but
only a tree with a certain simple property. We identify the property
and present how to construct a tree that satisfies this property using
the compiler’s type inferencer. The property guides us how to build
a type debugger for various language constructs. We first describe
the technique using simply-typed lambda calculus. We then extend
it with let polymorphism, weak polymorphism, objects, and mod-
ules to see how our technique scales. Finally, we describe the type
debugger for OCaml we have implemented that uses OCaml’s own
type inferencer.

Categories and Subject Descriptors D.2.5 [Programming Lan-
guages]: Testing and Debugging—Debugging aids; D.3.2 [Pro-
gramming Languages]: Language Classifications—Applicative
(functional) languages; D.3.4 [Programming Languages]: Processors—
Debuggers

General Terms types, debugging

Keywords type debugging, algorithmic debugging

1. Introduction
To write a well-typed program is not always easy, especially for
novice programmers. Although a compiler gives us an error mes-
sage when a type error occurs, it is not straightforward to infer and
understand why the type error arises. Furthermore, the root cause
of the type error can be far from the place reported by the compiler
as a type error.

Can compiler’s error message point out the programmer’s in-
tended source of type errors? Let us consider the following exam-
ple:

let rec f g lst = match lst with
| [] -> []
| fst :: rest -> (g fst) :: (f g rest) in

(f 1 [2;3;4]) @ [5;6;7]

In this program, two boxed parts have a type conflict causing a type
error. The first argument g of the function f is used as a function in
(g fst), but an integer is passed as g in (f 1 [2;3;4]). Because
a function type a -> b cannot be unified with int, a type error
occurs. When we compile this program using the OCaml compiler
version 3.12.1, we obtain the following error message:

(f 1 [2;3;4]) @ [5;6;7]

Error: This expression has type int but
an expression was expected of type ’a -> ’b

Since the function f as shown above is a map function and is
typable, the compiler accepts the definition and proceeds to type
checking of the last line, where it infers that 1 passed to f must
be a function. Although the above error message correctly points
out a type conflict found in the input program, it is not always
the source of the type error. If the programmer who wrote this
erroneous program intended that the function f was actually a map
function, the above error message probably points out the source of
the type error. However, he could have intended that the function f
received a number g and a list of numbers lst and returned a list of
numbers whose elements were increased by g. In such a case, the
source of the type error is not in 1, but in (g fst) in the body of
f. The following table summarizes the situation:

intended behavior of f the place to be fixed
(1) map (applies a function 1 in (f 1 [2;3;4])

to all the elements of a list)
(2) add_g (increases all the (g fst)

elements by a given number)

Since the same program has two different fixes according to the
programmer’s intention, it is impossible for a single error message
to point out the source of the type error. We need to somehow obtain
programmer’s intention. For this reason, type debuggers [1, 16] are
designed to receive programmer’s intention interactively. Follow-
ing Chitil’s work [1], we have implemented a type debugger for a
subset of OCaml [17]. The following session shows how the type
debugger locates the source of the type error using programmer’s
input:1

A type error occurred in (f 1 [2;3;4])!
Is the type of f (’a -> ’b) -> ’a list -> ’b list ?
> no
Is the type of g in match expression (’a -> ’b) ?
> no
Is the type of [] ’a list ?

1 The actual messages are somewhat different, since we provide an Emacs
interface and expressions that the debugger mentions are highlighted.
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> yes
Error located : (g fst)

Using the type debugger, programmers can locate the source
of type errors simply by answering a series of questions. We have
used this type debugger for introductory OCaml course and found
it useful. However, the conventional approach to type debuggers
has at least three problems. First, to enable interactive searching of
the source of type errors, it employs a different type inference al-
gorithm than the one used in standard compilers (such as Hindley-
Milner type inference). Thus, the definition of type errors could be
different in a compiler and in a type debugger. Even if we could
show their equivalence, there is a second problem that we need to
implement the type inferencer by ourselves to construct a type de-
bugger. Although it is not difficult to construct a type inferencer for
a small language, it becomes quickly cumbersome and error-prone
to support larger languages. In the type debugger we implemented
[17], we supported only basic OCaml constructs that were neces-
sary for the OCaml course. Even if we could implement a type
inferencer for a large language, there arises a third problem: if the
type inferencer of the underlying language is updated, we have to
update the type inferencer for the updated language accordingly.

The key observation of our approach is that the interactive type
debugging does not require a type inference tree but only a tree
with a simple property: decomposition of a well-typed expression
must not contain any ill-typed expressions. Once we recognize this
property, it is easy to construct a tree that satisfies this property.
We use the compiler’s type inferencer to obtain the type of each
subexpressions. We describe the overview of our type debugger and
why the property is required in Section 2.

The property guides us how to build a type debugger for var-
ious language constructs. We first describe the technique using
simply-typed lambda calculus (Section 3). We then extend it with
let polymorphism (Section 4), weak polymorphism (Section 5), ob-
jects (Section 6), and modules (Section 7) to see how our technique
scales. Finally, we describe the type debugger for OCaml we have
implemented that uses OCaml’s own type inferencer (Section 8).

The thesis of this paper is that it is possible and also practical to
write a type debugger by piggy-backing the built-in type inferencer
of an existing compiler. The contributions of this paper that support
the thesis are summarized as follows:

• We identify the property required of the type tree to construct
an interactive type debugger and show how to construct the tree
using the compiler’s type inferencer.

• We describe how to handle a number of issues required for the
practical use: simple types, let polymorphism, weak polymor-
phism, objects, and modules.

Related work is in Section 9 and the paper concludes in Section 10.

2. Overview and the necessary property
In this section, we introduce the overall framework of the type
debugger and show the property required of a type tree used in the
type debugger.

2.1 Locating the source of type errors
In the previous section, we saw that we need programmer’s inten-
tion to correctly locate the source of type errors. What information
precisely do we need to locate it? Let us consider the previous ex-
ample again. The type of the first argument g of f is summarized
as follows:

type of g type of 1
(in (g fst)) (in (f 1 [2;3;4]))

compiler (’a -> ’b) int
(1) (’a -> ’b) (’a -> ’b)
(2) int int

The compiler infers that the type of g is ’a -> ’b and the type
of 1 is int. In (1), the programmer intends that the function f
is map. In this case, he thinks the type of g is ’a -> ’b as the
compiler infers. However, 1 is passed as the first argument g of f
in f 1 [2;3;4]. Since 1 is of type int, it contradicts with the
programmer’s intended type ’a -> ’b. A possible fix to this case
would be to replace 1 with an expression of type ’a -> ’b, such as
fun x -> x + 1. In (2), the programmer intends that the function
f adds g to each element of its second argument. In this case, he
thinks that 1, which is the first argument of f, should be an integer,
as the compiler infers. However, in the body of f, its first argument
g is used as a function, which contradicts with the programmer’s
intention. A possible fix to this case would be to replace g fst with
g + fst treating g as an integer. In either case, we observe conflict
between the type inferred by the compiler and the programmer’s
intended type at the source of the type error. In other words, if
we can detect conflict between compiler’s type and programmer’s
intended type, we can locate the source of the type error. Thus, the
task of an interactive type debugger is to find the conflict of the two
types in the input program.

2.2 Standard type inference tree
To locate the source of type errors, we first need a type tree that
holds a type inferred by a compiler for each subexpression. Natu-
rally, we want to use the tree constructed in the type inferencer of
the compiler. However, we cannot use the standard type inference
tree.

To see why, let us consider a simple erroneous program ((fun
x -> fun y -> x :: y) 1) ["is"; "int"]. In this program,
we suppose programmer’s intended program is ((fun x -> fun
y -> x :: y) "1") ["is"; "int"] which evaluates to ["1";
"is"; "int"]. We show a type inference tree by the compiler in
Figure 1 and programmer’s intended type inference tree in Figure
2.

By comparing these two trees, we first find a type conflict at
the conclusion of the boxed part. In Figure 1, it has type int
list -> int list, while the corresponding part in Figure 2
has type string list -> string list. Thus, the source of
the type error must be in the boxed area. However, we cannot
further identify the source of the type error, because a type of
an expression in consideration depends on types of its context.
For example, consider the subexpression (fun x -> fun y ->
x :: y) in the boxed part. Since it has type int -> int list
-> int list which is in conflict with programmer’s intended
type, we could incorrectly conclude that the source of the type
error resides in this expression. However, the most general type
for the expression is in fact ’a -> ’a list -> ’a list, and is
consistent with the intended type. Thus, the source of the type error
does not exist in this expression.

The type variable ’a here is instantiated to int, because the
expression is applied to an integer. In other words, a type of an
expression in the standard type inference tree depends not only on
the types of its subexpressions but also on its context. This property
prohibits us from locating the source of type errors. What we need
is a tree that holds the most general type for each subexpression.

2.3 Most general type tree
To construct a tree that holds the most general type for each subex-
pression, Chitil [1] uses compositional type inference. Figure 3
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Γ `x:int Γ `(::): int -> int list -> int list Γ `y:int list

Γ `x :: y:int list

{} `(fun x -> (fun y -> x :: y)):int -> int list -> int list {} `1:int
{} `(fun x -> (fun y -> x :: y)) 1:int list -> int list {} `["is";"int"];string list

((fun x -> (fun y -> x :: y)) 1) ["is";"int"]· · · Type Error

Figure 1. Type inference tree of a compiler (Γ = {x:int; y:int list})

Γ `x:string Γ `(::): string -> string list -> string list Γ `y:string list

Γ `x :: y:string list

{} `(fun x -> (fun y -> x :: y)):string -> string list -> string list {} `1:string
{} `(fun x -> (fun y -> x :: y)) 1:string list -> string list {} `["is";"int"];string list

{} `((fun x -> (fun y -> x :: y)) 1) ["is";"int"] : string list -> string list

Figure 2. Programmer’s intended type inference tree (Γ = {x:string; y:string list})

{x:’a} `x:’a {} `(::): ’a -> ’a list -> ’a list {y:’b} `y:’b
{x:’a; y:’a list} `x :: y:’a list

{} `(fun x -> (fun y -> x :: y)):’a -> ’a list -> ’a list {} `1:int
{} `(fun x -> (fun y -> x :: y)) 1:int list -> int list {} `["is";"int"];string list

((fun x -> (fun y -> x :: y)) 1) ["is";"int"]· · · Type Error

Figure 3. Compositional type inference tree

shows a compositional type inference tree for the example in the
previous section.

In the compositional type inference, the type of an expres-
sion depends on (or is inferred from) the types of its subexpres-
sions only. For example, like the standard type inference, the type
of (fun x -> fun y -> x :: y) 1 is determined from its two
subexpressions. Unlike the standard type inference, the composi-
tional type inference keeps the original types of its subexpressions.
In particular, the type of (fun x -> fun y -> x :: y) is kept
as ’a -> ’a list -> ’a list. The type variable ’a is instan-
tiated to int only to determine the type of the surrounding expres-
sion. This way, the compositionality of the subexpression is main-
tained: even after it is applied to 1, it keeps its most general type.

With the compositional type inference tree, we can locate the
source of the type error. Comparing Figures 2 and 3 from the roots
of the trees, we first find the conflict at the expression (fun x ->
fun y -> x :: y) 1 as before. By comparing their children, we
find that the type error comes from 1, because it conflicts with the
intended type while the other node (fun x -> fun y -> x ::
y) does not have a conflict.

The drawback of the compositional type inference tree is that it
is not employed in the standard compilers and to use it, we have to
construct it at all. Chitil employed the compositional type inference
tree, partly because it is based on principal typings (rather than
principal types) and it is guaranteed that we can infer types of
expressions compositionally. However, for the debugging purpose
only, we do not actually have to infer types. What we need is a tree
that holds the most general type for each subexpression. We call
such a tree the most general type tree. We will construct such a tree
using the compiler’s type inferencer based on the decomposition of
a program.

2.4 Decomposing a program
Once we realize that what we need is the most general type tree, it
is not difficult to construct it using the compiler’s type inference.

The basic idea is to decompose the erroneous program into subpro-
grams and to infer their types using the compiler’s type inference.
For example, if a program M is decomposed into subprograms,
M1, . . . , Mn, we construct the following tree, where τ, τ1, . . . , τn

are the types (possibly an error) returned by the compiler’s type
inferencer by passing M, M1, . . . , Mn, respectively.

M1 ... Mn

M

M1 : τ1 ... Mn : τn

M : τ
⇒ÚÚ

To cope with bindings properly, we actually maintain a context
C of an expression M , treating C[M ] as a complete closed pro-
gram (where C[M ] is the expression C whose hole is filled with
M possibly capturing free variables of M ). We call M in C[M ]
the focused expression.

2.5 Algorithmic debugging
Once the most general type tree is constructed, we use algorithmic
debugging to locate the source of type errors, following Chitil [1].
Algorithmic debugging was proposed by Shapiro [13] for locating
the source of errors in a Prolog program. The technique is used by
many researchers, to locate run-time errors [12], semantic errors
[14], etc. Because algorithmic debugging is applicable to any tree
structures, it is used widely.

To navigate in a tree, algorithmic debugging receives an oracle
and use it to decide which direction in the tree to move. User’s input
is often used as an oracle.

Algorithmic debugging works as follows. Given a tree structure
and oracles whether each node contains an error or not, we start
from the root of the tree. If the current node contains an error, we
examine its child nodes. If all the child nodes are error-free, we
conclude that the current node is the source of the error. Otherwise,
we pick the erroneous child node and continue recursively.

In our case, we use two kinds of oracles. One is the type er-
ror reported by the compiler and the other is whether the type in
consideration conflicts with programmer’s intention or not. For ex-
ample, given the tree in Figure 3, we start from the root node. Since
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it does not type check, we examine its child nodes. Because both
the child nodes type check, we ask the programmer if their types
are correct according to his intention. Since the left subexpression
is not correct, we proceed to the left subtree. By continuing this
process, we identify that 1 is the source of the type error. (When
a node has no child nodes, it is reported as the source of the type
error.)

2.6 A property of decomposed programs
To correctly locate the source of type errors, we cannot use an
arbitrary type trees. We require that once a program is type checked,
its subprograms do not contain any type errors. If this property is
not satisfied, we could have the following situation:

× ...# #
×

Suppose that the source of the type error is at the top left×. Even if
we use algorithmic debugging to navigate over the tree, we cannot
reach the top left×, because it is protected by○. When the middle
○ is encountered, algorithmic debugging judges that there is no
error in this subtree.

The property is formally stated as follows:

T (C[M ]) ⇒ ∀C′[M ′] ∈ Dec[[C[M ]]], T (C′[M ′])

Here, T is a predicate stating a given expression is well typed, and
Dec decomposes a given program into subprograms. The property
says that if a program C[M ] is well typed, all of its subprograms
are also well typed. Later in the paper, we design various Dec for
various languages in a way the property is satisfied.

3. Simply-typed lambda calculus
First, we consider simply-typed lambda calculus. We show the syn-
tax of lambda calculus in Figure 4. It includes constants, variables,
abstractions, and applications. We assume that basic primitive op-
erations (such as + that we will use in examples) are predefined as
constants. Although the syntax is simple, it is expressive enough to
explain the basic behavior of the type debugger. Types include type
variables, type constants, and function types.

Let us consider a type inference tree for λx.x + 1. Since the
only subprogram of λx.x+1 is x+1 and it is further decomposed
into three subprograms, x, +, and 1, the overall structure of the tree
should look like:

Γ0 ` x Γ0 ` (+) Γ0 ` 1

Γ0 ` x + 1

Γ0 ` λx.x + 1

where Γ0 is the initial environment used by the type inferencer
of the underlying compiler and contains all the bindings for the
supported constants.

However, the subprograms are not directly typable using the
compiler’s type inference, because they include free variables (such
as x). To make all the subprograms typable, we enclose them with
a context that supplies necessary bindings for free variables. The
context of this language is defined as either an empty context 2 or
a lambda binding λx.C (Figure 4). The most general type tree of
λx.x + 1 becomes as follows:

Γ0 ` λx.[x] :’a -> [’a]
Γ0 ` λx.[(+)] :’a -> [int -> int -> int]
Γ0 ` λx.[1] :’a -> [int]

Γ0 ` λx.[x + 1] : int -> [int]

Γ0 ` [λx.x + 1] : [int -> int]

Looking at the focused expressions filled in the context, we see that
it has the same structure as the previous tree. Thanks to the context,

all the subprograms are now typable under Γ0. The types enclosed
by [...] correspond to the types of focused expressions.

Although the most general type tree is similar (modulo nota-
tion) to the standard type inference tree for simply-typed lambda
calculus:

Γ0, x : int ` x :int
Γ0, x : int ` (+) :int -> int -> int
Γ0, x : int ` 1 :int

Γ0, x : int ` x + 1 : int

Γ0 ` λx.x + 1 : int -> int

they have two important differences. First, the type of x is not con-
strained to int at the leaf nodes. Since we treat all the subderiva-
tions independently, each judgement depends only on its children.
It enables us to locate where the type of x is first forced to int. Sec-
ondly, the type environment contains only the predefined constants.
It enables us to the use compiler’s type inferencer to infer the type
of each expression. We simply pass it to the compiler’s type infer-
encer and obtain its type. This is in contrast to the standard type
inference tree where the environment contains free variables. Since
the most type inferencers are designed to accept only an expression
to be typed, it is impossible to infer types of open expressions. 2

The most general type tree is built as follows. A program to
be debugged C[M ] is first decomposed into subprograms using
the decomposition function Dec defined in Figure 5. It basically
decomposes M and returns a list of its subprograms, but it main-
tains its context properly so that the resulting subprograms (pairs
of a context and a decomposed term) are always closed. When the
decomposition of C[M ] is [C1[M1]; . . . ; Cn[Mn]], all the subpro-
grams become the children of C[M ] in the tree.

The type of each subprogram C[M ] is determined using the
compiler’s type inferencer by passing C[M ] to it. When the context
C is empty [], the returned type is the type of the expression. When
the context is not empty, we split the obtained type into two: types
for free variables and the type for the focused expression. It is
achieved simply by associating free variables to the argument types.
For example, if we obtain the type of λx.[x + 1] as int → int, we
associate the type of x to be int (the argument part of int → int) and
the type of x + 1 to be int (the body part of int → int). This is done
by the function Collect in Figure 6.

Using Dec and Collect, we construct a judgement for C[M ]
in the tree as shown in Figure 7. First, we construct a closed term
M ′ by plugging M into C. It is then passed to the compiler’s type
inferencer written as typing here. When we obtain a type τ of
M ′, we split it into an environment γ holding types of variables in
the context and a type τ ′ for M . Using them, we can construct a
judgement for (possibly open) M (in the context C) as Γ0, γ ` M :
τ ′. For λx.[x+1], for example, we have Γ0, x : int ` x+1 : int.3

Once the most general type tree is constructed, we locate the
source of type errors using algorithmic debugging as shown in
Section 2.5. As an oracle, Chitil’s debugger [1] asks if a typing
judgement is correct. For example, for the judgement Γ0, x : int `
x + 1 : int, the following question is asked:

2 If the compiler’s type inferencer was designed to accept an open expres-
sion with an environment for its free variables, we could construct a type de-
bugger somewhat easier than the one proposed here. However, it would re-
quire deeper understanding of the underlying implementation together with
the representation of environments. The method proposed here has an ad-
vantage that we can treat the compiler’s type inferencer completely as a
black box that accepts an expression and returns its type.
3 In the previous tree, we wrote Γ0 ` λx.[x + 1] : int → [int] to
emphasize that we are using the compiler’s type inferencer to infer the type
of M in C, but since we are interested in the type of M itself together with
the type of its free variables, we also write it using the standard notation
Γ0, x : int ` x + 1 : int.
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(M : term) ::= c (constant)
| x (variable)
| λx.M (abstraction)
| M1 M2 (application)

(τ : typ) ::= b (type variable)
| int, bool, ... (type constants)
| τ1 → τ2 (function type)

(C : context) ::= 2 (empty context)
| λx.C (lambda context)

Figure 4. The syntax and types of simply-typed lambda calculus

Dec : context ∗ term → (context ∗ term) list
Dec[[(C, c)]] = []
Dec[[(C, x)]] = []

Dec[[(C, λx.M)]] = [(C[λx.2], M)]
Dec[[(C, M1 M2)]] = [(C, M1); (C, M2)]

Figure 5. The decomposition function Dec

env = (var ∗ typ) list
Collect : context → typ → env → (env ∗ typ)

Collect2[[τ ]]µ = (µ, τ)
Collectλx.C [[τ1 → τ2]]µ = CollectC [[τ2]]µ[x → τ1]

Figure 6. The function Collect to obtain types of free variables

Judge[[(C, M)]] = let M ′ = C[M ] in
let τ = typing M ′ in
let (γ, τ ′) = CollectC [[τ ]] in
(γ, τ ′)

Figure 7. The function Judge to obtain typing

Under the environment where x is int,
is the type of x + 1 (an instance of) int?

As the environment becomes larger, however, the question becomes
long and hard to understand especially for novices. To make the
question easier to answer, we split the question into two parts [17]:
on the environment and on the focused expression. We first ask if x
is int. If the answer is no, the oracle for this node is immediately
no. Only when the answer is yes do we ask if x + 1 is int.
This separation of questions facilitates the reuse of questions which
drastically reduces the number of questions [17].

The constructed tree satisfies the property required for the most
general type tree. To prove it, we need to show that for each
case of the definition of Dec, all the subexpressions in the right
hand side are well typed if the left hand side is well typed. For
constants and variables, it is satisfied vacuously. For abstraction,
because the expression in the left hand side C[λx.M ] is identical
to the expression in the right hand side C[λx.[M ]], the property is
satisfied. For application, we notice that if C[M1M2] is well typed,
M1M2 is also well typed in a type environment consistent with C
(formally proven by induction on C). Hence, both M1 and M2 are
well typed in the same environment. Since C has all the necessary
bindings for M1 and M2 and C simply adds binding to them, both
C[M1] and C[M2] are well typed as required.

4. Let polymorphism
Next, we consider let polymorphism. We show the syntax in Fig-
ure 8. It extends simply-typed lambda calculus with pairs, fixed
points, and let expressions. Types are also extended accordingly.
Unlike the standard let-polymorphic calculus, we do not introduce
type schemes. Type schemes are required only for type inference.
Once the type inference is done (in the compiler), all the expres-
sions in the most general type tree are given mono types (possibly
containing type variables).

To support let expressions in the type debugger, we first need
to define its decomposition. Because a let expression contains two
subexpressions, the let-bound expression and the main body, we are
tempted to define its decomposition as these two subexpressions.
However, straightforward decomposition leads to violation of the
required property of Dec (Section 2.6). Consider the following
program:

let id = fun x -> x in
(id true, id 1)

Since id in the second subexpression (id true, id 1) is free,
we need to supply its context. If we naively follow the previous
section, however, we end up with the following tree:

`[fun x -> x] : ’a →’a
`(fun id -> [(id true, id 1)]) · · · Type Error

`[let id = fun x -> x in (id true, id 1)] : bool * int

Although the expression in the conclusion is well typed, the sec-
ond subexpression is not well typed. Thus, it does not satisfy the
property in Section 2.6.

The reason why the second subexpression is not typable is
clear. In the original expression, id is used polymorphically, while
in the decomposed subexpression, id is bound by fun and thus
monomorphic. From this example, we observe that we need to pre-
serve the polymorphicness of let-bound variables, when construct-
ing the most general type tree. For this purpose, we extend the con-
text with a let context (Figure 8). We also extend it with a fix context
since it is a (monomorphic) binder. Using the let context, the above
tree becomes as follows, satisfying the required property:

` let id = fun x -> x in [(id true, id 1)] : bool * int

` [let id = fun x -> x in (id true, id 1)] : bool * int

Note that we do not treat fun x -> x as the subexpression of the
let expression, but as a part of the let context. It leads to better
debugging interaction (see below).

The introduction of let contexts has an interesting impact on the
interactive debugging. Consider the following example:

let fst (a, b) = a in
let snd (a, b) = b in
let lst1 = [("Ann", 18); ("Bob", 23)] in
let lst2 = [(true, "Tom");(false, "John")] in

let rec split lst = match lst with
| [] -> ([], [])
| (a, b) :: rest ->

let (alst, blst) = split rest in
(a :: alst, a :: blst) in

(fst (split lst1)) @ (snd (split ls2))

In this example, the source of type error is the boxed part in the
function split. The programmer considers split receives a list of
pairs of type (’a * ’b) list and returns a pair of two split lists
of type ’a list and ’b list. Because he has written a instead
of b in the boxed part, however, the compiler infers that the type of
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(M : term) ::= c | x | λx.M | M1 M2 | (M1, ..., Mn) (pair)
| fix f v1 ... vn → M (fixed point)
| let v = M1 in M2 (let-expression)

(τ : typ) ::= b | int | bool | ... | τ1 → τ2 | τ1 * ... * τn (product type)
(C : context) ::= 2 | λx.C | fix f v1...vn → C (fix context)

| let x = M in C (let context)

Figure 8. The syntax and types for the let-polymorphic language

Dec : context ∗ term → (context ∗ term) list
Dec[[(C, c)]] = []
Dec[[(C, x)]] = Get[[(C, x, 2, None)]]

Dec[[(C, λx.M)]] = [(C[λx.2], M)]
Dec[[(C, M1 M2)]] = [(C, M1); (C, M2)]

Dec[[(C, (M1, ..., Mn))]] = [(C, M1); ...; (C, Mn)]
Dec[[(C, fix f v1...vn → M)]] = [(C[fix f v1...vn → 2], M)]
Dec[[(C, let x = M1 in M2)]] = [(C[let x = M1 in 2], M2)]

Figure 9. Dec for the let-polymorphic language

Get : context ∗ var ∗ context ∗ (context ∗ term) option → (context ∗ term) list
Get [[(2, v, C, p)]] = [] if p = None

[(C′, M)] if p = Some(C′, M)
Get [[(λx.C′, v, C, p)]] = Get [[(C′, v, C[λx.2], None)]] if x = v

Get [[(C′, v, C[λx.2], p)]] if x 6= v
Get [[(fix fv1...vn → C′, v, C, p)]] = Get [[(C′, v, C[fix f v1...vn → 2], None)]] if v ∈ {f, v1...vn}

Get [[(C′, v, C[fix f v1...vn → 2], p)]] if v 6∈ {f, v1...vn}
Get [[(let x = M in C′, v, C, p)]] = Get [[(C′, v, C[let x = M in 2], Some(C, M))]] if x = v

Get [[(C′, v, C[let x = M in 2], p)]] if x 6= v

Figure 10. The function Get to search for definition of variables for the let-polymorphic language

env = (var ∗ typ) list
Collect : context → typ → env → (env ∗ typ)

Collect2[[τ ]]µ = (µ, τ)
Collectλx.C [[τ1 → τ2]]µ = CollectC [[τ2]]µ[x → τ1]

Collectfix f v1...vn→C [[τ1 → ... → (τn → τ)]]µ = CollectC [[τ ]]µ[f → (τ1 → ... → (τn → τ)); v1 → τ1; ...; vn → τn]
Collect let x=M in C [[τ ]]µ = CollectC [[τ ]]µ

Figure 11. Collect for the let-polymorphic language

split is (’a * ’b) list -> ’a list * ’a list. This leads
to a type error at the last line where the type of (snd (split
lst2)) becomes bool list rather than string list.

The root part of the most general type tree for this example
becomes as follows:

`C[(fst (split lst1))] :string list
`C[(snd (split lst2))] :bool list

` C[(fst (split lst1)) @ (snd (split lst2))] · · · Type Error

where the context C contains bindings for fst, snd, lst1, lst2,
and split. Because the bindings for these variables are kept in let
expressions, split can be used polymorphically at different types
for lst1 and lst2.

From this tree, the debugging proceeds as follows. Since the
type bool list of (snd (split lst2)) is in conflict with
the intended type string list, we expand the node for (snd
(split lst2)), which gives us the following subtree:

`C[snd] :’a * ’b -> ’b
`C[(split lst2)] :bool list * bool list

` C[(snd (split lst2))]:bool list

We further expand the conflicting node split lst2 to obtain:

`C[split] :(’a * ’b) list -> ’a list * ’a list
` C[lst2] :(bool * string) list

` C[(split lst2)]:bool list * bool list

At this point, we find that the type of split conflicts with the
programmer’s intention. Since a variable split cannot be further
decomposed, we could have reported that this variable was the
source of the type error. However, this is not very useful. We rather
want to inspect why the function split has the above unintended
type.

To enable inspecting the definition of let-bound variables, we
change the decomposition function as shown in Figure 9. The
definition is the straightforward extension of the previous definition
except for the variable case. When we decompose a variable, we
search for its definition using Get defined in Figure 10. When the
variable is bound by a let expression, Get returns its definition as
the decomposition of the variable. Otherwise, the variable is bound
by lambda or fix, so Get returns no decomposition. Using this
decomposition function, we can further debug into the definition
of split to identify the ultimate source of the type error (i.e. the
boxed a).

Since the context is extended with a let context and a fix context,
the definition of Collect is extended accordingly as shown in
Figure 11. It collects types for lambda- and fix-bound variables
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and discards let-bound variables since they do not appear in the
type returned by the compiler. (We assume that the compiler’s
type inferencer returns τ1 → ... → τn → τ as the type of
fix f v1...vn → M (and hence of f) where τ1 is the type of v1,
etc., and τ is the type of M .)

As the program to be debugged becomes larger, the number of
let-bound variables increases. Since we can debug into the defini-
tion of let-bound variables when their types conflict with the pro-
grammer’s intention, we do not ask the programmer for the type
of let-bound variables as an oracle each time. Rather, we only ask
for variables in a context that are bound by lambda or fix. This is
in consistent with Chitil’s approach who maintains an environment
for polymorphic variables separately.

We can confirm that the required property for the function Dec
is still satisfied. The interesting case is for variables. (Other cases
are similar to the proof sketch shown for simply-typed lambda
calculus.) Assume that C[x] is well typed by the invariant. We
first observe that Get[(C1, x, C2, p)] maintains an invariant that
C2[C1] is always the same across the recursive call, because at
each recursive call, the topmost frame of C1 is simply moved to
the hole of C2. This assures us that all the contexts appearing in
the definition of Get is well typed (as a context), because the initial
context [C[x]] with which Get is called from Dec is well typed.
Next, the returned expression C′[M ′] is collected only from the let
case. Because C[let x = M ′ in C′] is well typed, we hence have
that C[M ′] is also well typed as required.

Observe how the required property serves as a guideline what
we have to do and what we can do to incorporate let expressions.
We have to define the decomposition function so that the let poly-
morphism is preserved. On the other hand, as long as the property
is satisfied, we have the liberty of defining the decomposition in a
way the debugging process becomes easier for programmers to un-
derstand. By defining the decomposition of let-bound variables as
their definition, we achieve jump from the use of variables to their
definition.

5. Weak polymorphism
In this section, we introduce references to see the interaction of
weak polymorphism in our type debugging. We show the syntax in
Figure 12. It includes references, dereferences, and assignments to
a reference. Types are extended with a reference type.

Let us consider a typical example where the weak polymor-
phism arises:

let id_ref = ref (fun x -> x) in
(!id_ref 0, !id_ref true)

Since the identity function (fun x -> x) is put into a cell,
id_ref is given a weak polymorphic type (’_a -> ’_a) ref.
The weak type variable ’_a can be instantiated only once. Since
it becomes int at the first application, a type error occurs at the
second application where ’_a needs to become bool.

It is not difficult to support references in our type debugger. We
simply need to extend Dec to handle new constructs (Figure 13).
We could then identify the source of the above type error as the
second line, because whole the expression is not typable but the
two subexpressions together with their context, namely

let id_ref = ref (fun x -> x) in [!id_ref 0]

and

let id_ref = ref (fun x -> x) in [!id_ref true]

are both typable. The most general type tree becomes as follows,
where C contains a binding for id_ref:

` C[!id_ref 0]:int ` C[!id_ref true]:bool

` C[(!id_ref 0, !id_ref true)] · · · Type Error

However, the above behavior is sometimes not very informative.
Consider the following example:

let pair x y = fun f -> f x y in
let fst x y = x in
let snd x y = y in
let p = pair 1 true in
(p snd, p fst)

In this program, a pair is Church-encoded using a function. Then,
a pair p of 1 and true is constructed, and its swapped tuple is
returned. Because p is bound to a non-value, however, it has a
weak type (int -> bool -> ’_a) -> ’_a. When p is applied
to snd of type ’a -> ’b -> ’b, the weak type variable ’_a is
instantiated to bool, and a type error occurs when p is applied to
fst of type ’a -> ’b -> ’a, where ’_a needs to be instantiated
to int.

For this program, our type debugger again reports that the ex-
pression (p snd, p fst) is the source of the type error, because
both p snd and p fst are typable in the current context C (con-
taining four let bindings):

` C[p snd]:bool ` C[p fst]:int

` C[(p snd, p fst)] · · · Type Error

if both the types are consistent with programmer’s intention.
However, if the programmer intends that p be fully polymor-

phic, he would be puzzled why the conclusion is not typed as bool
* int. In fact, although the type of p is constrained to (int ->
bool -> bool) -> bool at p snd, that information is discarded
in the most general type tree and a fresh p is used to infer the type
of p fst. Remember that all the types are inferred by passing each
expression to the compiler’s type inferencer independently. Also,
note that our type debugger asks the programmer only for the type
of focused expression and the types of its free variables that are
not bound by let. Since p is bound by let in this case, the type
debugger asks only the types of p snd and p fst (both of which
have intended types). Thus, the programmer has no opportunity to
say that the type of p is too restrictive.

To handle weak polymorphism more properly, we examine the
type of weak variables and ask if their instantiation is in conflict
with the programmer’s intention. In the above case, we construct
the following tree:

` C[(p, p snd)]:τ1 * bool ` C[(p, p fst)]:τ2 * int

` C[(p, (p snd, p fst))] · · · Type Error

where τ1 = (int -> bool -> bool) -> bool
τ2 = (int -> bool -> int) -> int

Since the definition of p is expansive, we pair it with the focused
expression and obtain its type from the compiler. We then ask the
programmer if the type of p is as intended. In our case, since τ1

(and τ2) is not polymorphic enough, the programmer can reply no,
and the debugger will move to the definition of p to find why it is
not polymorphic.

To enable this behavior, ExpansiveV ar in Figure 14 collects
a list of expansive variables, AttachV ar in Figure 15 pairs them
with the focused expression, and CollectV ar in Figure 16 extracts
the types of expansive variables. When collecting expansive vari-
ables, care must be taken for variables with the same name. For
example, in the following context,

fun x -> let x = expansive expression in 2
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(M : term) ::= c | x | λx.M | M1 M2 | (M1, ..., Mn) | ref M (reference)
| !M (dereference)
| v := M (assignment)
| fix f v1 ... vn → M | let v = M1 in M2

(τ : typ) ::= b | int | bool | ... | τ1 → τ2 | τ1 ∗ ... ∗ τn | τ ref (reference type)
(C : context) ::= 2 | λx.C | fix f v1...vn → C | let x = M in C

Figure 12. The syntax and types for the language with references

Dec : context ∗ term → (context ∗ term) list
Dec[[(C, ref M)]] = [(C, M)]

Dec[[(C, !M)]] = [(C, M)]
Dec[[(C, v := M)]] = [(C, M)]

Figure 13. Dec for the language with references (for new constructs only)

ExpansiveVar : context * var list → var list
ExpansiveVar [[(2, vs)]] = vs

ExpansiveVar [[(λx.C, vs)]] = ExpansiveV ar[[(C, vs \ {x})]]
ExpansiveVar [[(fix f v1...vn → C, vs)]] = ExpansiveV ar[[(C, vs \ {f, v1, ..., vn})]]

ExpansiveVar [[(let x = M ′ in C, vs)]] = if (is_expansive M ′) then ExpansiveV ar[[(C, (x :: vs))]]
else ExpansiveV ar[[(C, vs)]]

Figure 14. The function ExpansiveVar to collect expansive variables

AttachVar : var list ∗ term → term
AttachVar [[([], M)]] = M

AttachVar [[(v :: vs, M)]] = (v, AttachV ar[[(vs, M)]])

Figure 15. AttachVar to pair expansive variables with a focused expression

env = (var ∗ typ) list
CollectVar : var list → typ → env * typ

CollectVar [][[τ ]] = ([], τ)
CollectVarv:: vs[[τ1 ∗ τ2]] = let (µ, τ ) = CollectV arvs[[τ2]] in (µ[v → τ1], τ )

Figure 16. The function CollectVar to obtain types of expansive variables

Judge[[(C, M)]] = let vs = ExpansiveV ar[[(C, [])]] in
let M ′ = C[AttachV ar[[(vs, M)]]] in
let τ = typing M ′ in
let (γ, τ ′) = CollectC [[τ ]] in
let (γ′, τ ′′) = CollectV arvs[[τ

′]] in
(γ@γ′, τ ′′)

Figure 17. Judge for the language with references

x has to be treated as expansive (because x in 2 refers to the inner
x), but not when fun x -> appears inside the let expression.

We can easily confirm that the required property holds for this
language, because the decomposition function for the new con-
structs takes simply the subexpression of the original expression
and the pairing of expansive variables does not affect the typability
of expressions. By modifying the expression to be typed without
violating the property, we can design a type debugger that shows
more useful information for the programmer.

6. Object
So far, we have seen that interactive debugging is possible for vari-
ous language constructs by suitably defining Dec function that sat-
isfies the required property. In fact, this idea extends to seemingly
complex language constructs. In this section, we introduce objects
into the language and see how it can be supported using the similar
idea. See Figure 18 for the syntax. It models OCaml-style objects
where an object is defined using a class (in which single inheritance
is allowed) and is created by the new construct. Besides the inher-

itance declaration, an object can contain method and value decla-
rations. Although the class name (to be more precise, the object
structure denoted by the class name) is used as a type in OCaml,
we introduce only a special type obj in our type debugger. It is a
type of all the objects.

The decomposition function Dec is extended with the new con-
structs and the Get function used in the variable case is extended
with the class context. The interesting cases are for new and method
invocation of Dec. In both the cases, we need to identify the object
mentioned in the expressions (in case their types contradict with
intended types, so that we can debug into the object). For this pur-
pose, the function SearchObj in Figure 21 is used. Its behavior is
similar to that of Get, but differs in that SearchObj collects all the
method declarations in the designated object. In particular, if the
object contains inheritance declaration, those method declarations
are collected, too (see SearchObj’).

We collect all the declarations in an object because types of
declared methods in an object are mutually dependent. Thus, we
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need to ask the types of all these method declarations to locate the
source of type errors. For example, consider the following program:

class counter =
object (self)
val mutable n = 0
method incr = n <- n+1
method get = n

end

let t = (new counter) in
t#incr;
("now, counter is " ^ t#get)

The last line results in a type error, because t#get returns an
integer, which is in conflict with the intended type (i.e., string).
To find the source of this type error, we first look up t’s class
definition counter and search for the definition of the get method.
However, we find here that the get method itself does not force the
type of n as an integer. It simply returns a value of n. Instead, n is
an integer because it is assigned 0 and n+1 elsewhere in the class.4

Thus, we need to examine all the declarations in an object to find
the source of type errors.

Since, any method declarations can be the source of type errors,
we collect all the method declarations in a class definition, and
return them as the decomposition of the object reference. Although
this strategy is necessary in general, it could lead to too many
number of questions. Its practical impact is our future work.

We can confirm that Dec satisfies the required property as fol-
lows. First, Get will return a list of well-typed subexpressions only,
using the similar argument we described in Section 4. For new and
method invocation, we have to show that SearchObj returns a list
of well-typed subexpressions. It can be proved by observing that
SearchObj simply collects subexpressions in an object in a suitable
context. The only interesting case is for a class declaration, where
we have to properly insert bindings for the arguremnts to the class
and the self variable v′. Note that declared values are put into let
contexts in SearchObj′.

7. Module
Similarly to objects, we can introduce modules, too. Figure 22
shows the syntax. We introduce accesses to a value in a module,
open, and module declarations. A module declaration contains vari-
able and type declarations.

The decomposition function Dec is extended to cope with new
constructs straightforwardly (Figure 23). SearchMod (in Figure 25)
is defined similarly to SearchObj in the previous section. Since
the declarations in a module is ordered (in contrast to method
declarations in objects which are mutually recursive), we do not
collect all the declarations but maintain the order of declarations
in a context and returns a designated definition. The treatment of
open in Get (in Figure 24) is interesting. When we search for the
definition of a variable v and the current context is open X, we
search for the definition of v in the module X. It enables us to search
for the definition of variable v that is defined in the module X, when
the type error was located at the variable v.

8. Implementation
We have implemented the type debugger for OCaml version 3.12.1.
To minimize the implementation efforts and to avoid going too
much detail into the implementation of OCaml itself, we utilize
the following components from OCaml as is:

4 In OCaml, + is used exclusively for integer addition.

• the abstract syntax tree for structures, expressions, and types
(together with the lexer, the parser, and the pretty printer)

• the type inferencer typing (that accepts an expression and
returns its type, both expressed using the above abstract syntax
tree)

• the is_expansive function (that accepts an expression and
returns a boolean to judge whether the given expression needs
to be kept monomorphic or not)

By using exactly the same abstract syntax as OCaml, we can
not only avoid reproducing the same abstract syntax but also uti-
lize OCaml’s own lexer, parser, and pretty printer. The abstract
syntax of OCaml is defined beautifully, and we had no prob-
lems using it. In addition to the type inferencer, we utilize the
is_expansive function. Although OCaml has its own criteria
for weak polymorphism [2], we can stay away from it by using
OCaml’s is_expansive function as is. Furthermore, this approach
is robust to updates of OCaml: if the syntax and the interface of the
two functions are the same, we can use the same debugger.

A slight complication is that OCaml treats a let expression with-
out in differently from the one with in: the former is a structure,
while the latter is an expression. We supported both the styles by
splitting the context into two: the structure part and the expression
part.

Another complication is the use of patterns in place of a variable
declaration. For example, instead of fun lst ->, one can write
fun (first :: rest) ->. In such a case, we have to add the
information that first and rest have types ’a and ’a list,
respectively, into the most general type tree.

The rest of the language constructs are supported without re-
quiring any special treatment. For each new construct, we define its
decomposition and show that it satisfies the required property.

9. Related work
The typical approach to improving type error messages is to de-
sign a new type inference. Wand [18] proposes to keep track of
the history why type variables are instantiated and shows the con-
flicting histories when type error arises. Lee and Yi [6] present the
algorithm M that finds conflict of types earlier than the algorithm
W and thus reports a narrower expression as an error. Heeren and
Hage [5] use a constraint-based type inference for improving type
error messages. Although these improved type error messages are
useful for programmers, it is in general not possible to identify the
source of type errors by a single error message.

To locate the source of type errors, Chitil [1] uses composi-
tional type inference and constructs an interactive type debugger
for a subset of Haskell. Based on his work, we designed a type de-
bugger for OCaml using the compiler’s own type inferencer rather
than a tailor-made type inferencer. The use of the compiler’s type
inferencer enables us to build a type debugger for a larger language
easily. Stuckey, Sulzmann, and Wazny [16] find the source of type
errors using type inference via CHR solving. They implement a
type debugger called Chameleon, which can explain why an infer-
enced type is derived by searching. Tailor-made type inference is
used for this purpose.

As different approaches, Haack and Wells [3] use slicing with
respect to types to narrow the erroneous possible parts of programs.
By extracting the slice related to type errors, they help the program-
mer to identify the source of type errors. The advantage of this ap-
proach is that the process is automatic and the programmer does
not have to answer questions. Lerner et al. [7] propose automatic
type-error correction. They replace the erroneous part with vari-
ous syntactically correct similar expressions, and see if they type
check. If they do, they are displayed as the candidates for fixing the
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(L : classobj) ::= inherit x M1...Mn (inheritance declaration)
| method x = M (method declaration)
| val x = M (value declaration)

(M : term) ::= c | x | λx.M | M1 M2 | (M1, ..., Mn) | x1#x2 (method invocation)
| fix f v1 ... vn → M | let v = M1 in M2 | new x (object creation)
| class x v1...vn = object (v′) L1...Ln end in M (class definition)

(τ : typ) ::= b | int | bool | ... | τ1 → τ2 | τ1 ∗ ... ∗ τn | obj (object type)
(C : context) ::= 2 | λx.C | fix f v1...vn → C | let x = M in C

| class x v1...vn = object (v′) L1...Ln end in C (class context)

Figure 18. The syntax and types for the object language

Dec : context ∗ term → (context ∗ term) list
Dec[[(C, c)]] = []
Dec[[(C, x)]] = Get[[(C, x, 2, None)]]

Dec[[(C, λx.M)]] = [(C[λx.2], M)]
Dec[[(C, M1 M2)]] = [(C, M1); (C, M2)]

Dec[[(C, (M1, ..., Mn))]] = [(C, M1); ...; (C, Mn)]
Dec[[(C, x1#x2)]] = SearchObj[[(C, x1, 2, None)]]

Dec[[(C, fix f v1...vn → M)]] = [(C[fix f v1...vn → 2], M)]
Dec[[(C, let x = M1 in M2)]] = [(C[let x = M1 in 2], M2)]

Dec[[(C, new x)]] = SearchObj[[(C, x, 2, None)]]
Dec[[(C, class x v1...vn = object (v′) L1...Ln end in M)]] = [(C[class x v1...vn = object (v′) L1...Ln end in 2], M)]

Figure 19. Dec for the object language

Get : context ∗ var ∗ context ∗ (context ∗ term) option → (context ∗ term) list
Get [[(2, v, C, p)]] = [] if p = None

[(C′, M ′)] if p = Some(C′, M ′)
Get [[(λx.C′, v, C, p)]] = Get [[(C ′, v ,C [λx .2], None)]] if x = v

Get [[(C ′, v ,C [λx .2], p)]] if x 6= v
Get [[(fix fv1...vn → C′, v, C, p)]] = Get [[(C ′, v ,C [fix f v1 ...vn → 2], None)]] if v ∈ {f, v1...vn}

Get [[(C ′, v ,C [fix f v1 ...vn → 2], p)]] if v 6∈ {f, v1...vn}
Get [[(let x = M in C′, v, C, p)]] = Get [[(C ′, v ,C [let x = M in 2], Some(C ,M ))]] if x = v

Get [[(C ′, v ,C [let x = M in 2], p)]] if x 6= v
Get [[(class x v1...vn = object (v′) = Get [[(C′, v, C[class x v1...vn = object (v′)

L1...Ln end in C′, v, C, p)]] L1...Ln end in 2], p)]]

Figure 20. Get for the object language

SearchObj ′ : classobj list ∗ context → (context * term) list
SearchObj ′[[([], C)]] = []

SearchObj ′[[((inherit x M1...Mn) :: r, C)]] = SearchObj[[(C, x, 2, None)]]@[(C, M1); ...; (C, Mn)]@SearchObj′[[(r, C)]]
SearchObj ′[[((method x = M) :: r, C)]] = (C, M) :: SearchObj′[[(r, C)]]

SearchObj ′[[((val x = M) :: r, C)]] = SearchObj′[[(r, C[let x = M in 2])]]

SearchObj : context ∗ var ∗ context ∗ → (context * term) list
((context ∗ term) list) option

SearchObj [[(2, v, C, p)]] = [] if p = None
P if p = Some P

SearchObj [[(λx.C′, v, C, p)]] = SearchObj[[(C′, v, C[λx.2], p)]]
SearchObj [[(fix f v1...vn → C′, v, C, p)]] = SearchObj[[(C′, v, C[fix f v1...vn → 2], p]]

SearchObj [[(let x = M in C′, v, C, p)]] = SearchObj[[(C′, v, C[let x = M in 2], p)]]
SearchObj [[(class x v1...vn = object (v′) = if x = v then

L1...Ln end in C′, v, C, p)]] SearchObj[[(C′, v, C[class x v1...vn = object(v′) L1...Ln end in 2],
Some(SearchObj′[[(L1...Ln, C[λv1....λvn.λv′.2])]]))]]

else SearchObj[[(C′, v, C[class x v1...vn = object(v′) L1...Ln end in 2], p)]]

Figure 21. SearchObj to search for the definition of objects
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(M : term) ::= c | x | λx.M | M1 M2 | (M1, ..., Mn) | X.x (module access)
| fix f v1 ... vn → M | let v = M1 in M2 | open X in M (open)
| type x = τ in M (type definition)
| module X = struct D1...Dn end in M (module definition)

(D : definition) ::= let x = M (value declaration)
| type x = τ (type declaration)

(τ : typ) ::= b | int | bool | ... | τ1 → τ2 | τ1 * ... * τn

(C : context) ::= 2 | λx.C | fix f v1...vn → C | let x = M in C
| open X in M (open context)
| type x = τ in C (type context)
| module X = struct D1...Dn end in C (module context)

Figure 22. The syntax and types for the module language

Dec : context ∗ term → (context ∗ term) list
Dec[[(C, c)]] = []
Dec[[(C, x)]] = Get[[(C, x, 2, None)]]

Dec[[(C, λx.M)]] = [(C[λx.2], M)]
Dec[[(C, M1 M2)]] = [(C, M1); (C, M2)]

Dec[[(C, (M1, ..., Mn))]] = [(C, M1); ...; (C, Mn)]
Dec[[(C, X.x)]] = SearchMod[[(C, X, x, 2, None)]]

Dec[[(C, fix f v1...vn → M)]] = [(C[fix f v1...vn → 2], M)]
Dec[[(C, let x = M1 in M2)]] = [(C[let x = M1 in 2], M2)]

Dec[[(C, open X in M)]] = [(C[open X in 2], M)]
Dec[[(C, type x = τ in M)]] = [(C[type x = τ in 2], M)]

Dec[[(C, module X = struct D1...Dn end in M)]] = [(C[module X = struct D1...Dn end in 2], M)]

Figure 23. Dec for the module language

Get : context ∗ var ∗ context ∗ (context ∗ term) option → (context ∗ term) list
Get [[(2, v, C, p)]] = [] if p = None

[(C′, M ′)] if p = Some(C′, M ′)
Get [[(λx.C′, v, C, p)]] = Get [[(C ′, v ,C [λx .2], None)]] if x = v

Get [[(C ′, v ,C [λx .2], p)]] if x 6= v
Get [[(fix fv1...vn → C′, v, C, p)]] = Get [[(C ′, v ,C [fix f v1 ...vn → 2], None)]] if x ∈ {f, v1...vn}

Get [[(C ′, v ,C [fix f v1 ...vn → 2], p)]] if x 6∈ {f, v1...vn}
Get [[(let x = M in C′, v, C, p)]] = Get [[(C ′, v ,C [let x = M in 2], Some(C ,M ))]] if x = v

Get [[(C ′, v ,C [let x = M in 2], p)]] if x 6= v
Get [[(open X in C ′, v ,C , p)]] = let t = SearchMod[[(C, X, v, 2, None)]] in

if t = None then Get[[(C′, v, C[open X in 2], p)]]
else Get[[(C′, v, C[open X in 2], t)]]

Get [[(module X = struct D1...Dn end in C′, v, C, p)]] = Get[[(C′, v, C[module X = struct D1...Dn end in 2], p)]]
Get [[(type x = τ in C′, v, C, p)]] = Get [[(C′, v, C[type x = τ in 2], p)]]

Figure 24. Get for the module language

SearchMod′ : definition list ∗ var∗ → (context ∗ term) option
context ∗ (context ∗ term) option

SearchMod ′[[([], v, C, p)]] = p
SearchMod ′[[((let x = M) :: r, v, C, p)]] = if v = v′ then SearchMod ′[[(r, v, C[let x = M in 2)], Some(C, M))]]

else SearchMod ′[[(r, v, C[let v′ = M in 2], p)]]
SearchMod ′[[((type x = τ) :: r, v, C, p)]] = SearchMod ′[[(r, v, C[type x = τ in 2], p)]]

SearchMod : context ∗ var ∗ var ∗ context∗ → (context ∗ term) option
(context ∗ term) option

SearchMod [[(2, V, v, C, p)]] = p
SearchMod [[(λx.C′, V, v, C, p)]] = SearchMod[[(C′, V, v, C[λx.2], p)]]

SearchMod [[(fix f v1...vn → C′, V, v, C, p)]] = SearchMod[[(C′, V, v, C[fix f v1...vn → 2], p)]]
SearchMod [[(let x = M in C′, V, v, C, p)]] = SearchMod[[(C′, V, v, C[let x = M in 2], p)]]

SearchMod [[(open X in C′, V, v, C, p)]] = SearchMod[[(C′, V, v, C[open X in 2], p)]]
SearchMod [[(module X = struct D1...Dn end = if X = V then let t = SearchMod′[[(D1...Dn, v, C, None)]] in

in C′, V, v, C, p)]] (if t = None then
SearchMod[[(C′, V, v, C[module X = struct D1...Dn end in 2], None)]]

else SearchMod[[(C′, V, v, C[module X = struct D1...Dn end in 2], t)]])
else SearchMod[[(C′, V, v, C[module X = struct D1...Dn end in 2], p)]]

SearchMod [[(type x = τ in C′, V, v, C, p)]] = SearchMod[[(C′, V, v, C[type x = τ in 2], p)]]

Figure 25. The function SearchMod to search for the definition of modules
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type error. Since the system automatically shows us possible fixes
without our intervention, the system is useful if the programmer’s
intended fix is shown. Unfortunately, it does not always produce
the intended program.

As visualizing tools of types, Simon, Chitil, and Hush [15]
show TypeView that allows programmers to browse through the
source code and to query the types of each expression. McAdam
[11] displays types as graphs and extracts various facts from them
that are useful for debugging. Our previous Emacs interface [17] is
affected by these work, and we will continue to build such interface.

Marceau, Fisler, and Krishnamurthi [8–10] examine the impact
(especially for novices) of error messages and the vocabulary used
therein in detail and recommend what we can do for better error
messages. Although their research does not directly mention a type
debugger, it has large impact on the design of error messages used
in our type debugger.

10. Conclusion
In this paper, we have fleshed out our thesis that it is possible and
also practical to write a type debugger by piggy-backing the built-
in type inferencer of an existing compiler. The key observation
is that we only need the most general type tree with a simple
property; such a tree can be constructed using the compiler’s type
inferencer. The property guided the design of our type debugger:
we maintained contexts so that the property is satisfied all the time.
We have illustrated the thesis with OCaml, and we have described
how to handle a number of issues: simple types, let polymorphism,
weak polymorphism, objects, and modules. Our design is in use in
our laboratory and in our classrooms (four months courses for 40
students).

We plan to continue the present line of work as follows. First,
we want to explore how far the idea presented in this paper scales.
In particular, we are interested in supporting type classes [4] in
Haskell. Treatment of type classes would be a nice first step toward
the implementation of a type debugger for Haskell. Secondly, we
want to perform thorough user tests. We will first design a useful
user interface (like Emacs interface we designed in [17]), and then
use the debugger for the introductory OCaml course starting from
this April. From the user tests, we will be able to obtain various
feedback including usefulness and how to effectively show the type
information for novices. For this purpose, Marceau’s work [8–10]
will be of help. Finally, by collecting logs of the type debugger, we
want to analyze erroneous programs and their fixes. Through such
analyses, we might be able to suggest possible fixes by searching
similar erroneous programs.

Acknowledgments
to be added later
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Abstract. The multicore revolution means that the number of cores in
commodity machines is growing exponentially. Many expect 100,000 core
clouds/platforms to become commonplace, and the best predictions are
that core failures on such an architecture will become relatively com-
mon, perhaps one hour mean time between core failures. The RELEASE
project aims to scale Erlang to build reliable general-purpose software,
such as server-based systems, on massively parallel machines.
In this paper we present a design of Scalable Distributed (SD) Erlang
– an extension of Distributed Erlang functional programming language
for reliable scalability. The design focuses on three aspects of Erlang
scalability: 1) scaling the number of Erlang nodes by eliminating transi-
tive connections and introducing scalable groups (s groups), 2) managing
process placement in the scaled networks by introducing semi-explicit
process placement, and 3) preserving Erlang reliability model.

Keywords: Erlang, functional programming, scalability, multi-core sys-
tems, massive parallelism

1 Introduction

General-purpose software is predominately written in mainstream programming
languages, firmly planted in legacy software concepts, and the software indus-
try is struggling for better ways to parallelise these languages. Current shared-
memory technologies like OpenMP often work well for small scale problems, but
applications are rapidly experiencing the inherent limitations of these technolo-
gies. MPI works well for large scale computations with a regular process structure
and independent computations, for example classical High-Performance Com-
puting (HPC) problems like computational fluid dynamics. However many gen-
eral purpose applications have significant data dependencies, or irregular process
structures. Simultaneously, increasing the number of cores increases the likeli-
hood of failures: a system with 105 cores might experience a core failure every
50 minutes in addition to any other failures [31]. Handling partial failures in
massively-parallel applications inevitably introduces dependencies between com-
ponents and calls for coordination logic that cannot easily be expressed using
current programming language technologies.
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2 Natalia Chechina, Phil Trinder et al.

Erlang [11] is a functional programming language. Its concurrency-oriented
programming paradigm is novel in being very high level, predominantly state-
less, and having both parallelism and reliability built-in rather than added-on.
Building on this success, the user uptake of Erlang is exploding around the world
and shifting from its telecom base into other sectors. Currently Erlang/OTP has
inherently scalable computation and reliability models, but in practice scalabil-
ity is constrained by the transitive sharing of connections between all nodes
and by explicit process placement. The former implies that the virtual machine
maintains data structures quadratic in the number of nodes and the latter makes
constructing large dynamic or irregular process structures challenging. Moreover
programmers need support to engineer applications at this scale and existing pro-
filing and debugging tools do not scale, primarily due to the volumes of trace
data generated.

We target reliable scalable general purpose computing on stock heterogeneous
platforms. Our application area is that of general server-side computation, e.g. a
web or messaging server. This form of computation is ubiquitous, in contrast to
more specialised forms such as traditional high-performance computing. More-
over, this is computation on stock platforms, with standard hardware, operating
systems and middleware, rather than on more specialised software stacks on
specific hardware.

To extend the Erlang concurrency-oriented paradigm to large-scale reliable
parallelism (105 cores) we propose an extension to the Erlang language, Scalable
Distributed Erlang (SD Erlang), for reliable scalability. Key goals in scaling the
computation model are to provide mechanisms for controlling locality and re-
ducing connectivity, and to provide performance portability. The goal in scaling
the reliability model is to preserve Erlang’s sophisticated and effective reliability
mechanisms of first class processes and supervision behaviours in the presence of
locality and connectivity controls. The SD Erlang name is used only as a conve-
nient means of identifying the extensions we propose: we expect the extensions
to become standard Erlang in the future.

The rest of the paper is organised as follows. We start with an overview of
related work and background information (Section 2). For a language to scale
in-memory and persistent data structures, together with computation must scale
(Section 3). The primary Erlang in-memory data structure Erlang Term Storage
(ETS) is implemented inside Erlang Virtual Machine (VM), so any scalability
issues will be addressed by the VM team of the RELEASE project. In terms of
persistent data structures we believe that such databases as Riak [3] and Cassan-
dra [15] will be able to meet the target scalability requirements. The computation
scalability is a language level issue and we address it by eliminating transitive
connections of Erlang nodes and introducing a semi-explicit process placement
(Sections 4). Finally, we discuss the design validation exemplars (Section 5) and
provide conclusion together with the future work (Section 6).

462



The Design of Scalable Distributed Erlang 3

2 Related Work

This section covers related work and provides background information. First,
we discuss typical hardware architectures we might expect in the next 4-5 years
in Section 2.1. Actor languages and Erlang functional programming language
are covered in Sections 2.2 and 2.3 respectively. Finally, the RELEASE project
overview is provided in Section 2.4.

2.1 Architecture Trends

To make predictions in computer science even for the next 4-5 years is a hard
job as the field is very young and moves forward much faster than any other
branch of science. However, to understand limitations of today Erlang we need
to get an idea of typical hardware architectures that will use SD Erlang in
the next few years. Currently the main factors that shape trends in computer
architectures are as follows: memory size/bandwidth, energy consumption, and
cooling. Below we provide a brief analysis of these factors and discuss their
impact on the development of the hardware architectures.

Memory size/bandwidth. As the number of cores goes up the memory band-
width goes down, and the larger number of cores shares the same memory the
larger memory is required. DRAM-based main memory systems are about to
reach the power and cost limit. Currently, the main two candidates to replace
DRAM are Flash memory and Phase Change Memory (PCM). Both types are
much slower than DRAM, i.e. 211 and 217 processor cycles respectively for a
4GHz processor in comparison with 29 processor cycles of DRAM, but the new
technologies provide a higher density in comparison with DRAM [26].

Energy consumption and cooling are the main constrains for the high core
density. Moreover, the cooling is also a limitation of the silicon technology scal-

Fig. 1. A Typical Server Architecture
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ing [37]. To save energy and maximize compute performance supercomputers
exploit small and simple cores apposed to large cores. Many architectures, es-
pecially HPC architectures, exploit GPUs [10]. GPUs accelerate regular floating
point matrix/vector operations. The high throughput servers that RELEASE
targets do not match this pattern of computation, and GPUs are not exploited
in the server architectures we target. The air cooling might be replaced by one of
the following technologies: 2D and 3D micro-channel cooling [17], phase-change
cooling [22], spot cooling [36], or thermal-electric couple cooling [29].

From the above we anticipate the following typical server hardware architec-
ture. A host will contain ∼4–6 SMP core modules where each module will have
∼32–64 cores. Analysis of the Top 500 supercomputers that always lead the
computer industry illuminating the next 4–5 year computer architecture trends
allows us to assume that ∼100 hosts will be grouped in a cluster, and ∼1–5 clus-
ters will form a cloud. Therefore, the trends are towards a NUMA architecture.
The anticipated typical server architecture is presented in Figure 1.

2.2 Actor Languages and Frameworks

An actor model was introduced in 1973. Actors are independent entities that
asynchronously exchange messages, and perform actions depending on these
messages. There is a number of actor-based languages and frameworks such as
Akka [2], Axum [20], E [28], Erlang [11], Kilim [30], Ptolemy [27], SALSA [34],
Scala [4], and Smalltalk [16]. In this section we cover only Scala and Akka. Erlang
is discussed in Section 2.3.

Scala is a statically typed programming language that combines features of
both object-oriented and functional programming languages [4]. Scala has been
designed to interact with mainstream platforms such as Java and C#. Currently,
Scala is implemented on Java and .NET platforms. Scala has a pure oriented
model similar to Smalltalk [16] where values are objects, and operations are
messages. Operator names are treated as identifies, and identifies between two
expressions are treated as method calls. Scala is also a functional language due
to treating functions as values. The language supports such functions as nested,
anonymous, curried, and higher order functions. Scala supports parameterisa-
tion, abstract members, and classes to model Erlang type actors [24].

Akka is an event driven middleware framework to build reliable distributed
applications [2]. Akka is implemented in Scala. A fault tolerance in Akka is
implemented using similar to Erlang ‘Let it crash’ philosophy and supervisor
hierarchies [33]. An actor can only have one supervisor which is the parent su-
pervisor but similar to Erlang actors can monitor each other. Due to possibility
to create an actor within a different JVM two paths can be used to reach an ac-
tor: logical and physical. Logical path follows parental supervision links toward
the root. Physical actor path starts at the root of the system where the actual
actor object resides, and never spreads over multiple JVMs. Akka uses remote to
local approach via optimisation [35]. In Akka multiple shreds can execute actions
on shared memory. Like Erlang Akka does not support guaranteed delivery. A
cluster support is planned to be introduced in Akka.
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2.3 Erlang

Erlang is a functional general purpose concurrent programming language de-
signed in 1986 at Ericsson computer science laboratory [11]. Erlang was influ-
enced by a number of languages such as ML [21], Miranda [32], ADA [19], and
Prolog [38]. Erlang was designed to meet requirements of distributed, fault-
tolerant, massively concurrent, and soft-real time systems. Erlang is a dynam-
ically typed language. Distributed Erlang was introduced to allow autonomous
Erlang Virtual Machines (VMs) to work together when they are situated either
on the same or different computers. In Erlang a collection of processes work
together to solve a particular problem. The processes are lightweight and com-
municate with each other by exchanging asynchronous messages [39].

Erlang concurrency differs from the most other programming languages in
that concurrency is handled by the language and not by the operating system [8].
Some of the principles of the Erlang philosophy are as follows. Share nothing im-
plies that isolated processes do not share memory and variables are not reusable,
i.e. once a value is assigned it cannot be changed. Let it crush is a non-defensive
approach that lets failing processes to crash, and then other processes detect
and fix the problem. The approach also provides clear and compact code [7].

2.4 RELEASE Project

The RELEASE project aims to scale the radical concurrency-oriented program-
ming paradigm to build reliable general-purpose software, such as server-based
systems, on massively parallel machines. Concurrency-oriented programming is
distinctive as it is based on highly-scalable lightweight processes that share noth-
ing. The trend-setting concurrency-oriented programming model we use is Er-
lang/OTP. Erlang/OTP provides high-level coordination with concurrency and
robustness built-in: it can readily support 10,000 processes per core, and trans-
parent distribution of processes across multiple machines, using message passing
for communication. Moreover, the robustness of the Erlang distribution model
is provided by hierarchies of supervision processes which manage recovery from
software or hardware errors.

Currently Erlang/OTP has inherently scalable computation and reliability
models, but in practice scalability is constrained by the transitive sharing of
connections between all nodes and by explicit process placement. Moreover pro-
grammers need support to engineer applications at this scale and existing profil-
ing and debugging tools do not scale, primarily due to the volumes of trace data
generated. In the RELEASE project we tackle these challenges working at three
levels: evolving the Erlang virtual machine, evolving the language to Scalable
Distributed (SD) Erlang, developing a scalable Erlang infrastructure.

3 SD Erlang Design Overview

In this section we provide our vision of requirements for Erlang scalability and
principles behind design decisions taken in Section 4. We believe that for SD
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Erlang to scale in-memory and persistent data structures together with compu-
tation must be taken into account.

Scalable in-memory and persistent data structures.When an application scales
it requires support from in-memory and persistent data storages to handle a large
number of processes and data. Therefore, in-memory and persistent data struc-
tures need to be able to scale to the same magnitude as the application that
implores them (Section 3.1).

Scalable computation. From the analysis of the typical Erlang exemplars in
Section 5 we have identified two main scalability issues. These are a fully con-
nected network together with transitive connections and explicit placement. A
fully connected network and transitive connections prevent a network of Erlang
nodes to scale because it becomes not feasible to maintain a good performance
in a network of more than a hundred of nodes. Whereas an explicit placement
requires a programmer to be aware of all Erlang nodes in the network for every
process which is again not feasible (Section 4).

To design SD Erlang we came up with two types of principles: general and
reliable scalability. The general principles include our view on the aspects of the
language that we want to preserve and implementation level of the modifications.
The general principles are as follows.

– Preserving the Erlang philosophy and programming idioms.
– Minimal language changes, i.e. minimizing the number of new constructs but

rather reusing of existing constructs.
– Working at Erlang level rather than VM level as far as possible.

The reliable scalability principles include concepts that we want to either
preserve or avoid when scaling Erlang. They are as follows.

– Avoiding global sharing, i.e. global names, bottlenecks, and using groups
instead of fully connected networks.

– Introducing an abstract notion of communication architecture, e.g. local-
ity/affinity and sending disjoint work to remote hosts.

– Avoiding explicit prescription, e.g. replacing spawning on named node with
spawning on group of nodes, and automating load management.

– Keeping the Erlang reliability model unchanged as far as possible, i.e. linking,
monitoring, supervision.

3.1 Scalable Data Structures

Scalable In-Memory Data Structures. The primary Erlang in-memory data
structure is Erlang Term Storage (ETS). ETS is a data structure to associate
keys with values, and is a collection of Erlang tuples, i.e. tuples are inserted
and extracted from an ETS table based on the key. An ETS is memory resident
and provides large key-value lookup tables. Data stored in the tables is transient.
ETS tables are implemented in the underline runtime system as a BIF inside the
Erlang VM, and are not garbage collected. ETS tables are stored in a separate
storage area not associated with normal Erlang process memory. The size of ETS
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tables depends on the size of a RAM. An ETS table is owned by the process
that has created it and is deleted when a process terminates. The process can
transfer the table ownership to another local process. The table can have the
following read/write access [12]: 1) private, i.e. only the owner can read and write
the table, 2) public, i.e. any process can read and write the table, 3) protected,
i.e. any process can read the table but only the owner can write it.

ETS tables provide limited support for concurrent updates [11]. That is in-
serting a new element may cause a rehash of elements within the table; when
a number of processes write or delete elements concurrently from the table the
following outcomes are possible: a runtime error, bad arg error, or undefined
behaviour, i.e. any element may be returned. As the number of SMP cores in-
creases the number of Erlang nodes and processes also increase. This can lead
to either a bottleneck if the table is private/protected or undefined outcomes
if the table is public. ETS tables are implemented inside the Erlang VM, and
hence any scalability issues will be addressed by the VM team of the RELEASE
project.

Scalable Persistent Data Structures. We have analysed a number of
DataBase Mangament Systems (DBMSs) for Erlang such as Mnesia [23], Riak [3],
CoachDB [5], and Cassandra [15]. Below we have summarised the main principles
and desirable features required for highly available and scalable databases. We
believe that such DBMSs as Riak and Cassandra will be able to meet the target
scalability requirements [25].

Fragmenting data across distributed nodes. 1) Decentralized approaches are
preferable as they show a better throughput by spreading the load over a large
number of servers and increase availability by removing a single point of failure;
2) The placement of replicas should be handled systematically and automatically,
i.e. location transparency. 3) A node departure or arrival should only affect the
node immediate neighbours whereas other nodes remain unaffected.

Replicating data across distributed nodes. 1) A decentralized model such as
P2P is desirable. 2) An asynchronous replication where consistency is sacrificed
to achieve higher availability, i.e. from the CAP theorem [18] a database cannot
simultaneously guarantee consistency, availability, and partition-tolerance.

Partition tolerance, i.e. a system continues to operate despite of connection
loss between some nodes. We anticipate the target architecture to be loosely
coupled; therefore, partition failures are highly expected. Again from the CAP
theorem by putting stress on availability we must sacrifice strong consistency to
achieve partition-tolerance and availability.

4 Scalable Actor Computation

We have identified two main Distributed Erlang issues that prevent scalability,
these are transitive connections and explicit placement. Transitive connections
are the reason of inability to scale beyond a hundred of nodes, whereas explicit
placement is a restriction that prevents a programmer to easily manipulate the
available nodes.
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In this section we introduce extension of the Distributed Erlang – Scalable
Distributed (SD) Erlang – to effectively operate when the number of hosts,
cores, nodes, and processes scales. We start with a discussion of scalability limi-
tations of Distributed Erlang in Section 4.1. To scale a network of Erlang nodes
we introduce scalable groups (s groups) in Section 4.2. S groups aim to elim-
inate transitive connections, i.e. nodes have transitive connections with nodes
of the same s group and non-transitive connections with other nodes. To man-
age process placement we introduce semi-explicit placement and choose node/1

function in Section 4.3. So that a process can be spawned, for example, to an
s group or a particular communication distance.

4.1 Distributed Erlang Scalability Limitations

Figure 2 illustrates Erlang’s support for concurrency, multicores and distribu-
tion. A blue rectangle represents a host with an IP address, and a red arc rep-
resents a connection between nodes. Multiple Erlang processes may execute in
a node, and a node can exploit multiple processors, each having multiple cores.
Erlang supports single core concurrency as a core may support as many as 108

lightweight processes [1]. In the Erlang distribution model a node may be on a
remote host, and this is almost entirely transparent to the processes. Hosts need
not be identical, nor do they need to run the same operating system.

Erlang currently delivers reliable medium scale concurrency, supporting up
to 102 cores, or 102 distributed memory processors. However, the scalability
of a distributed system in Erlang is constrained by the transitive sharing of
connections between all nodes and by explicit process placement. The transitive
sharing of connections between nodes means that the underlying implementation
needs to maintain data structures that are quadratic in the number of processes,
rather than considering the communication locality of the processes. While it is
possible to explicitly place large numbers of processes in a regular, static way (as
for conventional HPC computations), explicitly placing the irregular or dynamic
processes required by many servers and other general purpose applications is
far more challenging. Erlang/OTP has a world leading language level reliability.
The challenge is to maintain this reliability at massive scale.

Fig. 2. Connections in s groups
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4.2 Network Scalability

To allow scalability of networks of nodes the existing scheme of transitive con-
nection sharing in Distributed Erlang should be changed as it is not feasible for
a node to maintain connections to tens of thousands of nodes, i.e. the larger the
network of Erlang nodes the more ’expensive’ it becomes on each node to keep
up-to-date replications of global names and global states, and periodic check-
ing of connected nodes. Instead we propose to use overlapping scalable groups
(s groups) where nodes would have transitive connections within their s group
and non-transitive connections with nodes of other s groups. The idea of s groups
is similar to the existing in Distributed Erlang hidden global groups in the fol-
lowing: 1) each s group has its own name space; 2) transitive connections are
only with nodes of the same s group. The differences with hidden global groups
are in that 1) a node can belong to an unlimited number of s groups, and 2)
information about s groups and nodes is not globally collected and shared.

In SD Erlang nodes with no asserted s group membership belong to a notional
group G0 that follows Distributed Erlang rules and allows backward compatibil-
ity with Distributed Erlang. By the backward compatibility we mean that when
nodes run the same VM version they may use or not use s groups and still be
able to communicate with each other. Therefore, s groups are not compulsory
but rather a tool a programmer may use to scale a network of nodes.

Types of s groups. To allow programmers flexibility and provide an assis-
tance in grouping nodes we propose s groups to be of different types, i.e. when
an s group is created a programmer may specify parameters against which a new
s group member candidate can be checked. If a new node satisfies an s group re-
strictions then the node becomes the s group member, otherwise the membership
is refused. The following parameters can be taken into account: communication
distance, security, available code, specific hardware and software requirements.
A programmer may also introduce his/her own s group types on the basis of
some personal preferences. The information about specific resources can be col-
lected by introducing node self awareness, i.e. a node is aware of its execution
environment and publishes this information to other nodes.

We also propose the following features: a) a node can establish a direct
connection with any other node, b) nodes can have short lived connections, and
c) a host can have an unlimited number of nodes. We do not consider any
language constructs to provide programmers control over cores, i.e. the lowest
level a programmer may control in terms of where a process can be spawned is
a node.

s group Functions. We propose a number of functions to support s group
employment, some of them are listed below. The functions may be changed
during the development. The final implementation will be decided during actual
SD Erlang code writing and will depend on the functions that programmers find
useful.

1. Creating a new s group, e.g.
new s group(S GroupName, [Node]) -> ok | {error, ErrorMsg}
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2. Adding new nodes to an existing s group, e.g.
add node s group(S GroupName, [Node]) -> ok | {error, ErrorMsg}

3. Monitoring all nodes of an s group, e.g.
monitor s group(S GroupName) -> ok | {error, ErrorMsg}

4. Listing nodes of a particular s group, e.g.
s group nodes(S GroupName) -> [Node] | {error, ErrorMsg}

5. Connecting to all nodes of a particular s group, e.g.
connect s group(S GroupName) -> [boolean() | ignored]

6. Disconnecting from all nodes of a particular s group, e.g.
disconnect s group(S GroupName) -> boolean() | ignored

Example. Assume we start six nodes A, B, C, D, E, F , and initially the
nodes belong to no s group. Therefore, all these nodes belong to notional group
G0 (Figure 3(a)). Fist, on node A we create a new s group G1 that consists of
nodes A, B, and C, i.e. new s group(G1, [A, B, C]). Note that a node belongs
to group G0 only when this node does not belong to any s group. When nodes
A, B, and C become members of an s group they may still keep connections
with nodes D, E, F but now connections with these nodes are non-transitive. If
connections between nodes of s group G1 and group G0 are time limited then
the non-transitive connections will be lost over some time (Figure 3(b)). Then
on node C we create s group G2 that consists of nodes C, D, and E. Nodes D,
and E that now have non-transitive connections with node F may disconnect
from the node using function disconnect s group(G0). Figure 3(c) shows that
node C does not share information about nodes A and B with nodes D and
E. Similarly, when nodes B and E establish a connection they do not share
connection information with each other (Figure 3(d)).

Fig. 3. Connections in s groups
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4.3 Semi-Explicit Placement

For some problems, like matrix manipulations, optimal performance can be ob-
tained on a specific architecture by explicitly placing threads within the architec-
ture. However, many problems do not exhibit this regularity. Moreover, explicit
placement prevents performance portability: the program must be rewritten for
a new architecture, a crucial deficiency in the presence of fast-evolving architec-
tures. We propose a dynamic semi-explicit and architecture aware process place-
ment mechanism. The mechanism does not support the migration of processes
between Erlang nodes. The semi-explicit placement is influenced by Sim-Diasca
process placement [14] and architecture aware models [9].

In Sim-Diasca a computing load is induced by a simulation and needs to be
balanced over a set of nodes. By default, model instances employed by Erlang
processes are dispatched to computing nodes using a round-robin policy. The
policy proved to be sufficient for most basic uses, i.e. a large number of instances
allows an even distribution over nodes. However, due to bandwidth and latency
for some specifically coupled groups of instances it is preferable for a message
exchange to occur inside the same VM rather than between distant nodes. In
this case, a developer may specify a placement hint when requesting a creation
of instances. The placement guarantees that all model instances created with the
same placement hint are placed on the same node. This allows the following: a)
to co-allocate groups of model instances that are known to be tightly coupled,
b) to preserve an overall balancing, and c) to avoid model level knowledge of
the computing architecture. In [9] to limit the communication costs for small
computations, or to preserve data locality, the authors proposes to introduce
communication levels and specify the maximum distance in the communication
hierarchy that the computation may be located. Thus, sending a process to level
0 means the computation may not leave the core, level 1 means a process may
be located within the shared memory node, level 2 means that process may be
located to another node in a Beowulf cluster, and level 3 means that a process
may be located freely to any core in the machine.

For the SD Erlang we propose that a process could be spawned either to an
s group, to s groups of a particular type, or to nodes on a given distance. From
a range of nodes the target node can be picked either randomly or on the basis
of load information.

Load Management. When a node is picked on the basis of load an im-
portant design decision is the interaction between two main load management
components, i.e. information collection and decision making. The components
can be either merged together and implemented as one element or implemented
independently from each other. We propose to implement information collection
and decision making as one element, i.e. a load server. Its responsibility will be
collecting information from the connected nodes and deciding where a process
can be spawned when a corresponding request arrives. It seems that one load
server per node is an appropriate number of load servers per node for SD Er-
lang. In this case the decisions are made within the node (in comparison with
one load server per s group, a host, and a group of hosts) and load information
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redundancy level is not too high (in comparison with one per group of processes
and a multiple number of load servers per node).

chose node. We propose to introduce a new function chose node/1. The
function will return a node ID where the process should be spawned. The
node will be picked on the basis of restrictions identified by the programmer,
e.g. s groups, s group types, minimum/maximum/ideal communication distances.
The function can be written in SD Erlang as follows.
chose node(Restrictions) -> node()

Restrictions = [Restriction]

Restriction = {s group name, S GroupName}
| {s group type, S GroupType}
| {min dist, MinDist :: integer() >= 0}
| {max dist, MaxDist :: integer() >= 0}
| {ideal dist, IdealDist :: integer() >= 0}

We deliberately introduce Restrictions as a list of tuples to allow the list
of restrictions to be extended in the future. A process spawning may look as
follows:
start() ->

TargetNode = chose node([{s group, S Group}, {ideal dist, IdealDist}]),
spawn(TargetNode, fun() -> loop() end).

4.4 Summary.

To enable scalability of network of nodes we propose a new s group library for
Erlang. 1) Grouping nodes in s groups where s groups can be of different types,
and nodes can belong to many s groups. 2) Transitive connections between nodes
of the same s group and non-transitive connections with all other nodes. Direct
non-transitive connections are optionally short lived, e.g. time limited.

To enable semi-explicit placement and load management we propose the fol-
lowing constructs. 1) Function chose node(Restrictions) -> node() where
the choice of a node can be restricted by a number of parameters, such as
s groups, s group types, and communication distances. 2) The nodes may be
picked randomly or on the basis of load. We assume that when a process is
spawned using semi-explicit placement it is a programmer responsibility to en-
sure that the prospective target node has the required code. If the code is missing
an error is returned.

5 Design Validation Exemplars

To validate SD Erlang design presented in Section 4 we have done a theoretical
validation of five Erlang applications: Sim-Diasca [14], Orbit, Mandelbrot set,
Moebious, and Riak [3]. Here, we only discuss Moebious. The description of the
remaining applications is presented in [25].

Moebius is a continuous integration system recently developed by Erlang
Solutions. Moebius aims to provide users an automated access to various cloud
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Fig. 4. Mandelbrot Set Node Grouping

providers such as Amazon EC2. The system has two types of nodes: master node
and moebius agents. The master node collects global information and makes
decisions to start and stop nodes. The moebius agents are located on the utilised
nodes and periodically send state information to the master node. Currently,
moebius agents are only connected to the master node via HTTP but in the
future there are plans to move Moebius to SD Erlang and build a hierarchical
master structure.

A top level Moebius algorithm is as follows. A user is asked to indicate the
requirements, e.g. hardware configuration, software configuration, and a descrip-
tion on how the initial master node should start the remaining nodes in the cloud
(Figure 4). Thus, a hierarchical organization of nodes can be easily set from top
to bottom. Additional s groups from nodes of different levels can also be formed
if needed. An SD Erlang Moebius may require the following. 1) The s groups
may be grouped on the basis of different factor such as communication locality,
security, and availability of a particular hardware or software; therefore, cus-
tom s groups types are required. 2) Nodes and s groups will dynamically appear
and disappear depending on the user current requirements. 3) Moebius master
nodes most probably will be organised in a hierarchical manner, so nodes will
not need to directly communicate with each other. 4) The number of s groups
most probably will be much less than the number of nodes.

Table 1 provides a summary of the exemplar requirements for scalable imple-
mentations. Thus, s groups may be either static, i.e. once created nodes rarely
leave and join their s groups, or dynamic, i.e. nodes and s groups are constantly
created and deleted from the network. S groups may be formed on the basis
of locality (Sim-Diasca and Mandelbrot set), Hash table (Orbit), Preference
list (Riak), or programmers’ and users’ preferences (Moebius). ‘Yes/No’ indi-
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14 Natalia Chechina, Phil Trinder et al.

No Property Sim-Diasca Orbit Mandel-
brot set

Moebius Riak

s groups
1 Static/Dynamic Static Static Static Dynamic Dynamic
2 Grouping Locality Hash table Locality Multiple Preference

list
3 Custom types Yes No No Yes No

General
4 Number of nodes

and s groups
Ng << Nn Ng << Nn Ng << Nn Ng << Nn Ng >= Nn

5 Short lived connec-
tions

Yes Yes No No Yes

6 Semi-explicit place-
ment

Yes No Yes No No

Table 1. Exemplar Summary

cates whether an application requires a particular feature. For instance, some
scalable exemplars require custom s group types, short lived connections, and
semi-explicit placement. Such applications like Riak may have the number of
s groups compatible with the number of nodes.

6 Conclusion and Future Work

This paper presents the design of Scalable Distributed (SD) Erlang: a set of
language-level changes that aims to enable Distributed Erlang to scale for server
applications on commodity hardware with at most 105 cores. The core elements
of the design are to provide scalable in-memory data structures, scalable persis-
tent data structures, and a scalable computation model. The scalable computa-
tion model has two main parts: scaling networks of Erlang nodes and managing
process placement on large numbers of nodes. To tackle the first issue we have
introduced s groups that have transitive connections with nodes of the same
s group and non-transitive connections with nodes of other s groups. To resolve
the second issue we have introduced semi-explicit placement and choose node/1

function. Unlike explicit placement a programmer may spawn a process to a
node from a range of nodes that satisfy predefined parameters, such as s group,
s group type, or communication distance.

Erlang follows a functional programming idiom of having a few primitives
and building powerful abstractions over them. Examples of such abstractions
are algorithm skeletons [13] that abstract common patterns of parallelism, and
behaviour abstractions [6] that abstract common patterns of distribution. We
plan to develop SD Erlang behaviour abstractions over primitives presented in
Sections 4.2 and 4.3. We expect the behaviours to become apparent during the
work on the case studies and scalable infrastructure.
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Abstract. Functional languages are close to the declarative model of
database query languages, making functional languages well suited to
the querying and manipulation of databases, and thereby providing a
good basis for the implementation of transaction processing systems.
This paper describes a prototype implementation of a persistent func-
tional language for transaction processing, where transactions can be ex-
ecuted concurrently through lazy evaluation of states, and storing states
in persistent memory is handled transparently. Our prototype includes
a language for the specification of transactions, as well as a new method
for load balancing in graph reduction based on sharing results between
threads and randomization of their reduction order. We also discuss a
new method for storing the state to persistent memory. Furthermore, we
found that lazy evaluation of states has some problems in practice, for
which we provide a theoretical solution. Finally, we have evaluated our
prototype implementation through some practical experiments.

1 Introduction

Functional languages provide an interesting basis for the implementation, query-
ing and manipulation of databases [16]. Queries in a purely functional language
can be executed in parallel without explicit management of hardware resources,
while lazy evaluation may reduce I/O and provide a basis for concurrency be-
tween transactions. Persistent functional languages provide a natural way for
implementing and working with such functional databases, and allow the con-
struction of functional transaction processing systems.

The traditional approach to the construction of transaction processing sys-
tems (TPS) is to use a database management system (DBMS) for storage, to-
gether with a (usually imperative) programming language for domain logic. A
problem with this approach is that the mapping between the data model of the
program and the data model of the DBMS is complex and unnatural, a problem
known as the impedance mismatch [9]. Moreover, the sequential nature of the in-
terface of the DBMS limits parallel execution of transactions, as well as limiting
concurrency between transactions. Also, the connection between the DBMS and
the program may be interrupted while there are unfinished transactions, which
must be correctly handled both by the program and the DBMS. In addition,
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in modern databases, transaction commits, rollbacks and security have to be
managed explicitly, making correctness of a TPS difficult to establish.

In contrast, in our approach a database is implemented in a persistent func-
tional language, and transactions are programs written in this same language and
executed on the same system as where the database resides. The database and
the programs use the same data model and computational model, thus avoiding
the impedance mismatch. A transaction contains the complete program to be
executed, and because of this, all queries are known when the transaction starts,
allowing the execution of multiple queries in parallel. Furthermore, transactions
are guaranteed to commit, avoiding the possibility of aborted transactions. This
allows a higher level of concurrency than is possible in traditional DBMS’s, as
the system does not have to prevent access to modifications made by trans-
actions that have not been fully evaluated. Furthermore, because concurrency
is achieved through lazy evaluation of states, there is no risk of deadlock or
starvation in transactions that update the state.

In the literature, a practical implementation of a persistent functional lan-
guage and its application to functional databases have been given by Nikhil in
1990 [13], and McNally in 1993 [11]. However, these do not allow concurrent
execution of transactions. This paper presents a prototype implementation of
a concurrent persistent functional language, and we show how this language
can be used to construct a transaction processing system. In addition, develop-
ment of the prototype also led to further fine-tuning of the theoretical model
of persistent functional languages. Concretely, this paper describes the following
contributions:

– a language for the definition of functional transactions;
– a prototype implementation of our language that supports concurrent exe-

cution of transactions and storing states in persistent memory;
– a new method for load balancing in parallel graph reduction, based on shar-

ing results between threads, and randomizing their reduction order;
– a discussion of different methods to store functional states in persistent mem-

ory, allowing both the storage of suspended computations, as well as larger
than main-memory states;

– an improvement of the theoretical model of persistent functional languages,
solving problems that arise in practise from the theoretical model due to
lazy reduction of states; and

– an experimental validation of our results.

The remainder of this paper is organised as follows. First, Section 2 gives some
relevant background on transaction processing systems and databases, as well as
functional transaction processing systems, then Section 3 present a simple lan-
guage for the definition of functional transactions. Next, Section 4 discusses how
evaluation of transactions in this language is implemented, Section 5 presents
our graph reduction method, Section 6 discusses several methods to store states
in persistent memory, Section 7 discusses some issues in lazy evaluation of states,
as well as a solution, and Section 8 presents our experimental results. Finally,
Sections 9 and 10 present related work and conclusions.

2
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2 Transaction Processing Systems and Databases

This section gives a quick overview of transaction processing systems, and func-
tional transaction processing systems in particular. First, we discuss transaction
processing systems in general, its desired properties and implementation chal-
lenges. After that, we discuss how functional languages can be used for transac-
tion processing.

2.1 Transaction Processing Systems

A transaction processing system (TPS) is a system that manages concurrent
operations by multiple users on a single state by means of transactions [7]. A
transaction is a collection of operations on the state, that provides guarantees
about its execution as a whole. For many transaction processing systems the
ACID properties are guaranteed:

Atomicity: Either all operations in a transaction are executed, or none at all.
Consistency: Transactions preserve consistency of the state.
Isolation: The result of transactions executing in parallel is the same as the

result for some sequential executions of the transaction.
Durability: Once a transaction has been committed, its effects must persist

even in the case of system failure.

Typical examples of transaction processing systems are database manage-
ment systems, transactional file systems, version control systems and transac-
tional memory. This paper focuses in particular on database management sys-
tems as application area. However it should be stressed that our approach is also
applicable to other kinds of TPSs.

Formally, atomicity and isolation are defined in terms of serializability and
recoverability. A concurrent execution of a set of transactions is serializable if
some sequential execution produces the same final state. A transaction is ter-
minated by either committing the transaction, making its effects persistent, or
aborting it and rolling back all changes. Recoverability states that, as long as a
transaction t has not been comitted, all transactions that have read changes by
t can not commit until t commits. If t chooses to abort, all transactions that
have read changes by t must also abort.

Ensuring that the ACID properties hold results in several challenges for TPS
implementations. First, one has to ensure that transactions can be correctly
executed in parallel, avoiding inconsistent states that could be caused by inter-
actions between transactions. Second, the TPS has to ensure correct behavior
in case of system failure, as writes to persistent storage may only be partially
complete at the time of failure.

Database Management Systems As mentioned above, a database management
system (DBMS) is a particular TPS with the following additional characteristics:
it has a data model, its state can be larger than main memory, and it has an

3
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appropriate query language. A data model defines how information is structured
in a database, together with the basic operations that can be performed on this
data. A common example of a data model is the relational model, implemented in
a relational database, where data is structured in the form of relations, and with
basic operations such as fetch, insert, selection, projection, and join. To query
and manipulate databases, a DBMS usually provides a query language, which
is explicitly designed to work with the data model provided by the DBMS. For
example, SQL is typically used as query language for relational databases.

2.2 Functional Transaction Processing

We now discuss how functional languages can be used in the construction of a
TPS, by reviewing the work of Trinder [16]. A TPS can be considered a trans-
action manager function of type State × [Transaction]→ [Result ] that takes an
initial state and a stream of transactions, and produces a stream of results. A
transaction is a function State → State×Result that takes a state, and produces
a new state together with an observable result. The transaction manager can be
made available to many users by merging the transactions from each user into a
single stream of transactions.

It is easy to guarantee the ACID properties in this model. Serializability is
trivially satisfied, as transactions are executed serially. Recoverability can be
satisfied by requiring that all transactions are total functions, i.e. they always
produce a result. Consistency of a state s can be guaranteed by wrapping a
transaction f by a function of the form if g(f(s)) then f(s) else s, where
g validates that consistence holds in f(s). Durability can be guaranteed by
journalling transactions before executing them, as will be discussed in more
detail later in this paper.

Transactions can be executed concurrently by reducing states lazily, forced
by the reduction of the result expressions of the transactions. For this to have
any effect, states must have a tree structure, such that large parts of the new
state can be returned early for the next transaction to start. Concurrency control
is essentially done through data dependency. This system can be implemented
efficiently using graph reduction to share large parts of a new state with the
previous state.

Finally, in order to support databases in this model, data can be stored in bulk
data structures such as associative maps implemented by a binary tree. Queries
that read and modify the database can be built from operations on these data
structures.

3 A Transactional Functional Language

This section describes a language for the notation of functional transactions.
We first discuss a model for a transactional functional language, followed by
the description of our language, and we conclude with some examples. In the
sections after this we discuss our prototype implementation of this language.

4
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<transaction> ::= <definition>*
<definition> ::= <variable> ( ‘(’ <variable>* ‘)’ )? ‘=’ <expression>
<expression> ::= LITERAL

| ( <variable> | <constructor> ) ( ‘(’ <expression>* ‘)’ )?
| ‘match’ <expression> ‘{’ ( <pattern> ‘->’ <expression> )+ ‘}’
| ‘let’ ( <variable> ‘=’ <expression> )* ‘{’ <expression> ‘}’

<pattern> ::= <constructor> ( ‘(’ (<variable> | ‘ ’ )* ‘)’ )?
<variable> ::= ‘a’..‘z’ (‘a’..‘z’ | ‘A’..’Z’)* ‘’’?

<constructor> ::= ‘A’..‘Z’ (‘a’..‘z’ | ‘A’..’Z’)*

Fig. 1. Grammar of prototype language.

We follow the model as described by Nikhil [12] to extend regular functional
languages with constructs for transaction processing. The state of the system is
a mapping from identifiers to closed expressions. Where expressions may contain
functions as well as data. A transaction consists of an expression that is evaluated
in the current state, and an environment that replaces the current state, which
is a mapping from identifiers to expressions, where the expressions may contain
free variables.

A transaction in our language describes only the updates to the state, instead
of the complete new state. We distinguish two kinds of variables: current state
variables and next state variables. To distinguish them syntactically, next state
variables are primed. To specify an update to variable x, we assign an expression
to variable x′, where this expression can refer to both the current and the next
state. We can also assign to current state variables: this means that the binding
is local to the transaction, and will not be available in successive transactions.
Finally, there is a special variable result which contains the observable result of
the transaction.

Figure 1 presents the EBNF syntax of our language. A transaction consists of
a list of definitions that map variables to expressions. Expressions are built from
literals, function applications, case distinctions on data, and let expressions. In
our prototype, literals can be integers, strings and doubles. Let expressions can
be used to explicitly introduce sharing in expressions. Furthermore, our language
also implements some built-in functions that are not part of the grammar, such
as arithmetic functions and comparison functions on primitive data types.

We will now illustrate how our language can be used to set up and use a
simple database of user names. This transaction updates the state to include a
variable users, which is initialised to the empty list, and a function length that
can be used to compute the length of a list:

1 users’ = Nil

2 length’(list) = match list {

3 Nil -> 0

4 Cons(x xs) -> add(1 length’(xs))

5 }

5
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Note that in the definition of length ′ we refer to length ′ to create a recursive
function. If we would refer to length instead, we would refer to the value of length
in the current state. The next transaction inserts a user into the database, and
requests the size of the resulting database:

1 users’ = Cons("bob" users)

2 result = length(users’)

Note that in the assigned expression of users ′ we refer to users in the current
state; thus inserting a user into the existing database. The observable result of
the transaction is defined as the number of users in the database, including our
newly inserted user ’bob’. Finally, the following transaction queries the database
with a locally defined function contains that exists only for the duration of the
transaction:

1 contains(value list) = match list {

2 Nil -> False

3 Cons(x xs) -> match equals(x value) {

4 True -> True

5 False -> contains(value xs) } }

6 result = contains("bob" users)

4 Implementation of the Prototype

This section discusses the implementation of a framework to support persistent
functional languages. The prototype language discussed in the previous section
is implemented on top of this framework; however the framework is set up in
such a way that it can also support other persistent functional languages. Our
prototype is implemented in Java, but code is presented as psuedo code.

Overview In order to support our language model, we need to modify the struc-
ture as discussed in section 2.2 a bit. In our language, a transaction is not a
function, but an environment of updates together with a result expression. In
order to execute a transaction, we bind a transaction to the state using a function
of type State×Transaction → State×Expression that takes the transaction and
the current state, and produces a new state together with a result expression.
Also, in our implementation we combine the transaction manager with function-
ality to non-deterministically sequence transactions, instead of a separate merger
process as described by Trinder.

The execution of transactions is done as follows. At the highest level, our
system receives a transaction as a sentence in our language. First, we parse the
sentence, to obtain a data structure representing the transaction. We then bind
the transaction to the state, as is discussed in the next paragraph, to obtain a
result expression. Finally, we reduce the result expression to normal form, and
send the reduced result back to the sender of the request.
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Data Structures First, we define data structures to represent states, and trans-
actions.

1 data State = environment : Map Identifier Node

2 data Transaction = updates : Map Identifier Node

3 = locals : Map Identifier Node

A state is simply a mapping from identifiers to nodes. A transaction has
two mappings: a mapping updates that stores the modifications to the state
(where removal of a binding is encoded using as a null pointer expression), and
a mapping locals that stores expressions that do not go into the new state, i.e.,
local function definition, and functions obtained through λ-lifting. The mapping
locals may also contains the special name result for the result expression.

Binding In order to execute transactions we need a binding function State ×
Transaction → State×Expression that takes a transaction and the current state,
and produces a new state together with a result expression. We implement this
function by binding free variables in the expressions of the transaction to the
expressions in the state, and updating the state with the changes as specified by
the transaction. A simple implementation of binding looks like this:

1 procedure bind(state, transaction) {

2 transaction’ :=

3 bindFreeVariables(state.environment, transaction);

4 state.environment :=

5 bindUpdates(state.environment, transaction’.updates);

6 return transaction’.locals.get("result");

7 }

The bindUpdates procedure produces a new state according to the up-
date environment of the transaction. The bindFreeVariable procedure, of type
Environment × Transaction → Transaction binds the free variables in the ex-
pressions in transaction to the values in the environment. That is, all pointers
to free variables nodes in the expression graphs are replaced by pointers to the
appropriate node. In our implementation, binding of free variables is done non-
destructively to implement stored transactions, which is outside the scope of this
paper. A complicating factor is that the variables have to be bound to already
bound versions of expressions in the transaction, while the bound expressions
themselves are still being constructed. To facilitate this, copies of the root nodes
of the expressions are created before actually binding the expressions. As some
of these copied root nodes may be free variables, we first have to resolve these
before binding the other expressions. After this is done, the copied root nodes
are updated to bind the free variables in their child nodes. For the full algorithm
we refer to the Masters Thesis by Wevers [17].

Handling Concurrent Requests In order to handle concurrent requests, we create
a new request handler for every request, and execute them in parallel using
threads. All requests handlers share the same state, which they update through
the bind procedure. We have to ensure that updates to the state do not interfere.
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The simplest method to ensure correct updating of the state is to make access
to the state mutually exclusive using a lock. However, as read transactions do not
modify the state, these may be bound concurrently, so we could use a readers
/ writers lock. We can do even better by making updates to the state non-
destructive, allowing lockless reads, while we can synchronize writes to make
updates to the state mutually exclusive. The following algorithm shows how we
implemented this.

1 procedure bind(state, transaction) {

2 if(transaction.updates.isEmpty()) {

3 transaction’ :=

4 bindFreeVariables(state.environment, transaction);

5 } else {

6 synchronize(state) {

7 transaction’ :=

8 bindFreeVariables(state.environment, transaction);

9 state.environment :=

10 bindUpdates(state.environment, transaction’.updates);

11 }

12 }

13 return transaction’.locals.get("result");

14 }

Updating the state is now an atomic operation that creates a new environ-
ment for every update, this ensures that read transactions see a consistent state.
Below, in Section 8 we evaluate the throughput performance of our implemen-
tation.

5 Parallel Graph Reduction

Aside from the transaction manager as described in the previous section, our
implementation also need a parallel graph reducer. In this section we describe
our method for parallel graph reduction. The main challenge in parallel graph
reduction is load balancing of tasks among a fixed set of execution threads, while
not using too many resources for performing the load balancing [15]. We show
a method for load balancing based on result sharing between execution threads,
and randomization of execution paths of threads.

Standard Graph Reduction Our graph reducer is based on template instantia-
tion [14]. We have defined data structures to represent different kinds of nodes as
shown in Figure 2. We have also defined a special sharing node, which we discuss
in the next paragraph. To implement lazy evaluation, we define a procedure whnf
that reduces a graph to weak head normal form (WHNF) by repeatedly reducing
the outermost reducible node until either a primitive data node, a data node or
a supercombinator node is obtained. This reduction is done non-destructively,
with the exception of sharing nodes as is discussed below. For some nodes, whnf
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1 data Node = SupercombinatorNode(template : Node)

2 | SupercombinatorApplication(arguments : [Node],

supercombinator : Node)

3 | BoundVariableNode(index : Integer)

4 | DataNode(constructor : int, children : [Node])

5 | CaseNode(scrutinize : Node, cases : [Node])

6 | IntNode(value : int)

7 | AddNode(left : Node, right : Node)

8 | SharingNode(shared : Node)

9 | ...

Fig. 2. Data structures for graph reduction.

may need to call itself tail-recursively to obtain a WHNF of an intermediate
result. We define a procedure reduce that performs a minimal reduction step
towards WHNF, which is obtained from taking the implementation of whnf and
not performing a tail-recursive call to whnf. Furthermore, we define a procedure
isWhnf that tests if a certain node is in weak head normal form, by checking if
it is a primitive data node, a data node, or a supercombinator.

Parallel Graph Reduction Our approach to parallel graph reduction is based on
sharing results of work between threads, and randomizing their reduction order.
The idea of randomization and result sharing is not new, and has already been
applied successfully in the context of model checking for the parallel exploration
of a state-space [6], however to our knowledge this method has not yet been
applied to graph reduction.

The main idea in our approach is that we consider a thread as taking a walk
through the graph while reducing nodes on the way. Instead of having all threads
taking the same path, we try to make each thread take a different path by taking
different decisions on which child node to reduce first. Work is shared between
threads through special result sharing nodes. If a thread encounters such a node,
it may find that another thread has already performed the work, and it can use
that result. Below we present our result sharing algorithm, as well as a method
for randomization of execution paths.

Sharing Results The first part of our load distribution algorithm is the sharing
of results between threads. We share results through a special result sharing
node that has a pointer to either an unreduced expression, or its reduced form.
When a thread computes a reduced form of a shared node, it may update the
sharing node to point to the new result as to allow another thread to use that
result as well. The whnf procedure may need to tail-recursively call itself for
some nodes in order to obtain a WHNF, in order to share results in such a case,
we instead use our reduce procedure. Furthermore, in order for sharing to be
done correctly, we have to ensure that each thread uses the same unique result,
as to avoid loss of sharing due to data races. The following algorithm allows the
reduction of a sharing node node:
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1 procedure whnf(node : SharingNode) {

2 Node current := node.shared;

3 while(not isWhnf(current)) {

4 Node result := reduce(current);

5 if(compareAndSet(node.shared, current, result)) {

6 current := result;

7 } else {

8 current := node.shared; }

9 return current; }

This procedure first fetches the current shared node from the sharing node.
If it is in weak head normal form, it returns immediately. If the shared node is
not in weak head normal form it is reduced using reduce, which result is then
stored in the sharing node, except if the pointer in the sharing node has been
modified by another thread. If the sharing node has not been modified, this will
succeed, and the algorithm continues until a weak head normal form is obtained.
If the sharing node has been modified, another thread has already reduced the
shared node, in this case we continue with the result of the other thread and
discard our own result. The uniqueness of the result is thus guaranteed by this
algorithm. Also, this algorithm is guaranteed to terminate if reduction of the
shared node terminates, because there must always be one thread that succeeds
in reducing the shared node by one step, after which all other threads will fail
to write their result, and continue with the new result.

Randomizing Execution Paths The second part of our load balancing method
is the randomization of the execution paths of each thread. The path a thread
takes is determined by the order in which it reduces the child nodes of some
node. In standard graph reduction, child nodes are usually reduced in a fixed
order. In order to randomize the execution paths of threads we have to choose
a different reduction order of child nodes for each thread.

In our implementation, we do not actually randomize the order of threads,
but we alternate orders. To implement this, we maintain a boolean in primitive
functions that require eager reduction of their arguments, indicating whether to
reduce the arguments from left to right, or right to left. Every time a thread wants
to reduce this node, the boolean is flipped, so that threads alternate between
reducing child nodes from left to right, or from right to left. As an example,
consider the evaluation of the addition node:

1 Node whnf(AddNode add) {

2 add.left_to_right = !add.left_to_right;

3 if(add.left_to_right) {

4 l := whnf(add.left); r = whnf(add.right);

5 } else {

6 r := whnf(add.right); l = whnf(Add.left); }

7 return Int(l.value + r.value); }

10

486



Here, we modified the data structure of add to include a field left to right.
Every time a thread starts reducing this node, the left to right field is negated.
The first thread will now reduce from left to right, the second from right to left,
the third from left to right again, etc. Below, in Section 8 we discuss some exper-
imental results that show that this approach to load balancing in parallel graph
reduction indeed results in a significant speedup.

6 Maintaining Persistent State

The implementation so far stores the whole state in main memory. In this section
we investigate different ways to efficiently store the state in a persistent heap,
with the goal of guaranteeing durability in case of a system failure, storing results
of reduction, as well as to support states which do not fit in main-memory. First
we discuss journalling to support durability. We then discuss snapshotting as a
method for persisting evaluated states. Next, we discuss an alternative approach
to persisting states, based on log-structured storage. Finally, we describe a way
to combine both of these approaches to combine their strenghts.

Journalling for Durability A standard method in databases for guaranteeing
durability is journalling [7]. Using journalling, before a transaction is executed,
it is first written to a log in persistent memory. If the system crashes and starts
up again, it recovers by re-executing all transactions in the log to obtain the
same state as prior to the crash. To guarantee durability to the user, the system
must ensure that a transaction log is actually stored in persistent memory before
confirming the execution of the transaction to the client.

In theory, having an initial state and a journal starting in this initial state
is enough to reconstruct the state at any point in time. However, in practice
this is not really sufficient: the log grows beyond bounds as entries can never be
removed, and moreover it is extremely inefficient to re-execute all transactions
when a journal grows large. For this reason, we want to store reduced forms
of states as a checkpoint, so that the system only has to recover from the last
checkpoint. We now discuss some methods for creating checkpoints.

Snapshotting A simple method for storing reduction results is snapshotting,
where we serialize the state and write this to persistent memory. However, a
complication here is that snapshotting a state containing suspended computa-
tions, while concurrently reducing the state, can lead to a loss of sharing in
computation as well as data in the snapshot. A simple solution to solve this
problem is to reduce the state to normal form before snapshotting it, which is
also the approach that we have implemented in our prototype. However, the
drawback of this approach is that snapshotting could be delayed for a long time
while a large update is being performed (and thus the journal can grow very
large, leading to long recovery times if the system crashes before the snapshot
is finished).

We now want to make sure that a snapshot is consistent: i.e., to make it look
as if the snapshot is created while no reduction was going on. For this we observe
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that the only nodes reachable from the root that change during reduction are the
sharing nodes. Therefore, we remember the original node referenced by a sharing
node when it is reduced during the creation of a snapshot, and we snapshot the
original node instead of its reduced version. During snapshotting we can clean
up the references to the original nodes. One complication here is that using this
scheme, there is no garbage collection during snapshotting, to solve this we only
remember the original reference for sharing nodes that have been constructed
before snapshotting starts.

Advantages of this approach are that snapshots can contain suspended com-
putations, allowing snapshotting of long running computations, and that sharing
is maintained in snapshots.

The biggest drawback of snapshotting is that we can not support states that
are larger than main-memory. Another drawback is that snapshotting can take
considerable time to complete. Moreover, large parts of the state might not have
changed between the snapshots. If there is a high load on the system, we might
have to snapshot quite often to keep the journals small enough for quick recovery
times. As the size of the state grows, taking snapshots takes a longer time, and
the journals grow larger between every subsequent snapshot.

Log-Structured Storage An alternative approach to store data is the use of log-
structured storage [8], also known as append-only storage. The main idea is that
the nodes in the state are stored as records in a log file, and records can point to
other records by their position in the file to encode graph edges. After execution
of a transaction, all new nodes in the state are appended to the log, followed by
a special root record that encodes the state environment after the transaction.
This model fits the functional model well, as it is inherently non-destructive.

Advantage of this approach is that it does not overwrite any data, thus if the
system crashes while appending records to a log, there is no risk of data loss.
State recovery is simply a matter of finding the last correctly written root record
from the end of the log file. One can consider this approach as a continuous snap-
shot of the system state in a single file. This has the advantage that we always
have an up-to-date snapshot of the system by appending only the changes since
the last snapshot, instead of writing the whole state every time. Further, states
that are larger than main-memory can be supported by dynamically loading
data from persistent memory, and only caching data in main memory.

A major complication of this approach is that the log only grows, and never
shrinks in size. Further, the layout of the log becomes sub-optimal for reading on
persistent media with high access latency, due to many I/O operations needed.
Garbage collection can be used to periodically clean up the log, and ensure
locality of reference to improve read performance.

Further, log-structured storage is inefficient for storing suspended computa-
tions. If we store a suspension, and later compute its result, we have to somehow
overwrite the suspension with the result such that the result is stored. We can
not actually overwrite the result in the log destructively, because if the system
crashes while updating a record, the log may be corrupted due to incomplete
written records. Instead, we have to write every path from the root to the result.
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There might be many paths to the result, and as we cannot see locally which
expressions reference the suspended computation, it can be expensive to find
all these paths. Furthermore, writing all these paths can be quite expensive in
terms of both I/O operations, as well as space requirements.

Mixed Approach We plan to further investigate a combined approach, taking
advantage of the strength both approaches, while minimizing their drawbacks.
The idea is that we split the heap into an active heap which may contain re-
ducible expressions, and a passive heap which must be in normal form. For the
active heap we use snapshotting, while for the passive heap we use log-structured
storage. However, instead of using special root records in the passive heap, the
active heap contains the root of the graph, and the passive heap only contains
data.

7 Forcing Evaluation of Transactions

During experimentation with our prototype, we found some problems with the
theoretical model in practice. One problem is that we may get long chains of
lazily evaluated thunks (suspended computations) in states as a result of a chain
of transactions that update the state, but that do not read the state. In practise,
this can lead to a stack overflow when reading after many updates. Another
problem is that thunk leaks may build up in the state. An example of the latter
is that a map function applied to a binary tree may leave thunks applied to Leaf

nodes, of which result may never be demanded. Another related problem is that
sharing nodes are created in the state during evaluation of result expressions,
but these are never garbage collected.

Our solution to these problems is to force the reduction of states to normal
form. This forces the reduction of all thunks, as well as to clean up sharing
nodes. Also, we limit the number of active transactions to avoid long chains of
thunks. In order to implement this, we need to keep track of which parts of the
state have already been reduced to normal form, in order to avoid duplicate
reduction of the state every time its reduction is forced. This is implemented in
our prototype by maintaining a flag on Data nodes that indicates whether it is
in normal form.

We found that simply forcing the reduction of states to normal form does not
work well for limiting the number of active transactions in a concurrent setting.
The problem is that if a small transaction is preceded by a very large transaction,
and we force the evaluation of the state created by the small transaction, this
also forces the reduction of the state produced by the large transaction. Because
of that, we can not know accurately when the reduction of the small transaction
is done, which is needed to count the number of active transactions.

A theoretical solution to this problem is to reduce only those parts of the state
that a transaction modifies. To implement this, for all reducible nodes, we need
to keep track of which transaction it belongs to. In order to force the evaluation
of a transaction, we need to force the reduction of all reducible nodes that belong
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to that transaction. We plan to further investigate the implementation of this
solution.

8 Evaluation

Using our prototype implementation, we have performed several experiments to
asses the performance of our parallel graph reduction method, and the perfor-
mance of the prototype implementation for transaction processing. Given the
limitations of our current implementation, we have performed the experiments
with artificial, and relatively small benchmarks1. All experiments have been run
on a database which resides fully in main memory, so that there is no overhead
from I/O operations.

Parallel Graph Reduction To evaluate our load balancing method for parallel
graph reduction, we measure the relative speedup that we can obtain for two
parallel algorithms: nfib, which naively computes the nth Fibonacci number,
and treesize, which computes the size of a binary tree. The latter is heavily data
dependent, whereas nfib is not. For both algorithm, we have implemented two
variants: one in our prototype language, and one as a native function imple-
mented in Java to simulate performance of a compiled language.

We have run two different sets of benchmarks. First, we measured the relative
speedup by executing the algorithm with 1 up to 48 threads, and dividing the
measured execution time with the execution time when using a single thread.
Second, we measured the overhead of our parallel graph reducer compared to a
serial graph reducer (where the serial graph reducer is obtained from our parallel
graph reducer by disabling the randomizer, as well as replacing concurrent result
sharing by a non-concurrent variant). We noticed increasing amounts of variation
in execution times as we used more threads, the results shown here are the
median of several measurements.

Figure 3 shows the relative speedup that we have measured. The dashed line
shows the ideal speedup that can be achieved, assuming a linear speedup as the
number of threads increases. The vertical lines show the boundaries of the NUMA
nodes of our testing system. We see that the relative speedup for both algorithms
is nearly ideal when all threads are able to run on a single NUMA node. When
more than one NUMA node is used, the increase in speedup suddenly drops for
the treesize benchmark. We suspect that this happens because the threads have
to access memory on another NUMA node when scaling beyond one node, which
takes longer than accessing memory locally.

Figure 4 shows concrete execution times obtained from our serial graph re-
ducer and our parallel graph reducer, and the overhead of parallel graph reduc-
tion compared to serial graph reduction.

1 All experiments are run on quad AMD Opteron 6168 system with 48 cores divided
over 4 processors, using scientific linux, running Oracle HotSpot JVM version 1.7.0
build 147.
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Fig. 3. Relative speedup of our parallel graph reducer.

treesize treesize-native nfib nfib-native
Serial 2666 ms 819 ms 3294 ms 626 ms
Parallel 3243 ms 1291 ms 4162 ms 819 ms
Overhead 21.6% 57.6% 26.4% 30.1%

Fig. 4. Running time of parallel reduction compared to serial reduction.

Concurrency In the next set of benchmarks, we evaluate the behaviour of our
prototype when executing transactions concurrently. First, we show that trans-
actions are actually executed concurrently, next we investigate the effect of con-
current transactions on transaction throughput, and finally we investigate the
effect of concurrent transactions on memory usage. All benchmarks are run on
a state that is initialized with a map, implemented as a binary search tree, from
keys 0, . . . , 100, 000 to the value 0. Using only a single thread, we update this
binary tree to increment all values by one. We then read individual values at
random from the map. The new state is constructed lazily, meaning that only
those parts of the state are evaluated that are actually read.

First, we show that transactions are actually executed concurrently. We mea-
sured that updating the state took 89 µs, reading a single value from this new
state took 97 µs, and then forcing the full evaluation of the state took 1405
ms. This effectively shows that the read transaction must have been executed
concurrently with the update transaction.

Figure 5 shows the effect of a number of updates on the throughput of read
transactions. It can be seen that throughput drops significantly in the first mo-
ments after an update, but recovers as a larger part of the state has been eval-
uated. In this same benchmark, we found that memory usage increased during
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Fig. 5. Influence of updates on transaction throughput for a map of size 10,000.

the first 10,000 transactions, after which memory usage remained constant. In-
spection of the heap showed that the map functions are pushed into the leafs of
the tree and these are never evaluated, also sharing nodes build up in the state
during evaluation, as described in Section sec:forced.

Transaction Throughput In our final set of benchmarks, we investigate the trans-
action throughput of our prototype. To do this, we use the same setup as for
the concurrency benchmarks, but we use multiple threads to issue transactions
against the system.

We found that reads scaled very well, from 36,000 transactions per second
with one thread up to 1,109,000 transactions per second with 48 threads. Updates
scaled much worse, from 15,857 transactions per second using one thread, to
93,139 transactions per seconds with 8 threads, and back to 49,714 transactions
per second using 48 threads. We found that synchronization is the bottleneck
here due to multiple NUMA nodes contending for a single lock, leading to a lot
of communication overhead. This has been validated by running the benchmark
with a limited number of cores, where no slowdown is observed after the peak
performance has been reached, and where the sustained throughput is higher
than when using all cores. A NUMA aware lock might solve this problem, but
we could not test this, as we did not have an implementation of this available in
Java.

9 Related Work

Asside from the work by Trinder [16], McNally [11] and Nikhil [12] on which
we build, other work has been done that is closely related to our work. In this
section we compare our work to this work, and discuss how our approaches differ.
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Persistent languages The first efforts to integrate transparent persistence with
programming languages was the language PS-Algol [3]. More recent efforts to
integrate programming with persistence include Persistent Haskell [5] and Per-
sistent Java [10]. In these approaches, objects can be marked as persistent roots,
and the system automatically ensures that any object reachable from these roots
is stored in persistent memory. One of the main differences from our model is
that this model is not inheritly transactional.

Approaches such as ACID State for Haskell [1] and Prevayler for Java [2]
extend this model of persistence by introducing transactions. The main difference
from our model is that in these approaches the interface to the data is part of the
program, while in our model it is part of the system. This makes interoperation
with other systems in these approaches more flexible, but it does not allow ad-
hoc queries which makes changing the schema of stored data difficult.

Persisting states in persistent memory Earlier work on persistent functional
languages used a generic persistent object-store [4] to manage storage of states
in persistent memory, since the creation of a persistent store is a complex task in
itself. We have instead created our own methods for storing states in persistent
memory, with a specific focus on the functional data model.

Parallel Graph Reduction A common approach for load balancing in parallel
graph reduction is work stealing [15]. In this approach, if an execution thread
does not have any more work to perform, it may ’steal’ a task from the work
pool of another execution thread. The main problem in work stealing is that
bookkeeping of tasks is relatively expensive, and if too many tasks are sparked,
parallel performance may be worse than sequential performance. To solve this
problem, functional programs are annotated to explicitly define where to spark
tasks. However, it requires a lot of effort from the user to find the optimal places
in the program to maximize performance. Interestingly, in our example programs
using our load balancing method for parallel graph reduction, we did not have
to provide any annotations to obtain good relative speedup results. However, we
do not yet know if this also holds for more complex examples.

10 Conclusions

This paper discusses the prototype implementation of a transactional functional
language, that can be used for constructing a transaction processing system
based on functional databases.

We have designed a language for describing transactions in our prototype,
as well as allowing the definition of stored transactions. We have described how
this language can be implemented through a process called binding, and we have
shown a method for executing transactions concurrently in our framework.

Further, the implementation contains a new method for load balancing in
parallel graph reduction, based on sharing results between threads, and ran-
domizing their reduction order. Also, we discussed different approaches to store
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functional states in persistent memory, allowing both the storage of suspended
computations, as well as supporting states that are larger than main-memory.

Besides the prototype implementation, we also discussed some problems with
the theoretical model that arise in practise. We have outlined a solution to solve
this problem, by forcing the evaluation of transactions.

The experimental validation of our results shows that our load balancing
method for parallel graph reduction resulted in a good relative speedups, and
may provide an interesting alternative to the work-stealing approach of load
balancing. We also investigated the behaviour of our prototype for transaction
processing applications, where we investigated both its behaviour under concur-
rent evaluation of transactions as well as their throughput.

Future Work The work described in this paper is only the first step of a much
larger project. There are many ways in which this work can (and will) be con-
tinued.

First, we will further investigate our prototype persistent functional language.
Currently it is untyped, and we will explore how it can be typed correctly and
efficiently. It would also be interesting to explore if this system can be integrated
with programs written in existing programming languages, such that the state
can be queried in an ad-hoc manner using our language, while flexible interfaces
can be created using traditional programming languages.

When developing examples, we realised that algorithms and data structures
that provide transactional concurrency under lazy evaluation have not yet been
investigated in the literature. In particular, a concurrent functional balanced
search tree is required for the efficient implementation of indices in functional
databases. We plan to define a theory of concurrency in functional transac-
tions, and investigate the development of algorithms in this setting, as well as
the possibility of automatically optimizing expressions to maximize concurrent
evaluation.

Concerning the implementation, we will further investigate our method for
load balancing in parallel graph rewriting, and compare and combine it with
work stealing approaches. We will also investigate other methods for the ran-
domization of execution paths. We also plan to further investigate the forced
evaluation of transactions. We have a theoretical solution (as explained above)
that we will implement, and evaluate its usability in practice. We will also further
investigate the different storage methods, and implement the mixed approach as
outlined at the end of Section 6.

In the long term, we also plan to investigate the distribution of persistent
functional languages among multiple computer systems for fault tolerance and
to increase performance.
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Abstract. Static software analyser tools can help in program compre-
hension by detecting relations among program parts. Detecting relations
among the concurrent program parts, e.g. relations between processes, is
not straightforward. In case of dynamic languages only a (good) approx-
imation of the real dependency can calculated. In this paper we present
algorithms to built a process relation graph for Erlang programs. The
graph contains direct relation through message passing and hidden rela-
tions represented by the ETS tables.

1 Introduction

Erlang [7] is a dynamically typed concurrent programming language. Erlang
was designed to develop highly concurrent, distributed, fault tolerant systems
with soft real-time characteristics. The dynamic and concurrent features of the
language makes static analysis hard, however the statically calculated informa-
tion and the built abstract representations from the source code can help the
developers in different phases of the software development lifecycle. The static
analysis techniques can help in debugging and maintenance tasks, or in program
comprehension.

The main goal of the RefactorErl project [4] is to support program com-
prehension for Erlang developers in numerous ways. It gives a semantic query
language to query information about the source. The tool can generate call
graphs with dynamic call information, and calculates side-effect analysis based
on it. RefactorErl provides a platform for module and function restructuring,
the clustering. It can generate function or module dependency graphs. The tool
has several interfaces, e.g it built into Emacs, it can be used from the Erlang
shell, and it provides a web interface for multi user usage.

Our goal is to extend the current functionality of the tool and implement
process relation analysis. We represent the processes as graph nodes and add the
relation as edges to the graph. In this paper we describe relations trough message
passing and through ETS tables. The latter one represent hidden relations among
processes, and the algorithms presented in this paper can be adopted to other
types of hidden relations (such as relation through files, and database usage).

The paper is structured as follows. In Section 2, we introduce the tool Refac-
torErl. In Section 3, we present the basic concurrent language construct of Er-
lang. In Section 4, we introduce a small client-server example. In Section 5, we
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describe a representation of process relations and give algorithms to detect them.
Section 6 applies the presented algorithms to the motivating example Section 7
discusses related work and Section 8 concludes the paper.

2 Background – RefactorErl

RefactorErl [9, 5] is a static source code analyser and transformer tool for Erlang.
The tool represents the source code in a Semantic Program Graph (SPG). This
graph stores lexical, syntactic and semantic information about the source code.
RefactorErl has as asynchronous semantic analyser framework and implements
thorough static semantic analysis based on this framework: variable, function,
module, record analysis, call graph and dynamic call analysis, side-effect analysis,
dependency analysis, data-flow analysis, etc.

Since RefactorErl provides a great platform for further analysis, we build our
process relation analysis based on it. Both syntactic (such as collecting message
passing expressions) and semantic (such the possible values of an expression by
data-flow reaching) information can be gathered efficiently from the SPG using
its query language. Therefore, the necessary syntactic information collection part
of the algorithm can be transformed to queries during our analysis.

3 Examined Language Constructs

In this section we describe the subset of language constructs, that are relevant to
describe our analysis methods. As we described in the introduction, our analysis
is focused on communication of parallel processes. We cover only the language
constructs and expression used in our paper. The reader can find more detailed
description on this topic in the documentation of the language [8].

3.1 Process creation

Every process in Erlang is identified with a process identifier (pid). The process
identifier is unique for every process. The function self/0 returns the process
identifier of the executing process.

In Erlang processes can be created with any of the functions spawn, spawn link,

spawn monitor, spawn opt etc. These spawning functions have similar behaviour,
thus in this paper we describe only the basic functions spawn/3 and spawn link/3.

Function spawn/3 The function spawn(Mod, Fun, Args) creates a new pro-
cess running the given function application Mod:Fun(Arg1, Arg2,..., ArgN)

and returns the pid of the created process (where Args = [Arg1, Arg2, ..., ArgN ]).
The newly created process is placed in the system scheduler queue.

If the given function does not exist, a pid is returned and the error is reported.
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Function spawn link/3 The function spawn link(Mod, Fun, Args) behaves
similarly as the function spawn/3, it creates a new process and returns its pid.
The difference is in linking the calling process and the created process.

Two processes can be linked with the function link/1 and unlinked with the
unlink/1. Terminating process emits the exit signal to every linked process. The
default behaviour is that if the exit signal is other than normal, it causes the
linked processes to terminate. If the process flag(trap exit, true) option is
enabled in the process, it will receive the exit signals from linked processes as
standard messages.

The function spawn link/3 spawns and links the created process to caller in
one atomic operation.

3.2 Processes Registration

Processes can be registered with a given name (atom expression) with the built in
function register(Name, Pid). After registration the process can be addressed
with its pid or with its registered name. The process can be unregistered with
the built in function unregister(Name). The registered process is automatically
unregistered when the process terminates.

3.3 Communication

Processes communicate by message sending and receiving. There are different
language constructs for sending and receiving messages.

Sending Messages Messages can be send with message sending operator (!) or
with functions erlang:send/2, erlang:send/3, erlang:send after/3 etc.

The expression Expr1 ! Expr2 sends a message Expr2 to Expr1 asynchrono-
usly, where Expr1 must evaluate to a pid or an atom (registered name).

If Expr1 evaluates to:

– pid – the message sending always succeed, even if the process does not exist;
– atom – the message sending succeeds only if a registered process exists with

the given name, otherwise a run-time error is raised.

Receiving Messages Messages can be received with the receive construct.
The skeleton of the receive construct is showed in Fig. 1. The expressions

enclosed in brackets ([ ]) are optional.
The receive expression suspends the execution of the executing process until a

message is received. The received messages are matched sequentially against the
given patterns. The body of the first matching branch where the guard expression
evaluates to true is executed. The return value of the receive expression will be
the result of the evaluated body. If none of the patterns match, or none of
the guard expressions evaluate to true, a new message is extracted from the
message queue. The after branch is evaluated if none of the received messages
mach the given patterns (and/or guards) in the given time interval MilliSec
(milliseconds).
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receive

Pattern1 [when Guard1] -> Body1;

...

PatternN [when GuardN] -> BodyN

[after

MilliSec -> AfterBody]

end

Fig. 1. Receive construct

3.4 Erlang Term Storage (ETS)

The ETS tables provide possibility to store large amount of data in the Erlang
run-time system and constant access time to this data. The data is stored in
dynamic tables as tuples. The table is created by a process, when the process
terminates the created ETS table is destroyed.

Creating New Tables A new ETS table can be created with the function
ets:new(Name, Options). The function returns a table identifier, that can be
used in accessing the table. The first argument is the name of the table (an
atom), the second argument is a list of the options. The used options in our
example are:

– named table – The table can be accessed with either its name and table
identifier;

– public – The table can be accessible for every process, either for reading or
writing.

The ETS table can be initialised as a set, ordered set, bag or dupliacate bag.
The default value is the set option.

Writing the Table New entities can be inserted to the given table with the
function ets:insert(Tab, Data). The Tab must be evaluated to a table iden-
tifier or an atom if the table is named. The Data is either a tuple or a list of
tuple expressions.

Reading the Table In our paper we use two different table reading methods.
The simplest is the ets:match(Table, Pattern) that matches the elements in
the table against the given pattern and returns the list of matching objects.
A more sophisticated function for data extraction is the ets:select(Table,

MatchSpec). In the MatchSpec we provide a list of match functions. Match
functions are three tuples, where the first element is a pattern, the second is a
list of guards and the third element is the description of elements of the result
list.
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4 Motivating Example – Job Server

We will use a simple client-server example to illustrate our model. The source
code of the server and client can be found in Fig. 2 and 3.

The server module provide interface functions for starting (start/0) and
stoping (stop/0) the server process.

The server module also provides interface functions for the client application:

– connect/1 – Connects the given client (Cli) to the server;
– disconnect/1 – Disconnects the given client (Cli) from the server;
– do/3 – Asks the server to execute the given function (Fun) from module

(Mod) on the given table (Tab).

The server exports the callback functions that initiates the server process
(init/1) and the iterating function (loop/1) that receives messages and per-
forms the asked tasks. The function loop(State) stores the connected clients
in the server state variable (State). If receives the message stop then termi-
nates. If receives the {connect, Cli} message, then updates the server state
with adding the new client to the list. If it receives the {disconnect, Cli}
message, then updates the server state with removing the client from the list.
If it receives the message {do, Mod, Fun, Tab}, it extracts the necessary data
from the provided table, executes the given function and writes the result to the
table and calls itself recursively.

The client module provides an interface function (start/1) to start the client
application. The function connects to the server process and creates a named,
public ets table (data). In the next step it spawns a new input reader process and
starts to execute the function loop/2. The function input/1 reads commands
iteratively from the input and sends these commands to the parent process. If
it reads the atom quit, it stops reading input.

The function loop/2 receives messages from the function input/1 and for-
wards the jobs to the server. If it receives the atom quit from the input it
disconnects from the server and prints the results.

There are several processes in our example. There is a client process to com-
municate with the server, a client process for input reading, a server process,
and processes to start and stop the server. We note here that the last two oper-
ations can be performed from the same process. Our goal is to present a model
to represent these processes and the relations among them.
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1 −module( s e r v e r ) .
2
3 −export ( [ connect /1 , do /3 , d i s connec t /1 ] ) . %% Cl i en t i n t e r f a c e
4 −export ( [ s t a r t /0 , stop /0 ] ) . %% Server i n t e r f a c e
5 −export ( [ i n i t /0 , loop /1 ] ) . %% Server c a l l b a c k s
6
7 −d e f i n e (Name, j o b s e r v e r ) .
8
9 %%%%%%%% Cl i en t i n t e r f a c e %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

10 connect ( C l i ) −>
11 ?Name ! {connect , C l i} .
12
13 d i s connec t ( C l i ) −>
14 ?Name ! {disconnect , C l i} .
15
16 do (Mod, Fun , Tab)−>
17 ?Name ! {do , Mod, Fun , Tab} .
18
19 %%%%%%%% Server i n t e r f a c e %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
20 s t a r t ( ) −>
21 register (?Name, spawn l ink (?MODULE, i n i t , [ ] ) ) .
22
23 stop ( ) −>
24 ?Name ! stop .
25
26 %%%%%%%% Server implementat ion %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
27 i n i t ( )−>
28 p r o c e s s f l a g ( t r a p e x i t , true ) ,
29 ?MODULE: loop ( [ ] ) .
30
31 loop ( State )−>
32 receive
33 stop −>
34 ok ;
35 {connect , C l i} −>
36 ?MODULE: loop ( [ Cl i | State ] ) ;
37 {disconnect , C l i} −>
38 ?MODULE: loop ( l i s t s : f i l t e r ( fun (A) −>
39 A /= Cl i
40 end , State ) ) ;
41 {do , Mod, Fun , Tab} −>
42 hand le job (Mod, Fun , Tab) ,
43 ?MODULE: loop ( State )
44 end .
45
46 hand le job (Mod, Fun , Tab) −>
47 Data = e t s : s e l e c t (Tab , [{{ ’ $1 ’ , ’ $2 ’} ,
48 [{ ’/= ’ , ’ $1 ’ , r e s u l t } ] ,
49 [ ’ $$ ’ ]} ] ) ,
50 Result = Mod: Fun( Data ) ,
51 e t s : i n s e r t (Tab , { r e s u l t , Result} ) .

Fig. 2. Job server skeleton code
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1 −module( c l i e n t ) .
2 −export ( [ s t a r t /1 , input /1 ] ) .
3
4 s t a r t ( C l i en t ) −>
5 s e r v e r : connect ( C l i en t ) ,
6 e t s : new( data , [ named table , pub l i c ] ) ,
7 spawn(?MODULE, input , [ s e l f ( ) ] ) ,
8 loop ( data , C l i en t ) .
9

10 loop (Tab , Name) −>
11 receive
12 qu i t −>
13 s e r v e r : d i s connec t (Name) ,
14 i o : format ( ”˜p˜n” , [ e t s : match (Tab , { r e s u l t , ’ $1 ’} ) ] ) ;
15 { job , {Mod, Fun}} −>
16 s e r v e r : do (Mod, Fun , Tab) ,
17 loop (Tab , Name)
18 end .
19
20 input ( Loop ) −>
21 case r ead input ( ) of
22 qu i t −>
23 Loop ! quit ,
24 ok ;
25 Job −>
26 Loop ! { job , Job} ,
27 input ( Loop )
28 end .
29
30 read input ( ) −>
31 [ e t s : i n s e r t ( data , Data ) | | Data <− i n i t d a t a ( ) ] ,
32 r e t u r n s t h e j o b t o b e e x e c u t e d ( ) .

Fig. 3. Client skeleton code
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5 Representing Process Relationships

Based on our case study we will illustrate how we detect and build the communi-
cation model of Erlang programs to represent the relationships among processes.
In this paper we focus on two type of relationships: relationships through mes-
sage passing and hidden dependencies through ETS tables.

We represent the process relationships in a labelled graph (G = (V,E)) that
describes the communication of Erlang processes. The vertexes (v ∈ V ) of the
graph are the processes. We use the ModuleName:FunctionName/Arity triple to
identify the process p, and if p is registered we also use its name. The labelled
edges of the graph (e ∈ E) represent:

– process creation ({spawn, spawn link}),
– process name registration (register),
– message passing (labelled with a tuple containing the sent message,
{send,Message}),

– ETS table creation (create),
– reading from an ETS table (labelled with a tuple containing the selection

pattern, {read, Pattern}),
– writing into an ETS table (labelled with a tuple containing the inserted data,
{write,Data}).

5.1 Identifying Processes

The dynamic nature of Erlang make static process detection hard, therefore we
use data-flow reaching [11, 10] to calculate the values of expressions which hide
the necessary information for process detection.

We identify different types of process nodes for functions which take part in
communication (Identification Algorithm):

1. A process node pi is created in the graph for each spawn* call.
2. A process node is present in the graph for each function (f) which takes

part in communication (when f sends or receives messages or spawns a new
process). In this case we have to identify whether the function f already be-
longs to a process from the first group. Therefore, we calculate the backward
call chain of the function f . If the backward call chain contains a spawned
function, then the function f belongs to the process of the spawned function
pi. Thus, the communication edges generated by f are linked to pi.

3. When a function g takes part in communication, but its backward call chain
does not contain a spawned function we create a new process node pj . This
process is identified with the module, the name and the arity of g if there is
no communicating function in the backward call chain. Otherwise we select
the last communicating function h in the call chain and we identify the
created pj process with module, name and arity of h.

4. There is a “super process” (SP ) in the graph which represent the runtime
environment. It represents the fact that communicating functions can be
called from the currently running process, for example from the Erlang shell.
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We create the listed process nodes in a predefined order:

1. At first we collect the spawn expressions from the source code and add them
to the set S.

2. We create a process node ps for each s ∈ S spawned process and add it to
the set Ps

3. We collect the communicating functions C and create its process node (using
the second and third step of the identification algorithm).

4. We link every created ps (s ∈ S) process to its parent process with a spawn∗
edge.

5. We select each register expression from the source code and add the appro-
priate register link to the graph.

6. Each process node pj that is not a spawned process (pj 6∈ Ps) is linked to
the node SP .

To identify a spawned process we have to calculate the possible values of the
actual parameters of the function call spawn*(ModName, FunName, Args). We
calculate the values based on the result of the data-flow analysis [11], while it is
a static analysis it is always an approximation of the real dynamic information.

5.2 Message Passing

The next step is to add the message passing edges to the graph. We calculate the
message passing edges based on the data-flow information presented in [10]. That
analysis links the sent and received messages with a flow edge in the Semantic
Program Graph of RefactorErl (Section 2). We use the following algorithm to
calculate the communication edges:

1. We select the message sending expressions from the source code and add it
to the set M .

2. For each m ∈ M we calculate the receive expression rm which receives the
sent message.

3. We calculate the containing process node pm for each m ∈M expression and
the containing process node pr for each rm, and add the {send,Message}
link from pm to pr (where Message is the sent message from the expression
m).

5.3 Hidden Communication – ETS tables

ETS tables can be considered as a form of shared memory in Erlang: one process
can write some data in it and share it with other processes. Therefore, ETS tables
represent hidden communication among processes, thus we add them as a special
process relation to our model. Every created ETS table is added to our graph as
a special process node, and read and write operation added as special message
passing edges:

1. The first step is to select the created ETS tables and add them to the set E.
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2. For each e ∈ E table we create a process node pe and link it to the parent
process. The parent process is the process of the function which calls the
function ets:new/2.

3. The next step is to detect whether the found table can be referred using
its name. We analyse the option list (the second parameter of the call
ets:new/2) and calculate its possible values by data-flow reaching. If the
named_table atom is one of them, then we have to calculate the possible
names of ETS table by data-flow reaching, and add the name of the ETS
table as an attribute to the process node.

4. Each ETS table manipulation (e.g. insert*, delete*) added as write op-
eration to the graph between the ETS table node and the process of the
expression calling the ets functions.

5. Each query operation (e.g. match*, select*) added as read operation to
the graph between the ETS table node and the process of the expression
calling the ets functions.

Calculating write edges. The relation
1f
; denotes the first order data flow reach-

ing [11]. n1
1f
; n2 means that the value of node n2 can be a copy of the value of

node n1. We use this relation to calculate the ETS write edges in the following
steps:

1. Collect the function calls which refer to an ETS table and change it. Add it
to the set W . For example, ets:insert(Tab, Data).

2. For each w ∈W call calculate the referred ETS table with data-flow reaching.
At first the possible values of w1 (denoted with Ew) have to be calculated:

e ∈ Ew and e
1f
; w1 (where w1 is the first parameter of the call expression

w, e is an expression which value can flow to w1). If there is an expression
e ∈ Ew which is an atom and its value is some name, then we select the
process node (pe) referring to the named ETS table some name. Otherwise
we should find a table reference in Ew which creates the ETS table (a call
to ets:new/2), and select the process node pe of the created ETS table.

3. Determine the process node where the call ets:insert/2 belongs to: pw.
To identify this process we use a similar algorithm that was presented in
the second and third step of the Identification algorithm. We determine the
function f which contains w, and calculate the process of f .

4. Connect the process node pw and the found ETS table node pe.

Calculating the read edges works similarly to write edges, but we have to
analyse the query functions of the ets module.

The function ets:rename/2 also has to be considered, because it changes the
name of the ETS table, and only the new name can be used. To handle this we
will refine our analysis using the Control-Flow Graphs of Erlang programs [10].

6 Motivating Example – Resulted Model

We will illustrate the presented algorithms step by step using the client-server
example from Section 4.
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Process Identification.

1. There are two spawn expressions in our example at the 7th line in the client
module and in the 21th line of the server module, we add their expression
nodes to the set S.

2. We create to process node for them: server:init/0 and client:input/1:
Ps.

3. We collect the communicating functions and add them to C: client:start/1,
client:loop/1, client:input/1, client:read input/1, server:do/3,

server:connect/1, server:disconnect/1, server:start/1,

server:stop/0, server:loop/1, server:handle job/3. We create the
process node for them using the identification algorithm: client:start/1,
server:start/1, server:stop/0. Some example:

– We create the process node client:start/1, because there is no spawned
process in its backward call chain, and the last function in its backward
call chain is itself.

– We do not create a process node for client:loop/1, because it contains
client:start/1 in its backward call chain and it already has a process
node.

– We do not create a process node for server:loop/1, because there is a
function in its backward call chain which is spawned, thus it already has
a process node: server:init/0.

4. All spawned process is linked to its parent process: client:start/1
spawn→

client:input/1 and server:start/0
spawn link→ server:init/0

5. There is a register expression in the 21th line of the server code, thus we add

a register link to the graph: server:start/0
register→ server:init/0

6. Processes client:start/1, server:start/1, server:stop/0 are linked
to the SP process.

The resulted graph is shown in Figure 4.

SP

client:start/1

server:start/0

server:stop/0

client:input/1
spawn

server:init/0 job_sever
spawn_link

register

Fig. 4. Process Relation
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Message Passing Information.

1. The message passing expression set M contains six expressions from the
following lines: the 11th, the 14th, the 17th and the 24th lines of the server
code, and the 23th and the 26th line of the client code.

2. The process identifier part of the message sending expressions from the server
code is the macro ?Name, thus the receive expressions for the server code
must be in the spawned and register process job_server. This is the receive
expression from the body of the function server:loop/1.
The process identifier part in the client code is a variable, so we use data-flow
reaching to calculate its value, which is the result of the function self() in
the body of the function client:start/1. Therefore, the receive expression
must be in the process of client:start/1: it is the receive expression form
client:loop/2.

3. We have to identify the process of the function server:loop/1 which is
server:init/1 and link the messages from the processes of the message
sending expressions (server:stop/1, client:start/1) to it.
Similarly, we link the messages from the process client:input/1 to the
process client:start/1.

The resulted graph is shown in Figure 5.

SP

client:start/1

server:start/0

server:stop/0

client:input/1

spawn

server:init/0 job_sever

{send, {connect, Cli}}

{send, {disconnect, Cli}}

{send, {do, Mod, Fun, Tab}}

spawn_link

register

{send, stop}

{send, {job, Job}}

{send, quit}

Fig. 5. Communication Model

ETS Usage Information.

1. The set E contains only one expression from the 6th line of the client code
which creates a table.
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2. We create the process node ets:new/2 in the graph and link it to its parent
process client:start/1.

3. The second parameter of the ets:new/2 call contains the named_table atom,
therefore we add the value of the first parameter of the call (data) as a
property of the process node. In this example the parameter is an atom,
thus the result of the data-flow reaching is only the atom expression.

4. We select the write operations from the source code: there is a call ets:insert
in the 51th line of the server code and in the 31th line of the client code. We
link the process node of the manipulated ETS table to the process node of
the caller function. For example in the server code:
– We add the w = ets:insert(Tab, {result, Result}) expression to

the set W .
– We calculate Ew with data-floe reaching. Ew contains the Tab variables

from the functions server:handle job/3, server:loop/2,

client:loop/2 and the first actual parameter of the function call
loop(data, Client) from the body of client:start/1. Therefore the
value of w can be the atom data, so it can refer to the ETS table data.
Thus pe is the process node ets:new/2, data.

– The process of the expression w is the process of handle_job/3: pw =
server:init/0.

– We create a link from the process server:init/0 to ets:new/2, data.
5. We select the read operations from the source code: there is a call ets:select

in the 47th line of the server code and a call ets:match in the 14th line of
the client code. We can select the affected process as it was presented in case
of the call ets:insert.

SP

client:start/1

server:start/0

server:stop/0

client:input/1

spawn

server:init/0 job_sever

{send, {connect, Cli}}

{send, {disconnect, Cli}}

{send, {do, Mod, Fun, Tab}}

ets:new/2 data

create

{read, {result, ’$1’}}

spawn_link

register

{send, stop}

{send, {job, Job}}

{send, quit}

{write, Data}

{read, 
[{{’$1’,’$2’},

 [{’/=’, ’$1’, result}]}, 
[’$$’]}]

{write, 
{result, Result}

Fig. 6. Communication Model (extended with ETS usage)

The graph, extended with the ETS usage, is shown in Figure 6:
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– The grey edges represent the process creation relations.
– The dashed edges stand for the message passing.
– The dotted edges denote the ETS manipulations.

7 Related work

Analysing parallel and distributed Erlang software are key research topics. For
example, one goal of the ParaPhrase project [1] is to analyse Erlang programs,
statically detect parallel patterns and transform the source code to adjust the
advantages of manycore architectures.

The RELEASE project [2] aims to help in developing well designed scalable
distributed Erlang software by defining the SD Erlang (Scalable Distributed Er-
lang). They define language primitives to create process groups. The frequently
communicating processes should be placed to the same group and to the same
Erlang node. However, the explicit process placement based on the communica-
tion flow, is not straightforward for the programmers. Therefore SD Erlang aims
to design automatic process placement based on connectivity distance metrics.

The goal of the static analyser tool, Dialyzer [3], is to identify software dis-
crepancies and defects, such as type mismatches, race condition defects, etc.
The tool detects message passing by analysing the Core Erlang code [6], and can
report concurrent programming defects.

8 Conclusions and Future Work

In this paper we presented a model to represent the communication among
Erlang processes. The model contains the most important relations between
processes, i.e. process hierarchy, communication through message passing, and
hidden relations generated by ETS usage.

We want to make the presented algorithms more efficient and more precise
based on the result of the control-flow analysis.
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Abstract. With the increasing shift towards parallel programming, par-
allel programs are still notoriously difficult to implement. Indeed, par-
allelism is usually made even more difficult by programmers typically
using sequential or small-scale parallel programming techniques. Func-
tional languages such as Erlang are increasingly starting to dominate
the parallelism scene with their typical first-class light-weight parallelism
models.
In this paper we introduce a new process-based skeleton framework for
Erlang based on streaming models. In particular, we show a number of
core “primitive” skeletons that can be used as a basis of more complex
parallel systems. We give details of the skeletons, in Erlang, and in our
full paper we promise to show promising and scalable speedups on a
manycore machine on a number of examplars.

1 Introduction

The single-core processor, which has dominated for more than half a century is
now obsolete. Machines with dual-, quad- and even hexa-core CPUs are already
common place in desktop machines and CPUs with 50 cores as standard have
already been announced 3. There has been a seismic shift between sequential and
parallel hardware, but programming models have been very slow to keep pace.
Indeed, many programmers still use outdated sequential models for programming
parallel systems, where parallel concepts have effectively been bolted-on to the
language, rather than high-level parallel constructs being first-class. What is
needed is an effective solution to help programmers think parallel. In the context
of parallel programming, parallel design patterns represent a natural language
description of a recurring problem and of the associated solution techniques that
the parallel programmer may use to solve that problem.

3 Intel’s Many Integrated Core Family

511



An algorithmic skeleton, is a computational, abstract entity, typically de-
scribed by a concurrent activity graph, modelling and embedding a frequently
recurring parallelism exploitation pattern, provided to the application program-
mer as a new abstraction in the programming framework at hand; a parallel
application is therefore developed as a composition of skeletons, which may be
specialised by providing (suitably wrapped) sequential portions of code imple-
menting the business logic of the application.

In this paper we introduce skel: a process-based streaming skeleton library
for Erlang. skel aims to model the most common set of “primitive” skeletons
that are typically used to make up more complex systems.

In particular, the contributions of our paper are:

1. we describe a new parallel skeleton library for Erlang. To our knowledge, this
is the first time parallel skeletons have been exploited this way in Erlang;
and,

2. we demonstrate the effectiveness of our skeletons on a set of synthetic bench-
marks, therefore demonstrating the parallel capabilities of Erlang;

2 Erlang

Erlang is a strict, impure, functional programming language with support for
first-class concurrency. This concurrency model allows the programmer to be
explicit about processes and communication, but implicit about placement and
synchronisation. Erlang supports a lightweight threading model, where processes
model small units of computation (tasks) that are executed on a capability. The
scheduling of processes is handled automatically by the Erlang Virtual Machine,
which also provides basic load balancing mechanisms. Erlang typically has three
primitives for handling concurrency:

– spawn(), allowing new functions to execute in a lightweight Erlang process;
– !, allow messages to be explicitly sent from one Erlang process to another;

and,
– receive, to allow messages to be received in another process queue.

Furthermore, Erlang also supports fault tolerance, by allowing groups of pro-
cesses to be supervised, and new instances of processes can be spawned in the
case failure. Although Erlang supports concurrency, there has been little research
into how Erlang can be used to effectively support deterministic parallelism.

3 Skeletons in Erlang

The design of the skel library has been based upon the design of FastFlow [1], a
parallel programming framework for multi-core platforms written in C++, but
with significant changes to take advantage of features provided by the Erlang
language and VM.

2
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3.1 Skeletons

So far we have only implemented seven core “primitive” skeletons so far, however
they can be combined to make more complex skeletons. They are:

Seq a skeleton to encapsulate an indivisible portion of sequential code.
Pipe the functional composition of multiple skeletons. In skel, these are im-

plicit.
Farm a skeleton that schedules inputs onto replicas of a pipeline, and then

collects the results back into a single stream.
Map a skeleton that can decompose each item, put each decomposed part

through its own replica of a pipeline, and then recompose the results back
into a single item again.

Reduce a skeleton that applies a treefold, in parallel, over each decomposed
item.

Feedback a skeleton that can send independent items back through a skeleton.
Ord a skeleton to restore order to a stream of items4.

The skeletons we have implemented here are a set of foundation skeletons,
encapsulating common functional patterns. By investigating foundational skele-
tons, we can explore the parallel capabilities of Erlang while providing a strong
framework that allows for more complex skeletons to be implemented in the
future.

Most of these skeletons need to have one or more skeletons nested inside them
to work correctly, for instance a Farm skeleton requires at least a single Seq
skeleton to be nested within it or there would be no point in having the Farm
skeleton in your pipeline. When more than one skeleton is specified to be nested,
those skeletons will be assembled into a pipeline that is nested inside the other
skeleton. The only two skeletons that cannot have other skeletons nested inside
them are Seq, which is designed to encapsulate sequential code, and Reduce,
which applies a binary function to each item.

The skel API that is presented to programmers is a single function:

skel:run(Pipeline , ItemSource ).

– Pipeline an ordered list of skeletons that each item on the stream is to be
processed through.

– ItemSource either a list of stream items, or is a module with functions that
can supply stream items.

The process will then receive a message in response with the contents
{sink_results, ResultItems} where ResultItems is a list of the results of
sending the items from ItemSource through Pipeline. In the code examples,
this is denoted by % -> {sink_results, ItemSource} (sink_results just tells
the receiver that this message contains the results from the sink).

4 The implementation of this skeleton is not described, though it is present for appli-
cations where the order of items is important.

3
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{seq, Fun}

Fun

Tn · · · T1 T 0
n · · · T 0

1

Fig. 1. The Seq Skeleton

In the following schematics, circles should be read as explicit Erlang processes
– if they are white then they have some user-defined behaviour in them, as
specified by the identifier inside them, and if they are black they only have some
system-level logic happening in them. Rectangles with solid edges denote an
internal pipeline, and the outer dotted rectangle denotes which processes are
contained in that particular skeleton. Data messages travel along the lines with
arrows, though as mentioned, they are not explicit channel objects.

Pipe Pipe is the only skeleton that does not have any of its own processes, and
does not explicitly exist. The basic building block of our library is a pipeline, so
skeletons are defined in terms of pipelines with 1 or more stages. We then use
algorithms (termed “assembly algorithms”) to turn this skeleton declaration into
a system that can run computations on a stream of items. Our implementation
currently contains two assembly algorithms: a parallel one (the default) and
a sequential one. Functionally, both assemblers will give you exactly the same
results, however the assembled process structures (and hence the parallelism
degrees) are completely different.

The parallel assembly algorithm is one that maps over the list of skeleton
declarations, using the details in each declaration to create a list of what we
term a “maker functions”. We then do a right fold over this list, so that we start
each one in reverse pipeline order, starting with the process id of a sink (the
end of the pipeline). The “maker functions” take the process id of the receiving
part of the next skeleton, start up that skeleton’s requisite processes, and then
returns the process id of the receiving part of that skeleton, hence the fold right.

The sequential assembly algorithm makes each skeleton declaration into a
single function, then composes them together into an entirely sequential version
of the pipeline. On the face of it, this may not seem sensible, however it is useful
for benchmarks and for working out, at a functional level, what each skeleton
does. All future focus is on the parallel versions of each skeleton.

Seq Seq is the most basic of all the skeletons. It consists of a single process
that applies a function, Fun, to any data messages it receives, before sending
the results on to the next skeleton. Should that process receive an end-of-stream
message it will exit immediately. A schematic of this skeleton is shown in Figure
1, and an example of its operation can be seen in Figure 2.

4
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skel:run([{seq , fun (X) -> X+1 end}],

[1,2,3,4,5,6]).

% -> {sink_results ,[2,3,4,5,6]}

Fig. 2. An example of the Seq Skeleton

Tn · · · T1 T 0
n · · · T 0

1

Pipe1

{farm, Pipe, M}

...

Pipe2

PipeM

Fig. 3. The Farm Skeleton

Farm In a Farm skeleton, an emitter forwards inputs into one of M replicas of
the pipeline, Pipe, which then forwards results onto a collector and then the
next skeleton. A schematic of this skeleton is shown in Figure 3, and an example
of its operation is shown in Figure 4.

The emitter process is very simple. When it receives a data message, it for-
wards that message on to any single one of the pipeline replicas. When it receives
an end-of-stream message, it forwards this message to every single one of the
pipeline replicas. At the moment the scheduling algorithm is round-robin, but
we expect to add other algorithms in the future.

The collector process is also simple. When it receives a data message (from
any of the pipeline replicas), it forwards the message onto the next skeleton. The
collector waits for M end-of-stream messages before exiting, to make sure that it
has received all messages from each of the pipeline replicas.

Map In a Map skeleton, each item is decomposed by the Decomp function into
a number, mi, of parts, then each of these is forwarded into one of mi replicas of
the pipeline, Pipe. After the pipes, each part is then forwarded to a recomposer,
which combines all the parts back into a single item using the Recomp function.
A schematic is shown in Figure 5, and an example of its operation is shown in
Figure 6.

The Decomp function is for disassembling a collection-like item into a list
of its constituent parts, and the Recomp function is for turning the list of con-
stituent parts back into a collection-like item. If you’re dealing with lists, you

5
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skel:run([{farm , [{seq , fun(X)-> X+1 end}],

3}],

[1,2,3,4,5,6]).

% -> {sink_results ,[2,5,3,6,4,7]}

Fig. 4. An example of the Farm Skeleton

Tn · · · T1 T 0
n · · · T 0

1

{map, Pipe, Decomp, Recomp}

...

Pipe2

Pipem

Pipe1

Decomp Recomp

Decomp =̂ Ti ! [Ii,1 · · · Ii,m]

Recomp =̂ [I 0i,1 · · · I 0i,m] ! T 0
i

Fig. 5. The Map Skeleton

can just use an identity function, and helpfully Erlang has tuple_to_list/1

and list_to_tuple/1 if you’re moving around tuples, like we are in Figure 6.
The decompose process is less trivial than a normal emitter. It waits for items

and then splits them into many parts. After each data message is split, each part
is labelled with a unique tag that relates to the input item, the index of that
part in the collection of parts, and the total count of parts for that item (this
is the reason we have the stack in each data message). Each part is then sent
through a replica of the pipeline.

As we cannot make any assertions about the number of parts that the Decomp
function will produce, the decompose process also has the ability to start more
replicas of the pipeline if it does not have enough for all the parts of an input.

The recompose process is also quite complicated. It waits for each part, then
puts it into a store (keyed by item unique tag and part index), along with the
data about how many parts it has so far received, and how many it is expecting.
When it has received as many as it is expecting, it calls the Recomp function
with a list of the inputs that it has received (therefore preserving the order the
parts were in when they came out the Decomp function), which produces a single
item again, which it then forwards to the next skeleton. The process also stores
the highest number of parts that it has received for any input, in order to know
how many end-of-stream messages to wait for before exiting.

6

516



skel:run([{map , [{seq , fun(X)-> X+1 end}],

fun erlang:tuple_to_list /1,

fun erlang:list_to_tuple /1}],

[{1,2},{3,4}]).

% -> {sink_results ,[{2,3},{4,5}]}

Fig. 6. An example of the Farm Skeleton

Tn · · · T1 I 0n,(1···m) · · · I 01,(1···m)

Decomp

Decomp =̂ Ti ! [Ii,1 · · · Ii,m]

R =̂ Ii,j ! Ii,k ! I 0i,(j,k)

{reduce, R, Decomp}

R

R

R

R

R

R

R

Fig. 7. The Reduce Skeleton

Reduce The Reduce skeleton executes a parallel treefold over the decomposed
parts of each input. Inputs are first decomposed into several parts, and then
they’re submitted into a binary tree of reduce processes. The reduce processes
compute their result with both parts of the item that they receive, then forward
the result on to the next reduce process. A schematic is shown in Figure 7, and
an example of its operation is shown in Figure 8.

The decompose process waits for inputs, then splits them into mi parts.
After each data message is split, each part is labelled with a unique tag that
relates to the input item, and a number that indicates how many reduce steps
it will go through (this is calculated as dlog2(mi)e). The parts are distributed
to the correct level of the reduce process tree corresponding to mi parts. Two
parts are given to each reducer, and then any reducers still waiting for a part
are given a unit input. The unit input is a system-level message that would act
as the unit value for the computation (this is explained further, later). When
the decomposer receives an end-of-stream message, it forwards 2 end-of-stream
messages to each reducer at the widest level of the tree.

Again, we cannot make any assertions about the number of parts the Decomp

function produces, so process instantiation is dynamic.
The reduce processes wait for parts or unit values. For the first part (or unit

value) of an item that they get, they store it, and then wait for another. When
they receive the second part (or unit value), they use a fairly simple algorithm to

7
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skel:run([{reduce , fun(X,Y) -> X + Y end ,

fun erlang:tuple_to_list /1}],

[{1,2,3,4,5,6},{7,8,9,10,11,12}]).

% -> {sink_results ,[21,57]}

Fig. 8. An example of the Reduce Skeleton

Tn · · · T1 T 0
n · · · T 0

1

Feedback

{feedback, Pipe, Feedback}

Pipe

Feedback =̂ T 0
i ! true | false

Fig. 9. The Feedback Skeleton

work out what to forward. If they received two unit values, they forward the unit
value. If they received a part and a unit value, they forward the part, and only if
they received two parts do they combine them using the reduce function, before
forwarding on the result of the computation. Before forwarding an input, the
reducer decrements the count of steps that the part has to go through. When
this count gets to zero, the reduce label on the data message is taken off, to
preserve the invariant that the label stack is the same on leaving a skeleton as
it is when it entered it. When a reducer receives two end-of-stream messages, it
forwards a single end-of-stream message to the next reducer.

Feedback The Feedback skeleton sends items through a pipeline, Pipe, and
then checks a predicate, Feedback, to find out whether it should send that input
through the pipeline again or forward it to the next skeleton. A schematic is
shown in Figure 9, and an example is shown in Figure 10.

The only complication in this skeleton comes in the race condition between an
end-of-stream message coming in, and items that are going through the feedback
loop. Because we cannot prioritise one “stream” over another in Erlang (which
would let us prioritise the feedback queue, and just stop receiving from the
previous skeleton), we instead maintain two counters of items in two parts of
the skeleton. The counters are stored in a separate process, due to the lack of
any shared state in Erlang, which also allows us to make any operations on
them atomic, and allows the receiver to subscribe to updates anyone makes to
the counters. The first counter keeps a count of items in the pipeline, and the
second keeps a count of items in the pipeline. Once an end-of-stream message is
received, the receiver process (the black circle in Figure 9) continues receiving,

8
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skel:run([{feedback , [{seq , fun(X) -> X+1 end}],

fun(X) -> X < 5 end}],

[1,2,3,4,5,6,7,8,9,10]).

% -> {sink_results ,[5,6,7,8,9,10,11,5,5,5]}

Fig. 10. An example of the Feedback Skeleton

but also waits to be told when both counters get to zero. When both counters
reach zero, the end-of-stream message can be forwarded without fear of race
conditions.

4 Related Work

Since the nineties, the “skeletons” research community has been working on high-
level languages and methods for parallel programming [4, 5, 3, 6, 2, 9]. Skeleton
programming requires the programmer to write a program using well-defined
abstractions (called skeletons) derived from higher-order functions that can be
parameterized to execute problem-specific code. Skeletons do not expose to the
programmer the complexity of concurrent code, for example synchronization,
mutual exclusion and communication. They instead specify abstractly common
patterns of parallelism – typically in the form of parametric orchestration pat-
terns – which can be used as program building blocks, and can be composed or
nested like constructs of a programming language. A typical skeleton set includes
the pipeline, the task farm, map and reduction.

Early proposals of pattern-based parallel programming frameworks have been
mainly focused on distributed memory platforms, such as clusters of worksta-
tions and grids [13, 11]. All these skeleton frameworks provide several parallel
patterns covering mostly task and data parallelism. These patterns can usually
nested to model more complex parallelism exploitation patterns according to the
constraints imposed by the specific programming framework. Recently skeletons
gained renewed popularity with the arrival of multi-core platforms, the conse-
quent diffusion of parallel programming frameworks, and their adoption in some
programming frameworks, such as FastFlow [1], Intel Threading Building Block
(TBB) [10] and to a limited extent the Microsoft Task Parallel Library [12].
Google MapReduce [7] brings to the mainstream of out-of-core data processing
the map-reduce paradigm. The main features of these frameworks, as well as
many other experimental ones, are surveyed in [8].

9
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5 Conclusions and Future Work
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Abstract. The ICFP programming contest has been run every year since 1998.
This year, participants were invited to program a virtual mining robot to col-
lect resources called ‘lambdas’ while avoiding falling rocks, getting trapped, or
drowning. The overall score of a route was determined by the number of lambdas
collected and the number of moves required to collect those lambdas. The prob-
lem specification was extended four times over the course of the competition,
which demanded efficient and correct code to be produced under tight deadlines.
As such, this has provided an excellent means of substantiating the claim that
functional programming languages help to produce code that is both modular
and reusable (Hughes, 1989).
In this paper we describe a solution based on our submission to this year’s prob-
lem. This solution uses many features of Haskell: pure immutable data structures,
laziness, higher-order functions, concurrency, and exception handling. Each of
these features plays an essential part in our overall solution. We present our work
as a tutorial, where we demonstrate how these key elements can be composed to-
gether. In this exposition, we stress the importance of how the code was structured
in such a way that made safely refactoring and extending the model a relatively
easy task, and how Haskell’s strong type system made it possible for our team to
remain agile under changing specifications.

1 Introduction

This paper describes a solution to the 2012 ICFP programming contest.3 This program-
ming contest allows participants to write solutions in any language, or combination
of languages, in a time frame of 72 hours. Our solution was entirely implemented in
Haskell (Peyton Jones, 2003), a lazy, purely functional, statically typed language. We
describe our solution as it was developed in the 72 hours of the contest, plus some later
refactoring for readability and bug fixing. We rely on multiple features of Haskell:

Laziness and Purity Each of the different solvers explores (potentially overlapping)
parts of the solution space. Calculating the results of a next move is not a cheap
operation, as it requires examining the whole map. In particular, there could be
falling rocks anywhere on the map, and computing the new state after each move
requires updating the positions of each of these rocks. To avoid duplicating this

3 http://icfpcontest2012.wordpress.com/task/
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expensive operation across the different solvers, they share a single, immutable,
and lazily generated representation of the search space, by means of a digital search
trie.

Higher-order functions We parameterised a class of solvers by a comparison func-
tion, used to rank the lambdas when deciding which to visit next. In this way, we
could easily develop new solvers which used slightly different heuristics. As the
problem specification changed, this turned out to be quite useful. For example, dur-
ing the course of the contest the problem was changed such that the mine could
flood, making lower portions inaccessible. To cope with this, we defined two new
solvers: one which collected ‘lower’ lambdas first, before they were inaccessible;
the other collected ‘higher’ lambdas first to try to prevent the robot from drowning.
Both were defined simply by changing the comparison function.

Concurrency Instead of trying to find a single algorithm that performs well on any
given mine, we decided to have several solvers compete. Each of these solvers uses
different heuristics to compute a solution. The main program forks off threads for
each solver and returns the best overall solution.

Exception handling According to the contest specifications, programs are sent a SIG-
INT (a POSIX interrupt signal) at a fixed time limit. Upon receiving this signal, the
program has ten seconds to return a result. Our main program uses this time to kill
all auxiliary threads and output the best result. As a consequence, we will ‘never’
run out of time (as long as the scheduler is fair, the killing of threads is fast, etc.)
and our program will print a valid solution. If any individual thread should crash,
all other solvers will remain unaffected.

Fig. 1. Graphical representation of a mine

Figure 1 shows a graphical depiction of a game in progress. The goal is to compute a
sequence of moves for the robot to collect as many lambdas as possible, without being
crushed by falling rocks. If all the lambdas are collected, reaching the exit (portrayed
as “LIFT” in Figure 1) gives an extra score bonus.

This paper is organised as follows. Section 2 introduces our model, at the same time
explaining the problem specification. Section 3 describes the use of tries to represent the
game state and paths through the mine, while Section 4 describes the solvers and how
they use the trie. In Section 5 we explain the use of concurrency for running multiple
solvers in parallel, and in Section 6 we discuss the problem specification extensions and
the associated changes to our solution. We conclude in Section 7, with a brief discussion
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on possible improvements, and guidelines for developing Haskell code in a group with
tight deadlines.

2 Pure modelling

In this section we describe how we model and simulate the problem in Haskell.

2.1 Model

The model represents the entire state of a mine at any given time, and forms an impor-
tant interface for the rest of the system: the simulator (Section 2.2) takes one state of
the model to the next, the parser must produce a value of this type while the visualiser
outputs a visual rendering of the model (Section 2.3) , and various strategies can be em-
ployed based on a particular starting state and make use of data held within the model
(Section 4).

The basic building block of a mine is a Tile, which holds information about what
exists at a particular coordinate:

data Tile = Robot |Wall | Rock Bool | Lambda | Earth | Empty | Exit

Note that rocks are parameterised by a Boolean which indicates whether or not a rock is
falling: when the robot is directly beneath a falling rock, it is crushed. Two convenience
functions are provided, one which indicates whether or not a particular tile is a rock,
and the other distinguishes rocks that are falling:

isRock :: Tile→ Bool
isRock (Rock ) = True
isRock = False
isRockFalling :: Tile→ Bool
isRockFalling (Rock True) = True
isRockFalling = False

Each tile in the mine is given a specific coordinate, which is simply a pair of Int values
named Coord:

type Coord = (Int, Int)

Putting these elements together, we are interested in an array that is indexed by Coords
and contains Tiles. This describes the layout of the mine:

type Layout = Array Coord Tile

Using an array for this representation is appropriate, since we need to perform lookups
of elements at coordinates very often, and arrays have constant time lookup.

It is useful to define a function that checks the value of a tile in the layout at a
particular coordinate, by dereferencing the appropriate location in the array:
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isTile :: Layout→ Coord→ Tile→ Bool
isTile l xy t = l ! xy≡ t

There is an important caveat to using this function and others like it which make use
of (!), the unsafe indexing operator. This operator makes no effort to ensure that the
coordinates being sought are within the bounds of the array, and this is a danger which
could easily result in an exception being thrown at runtime. We use (!) instead of a safe
lookup for efficiency reasons.

Another useful utility function finds the coordinates of all the tiles which satisfy a
given predicate:

findTiles :: (Tile→ Bool)→ Layout→ [Coord ]
findTiles p = map fst ◦filter (p◦ snd)◦assocs

This works by getting a list of all the associations in the array and representing these
as a value of type [(Coord,Tile)]. This list is then filtered by the predicate, before the
coordinates are extracted.

While the Layout structure holds much of the information required during the game,
some essential features are lacking, such as the number of moves that have passed since
the beginning of the game. The whole state is saved in a structure named Mine, which
contains all the information required for assessing the current score:

data Mine = Mine {layout :: Layout
, robot :: Coord
, lambdas :: Int
, moves :: Int}

In particular, Mine stores the current position of the robot along with the number of
remaining lambdas and the number of moves it has taken to reach this point, since this
is an important part of calculating the score.

When the robot has finished collecting all the lambdas, the exit opens and the robot
is allowed to leave the mine. Our representation indicates that the robot has exited when
the robot’s coordinates correspond with the Exit tile in the layout:

isDone :: Mine→ Bool
isDone mine = isTile (layout mine) (robot mine) Exit

The task of ensuring that the robot can only enter an exit when all lambdas have been
collected is left to the simulator, which we explain in the next section.

2.2 Simulation

The simulation code determines how the system responds to the robot’s actions: each
time the robot makes a move, the world is updated, and a new Mine value is calculated.

The robot can perform several moves: moving up, down, left, right, waiting, or
aborting the mission. For brevity, the data constructors that represent these moves con-
tain only the initial letter of each action:
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data Move = L | R | D | U |W | A

We often calculate coordinates based on a sequence of moves; the following function
returns a coordinate that has been shifted by some movement value:

( ) :: Coord→Move→ Coord
(x,y) L = (x−1,y )
(x,y) R = (x+1,y )
(x,y) D = (x ,y−1)
(x,y) U = (x ,y+1)
(x,y) = (x ,y )

For example, this operator is used to verify whether the robot has been crushed by a
rock, which happens whenever the tile directly above the robot is a falling rock:

isDead :: Mine→ Bool
isDead mine = isRockFalling (layout mine ! (robot mine U))

The score is calculated by multiplying a constant factor per collected lambda minus
the number of moves the robot made. The constant depends on how the game ended,
and is 75 when all lambdas were collected, 25 when the robot dies, and 50 if the robot
aborted (which is the default action when no more moves are made):

type Score = Int
score :: Mine→Mine→ Score
score mine0 mine = multiplier ∗ collected−moves mine

where collected = lambdas mine0− lambdas mine
multiplier | isDone mine = 75

| isDead mine = 25
| otherwise = 50

The central function used to simulate the robot’s progression through a mine is step,
which takes a current mine, a move, and steps the simulator through that move:

step :: Mine→Move→Mine
step mine A = mine
step mine move = mine′

where
(layout′,robot′) = stepRobot mine move
layout′′ = array ((bounds◦ layout) mine)$

concat [ updRocks (mine {layout = layout′}) (x,y) (layout′ ! (x,y))
| y← [1 . .h ],x← [1 . .w]]

moves′ = 1+moves mine
lambdas′ | isTile (layout mine) robot′ Lambda = lambdas mine−1

| otherwise = lambdas mine
(w,h) = (snd ◦bounds◦ layout) mine
mine′ = mine {layout = layout′′
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, robot = robot′

, lambdas = lambdas′

, moves = moves′}

When a move other than an A is requested, the simulator returns the result of the updated
record mine′. The layout field is updated in two stages. First the value of the layout is
calculated after the robot has made its step and stored in layout′, and then this value
is used in creating a new array, layout′′ that contains the state of the mine after all the
falling of rocks has been calculated. This follows the problem specification.

Updating the robot is left to the stepRobot function, which returns the layout mod-
ified to take into account the robot’s movement, and gives the new coordinate of the
robot:

stepRobot :: Mine→Move→ (Layout,Coord)
stepRobot mine move =

case l ! xy′ of
Earth → (l // [(xy′,Robot),(xy,Empty)],xy′)
Empty → (l // [(xy′,Robot),(xy,Empty)],xy′)
Lambda → (l // [(xy′,Robot),(xy,Empty)],xy′)
Exit | lambdas mine≡ 0

→ (l // [(xy′,Robot),(xy,Empty)],xy′)
Rock | (move≡ L ∨ move≡ R) ∧ isTile l (xy′ move) Empty

→ (l // [(xy′,Robot),(xy,Empty),(xy′ move,Rock False)],xy′)
→ (l // [(xy,Robot)],xy)

where l = layout mine
xy = robot mine
xy′ = xy move

Moving towards earth, an empty tile, or a lambda simply updates the robot position,
leaving an empty space behind. Moving towards the exit is only allowed if all the lamb-
das have been collected. Moving towards a rock is possible if the movement is sideways,
and there is empty space next to the rock being pushed. All other movements are invalid,
and the robot remains in the same position.

Another crucial function is updRocks, which is responsible for updating the position
of rocks after the robot has moved:

updRocks :: Mine→ Coord→ Tile→ [(Coord,Tile)]
updRocks mine xy (Rock )
| isFallDown l xy = [(xy,Empty),(xy D ,Rock True)]
| isFallRight l xy = [(xy,Empty),(xy D R,Rock True)]
| isFallLeft l xy = [(xy,Empty),(xy D L,Rock True)]
| isFallLambda l xy = [(xy,Empty),(xy D R,Rock True)]
| otherwise = [(xy,Rock False)]
where l = layout mine

updRocks xy tile = [(xy, tile)]

526



The functions isFallDown, isFallRight, isFallLeft, and isFallLambda determine whether
the rock will fall in a particular direction. These are all predicates that take a Layout and
a Coord, and simply output the appropriate Bool.

Keeping the entire state of a mine as a single value of type Mine enables the defi-
nition of step to remain relatively simple, since all of the required data for an update is
held in a single structure. This complete encapsulation of state means that there are no
implicit outside dependencies to handle when trying to evaluate a particular mine.

2.3 Input and Output

The input maps are supplied in text format. To read these into our model, a text parser
was written using Attoparsec4, where operations were based ByteStrings for efficiency
reasons. The input format is simple, so the parser is unsurprising and therefore omitted
in this presentation.

Visualising the maps in a user-friendly way was not a requirement of the contest.
However, especially during development, it is helpful to visualise maps, generated so-
lutions, and to be able to manually play each mine. Due to time considerations we
developed only a simple ANSI text-based visualiser, which was enough for our testing
purposes.

3 The game trie

One of the key benefits of Haskell is its purity, allowing us to share game states across
different solvers. Our strategy for exploiting this is to spawn a number of different
agents which explore a shared data structure that holds paths to different game states
together with their scores.

3.1 Tries

The structure we use to encode paths on the mine is a non-empty trie (Hinze, 2000):

data Trie k v = Trie {root :: v,branches :: Map k (Trie k v)}

An important aspect of a value of type Trie k v is that it can behave like a map of type
Map [k ] v, and this forms the basis of an intuitive interface with a number of well-
understood standard functions. These standard functions on Trie will prove useful in
our strategy code (Section 4), since the entire search space of a game can be encoded as
a trie, mapping sequences of moves to a game state:

type GameTrie = Trie Move GameState
data GameState = GameState {gameStateMine :: Mine

, gameStateScore :: Score}

For instance, we can lookup the GameState associated with a certain path by using the
familiar lookup function:

4 http://hackage.haskell.org/package/attoparsec
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lookup :: (Eq k,Ord k)⇒ [k ]→ Trie k v→Maybe v
lookup [ ] (Trie v ) = Just v
lookup (k : ks) (Trie kvs) = Map.lookup k kvs>>= lookup ks

In our setting, a Path is a list of moves:

type Path = [Move ]

The type GameTrie operates much like the type of Map Path GameState, but its encod-
ing is very efficient; each branch of the tree encodes one possible move, as illustrated
in the following figure:
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In this example, starting from some initial game state GS0, the robot can move up and
die, resulting in game state GS1, with no further paths. Alternatively, the robot can go
right, and then proceed either up, down, or abort. We compute a GameTrie by starting
with an initial state (of score zero), and considering only valid moves from the current
position:

mkTrie :: (Eq k,Ord k)⇒ v→ (v→ [k ])→ (v→ k→ v)→ Trie k v
mkTrie v f next = Trie v (Map.fromList [(k,mkTrie (next v k) f next) | k← f v ])
gameTree :: Mine→ GameTrie
gameTree mine0 = mkTrie (GameState mine0 0 (hash mine0))

(goodMoves◦gameStateMine)
(mkGameState mine0 ◦gameStateMine)

We omit the function mkGameState, which simply computes the current GameState,
and function goodMoves, which returns the valid moves for the robot. One of the key
features of our solution is that the GameTrie represents all the paths in the mine, and
this trie is shared over the different robot strategy algorithms. This means that states are
never computed twice; if strategy one already went down a particular path, strategy two
can immediately get the corresponding game state for that path, without having to step
through each move.

Another useful property of values of type Trie k v is that they behave like trees
of type Tree ([k ],v), which brings another family of standard functions that are well
understood. In particular, we can traverse the tree in breadth-first order, computing all
possible paths of increasing lengths:

flatten :: Trie k v→ [([k ],v)]
flatten = concat ◦ levels
levels :: Trie k v→ [[([k ],v)]]
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levels tree = (map extract ◦ iterate expand) [([ ], tree)]
where

expand :: [([k ],Trie k v)]→ [([k ],Trie k v)]
expand = concatMap (λ (sk,Trie kts)→ map (first (:sk)) (Map.toList kts))
extract :: [([k ],Trie k v)]→ [([k ],v)]
extract = map (λ (sk,Trie v′ )→ (reverse sk,v′))

In Section 3.2 we will use variations of these functions to build efficient pathfinding
algorithms that are used to search for solutions within the GameTrie.

3.2 Pathfinding

The key to our strategy is finding our way around a Trie structure, and identifying a path
which leads to a high score. The following function, for example, would find the paths
to the exit:

solve :: Mine→ [(Path,GameState)]
solve mine = (filter (isDone◦gameStateMine◦ snd)◦flatten◦gameTree) mine

Since flatten produces a breadth first traversal of the tree, we know that the result at the
head of the list will have the shortest path. Furthermore, since the predicate applied is
isDone, we know that the solution found is for a completed mine. Therefore, the head of
this list will contain a solution with the maximal score for a completed mine: problem
solved! Well, not quite.

While this strategy would eventually find such a solution for completable mines,
it is prohibitively inefficient. In addition, since the tree is potentially very large, and
not all mines are necessarily completable, an exhaustive search will generally not be
possible. In order to solve this, we break the problem down into finding paths to a
number of intermediate states given by some predicate: the basis for the searches will
still be variations on breadth first search, but the goal is different. Rather than finding
paths to different values of type GameState, we will seek values of type GameTree,
so that we can search for new paths based on the returned tree, thus giving us more
sophisticated searching strategies, where intermediate goals are reached and further
analysis is performed on the trees that follow on from the paths to those goals.

A useful utility function along these lines is findPaths, which looks for paths to a
particular coordinate:

findPaths :: GameTrie→ Coord→ [(Path,GameTrie)]
findPaths tree dest = bfs ((≡) dest ◦ robot ◦gameStateMine) tree

This can be used, for example, to find a path to the Exit once the task of collecting all
the lambdas is complete:

findExits :: GameTrie→ [(Path,GameTrie)]
findExits tree = findTiles (≡ Exit) (layout (getMine tree))>>=findPaths tree

This works by first finding the appropriate tile, and, if such a coordinate is found, then
it is used by findPath to calculate a path.
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At the heart of findExits is an efficient breadth first search algorithm, with a more
general interface than that of solve. A naive breadth first search can be described as
follows:

type KTrie k v = ([k ],Trie k v)
bfsNaive :: (v→ Bool)→ Trie k v→ [KTrie k v ]
bfsNaive p tree = (filter (p◦ root ◦ snd)◦ stems) [([ ], tree)]

This makes use of the function stems, which is similar to flatten, but returns a list of
paths with corresponding subtrees:

stems :: [KTrie k v ]→ [KTrie k v ]
stems [ ] = [ ]
stems ((sk, t@(Trie kts)) : skts) = (reverse sk, t) : stems skts′

where skts′ = skts++[(k′ : sk, t′) | (k′, t′)←Map.toList kts ]

The stems function produces a breadth-first traversal of the tree, but is certainly not
optimal: this function makes no effort to ensure that some common state has not been
investigated several times: certain paths lead to exactly the same state, and we have no
reason to assume that there will be any implicit sharing of these states.

3.3 Hashing

The lazy construction of the tree structure is unaware of any sharing which might could
have been exploited between nodes that are equal. As a result, a search of the tree will
likely result in repeated inspections of equal nodes and their children: this happens
whenever there is more than one path to a particular state. To avoid this expensive
recomputation, the breadth first search algorithm is modified to contain an accumulator
that keeps a track of the nodes visited so far, and will not queue nodes whose values
have already been visited elsewhere.

Rather than have the accumulator store the entire state of each visited mine, and
have to perform an expensive equality operation, a hash of the mine is stored instead.
We therefore extend the type of a GameState so that it contains a Hash:

type Hash = Int
data GameState = GameState { . . .

, gameStateHash :: Hash}

An instance of Hashable is provided, giving us a means of obtaining the hash of a Mine:

instance Hashable Mine where
hash mine = hash ((hash◦assocs◦ layout) mine

,(hash◦ robot) mine
,(hash◦moves) mine)

An accumulator, which is a set of hashes, is then added to the machinery of stems that
allows states which have already been visited to be pruned:
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stemsPrune :: Hashable v⇒ Set Hash→ [KTrie k v ]→ [KTrie k v ]
stemsPrune [ ] = [ ]
stemsPrune visited ((sk, t@(Trie v kts)) : skts) = case insertM (hash v) visited of

Nothing → stemsPrune visited skts
Just visited′→ (reverse sk, t) : stemsPrune visited′ skts′

where skts′ = skts++[(k′ : sk, t′) | (k′, t′)← Map.toList kts ]
insertM :: Ord a⇒ a→ Set a→Maybe (Set a)
insertM x xs | Set.member x xs = Nothing

| otherwise = Just (Set.insert x xs)

The idea is to keep an accumulator that checks if the value of the tree being examined
has been visited before. If it has been visited, then this value is rejected by the function
insertM, and the next candidate for traversal is considered. If the value has not yet been
visited, then the tree that contains it is added to the output of the search, its content is
added to the set of visited values, and children are scheduled for traversal.

This lets us define a breadth first search that does not visit the same subtree twice:

bfsPrune :: Hashable v⇒ (v→ Bool)→ Trie k v→ [KTrie k v ]
bfsPrune p t = filter (p◦ root ◦ snd)◦ stemsPrune Set.empty $ [([ ], t)]

The beauty of this solution is that it requires only the values v of the Trie k v structure
to be Hashable.

Another performance issue is that stems uses a list to hold the queue of subtrees left
to visit: the performance of appending to the end of a list is poor, and this can be easily
improved by using a queue structure instead, and replacing the call to stemsPrune with
an adequately instantiated call to stemsPruneQ.

stemsPruneQ :: Hashable v⇒ Set Hash→ Seq (KTrie k v)→ [KTrie k v ]
stemsPruneQ visited q = case Seq.viewl q of

Seq.EmptyL → [ ]
(sk, t@(Trie v kts)) :<q′→ case insertM (hash v) visited of

Nothing → stemsPruneQ visited q
Just visited′→ (reverse sk, t) : stemsPruneQ visited′

(foldr (flip (|>)) q′ [(k′ : sk, t′) | (k′, t′)←Map.toList kts ])
bfsPruneQ :: Hashable v⇒ (v→ Bool)→ Trie k v→ [KTrie k v ]
bfsPruneQ p t = (filter (p◦ root ◦ snd)◦ stemsPruneQ Set.empty◦ return) ([ ], t)

This is a relatively straight-forward transliteration of the list based version into one that
uses a Seq datastructure instead.

On a final note about pathfinding, the findPaths function takes a destination coordi-
nate as an argument, and filters out results the results of a breadth-first traversal until a
state is found where the robot is at the coordinate. A heuristic for possibly improving
the search is by using a distance metric which determines how close a given point is
to the destination, and using this information to give priority to certain elements within
the queue. This is the basis of the well known A* algorithm, which is widely used in
path finding and graph traversal.
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To implement this algorithm, much of the structure present in bfsPruneQ can be
reused, where Seq is replaced by a MinQueue structure which orders the elements ac-
cording to some comparison function. For brevity, these details are omitted, but the
development revolves around choosing an appropriate comparison function: a valid op-
tion would be to use the well-known Manhattan distance between two points, although
there are other possible options. This function is then used to form the priorities of ele-
ments within the MinQueue, which arranges its elements so that those which are closest
to the destination are favoured when considering the next value to explore in the search.

4 Robot strategy

Our solution relies on using several simple strategy algorithms competing for finding
the best solution. A strategy takes a GameTrie and computes possible paths through the
mine, together with their score:

type Strategy = GameTrie→ [(Path,Score)]

We can now write a variation of the solve function (from Section 3) that produces a
Strategy using bfsPruneQ:

solveS :: Strategy
solveS = map (second getScore)◦bfsPruneQ (const True)

This encodes the strategy of trying all possible paths, in a breadth-first manner. Natu-
rally, this strategy is not very efficient, and will only work on very small maps. We also
have a variant strategy that looks ahead only a number steps, and then takes one step
along the best path found so far. This strategy finds locally optimal solutions.

An alternative strategy orders the remaining lambdas, tries to reach each one of
them, and then walks towards the exit:

cmpS :: Comparison→ Strategy
cmpS cmp tree
| lambdas (getMine tree)≡ 0 = case listToMaybe $ findExits tree of

Just (p, tree′)→ [(p ,getScore tree′)]
Nothing → [([A],getScore tree )]

| otherwise = case pathToLambda cmp tree of
[ ] → [([A ],getScore tree)]
((p, tree′): _)→ (p,getScore tree′) : map (first (p++)) (cmpS cmp tree′)

We omit functions getMine and getScore, simple accessors of the GameTrie data struc-
ture. Function pathToLambda takes a ranking function for lambdas and returns a list of
paths:

pathToLambda :: Comparison→ GameTrie→ [(Path,GameTrie)]
pathToLambda cmp tree = concatMap snd (sortBy cmp dests)

where dests = map (λcoord→ (coord,findPaths tree coord))
(findTiles (≡ Lambda) ((layout ◦getMine) tree))
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We can now define multiple strategies simply by instantiating the comparison func-
tion of cmpS:

eqCmpS, lowCmpS,highCmpS :: Strategy
eqCmpS = cmpS (λ → EQ)
lowCmpS = cmpS (cmpCoords (λ ( ,y) ( ,y′)→ compare y y′))
highCmpS = cmpS (cmpCoords (λ ( ,y) ( ,y′)→ compare y′ y))

Strategy eqCmpS treats all lambdas equally, while lowCmpS prefers lambdas located
the lowest in the mine. This strategy might make sense when the lower parts of the
mine become harder to access as time goes by (see Section 6.1).

We also have more complicated strategies involving cmpS, such as preferring lamb-
das that are part of large clusters.

5 Concurrency and exception handling

Strategies turn the representation of a game tree into a lists of paths with their cor-
responding score. By sharing the game tree structure, a number of concurrent worker
threads using different strategies can compete with one another to find an optimal so-
lution. The communication between these threads occurs through the use of Haskell’s
MVar values: these are mutable variables which can be shared and synchronised be-
tween threads. The task of each worker is to improve this solution with whatever they
might encounter in their list of candidate answers.

improve :: (Ord s,NFData s,NFData a)⇒MVar (a,s)→ [(a,s)]→ IO ()
improve mvBest = mapM_ (λx→ x ‘deepseq‘ modifyMVar_ mvBest (cmpBest x))

where cmpBest x best = return (if snd x> snd best then x else best)

Here, each solution x is a tuple of type (s,a), where s is a score that will be maximised,
and a the answer itself. We require s and a to have an NFData instance to be able to
force evaluation using deepseq, since the entire computation of the value of x should
occur before blocking on the mvBest variable. The MVar is a reference to the best so-
lution found so far; improve updates this MVar whenever a better solution is found.
As this worker might be interrupted before the list is fully evaluated, it is important
that modifyMVar_ is an atomic operation: if the worker raises an exception while it is
modifying mvBest, then the value is restored to its original state.

The workers are spawned by spawnWorkers, which creates a new asynchronous
thread for each of the answers returned by the strategies, and then waits for all the
threads to finish.

spawnWorkers :: (Ord s,NFData s,NFData a)⇒MVar (a,s)→ [[(a,s)]]→ IO ()
spawnWorkers mvBest xss = do workers← mapM (async◦ improve mvBest) xss

mapM_ waitCatch workers

An important feature of this function is that the failure of one worker does not affect
the others, since waitCatch will silently ignore any worker which has thrown an excep-
tion. While deceptively succinct, these two functions provide a powerful mechanism by

533



which multiple concurrent workers can be spawned to improve the value of a solution,
all the while dealing with exceptions in a safe way by allowing the best known solution
to prevail in the case of failure.

Since we can rely on the fact that the best solution will not be lost when the workers
fail, we can make use of this mechanism to allow the system to demand an immediate
answer at any point during the computation. This fits nicely into the framework of the
contest, where programs are given a set amount of time within which to find a solution,
and then given a signal which raises an exception when time is up and an answer is
required. To exploit this, the function run is used, which spawns the workers to perform
the task of finding the best solution, and provides a callback that should be executed
whether the computation terminates naturally, or an exception is thrown.

run :: (Ord s,NFData s,NFData a)⇒ (a,s)→ [[(a,s)]]→ ((a,s)→ IO ())→ IO ()
run best xss callback = catchUserInterrupt $

bracket (newMVar best)
(λmvBest→ takeMVar mvBest>>= callback)
(λmvBest→ spawnWorkers mvBest xss)

The function bracket :: IO a→ (a→ IO b)→ (a→ IO c)→ IO c takes three arguments:
the initial computation, which initialises the best result found so far, the final compu-
tation, which reads the best result found and calls the callback, and the intermediate
computation, which spawns the workers and waits for all threads for finish. The final
computation of a bracket is performed even if an exception is raised, which is precisely
the behaviour required here when the callback is an action which outputs the best known
solution.

One problem remains: if an exception is raised within a bracket, then after the final
computation has been executed, the exception will be re-raised so that it can be han-
dled elsewhere in the system. If left unhandled, the program would exit and indicate
that there was an error. The catchUserInterrupt function is a helper which allows the
program to gracefully exit when the interrupt signal which is expected from the judging
environment is received.

catchUserInterrupt :: IO ()→ IO ()
catchUserInterrupt = handle (λe→ case e of UserInterrupt→ return ()

→ throwIO e)

Note that if the exception received is not one that is expected, then the exception is
thrown again and allowed to propagate further.

For testing purposes it is convenient to be able to kill worker threads after a partic-
ular amount of time, in order to simulate the judging environment. This is implemented
using the timeout function which runs an IO computation within a thread and kills the
thread if no result is returned within a given time limit.

runWithTimeout :: (Ord s,NFData s,NFData a)
⇒ Int→ (a,s)→ [[(a,s)]]→ ((a,s)→ IO ())→ IO ()

runWithTimeout t best xss callback = timeout t (run best xss callback)>> return ()

This works as expected since exceptions are used to kill a thread that has expired.

534



6 Changing specifications

One of the challenges was to deal with changing specifications. This was very easy to
cope with in our model, and only minor extensions were required, mostly confined to
the Mine and Tile datatypes, and the stepRobot and updRocks functions.

6.1 Flooding

The first extension was to add flooding to the mines. In certain maps, there is a ris-
ing level of water. The robot operates normally underwater, but it gets destroyed if it
spends too many turns underwater. Modelling flooding requires changing the Mine data
structure, extending it to contain additional information:

data Mine = Mine { . . .
, flood :: Int
, waterproof :: Int
, water :: Int}

These fields store the rate of flooding, how long the robot can last underwater, and the
current level of water.

6.2 Trampolines

The second extension introduces trampolines, which act like teleporters. Once entering
a trampoline, the robot gets instantly moved to a fixed destination location, and the
trampoline disappears.

Similarly to flooding, trampolines requiring adding extra information to the Mine
data structure:

data Mine = Mine { . . .
, trampolines :: Set Coord
, targets :: Set Coord}

These fields store the current position of trampolines and their associated targets. Ad-
ditionally, the stepRobot function has to consider the case of moving into a trampoline,
and we need two new tile types: trampolines and targets.

6.3 Beards and razors

The third extension introduces beards. Beards are a new type of tile, that expand into the
surrounding empty spaces in a fixed number of turns. The robot cannot traverse beards,
but can collect and apply razors, which eliminate all beards surrounding the robot.

Again, the Mine structure has to be extended, this time with a growth factor and the
number of available razors:

data Mine = Mine { . . .
, growth :: Int
, razors :: Int}
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Two new tile types are added (beard and razor). A new robot “movement” is to apply
a razor, and the updRocks function now needs to update the tiles adjacent to beards as
well.

6.4 Higher order rocks

The last extension introduces higher order rocks, which are rocks that upon impact
(from falling) transform into a lambda. Each higher order rock counts as a lambda for
the purpose of determining whether all lambdas have been collected.

We add a second Boolean to the Rock constructor to distinguish higher order rocks
from normal rocks:

data Tile = . . . | Rock Bool Bool

The updRocks function now treats higher order rocks just like ordinary rocks, apart
from a small special case to check if a higher order rock should be transformed into a
lambda. Additionally, the calculation of the number of lambdas after a step (lambdas′ in
Section 2.2) becomes more complicated. Two falling rocks can fall into the same spot,
with one disappearing. If the rock that disappears is a higher order rock, then there is
one fewer lambda in the mine. For simplicity, we calculate the number of remaining
lambdas by traversing the entire layout:

lambdas′ = length $ findTiles (λ t→ t ≡ Lambda ∨ isRockLambda t) layout′′

7 Conclusion

We have described our solution to the 2012 ICFP programming contest, and seen how
Haskell’s features are useful during fast paced prototyping. Both low-level features
(such as concurrency and exception handling) and high-level features (such as purity
and laziness) are important to our development, and Haskell has reached an excellent
maturity status, both with regard to its and features as well as to the quality of libraries
available. We now give some general advice for code development in similar situations,
based on our experience, and reflect briefly on possible improvements to our solution.

7.1 Practical guidelines

Testing Even though Haskell’s strong type system prevents many common program-
ming mistakes, we still had many bugs in our code. In particular, our submitted
version often returns rather poor solutions because of bugs in the simulator. We fo-
cused our development in supporting the extensions and improving the strategies,
but it would have been more effective to find and eliminate bugs.

Communication Our team was split into two groups in different locations. We found
that frequent short meetings were helpful to keep the team up-to-date with the
whole development, while allowing individual team members to work on separate
parts of the program. Video communication, and screen/application sharing is use-
ful for distance communication, but whiteboard brainstorming is invaluable, and
hard to mimic in a distance communication.
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Model first We started developing our solution by writing the model (Section 2.1).
With this in place, different team members could develop the surrounding infras-
tructure more or less independently. Changes to the model were discussed with
everyone before being implemented, and applied as soon as possible. This helped
to minimise the mismatch between different components, and to allow development
in parallel effortlessly.

Pair programming We have alternated our development between whole team discus-
sion, individual coding sessions, and pair programming. We found pair program-
ming to be an effective way of coding the more challenging parts of our solution,
with the advantage that both team members become familiar with the code.

With regard to possible improvements to our solution, while the pathfinding algo-
rithms take care to avoid going back to the same state several times, it would be nice to
have this built into the tree structure itself. However, this would mean not using a tree
structure, but rather some kind of directed graph. The lazy construction of such a graph
requires the use of an appropriate constructor function to be called when elements are
missing in a node lookup. The details of such an implementation are beyond the scope
of this paper.
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Abstract. Non-exhaustive local search methods are fundamental tools
in applied branches of computing such as operations research, and in
other applications of optimisation. These problems have proven stub-
bornly resistant to attempts to find generic meta-heuristic toolkits that
are both expressive and computationally efficient for the large problem
spaces involved. This paper complements recent work on functional ab-
stractions for local search by examining three fundamental operations on
the states that characterise allowable and/or intermediate solutions. We
describe how three fundamental operations are related, and how these
can be implemented effectively as part of a functional local search library.
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1 Introduction

Metaheuristics (also known as local search) refer to a collection of methods for
tackling combinatorial problems which are ubiquitous in areas including the
sciences, engineering, economics, business and logistics [1]. These methods stand
in contrast to “exhaustive” (global) search (such as Branch & Bound (B&B)
which explicitly and/or implicitly examine all candidates in the solution space),
in that they do not guarantee to find an optimal solution to the problem.

In many tasks however time is limited, and finding higher quality solutions is
more important than finding a provably optimal solution. When problem sizes
become large enough global methods are unable to complete in practical time
limits and in these cases metaheuristics have been shown to give better solutions
to the same problems in practical time bounds.

Combinatorial problems of significant size, and of particular interest to meta-
heuristic research, are often derived from real world problems. The development
of metaheurisitcs to tackle these often leads to specialised hybrids which can
include exhaustive search methods as components[2,3].

Toolkits to aid in metaheuristic design and research have been created, how-
ever they are complex, frequently (though not by design) obscuring their inner
workings. By analogy with crafting wood, these tools are adequate when one
works ‘with the grain’ defined by the tools’ abstractions and interfaces, but
their limitations[4] are painfully exposed when a new problem requires working
‘against the grain’.
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One solution is to build tools from finer-grained components, and we have pre-
viously argued [5] that functional abstractions provide a powerful substrate for
developing metaheuristics from combinators. Functional languages like Haskell,
and implementations like the Glasgow Haskell Compiler, contribute layers of
mechanism for the translation of these high level abstractions into efficient low
level code, thus helping to resolve the tension between expressiveness and effi-
ciency.

This paper contributes a substantial case study in abstraction design and im-
plementation, providing the first account of how low level local search operations
can be effectively implemented in a functional setting.

The paper is structured as follows. Section 2 provides a brief description of the
library that is used in this paper, and how the low level operations for interaction
with combinatorial problems interact with it. Section 3 reminds the reader of the
Travelling Salesperson Problem, a well known and intensively studied problem
that is used as an example in this paper. Section 4 describes perturbation and
neighbourhood methods, and shows how higher order functions can facilitate the
easy conversion between these two

Section 5 decomposes Perturbation methods, providing finer grained opera-
tors for the design of low level interactions with problems. Section 6 describes
Recombination methods and shows how they have elements in common with
some perturbation methods. Section 7 Uses the decomposition to investigate a
broad range of different perturbation operations for the TSP. Section 8 details
conclusions further work.

2 Combinators for Metaheuristics

This paper uses an experimental library [5] for the expression of metaheuristic
algorithms in the pure functional language Haskell. Components of metaheuris-
tics are expressed as transformations over streams of values, usually solutions to
problems. These components are built, managed and manipulated by a library of
combinators. The stream transformations are looped and given seed data, to cre-
ate list generators that can be examined to yield the results of the metaheuristic
search.

For example, a first-found iterative improver is the repeated selection of the
first element from a series of neighbourhoods which are transformed so that they
always improve upon their seed. The concept of an improving neighbourhood is
captured using a higher order function called improvement which transforms a
neighbourhood function. The selection of the first element, is simply map head,
from the standard Haskell libraries, and using this would give a First Found
Iterative Improver. A completed and looped first-found iterative improver can
be defined at the ghci command-line by the expression below, where nF is the
problem specific neighbourhood function, and seed is an initial solution for the
program to explore from.

ffii nF = map head ◦ improvement nF
> loopP ffii nF seed
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The library frequently uses finite lists to represent collections or groups, but
also uses lazy lists to represent streams of unlimited length. This can cause
confusion, so to distinguish between the uses of lists we define the following type
synonyms:

type Stream a = [a]
type Group a = [a]

The various well known metaheuristic algorithms (Iterative Improvement,
TABU search, Simulated Annealing, Genetic Algorithms) all interact with their
problems through one of the three basic operations. Within the functional toolkit,
these generic operations will be expressed as forms of stream transformation:

perturbation :: Stream s → Stream s — a single solution is changed to yield
a different, but similar, solution. This can be seen in algorithms such as
random walk and simulated annealing.

neighbourhood :: Stream s → Stream (Group s) — a single solution is used
as the seed to generate a collection of similar solutions. This can be seen in
iterative improvement and TABU search.

recombination :: Stream (Group s) → Stream s — a collection of solutions are
merged in some way to yield a new solution sharing characteristics of the
parents. Genetic algorithms are the classic example of this type.

We will explore higher order functions to aid in the translation between these
different classes of interaction function. Problem-specific specialisations are then
used to realise these operations to in metaheuristic algorithms, providing the low
level interactions with the problem data. For example, the first-found iterative
improver has the following type;

ffii :: Ord s ⇒ (Stream s → Stream (Group s)) → Stream s → Stream s

3 Example Problem: TSP

The Travelling Salesperson Problem (TSP) is one such combinatorial problem,
which is often used as an example and test problem. The TSP is defined as
finding a Hamiltonian cycle (a tour of a graph going through each node exactly
once), of minimum cost, in a complete graph, where the cost of each edge of the
graph is known.

A TSP may be symmetric, where the cost of an edge is the same whichever
way it is traversed, or asymmetric where this constraint does not necessarily hold.
This paper will use the TSP as the example problem for illustrative purposes.
Other combinatorial problems will also be mentioned.

Throughout the paper we will assume that there is a data type called TSP,
which supports equality testing and ordering based upon the relative quality of
the solutions. Internally this can be thought of as a String, with special exten-
sions. It will be defined in the following form;

data TSP = ...
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4 Perturbation & Neighbourhoods

Both perturbation & neighbourhood functions can be defined in a specialist,
monolithic way for any given problem. A common example neighbourhood func-
tion for the TSP is the adjacent swap neighbourhood. In this function a set of
new solutions are defined as the exchange of adjacent cities in the original, e.g.

abcde. . .
→ bacde. . .
→ acbde. . .
→ abdce. . .
...

We will assume a function called swap, which works with the previously
defined TSP data type. Swap will take two indices and an instance of a TSP
solution and returns a new TSP solution with those indices swapped. The ad-
jacent exchange function, taking the number of cities as a constant parameter,
can then be implemented as follows:

adjNeighborhood :: Int → Stream TSP → Stream (Group TSP)
adjNeighborhood nCities = map (λt→map (λi→swap i (i+1) t) [0 .. nCities])

However this hides a general relationship between perturbation and recom-
bination, which permits each to be described in terms of the other:

– Perturbation is the selection of one element from a neighbourhood; and
– Neighborhood is the application of perturbation to a single solution many

times and gathering up the results.

4.1 Neighbourhood to Perturbation

A neighbourhood function can be adapted to become a perturbation function
through the composition of the function with some form of selection function.
The selection function, operating over streams, will have the type1:

type Selection a = Stream (Group a) → Stream a

The methods that may be used for selection are numerous and fall into two
major categories:

Deterministic: such as selecting the first, last, maximum or minimum valued
solutions from each neighbourhood. Of these, first might be used because
in combination with lazy evaluation it will limit the runtime requirements
of the program; where as minimum might be used to move towards a local
minima in the shortest number of iterations. Deterministic operations can
be lifted to operate over streams using the standard map function.

1 Note that this is also the type of recombination, so any recombination method could
be used at this point, if it was felt that it was appropriate to do so.
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Stochastic: while uniform likelihood selection is the most obvious concept here,
other options include stochastic selection with varying likelihood based upon
quality of the solutions in the underlying group. A function with the type:

System.Random.Random r⇒ r → Group s→s

may be lifted to operate over streams using the zipWith function e.g.

> zipWith selectFunction (randoms g) :: Selection a

4.2 Perturbation to Neighbourhood

The repeated application of a perturbation operation to elements of an under-
lying stream, and the subsequent collection of these results into a group can be
achieved using a function called doMany from the local search library. This is
defined as follows:

doMany :: Int → (Stream b → Stream s) → Stream b → Stream (Group s)
doMany n f = chunk n ◦ f ◦ stretch n

The doMany combinator works by duplicating the underlying elements creating
a stream that is n times longer than the original (stretch), and when the function
f is applied to this it is equivalent to applying it many times to each value in
the underlying stream. chunk is then used to divide the output of this process
into a stream of regularly sized blocks, gathering the results back together into
a new group.

Using doMany, different forms of neighbourhood can be created from a single
perturbation function. For example, using the swap function for TSP,

– a deterministic neighbourhood which performs the same operation on each
seed can be created by cycling a specific pattern of cities to be exchanged,
for example:

tspDNF :: [(Int,Int)] → Stream TSP → Stream (Group TSP)
tspDNF p

= doMany (length p) (zipWith3 swap (cycle pA) (cycle pB))
where (pA,pB) = unzip p

This allows the previous adjNeighborhood for TSP to be implemented as

adjNeighborhood nCities = tspDNF (zip [0..nCities] [1..nCities])

– since any perturbation transformation may be used as a parameter for do-
Many, a stochastic neighbourhood is actually a generalisation, relaxing the
source of the city indices to be swapped into streams in their own right;

tspSNF :: Int → Stream Int → Stream Int
→Stream TSP→Stream (Group TSP)

tspSNF nSize ns ms = doMany nSize (zipWith3 swap ns ms)

The streams of integers are providing the cities to be exchanged and are
assumed to be stochastically generated.
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5 Decomposition of Perturbation

The swapping operation for TSP, which has been used so far as the most basic
operation in these examples, is known not to be particularly effective. A better
method is to model a solution as a collection of edges, rather than a sequence of
cities, and make changes by deleting edges and then reconnecting the resulting
fragments. The swapping of cities can be seen as a very restricted subset of this
model, where the cities being swapped determine exactly which edges are to be
removed and inserted.

More generally this gives rise to two different activities, which when paired
give rise to a perturbation technique, damage and repair. In this general pattern
the damage phase removes something from the solution, leaving a data structure
that is no longer a valid or complete solution to the combinatorial problem. The
repair phase is then required to create a completed solution from the incomplete
data structure.

The damage/repair model of perturbation is also more effective when con-
sidering more general models of combinatorial problems than the specific TSP
example, for example when modelling problems using constraints. A constraint
model provides a solution as a collection of constraints, generated through a
constructive search process. Once a completed solution is achieved, what does
it mean to swap or otherwise make changes to the constraints. In many cases
arbitrary changes to the constraints will make them inconsistent, however using
a damage repair model to define methods for deleting and reconstructing from
the remaining constraints can give rise to effective algorithms.

5.1 Damage Methods

The characteristics of damage methods fall along two categories and a rough di-
agram of how these overlap can be seen in Figure 1. All decisions in the damage
method are made with respect to some problem specific heuristic, for example in
the TSP edge length is a simple heuristic for evaluating the quality or usefulness
of any give edge. A decision can be made in an entirely stochastic way, ignoring
this underlying heuristic (usually resulting in each edge having a uniform like-
lihood of selection), or can be made with no stochastic element, resulting in a
most likely or greedy deletion method. Between these extremes is an approach
where decisions involve a stochastic element, but it is biased with respect to the
heuristic, so that worse decisions are less likely. For example, in the TSP the
selected edges could be ordered by length and then selected from based upon a
probability distribution.

On the other axis is how the scale of damage to be done will be selected. At
the deterministic end is a fixed level of damage, for example three or six edges
to be deleted from each solution. At the stochastic end is that any number of
edges can be deleted and how many will be chosen with uniform likelihood.

In the centre of Figure 1 is a situation where each decision is made stochasti-
cally, but with a reasonable respect for the heuristic. Each decision is independent
of the others, so that any number of edges might be deleted, but it is unlikely it
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Fig. 1. Characteristics of damage methods

will be all, and the number is dependent upon the qualities of the edges in the
solution at the time.

Implementation of the damage methods are required to operate over streams,
giving rise to a transformation from a stream of solutions, to a stream of damaged
solutions. Internally stochastic elements and logic can be threaded using zipWith
and map as with the previous combinators.

5.2 Repair Methods

Unlike damage methods, repair methods cannot easily have a degree of repair,
so there is only one spectrum, the level of stochastic computation involved in
each decision. Like damage methods a heuristic is used to guide decisions, and
at one end of the spectrum is uniformly random likelihood of any legal2 decision
being made, at the other a greedy heuristic.

Repair methods can make use of a further style of operation, exhaustive
search. Due to the level of repair usually being limited, exhaustive methods such
as Branch & Bound can be used with confidence that they will complete. This
can be seen as a variant on a neighbourhood, where a number of solutions are
considered, and only the best is accepted, however it is more simply defined
at this time as a separate operation, rather than breaking it down into the
generation of solutions and selection.

In section 4.2 it was seen how neighbourhoods could be created through the
repeated application of a perturbation operation. The decomposition of pertur-
bation operations allows for an alternative form, where damage is carried out
only once, and a stochastic repair procedure is then used several times to yield

2 An illegal decisions would result in an invalid solution, for example sub-loops in a
TSP.
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a neighbourhood. The reverse of this, where damage is carried out many times
and then each is repaired is the equivalent of a neighbourhood built from a
perturbation operation.

6 Recombination

As with neighbourhoods and perturbation recombination can be defined mono-
lithically, and often is. When considering problems such as Boolean Satisfiability
(SAT), a simple recombination method is to cut two strings at the same point
and concatonate the substrings, for example see Figure 2. However such an ap-

Fig. 2. Illustration of a simple crossover mechanic in SAT

proach is not effective for the TSP, because it tends to result in duplicated cities.
This issue can be fixed by creating the second part of the solution through filter-
ing the second solution, removing any city found in the first part created through
cutting the first solutions string, hence preserving some sense of the order of the
original solutions.

However, as with perturbation methods, the most effective recombination
algorithms for TSP consider the solutions in terms of the edges they use, rather
than the order of the cities. The most effective genetic algorithm for the TSP [6],
made use of a recombination method that was maximally respectful of the edges
in the parent solutions. This meant that it identified edges common to both
parents and ensured that they were present in the new solution. Each other
edge in each parent was then selected probabilistically, on the condition that the
result was not invalid. Any final gaps were filled in using a greedy heuristic.

These examples of the TSP and SAT do not provide guidance on creating
recombination techniques for other problems. For example, the recombination
of a problem modelled using constraints, where constraints are simply selected
from the parents, once again runs a considerable risk of having irreconcilable
conflicts. The final example of TSP recombination, using a greedy heuristic to
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complete a solution legally does however provide inspiration for an approach
which can be explored.

The process of recombination can be described as following a pattern of
analysis of the parents, followed by the construction of a new solution based upon
the analysis. The construction process has a strong similarity to repair concepts
seen in perturbation, as in the TSP example already seen. This suggests that
analysis forms a new class of operations, but that the repair operations can be
reused.

7 Which perturbation algorithm?

The No Free Lunch Theorem[7] says that there is no one metaheuristic, nor
perturbation method that is best for all problems. So it is of value to be able to
experiment upon specific problems and see how different perturbation algorithms
compare.

This paper has proposed a collection of building blocks, specifically related to
the TSP, which may be used to construct perturbation methods. To demonstrate
their effectiveness, and requirement with relation to the No Free Lunch Theorem,
we built a simple program to test a number of perturbation methods in the
context of a single problem and metaheuristic. The problem chosen was fl417 a
symmetric TSP problem drawn from the TSPLIB[8] and the metaheuristic was
simply the repeated application of the perturbation method to the last solution
seen.

The program combined various damage and repair elements to generate dif-
ferent perturbation methods. In the event that uniform damage and uniform
repair are used, this results in a form of random walk of the solution space.
Damage levels of three edges and six edges were used, to compare the result
when different degrees of damage occurred, and how this affected the perfor-
mance of each metaheuristic. The results of each metaheuristic were processed
to preserve only the best solution seen at that point, and were sampled at 10,000
iterations. Each test was run 25 times and the average is presented here.

Geo: a curved distribution, where the heuristically best choice is most likely,
and it reduces in likelihood at each choice.

Uniform : an entirely uniform likelihood of any choice being made.

Most Likely: a deterministic greedy algorithm

Exhaustive: an exhaustive repair operation

BU 0.05: is an irregular distribution, where the heuristically best choice has
a likelihood of 0.05, but if not chosen a choice is made from the remainder
with uniform likelihood.

3 edges
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Repair Damage
Geo Uniform Mostlikely BU 0.05

Geo 32208 182563 171819 151743
Uniform 31506 191036 174718 155698

MostLikely 32232 85423 175227 53355
Exhaustive 34381 32413 188427 25426

6 edges

Repair Damage
Geo Uniform Mostlikely BU 0.05

Geo 25280 183383 63284 150839
Uniform 25413 194835 61543 157941

MostLikely 24532 83966 56093 54676
Exhaustive 29178 19627 253509 16728

These results exhibit some broad patterns which are consistent the expected
characteristics of the combinations, but also some interesting diversity worth
deeper consideration. The worst results are seen in algorithms which are highly
stochastic, such as uniform likelihood of damage and repair, or purely determin-
istic such as greedy damage with exhaustive repair. This is correct for both three
and six edge experiments, however there is a particularly interesting result, the
high weakness of greedy damage, combined with exhaustive rebuild over this
shift. This suggests that, rather than the increased size of damage improving
performance through widening the options that might be considered, for this
algorithm the change causes it to more rapidly find and become stuck in a local
minima.

The geometric damage patterns perform consistently well at both levels, with
any form of repair technique, however the best perturbation method uses the
Biased Uniform damage strategy, with an exhaustive repair technique. This pat-
tern of successful algorithms also supports common wisdom, that the best results
come from a careful marriage of the level of damage, stochastic and determin-
istic components. However these results also show the significant variances that
occur as components are exchanged, and how other parameters, such as the
level of damage can change the apparent performance of particular combina-
tions on particular problems. This all supports the idea that flexibility and ease
of experimentation are important characteristics of any library or toolkit for
metaheuristic implementations.

To further investigate the use of these combinators a test was built using a
Set Covering problem, drawn from train scheduling algorithms. Integer Linear
Programming (ILP) provides the most effective tool for tackling these problems,
providing the best known solutions though it suffers the the usual limitations of
an exhaustive search, that it cannot complete for most problem instances.

The Hypermutation metaheuristic[9] is also known to give interesting results,
though not actually able to compete with ILP. Hypermutation works through
an iterated perturbation, where the perturbation is achieved through the com-
position of a stochastic damage method, biased towards heuristically selected el-
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ements of a solution and a greedy repair strategy. An exhaustive repair strategy
has not, to the authors knowledge, been tried in the context of Hypermutation.

The TSP experiments had suggested that using an exhaustive repair strategy,
in combination with a highly random damage strategy should provide the best
results. Rather than relying upon a heuristic measure to bias the stochastic
selection of covering components, a purely uniform damage strategy was used.

Repair was carried out using an ILP solver, with the elements of the previous
solution designated for preservation fixed in the constraints of the ILP model3.
This more constrained problem could be completed at each iteration, though a
search on the problem instance in general would not complete (though would
yield some solutions). The ILP system used was the GNU Linear Programming
Kit Version 4.254 and linked to Haskell using glpk-hs5,

The solutions found were good, superseding the Hypermutation previously
described, and over runtimes of between 15 minutes and 2 hours the metaheuris-
tic gave stronger results than the ILP method alone over the same time limit.
We were pleased that the use of concepts from the previous TSP study gave such
promising results, however they do not equal results yielded from a commercial
solver, based upon ILP methods using specialised extensions.

8 Conclusion

This paper has examined perturbation, recombination and neighbourhood meth-
ods, used as the low level interaction operations in metaheuristics, from a purely
functional perspective. This has resulted in the creation of combinators for mov-
ing between these various methods and the decomposition of the monolithic
functions into three alternative classes of function; analysis, damage and repair.
A number of types and variations upon each these have been proposed.

This decomposition into smaller building blocks makes visible a broad range
of alternative perturbation, neighbourhood and recombination methods, through
picking and choosing from the options available. The visibility of the elements
being used in each composition allows for clearer comprehension of how they
interact and how larger methods operate, aiding in the design of new variations.

To demonstrate this a short investigation of a specific TSP problem has been
shown, mixing and matching a range of both well known and less frequently seen
operations, yielding some useful results. We see that the right set of abstractions,
here as elsewhere, can provide powerful tools to aid in the investigation of prob-
lems and the construction of algorithms.

Haskell’s expressiveness aids in these forms of investigation, with the type
system providing clues and pointers as to how components may be combined.
This in turn proposes lines of investigation, sometimes unconsidered, or shows

3 Other uses of ILP as a component in the construction of metaheuristics may be seen
in[2,3]

4 GLPK may be found at http://www.gnu.org/software/glpk/glpk.html
5 glpk-hs is written by Louis Wasserman and may be found in the Haskell libraries at
http://hackage.haskell.org/package/glpk-hs
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where more sophisticated conversion techniques will be required to facilitate a
desired line of research.

The next stage in this investigation is the further hybridisation of these
operations. At present damage and repair alternatives have been created, but a
more complex approach might use a number of damage and repair strategies in a
single perturbation method. For example, fixing one part of the solution using a
greedy method, another part of a solution using a uniform likelihood and finally
an exhaustive technique. This suggests a new range of combinators that can be
explored to improve the expression of these hybrids.

We see this work as moving in the direction of superior methods for investigat-
ing metaheuristic methods, and automated experimentation through combining
well understood building blocks. This places the work in the realm of hyper-
heuristics[10], a branch of metaheuristic research that attempts to automate the
design of algorithms for specific problems.
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Abstract. This paper presents an elegant purely functional algorithm
for deciding the equality of rational terms. The algorithm adapts Hopcroft
and Karp’s classic algorithm for equality of finite state automata to struc-
tured graph representation of rational terms.

1 Introduction

Rational terms are infinite terms that are finitely representable. They consist of
a finite number of distinct (possibly infinite) subterms. The finite representation
of choice are graphs, where infinity is captured in cycles.

Rational terms have many applications in logic and functional programming
languages without explicit pointers: graphics [1], parser generation and grammar
manipulation [2, 3], finite-state automata [2], natural language processing [4–6],
interpreters for control constructs [7], (equi-)recursive types [8], . . .

The following two cyclic graphs both denote a rational term, a stream:

1 3

2
1

3

2 1

The infinite rational terms are recovered by unfolding the graphs from their
root, marked with a double circle. When doing so, despite not being structurally
equal, the two graphs yield the same infinite stream [1, 2, 3, 1, 2, 3, ...

However, it is clearly not pratical to fully compare two infinite terms to decide
equality. As far as we can tell, Hopcroft and Karp [9] were the first to propose
an efficient algorithm to decide the equality of two rational terms directly from
their finite representations. Their algorithm is formulated in terms of a slightly
different finite guise of rational terms, finite state automata. More recent imper-
ative incarnations of their algorithm deal with pointer-based representations of
graphs and rely on pointer equality.

While graphs are pervasive in computer science, the efficient representation
of graphs and elegant implementation of graph algorithms are notoriously hard
in pure Functional Programming. A primary reason is that explicit pointer-based
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representations and pointer equality cannot be used, as they violate referential
transparency.

This paper presents an elegant purely functional implementation of Hopcroft
and Karp’s algorithm for computing the equaltiy of rational terms from their
graph representations. It is based on Oliveira and Cook’s purely functional repre-
sentation of structured graphs [10]. The key step in our approach is to infinitely
unfold the finite representation of the structured graph, but to tag each unique
node with a pointer-like identifier.

2 Generic Structured Graphs

We base ourselves on the new functional representation of rational terms as struc-
tured graphs by Oliveira and Cook [10]. This representation employs lightweight
datatype-generic programming [11] techniques to be generic in the particular
structure of the graph; this genericity of representation lends a generality to our
approach.

The representation is based on binders: the cycles in the graph are denoted
by greatest fixpoints of functions, where the binder denotes one end of the cycle
and an occurrence of the bound variable is the other end. The particular binder
representation used is parametric higher-order abstract syntax (PHOAS) [12].

data Rec f a =
Var a
| Mu ([a ]→ [f (Rec f a)])
| In (f (Rec f a))

newtype Graph f = ↓ { ↑::∀ a.Rec f a }

The representation separates the datatype-specific parts of structured graphs
(the In constructor) from the generic binding infrastructure (the constructors
Var and Mu).

Generic Structure Support The datatype-specific parts are captured in the f type
parameter: f is the pattern functor of the recursive datatype. The In constructor
takes the fixpoint of this functor. Note that, ignoring Var and Mu constructors,
we get the traditional formulation of fixpoints of functors used in various simple
datatype-generic programming approaches [11, 13]:

newtype Fix f = In ′ {out ′ :: f (Fix f )}

The following are pattern functors for lists and internally labelled trees

data ListF e a = []F | e :F a
data TreeF e a = Leaf | Fork e a a

and values like:
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alist :: Rec (ListF Int) a
alist = In (1 :F In (2 :F In []F ))

atree :: Rec (TreeF Int) a
atree = In (Fork 3 (In Leaf ) (In Leaf ))

encode a list [1, 2] and a tree Fork 3 Leaf Leaf respectively.

Binder Support The constructors Var and Mu provide the PHOAS binder struc-
ture. The type variable a of Rec f a is the PHOAS type parameter that denotes
the type of variables. In the wrapper type Graph this type parameter is univer-
sally quantified to enable different possible instantiations from the same graph.

The constructor Var is conventional for PHOAS; it denotes an occurrence of
a variable. The Mu constructor is a generalization from a simple binder to one
that binds a group of potentially mutually recursive definitions: [a ] is a list of
names that can be used in all of [f (Rec f a)].

Note that the cycles must be productive. A non-productive loop like Mu (λ[x ]→
[Var x ]) is not allowed. Productivity is enforced because every cycle starts with
an occurrence f of the pattern functor.

The following represents a cyclic list that starts with [1, 2] and then loops
back to the beginning:

l1 :: Graph (ListF Int)
l1 = ↓ (Mu (λ[x ]→ [1 :F In (2 :F Var x )]))

1 2

3 Structured Graph Equality

The geq function defines structural equality of structured graphs generically.

geq :: ∀ f .EqF f ⇒ Graph f → Graph f → Bool
geq g1 g2 = runReader (go ( ↑ g1) ( ↑ g2)) 0 where

go :: Rec f Int → Rec f Int → Reader Int Bool
go (Var x ) (Var y) = return (x ≡ y)
go (Mu g) (Mu h) =

do n ← ask
let a = g (iterate succ n)

b = h (iterate succ n)
and 〈$〉 local (+length a) (zipWithM (eqF go) a b)

go (In x ) (In y) = eqF go x y
go = return False

The auxiliary function go deals with the generic binding structure, while the
type class EqF provides equality for the structure-specific parts of the rational
tree:

class Functor f ⇒ EqF f where
eqF :: Applicative m ⇒ (r → r → m Bool)→ f r → f r → m Bool
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Both the type r of recursive occurrences and the type m of applicative effects [14]
are treated as abstract types. The recursive call, which knows how to deal with
concrete r and m types is explicitly provided. The eqF function is used by the
function geq , which calls eqF with the auxiliary function go as the recursive call
argument. This technique avoids leaking implementation details of geq (such as
dealing with fresh variables) into the code users write at the instances of EqF .

An example instance of EqF is that for ListF :

instance Eq e ⇒ EqF (ListF e) where
eqF (∼) []F []F = pure True
eqF (∼) (x1 :F p1) (x2 :F p2)
| x1 ≡ x2 = p1 ∼ p2

eqF (∼) = pure False

The go function numbers all variables with the “nesting depth” of their
binder; this depth is maintained in the environment of the Reader monad.

3.1 The Problem with Structured Graph Equality

While structured graph equality is fairly simple and straightforward, it is overly
restrictive. In particular, it is highly sensitive to incidental encoding differences
of structured graphs. For instance, the following cyclic list is a one-step unfolding
of l1.

l2 :: Graph (ListF Int)
l2 = ↓ (In (1 :F In (2 :F Mu (λ[x ]→ [1 :F In (2 :F Var x )]))))

1 12 2

Yet, it is structurally different from l1 according to geq . To ignore the encod-
ing differences, we need to consider proper rational term equality.

4 Rational Term Equality

Definition 1 (Rational Term Equality). Two rational terms are equal if the
infinite unfoldings of their finite representations are equal:

(∼RT ) :: EqF f ⇒ Graph f → Graph f → Bool
g1 ∼RT g2 = unfold g1 ≡RT unfold g2

where unfolding is defined as:

unfold :: ∀f .Functor f ⇒ Graph f → Fix f
unfold g = go ( ↑ g) where

go (Var x ) = x
go (Mu g) = head $ fix (map (In ′ ◦ fmap go) ◦ g)
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go (In fr) = In ′ $ fmap go fr

fix f = let r = f r in r

and equality is purely structural:

(≡RT ) :: ∀f .EqF f ⇒ Fix f → Fix f → Bool
x1 ≡RT x2 = runIdentity (go x1 x2) where

go (In ′ y1) (In ′ y2) = eqF go y1 y2

The above definition only serves as a specification. It is not practically exe-
cutable, because ≡RT does not terminate for infinite structures. What we need
is a different approach that properly takes into account the finitely representable
nature of rational trees.

5 Pointed Structures

Pointed f augments Fix f with node identifiers, called pointers. This exposes
sharing in the infinite unfolding of the rational term, which is needed to compute
equality in finite time.

type Ptr = Int

data Pointed f = P Ptr (f (Pointed f ))

Since the graph has a finite number of nodes, the infinite unfolding also contains
only a finite number of distinct pointers.

The two cyclic lists above are both represented as follows in this encoding:

let cl0 = P 0 (1 :F cl1)
cl1 = P 1 (2 :F cl0)

in cl0 :: Pointed (ListF Int)

5.1 From Graph to Pointed

Every Graph can be unfolded into a Pointed structure, provided that its pattern
functor f is an instance of Traversable [14, 15].

toPointed :: ∀ f .Traversable f ⇒ Graph f → Pointed f
toPointed g = evalState (go$ ↑ g) 0

where
go :: Rec f (Pointed f )→ State Ptr (Pointed f )
go (Var x ) = return x
go (Mu g) = head 〈$〉mfix (traverse goF ◦ g)
go (In r) = goF r

goF :: f (Rec f (Pointed f ))→ State Ptr (Pointed f )
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goF r = P 〈$〉 fresh � traverse go r

fresh :: State Ptr Ptr
fresh = do n ← get

put (n + 1)
return n

This conversion function instantiates the PHOAS variable type to the re-
sult type Pointed f , in correspondence with the unfolding that replaces Var
constructors by recursive occurrences of terms.

In order to tag every f constructor with a unique pointer, the state monad
threads the unique name supply through the conversion. Moreover, the Traversable f
constraint enables the recursive application of monadic conversion through f
constructors.

The most complex case of the conversion is the Mu constructor: The (great-
est) fixpoint of the binder function g yields the unfolding. This fixpoint is the
monadic mfix 1 because the unfolding is interleaved with the monadic tagging
of constructors. In the process, the multi-binder is turned into a tree, which is
assumed to be defined by the first binder.

6 Hopcroft and Karp, Functionally

The Pointed structure removes structural differences from Graph that are due
to the degree of freedom in encoding cycles. However, it does introduce its own
incidental variation: the pointers. Moreover, the co-inductive structure makes it
hard to determine how much of two graphs must be compared to be certain of
their equality. It is with these two challenges that we deal in the last step, using
Hopcroft and Karp’s algorithm.

The solution to both problems is to build equivalence classes of pointers.

hk :: ∀ f .EqF f ⇒ Pointed f → Pointed f → Bool
hk p1 p2 = runUFM $ p1 ∼ p2 where

(∼) :: Pointed f → Pointed f → UFM Bool
P ptr1 s1 ∼ P ptr2 s2 = (ptr1 ≡Ptr ptr2) ∨M (s1 ≡Stream s2)

(≡Stream) :: f (Pointed f )→ f (Pointed f )→ UFM Bool
s1 ≡Stream s2 = eqF (∼) s1 s2

The hk function is defined in terms of the auxiliary function ∼ that runs
in a monad UFM encapsulating the management of equivalence classes. Two
pointed structures are equivalent if either their pointers are equivalent or their
structures are.

The ≡Ptr operator checks whether ptr1 and ptr2 are in the same equivalence
class. As a side-effect, if they are not, ≡Ptr merges their equivalence classes.

1 Note that g must be sufficiently lazy to tie the knot, e.g., use lazy pattern matching
as in λ(∼[x ])→ 1 :F (Var x ).
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Moreover, if they are not equal, the monadic variant of lazy disjunction ∨M ,
defined as

(∨M ) :: Monad m ⇒ m Bool → m Bool → m Bool
x ∨M y = x >>= λb → if b then return b else y

checks for strucural equivalence with (≡Stream). This operator performs the
structural check eqF for matching constructors and recursively applies the ∼
check on subterms.

The equivalence classes solve the two problems:

1. It overcomes the incidental difference in pointer identity by merging different
pointers into the same equivalence class.

2. It ensures termination because if no structural difference is found. The al-
gorithm continues as long as two pointers are discovered that do not belong
to the same equivalence class. Given that there are only a finite number of
pointers, this means that the algorithm runs out of distinct pointers after a
finite number of steps.

6.1 Union-Find

A union-find structure manages the pointer equivalence classes. We opt for a
simple map-based representation:

type TPtr = Either Ptr Ptr

type UF = Map TPtr TPtr

Note that we tag the pointers of the two graphs with Left and Right respectively
in order to tell them apart – this prevents confusion when the same identifier is
reused in the two graphs. Then the UFM monad is just an alias for the State
monad:

type UFM a = State UF a

runUFM m = evalState m empty

The main pointer equality operator ≡Ptr is defined in terms of the two core
union-find operations, find and union:

(≡Ptr) :: Ptr → Ptr → UFM Bool
x ≡Ptr y = do rx ← find (Left x )

ry ← find (Right y)
when (rx 6≡ ry) (union rx ry)
return (rx ≡ ry)

where find returns the representative or root of an equivalence class:

find :: TPtr → UFM TPtr
find x = do uf ← get
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return (find ′ uf x )

find ′ :: UF → TPtr → TPtr
find ′ uf x = go x (lookup x uf ) where

go x Nothing = x
go x (Just y) = go y (lookup y uf )

and union merges the equivalence classes:

union :: TPtr → TPtr → UFM ()
union x y = modify (λuf → union ′ uf x y)

union ′ :: UF → TPtr → TPtr → UF
union ′ uf x y = let rx = find ′ uf x

ry = find ′ uf y
in insert rx ry uf

Note that the runtime complexity can be further improved at both the algo-
rithmic level, by adding path compression and performing union-by-rank [16],
and the implementation level, by replacing the Map in the State monad with an
STArray in the ST monad.

7 Related Work

There is much work related to the equality of rational trees. This section only
covers a small, but closely related fragment.

Finite State Automata and Bisimulation There is an obvious connection between
the equality of finite state automata (FSAs) and rational terms. It would be
interesting to investigate whether other FSA operations, like minimizations [17],
can be implemented elegantly for the Graph representation.

Equality of FSAs is a special case of bisimulation [18], the mutual simulation
of two state transition systems. Weak bisimulation is an extension of bisimulation
where the state transition systems can have silent (or internal) transitions that
are ignored. This notion is not relevant for Graph where the Mu constructor is
explicitly productive, but is useful for, e.g., comparing grammars.

Equi-Recursive Types Gauthier and Pottier [19] study the problem of efficient
type-checking in an extension of System F with equi-recursive types, System Fµ.
In this setting, equi-recursive types are rational terms, extended with binders
denoting universal quantifiers. Gauthier and Pottier provide an encoding that
eliminates these binders and reduces the problem of deciding equality to tra-
ditional rational term equality. As equi-recursive types are often used in the
context of object-oriented programming, another important operation is testing
subtyping [20].
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Rational Term Unification Rational (Herbrand) terms arose naturally in Prolog
systems that did not implement the occurs check (by default). Currently, they
are considered a desirable feature and actively supported by most major Prolog
systems (e.g., SWI-Prolog [21]). In those systems not equality but unification is
the central operation. Rational tree unification [22] attempts to make two two
rational trees by suitably substituting logical variables. It can be implemented
as an extension to Hopcroft and Karp’s algorithm.

8 Conclusion

Dealing with graphs and graph algorithms in functional programming languages
has always been challenging. Structured graphs show that call-by-need languages
like Haskell can conveniently represent certain types of graph structures. How-
ever it is still unknown how many classic graph algorithms can be conveniently
encoded in this representation.

This paper shows that a classic algorithm for computing the equivalence of
finite state automata can be nicely adapted to the setting of structured graphs.
Interestingly, the purely functional algorithm mimics a traditional imperative
pointer-based algorithm using pointed structures. We believe that pointed struc-
tures can be useful to similarly adapt other imperative pointer-based algorithms.
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