On the Feasibility of Remote Attestation
for Web Services

John Lyle and Andrew Martin
Oxford University Computing Laboratory
Wolfson Building, Parks Road, Oxford, OX1 3QD
{John .Lyle, Andrew. Martin}@comlab .0x.ac.uk

Abstract—Remote attestation is a significant part of the func-
tionality offered by trusted computing, allowing a platform to
demonstrate that it is running trustworthy software. However,
this technique has been criticised as impractical, citing the
management overhead of maintaining lists of acceptable software
configurations. In this paper we put numbers to this problem, and
argue that remote attestation may not be too fragile a technology
to be used for web services.

I. INTRODUCTION

Integrity reporting is the core mechanism proposed by the
Trusted Computing Group[l] (TCG) for establishing trust
in a computing platform. It works on the principle that a
platform can be trusted if all the software and hardware it
has run (its ‘configuration’) can be identified and verified
by a relying party. This principle has been criticised for
a number of reasons. Firstly, the vast number of available
applications, operating systems and hardware drivers mean that
any list of trustworthy software and hardware will need to be
unmanageably large. Secondly, there are few realistic meth-
ods for establishing if any one configuration is trustworthy.
These problems spell disaster for trusted computing, and may
cause researchers and developers to dismiss the functionality
provided.

However, little effort has been spent within the trusted com-
puting community to support or refute these criticisms. While
the general arguments are difficult to deny, an assessment of
their validity in different contexts is missing. The supposed
wide range of configurations may not exist in embedded
systems, for example. We believe that putting numbers to this
problem is essential, and the main contribution of this paper
is to assess the viability of using software integrity reporting
(in the form of TCG remote attestation) in a web services
scenario.

The paper is structured as follows. In Section II we describe
remote attestation and the TCG methods for establishing trust,
as well as the many problems they face. In Section III and IV
we discuss our experiment, simulating the necessary updates
that would be installed by a web service platform over a two
and a half year period. We then analyse the results in Section
V and suggest a number of ways of reducing and simplifying
the process in Section VI. Section VII covers existing work
in this area and in Section VIII we conclude.

II. BACKGROUND

A. Trusted Computing

Trusted computing is a paradigm developed and standard-
ized by the Trusted Computing Group[1]. It aims to enforce
trustworthy behaviour of computing platforms by identifying
a complete ‘chain of trust’, a list of all hardware and software
that has been used. If a platform owner can reliably find out
exactly what software and hardware is in use, they should
be able to recognise and eliminate any malware, viruses and
trojans. A great deal of infrastructure is required to make
this idea practical, including new hardware, modifications to
applications and databases of known, trustworthy platform
configurations.

The technologies proposed by the TCG are centered around
the Trusted Platform Module (TPM). In a basic server im-
plementation, the TPM is a chip connected to the CPU. It
provides isolated storage of RSA keys and Platform Config-
uration Registers (PCRs). These PCRs can be used to hold
integrity measurements, in the form of 20 byte SHA-1 hash
values. They can only be written to in one way: through the
extend(..) command. This appends the current register
value to the supplied input, hashes it, and stores the result in
the PCR. A PCR value therefore reflects a /list of individual
hashes. In order to work out what individual inputs have been
added to a PCR, a separate log must be kept. When this log
is replayed, by rehashing every entry in order, that final result
should match the value in the PCR.

The limited functionality offered by the TPM is ideal for
recording the boot process of a platform. The idea being that,
starting from the bios, every piece of code to be executed
is first hashed and extended (‘measured’) into a PCR by the
preceding piece of code. This principle is known as measure
before load and must be followed by all applications. If so, no
program can be executed before being measured, and because
the PCRs cannot be erased, this means that no program
can conceal its execution from the TPM. The first module
cannot be measured, and is referred to as the root of trust for
measurement. A platform is said to support authenticated boot
when it follows this process as it provides a way for users to
authenticate their platform’s boot sequence against reference
values.

B. Remote Attestation

In order for users to assess a remote machine, the TPM has
a feature called remote attestation, which allows a platform to
report the integrity measurements collected during authenti-
cated boot. When challenged, a trustworthy platform will use
the “TPM Quote’ operation to create a signed copy of its PCR
values. This is then given to the challenger for inspection,
along with the measurement log.

The signed PCR values and log must be verified by the
challenger before the platform can be trusted. The PCRs are
signed using a private key held by the TPM, guaranteeing the
key’s confidentiality. This is called an Attestation Identity Key
(AIK) and the public half must be certified by a third party
certificate authority (a ‘Privacy CA’). Full details can be found
on the TCG website[1] and Sailer et al. [2] have outlined a
full nonce-challenge protocol.

The software running at the platform can be identified by
matching the hash values in the attestation with reference
data. This requires a list of reference integrity measurements
(RIMs) contained within a Reference Manifest Database, as
described in the TCG Integrity Management Model[3]. These
measurements are collected from their original source: the
software and hardware manufacturers. For example, Microsoft
could release RIMs containing the correct hash measurements
for each file in Windows Vista. Creating and maintaining this
database is a challenging task, but the next step is perhaps
harder. Having identified the running software, a decision must
be made on the overall platform trustworthiness. This is an
open problem in trusted computing research.

C. Problems with Attestation

There are some well-known issues with TCG-described
attestation. These include the disclosure of platform con-
figuration information (privacy), the semantic gap between
hash values and platform properties (semantic gap), attacks
on running software (runtime) and the practical difficulty of
maintaining a whitelist of known hash values (whitelisting).

The first consideration is privacy. Integrity measurement
requires the challenging party to identify every piece of soft-
ware executed on the remote platform. This might allow them
to discriminate based on their own criteria[4], [5], requiring
software from only one vendor, for example. This could work
against the user’s best interests. Furthermore, reporting the
exact hash values potentially makes an attacker’s job easier[6],
as he or she will be able to quickly identify which known
exploits are appropriate for the platform.

Attestation has also been criticised for reporting a platform’s
execution state rather than its security state[5], which many
consider to be the ultimate goal. These two properties are re-
lated, but there is a significant semantic gap between them. If it
is not clear that one software configuration is necessarily more
secure than another, what is the purpose of the attestation? To
solve this problem, and the privacy issues mentioned earlier,
Sadeghi and Stiible[4] introduced ‘Property-Based Attestation’
(PBA). In PBA, platforms provide a list of guaranteed security
properties, rather than just a binary integrity measurement.

This can be implemented in a number of ways, but generally
assumes that at least one party can match software identity to
security properties. Presumably this would be done through
testing or verification, both time consuming processes. We
therefore believe that the first step in simplifying this problem
is to reduce the size of a platform’s software configuration.

Integrity measurement can assert the identity of software
when it was originally loaded, but says nothing about the
runtime state of the platform[7], [8]. In-memory attacks (such
as exploiting a buffer overflow) can occur which will not be
reported in an attestation, but will certainly alter the expected
behaviour of the machine.

Finally, the complexity of managing a large software
whitelist has frequently been cited as a major problem for at-
testation. England[8] claims that the 4 million windows drivers
(growing at 4000 per day) makes even identifying the software
running on a platform a daunting task. Other researchers have
made similar points[4], [9] about the number of potential
software configurations. However, there are some promising
counter-examples. Sailer et al. [10] show an implemented
network access control system which uses a whitelist of only
25000 entries, and is designed to handle application updates.
On a larger scale, Bit9 have a ‘Global Software Registry’!
which claims to contain over 6 billion entries. These two
projects imply that the management problem of maintaining
a large whitelist are overstated. In the rest of this paper, we
assess whether this is true for a web service.

D. Web Services

Web services are a well-established approach to creating
large, component-based applications[11]. Services communi-
cate and describe themselves using standard formats, such as
SOAP[12], and have interoperability as a primary requirement.
Each service offers some kind of useful functionality, and
they can be combined together easily, allowing the rapid
creation of new, custom applications. We chose to look at web
services in this paper because of their increasing popularity
and standardized behaviour.

E. Attestation for Servers

Attestation is usually considered in a client-side context,
with a server challenging client platforms to prove their
trustworthiness[3]. The server may be required to mediate
access to an important resource or service. This is the scenario
that is often assumed when discussing attestation problems.
The whitelisting problem mentioned in Section II-C appears
daunting, as the numerous clients could be running any
combination of operating systems and applications and the
server must be able to evaluate all of them. Any whitelist or
reference database will need to contain millions of entries, and
the meaning of each one will be hard to maintain.

However, the opposite scenario is sometimes overlooked.
A client machine may require some assurance of a server’s
correct operation. This will be particularly true when handling

Uhttp://www.bit9.com/products/gsr.php

confidential information or when performing an important
task, such as payment processing. Now the server must attest
to the client, who in turn has to interpret the server’s integrity
measurement log. When only one (or a small number) of
machines is considered, this should make whitelisting more
tractable. Furthermore, servers are typically only performing
one task. They have a distinct role, as an email or web server,
for example. These rarely have graphical user interfaces, and
can be run on minimal operating systems. The total amount
and size of running software is much smaller than a general-
purpose client machine, which may be simultaneously used
for web browsing, word processing, and email. Again, this
reduces the amount of software which must be trusted and
will be included in an attestation log. We believe that these
points make servers a better candidate for attestation.

III. EXPERIMENT DESCRIPTION AND METHODOLOGY

We designed an experiment to quantify the difficulty of
attesting a web service, by counting how many measurements
would need to be maintained in an integrity measurement
database. If a large number of reference values must be
stored, then this would support the argument that integrity
measurement is impractical.

To attest one service, the database would be as big as the
number of unique pieces of software that it runs. However,
software is often updated, so our experiment had to take
into account the rate of change of the platform. We used
information from two sources, the Ubuntu Linux package
repository? and the Sun website. A two and a half year period
(June 2006 to January 2009, inclusive) was studied. The rest
of this section details how we set up our web service platform,
and our methodology for counting updates.

A. Platform Details

We set up an Ubuntu 6.06 Linux platform and modified it
to support authenticated boot. This involved compiling a cus-
tomised version of the Linux Kernel, initially version 2.6.22.1,
complete with the IMA[2] patch to measure executables and
kernel modules. We then modified and compiled a version of
the OpenJDK, in a similar manner to the patches released by
the ‘Trusted Computing for the Java(tm) Platform’ project[13].
We used standard versions of the Glassfish Application Server
to run a simple web service which answered attestation chal-
lenges. The TAIK JTSS? libraries were used to communicate
with the TPM from the web service. Using this software, we
made attestation requests from another platform and recorded
the results in a database. We chose popular web service
software for these experiments. Ubuntu Linux is increasing
in popularity on servers* and the Glassfish application server
was downloaded 3.5 million times as of June 2007 [14]. This
makes our test platform a reasonable case study.

We have discarded BIOS and bootloader measurements.
New Intel and AMD processors support a Late Launch feature,

Zhttp://packages.ubuntu.com/
3http://trustedjava.sourceforge.net/index.php?item=jtss/about
“http://www.iaps.com/2008- server-reliability-survey.html

which makes verifying these components unnecessary[15]. We
have also ignored hardware measurements, as these are harder
to verify and should add only a constant number to our results.

B. Counting Updates

Because of the need to recompile the Linux kernel and
Java to support integrity measurement, the process of counting
software updates was not always as simple as just applying the
upgrades and re-attesting the system.

Our first step was to get a baseline, initial attestation of
the platform. This contained a list of all executables that were
run, without any user logins to the machine. We then looked
at how each of the applications on this list was modified by
updates. The final output was a timeline, containing all files
that were changed and the date the new versions were released.
We have assumed a pro-active administrator who applies all
patches as soon as available, but does not upgrade the entire
OS distribution.

1) Operating System: We counted every new version of
the kernel that was released in the Ubuntu repositories for
the 6.06 distribution. We observed that every new version had
entirely new hash values for each kernel module. As a result,
we calculated the total number of measurements as the initial
module count, multiplied by the number of kernel updates.

2) Core Executables: Programs and libraries such as bash
and glibc were updated. This was simulated by counting the
number of updates released in the Ubuntu repositories, and
then looking at how many measured executables would be
affected, with reference to our baseline attestation.

3) Java: We handled these updates through the Sun web-
site. We assumed new version would be installed whenever
available, and that the migration from Java 5 to Java 6 would
happen at the first opportunity. Because we were using a
customised version of the JRE (compiled from source) to
support integrity measurement, we could not simply install
new versions and re-run the attestation process. Instead, we
compiled a list of files that our custom JRE used, and then
worked backwards to see which updates modified files on this
list. We anticipate that a few libraries will have been missed
in this process, but expect that number to be small. Versions
5.6 to 5.10 and 6.0 to 6.11 of the JRE were counted.

4) Glassfish: We counted the number of libraries and
executables associated with Glassfish through installing and
running it on our customised JRE. A simple web service
was run on each version. This service had only one function:
returning attestations when challenged. We then upgraded it
with every core release of a new version of Glassfish, as
detailed on the download page of the website’, excluding
version three, which was still in beta. Because we did not
modify Glassfish in any way, it is likely that a few libraries
were loaded using an unmodified classloader which we did not
include. Again, however, we expect this number to be small.

Shttps://glassfish.dev.java.net/public/alldownloads.html

C. Configuration Files

The measurement of executables over time does not take
into account configuration files. This is an oversight, because
much of a platform’s behaviour can be controlled through
configuration. It is likely that any standard operating system
would need to attest certain settings, such as firewall rules.
However, there are good reasons for not including them.
Firstly, it is difficult to establish which files would be important
and need attesting. Some (/etc/motd, for example) clearly
have no relevance to the trustworthiness of the platform, but
knowing which ones would require an enormous amount of
time. Secondly, we could not anticipate how configuration files
would need to change to reflect application updates. Generally,
the number of files would stay the same, and the content might
be added to. We therefore decided to get approximate figures
by measuring the total number used, and then estimating an
upper bound on how many would be relevent, ignoring change
over time.

We established a total figure by augmenting the IMA patch
with an extra SELinux hook - dentry_open - and logging
every access. We then booted our system and started Glassfish.
We eliminated all binary files, logs, and non-configuration
related shell scripts. Unfortunately, it is possible that JAR
files could contain configuration settings which we have not
included. We measured the number of lines in these files using
wc —1, with comments removed.

IV. RESULTS

Our baseline system had 277 hash values, consisting of 17
JRE 5.7 libraries, 50 glassfish v1 libraries, 4 jTSS jar files
and 53 kernel modules. The rest were standard applications
and shared libraries. Between June 2006 and January 2009 (32
months), 1137 measured files were updated, approximately 35
files per month. This made a total of 1414 hash values. Apart
from those already mentioned, there were 13 base packages
updated, including gzip, udev and e2fslibs.

From the log of configuration files, we found a total of
113 were read, with 49 that were either empty or considered
unambiguously unimportant. This leaves 64 that might need to
be measured. The total number of lines in configuration files
was 6370, with just under 5000 in the 64 files we considered
important. The vast majority of these (3414) were in Glassfish
XML documents. We also suspect that some of the Glassfish
schema files we considered significant would never change and
could be attested using a hash, making line count unimportant.

V. ANALYSIS AND IMPLICATIONS

The number of hash values recorded is not sufficient to
show that attestation is feasible in this scenario. This depends
on the purpose of the attestation, the property to which the
server is trying to attest. In this section we start by looking at
four general properties and analyse whether our results make
them achievable or not.

For the purpose of identifying running applications and
checking their integrity, our results look promising. Any

TABLE I
UPDATES APPLIED BY MONTH

Month Java Glassfish Kernel Other Total
Jun 06 12 0 53 1 66
Jul 06 0 0 53 1 54
Aug 06 0 0 0 0 0
Sep 06 0 0 53 6 59
Oct 06 8 0 0 0 8
Nov 06 33 0 0 6 39
Dec 06 0 53 0 0 53
Jan 07 0 0 0 44 44
Feb 07 0 0 53 17 70
Mar 07 10 0 0 14 24
Apr 07 0 0 0 2 2
May 07 0 0 0 0 0
Jun 07 12 0 0 0 12
Jul 07 0 0 0 0 0
Aug 07 0 0 53 2 55
Sep 07 9 88 0 2 99
Oct 07 0 0 53 20 73
Nov 07 0 0 0 0 0
Dec 07 13 67 0 6 86
Jan 08 0 0 53 1 54
Feb 08 9 0 0 0 9
Mar 08 11 0 0 0 11
Apr 08 0 57 0 2 59
May 08 0 0 0 1 1
Jun 08 0 0 53 2 55
Jul 08 0 0 0 0 0
Aug 08 9 0 0 0 9
Sep 08 16 0 0 0 16
Oct 08 0 0 0 27 27
Nov 08 9 0 53 1 63
Dec 08 0 0 0 3 3
Jan 09 0 86 0 0 86
Total 151 351 477 158 1137

database is capable of storing 1414 values, and the vast major-
ity of hashes can be obtained from a few public repositories.
The only assumption that must be made is that each step
in the boot chain follows measure before load, not allowing
any unmeasured code execution. Having identified the running
applications, we can then know their vendor and patch-level,
which can be useful when assessing other properties of the
platform. For example, Munetoh et al. [16] use this informa-
tion in combination with an online vulnerability database to
calculate how many vulnerabilities a platform is known to
have.

The relatively small number of possible hash values means
that there is no reason for an unknown application to ever be
run or attested. Challengers can therefore take the presence
of an unknown hash in an attestation log extremely seriously.
This makes it unlikely that a server with a malicious rootkit
would be trusted by a remote user. Again, we assume that all
applications support integrity measurement. We believe that
these results reinforce the idea that attestation is suitable for
establishing that a platform did not, at boot-time, have a rootkit
installed.

Another property we can attest about our platform is that
nobody has logged into a terminal, either locally or remotely.
This is because various executables are run at log-in, including
the pam security applications and (locally) /bin/login.
Any fresh attestation of a platform that does not include these

has not yer been logged into. This does not, however, discount
logging in the administration console on Glassfish (or through
any other executable) but if no executable has been run that
supports remote login, it seems possible to attest this general
property. This could be useful for internal monitoring, or when
trying to mitigate insider threats.

A more difficult property to establish is whether or not a
platform is deemed trustworthy. We definitely cannot use the
attestation to establish a platform’s correct behaviour, as none
of the hardware of software has been analysed for this. But will
the software, to use TCG terminology[3], behave as expected?
At first, we might assume that this is the case, as Linux, the
JVM and Glassfish do generally work in their expected way.
However, when we consider one of the criticisms of attestation
- that it deals with execution state, rather than the runtime
state of the platform - we run into problems. Any of the
running processes may have been exploited since system boot
and no longer behave in their usual manner. Unfortunately,
exploits for large operating systems and applications are being
discovered on a daily basis, and this makes it impossible for
attestation to support any claim of trustworthiness. This is
a well known criticism of common operating systems, and
arguably makes any attempt at establishing a much higher
level of security doomed to failure[17]. We therefore cannot
establish trustworthiness because we cannot assess the security
state of the server through TCG attestation.

In order to move from identified to trustworthy we need to
eliminate the chance of runtime exploit. This means reducing
the number and size of applications running on the server, and
improving the quality of the code. In Section VI we discuss
some ways of doing this.

A. Configuration File Issues

Configuration files raise a number of challenges for imple-
menting attestable systems. They can have a great impact on
the behaviour of a platform, and bad settings can make other-
wise trustworthy applications vulnerable to exploit. However,
attestation of configuration settings is complicated, as simply
providing a file hash is insufficient. Two files can have the
same configuration semantics but produce different hashes, due
to comments or whitespace. Our results show that a significant
amount of configuration must be dealt with, and we believe
that better documentation and metadata is required to describe
the implications of configuration settings.

VI. REDUCING ATTESTATION MEASUREMENTS
A. OS and Application Minimization

Our results come from using standard operating systems and
applications. We made no special effort to reduce the number
or size of programs. If we compiled a custom linux distri-
bution, or used a smaller operating system, we would reduce
the number of components and the size, moving us closer
to obtaining a trustworthy rather than just identifiable system.
We could also reduce the size of certain core applications. The
TAIK Privacy CA project[18] uses a system trace to remove all
unnecessary class files from their JVM, and a similar method

could be used here. However, there is a limit to the amount
of code which can be removed without reducing functionality,
which may mean that minimization alone is insufficient.

B. Changing or Removing the Application Server

Glassfish libraries were the second-largest source of mea-
surements. A smaller application server might reduce the
number of libraries which must be measured. One alternative
is Apache Axis2/Java, which offers similar functionality to
Glassfish. However, from our experiments we found that
Glassfish 2.1 used only 8 more JAR files that Axis 1.4.
As an alternative, we suggest that most of the application
server’s functionality could be moved away from the attested
platform. Much of the code required by a web service is
involved in SOAP and XML parsing and handling. This
functionality could be run on a separate, untrusted platform
instead. Incoming SOAP messages would be handled by the
untrusted platform, which would then translate and forward,
using a simpler method such as Java RMI. The attesting
platform now does not need to include the entire application
server, thus reducing the total number of measurements.

As a one-off comparison, we restructured our attestation
web service as a Java RMI server. This gave a significant re-
duction in measurements, requiring 78 (28%) fewer entries in
the measurement log compared to Glassfish. There is a similar
effect over time, saving 351 updates as well as the 78 initial
measurements, 30% of the total. This difference does come at
a cost, however, reducing our functionality and interoperability
considerably. On the other hand, as the application server must
parse lots of data in different formats, it is probably one of
the main targets for a remote attack, and removing it would
enhance the platform’s overall trustworthiness. We intend to
investigate this in our future work, and note that Wei et al[19]
have taken a similar approach.

VII. EXISTING WORK

Munetoh et al. [16] describe how to use attestation in a
web services context, and suggest a number of methods for
verifying remote platforms. The authors suggest that a third
party Platform Validation Authority (PVA) would be used to
validate attestations, using package management repositories
and online vulnerability databases to make trust decisions.
Their integrity database contains information for 84382 files
in 1415 packages, and each platform had around 600 mea-
surements to attest. However, so far they have concentrated
on client machines, and have not considered maintaining their
platform over time. Sailer at al. [10] have also implemented a
similar system, as mentioned in Section II-C.

Franklin et al.[20] provide an excellent example for why
servers are a good target for trusted computing technolo-
gies, demonstrating a complete, working Certificate Authority
which supports integrity reporting.

Several authors have made efforts to make attestation more
feasible. Jaeger et al. [21] use SELinux to control information
flow, and are then able to ignore many of the untrusted
applications running on a platform. This reduces the number

of measurements to verify, but does involve interpretting a
complex, IMB SELinux policy file. Paul England[8] also
noted the problems with attestation, and has proposed three
novel alternatives. These reduce the number of measurements
to verify, at the cost of some flexibility and detail. We believe
the results presented in this paper suggest that criticisms of
standard attestation may have been overstated, although they
remain valid for client machines rather than servers.

Haldar et al. [9] have also identified a number of problems
with attestation, adding revocation to the growing list. They
propose Semantic Remote Attestation, the use of a Trusted
Virtual Machine to attest properties of code, rather than binary
identities. This goes a long way to solving the semantic gap
problem discussed in Section II-C.

VIII. CONCLUSION

In this paper we have shown that the package management
overheads for attesting a web service are relatively small,
significantly lower than most existing work has suggested.
We believe that this makes attestation a viable tool for
demonstrating certain platform properties, such as identifying
the executables that the service intended to use, and the
absence of rootkits. Overall, we think that these results give
compelling evidence that server platforms are a good target
for the integrity reporting approach.

However, the rate of change and quantity of code means
that establishing platform trustworthiness is still not possible,
especially due to the number of runtime vulnerabilities present
in modern operating systems. We suspect that the ultimate
solution will be achieved through operating systems and
applications minimization, and increased partitioning of large,
untrusted code away from important functionality.

ACKNOWLEDGMENT

The work described is supported by a studentship from
QinetiQ. Special thanks go to Jun Ho Huh and Cornelius
Namiluko for useful discussions. I am also grateful to the
developers of the IMA patch for the Linux kernel and the
OpenTC team at IAIK TU Graz for their jTSS software.

REFERENCES

[1] Trusted Computing Group, “Trusted computing group home page,”
2009. [Online]. Available: https://www.trustedcomputinggroup.org’/home

[2] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn, “Design
and Implementation of a TCG-based Integrity Measurement
Architecture,” in USENIX Security Symposium, 2004, pp. 223-
238. [Online]. Available: http://www.usenix.org/publications/library/
proceedings/sec04/tech/sailer.html

[3] Trusted Computing Group, “TCG Infrastructure Working Group Archi-
tecture Part IT - Integrity Management,” November 2006. [Online]. Avail-
able: http://www.trustedcomputinggroup.org/resources/infrastructure_
work_group_architecture_part_ii__integrity_management_version_10

[4] A.-R. Sadeghi and C. Stiible, “Property-based Attestation for Computing
Platforms: Caring About Properties, Not Mechanisms,” in NSPW '04:
Proceedings of the 2004 Workshop on New Security Paradigms. New
York, NY, USA: ACM Press, 2004, pp. 67-77. [Online]. Available:
http://doi.acm.org/10.1145/1065907.1066038

[5] J. A. Poritz, “Trustfed | in] Computing, Signed Code and the
Heat Death of the Internet,” in SAC ’'06: Proceedings of the
2006 ACM Symposium on Applied Computing. New York, NY,
USA: ACM Press, 2006, pp. 1855-1859. [Online]. Available:
http://doi.acm.org/10.1145/1141277.1141716

[6]

[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

U. Kiihn, M. Selhorst, and C. Stiible, “Realizing property-based
attestation and sealing with commonly available hard- and software,” in
STC °07: Proceedings of the 2007 ACM Workshop on Scalable Trusted
Computing. New York, NY, USA: ACM, November 2007, pp. 50-57.
[Online]. Available: http://doi.acm.org/10.1145/1314354.1314368

D. Schellekens, B. Wyseur, and B. Preneel, “Remote Attestation on
Legacy Operating Systems With Trusted Platform Modules,” Electronic
Notes in Theoretical Computer Science, vol. 197, no. 1, pp. 59-72,
2008. [Online]. Available: http://dx.doi.org/10.1016/j.entcs.2007.10.014
P. England, “Practical Techniques for Operating System Attestation,”
in Proceedings of the Trust 2008 Conference, ser. Lecture Notes
in Computer Science, vol. 4968/2008. Villach, Austria: Springer
Berlin/Heidelberg, March 2008, pp. 1-13. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-68979-9_1

V. Haldar, D. Chandra, and M. Franz, “Semantic Remote Attestation -
Virtual Machine Directed Approach to Trusted Computing,” in Virtual
Machine Research and Technology Symposium. USENIX, 2004, pp.
29-41. [Online]. Available: http://www.usenix.org/publications/library/
proceedings/vmO04/tech/haldar.html

R. Sailer, T. Jaeger, X. Zhang, and L. van Doorn, “Attestation-based
policy enforcement for remote access,” in CCS ’04: Proceedings of
the 11th ACM Conference on Computer and Communications Security.
New York, NY, USA: ACM, 2004, pp. 308-317. [Online]. Available:
http://doi.acm.org/10.1145/1030083.1030125

M. P. Papazoglou and J.-j. Dubray, “A Survey of Web Service
Technologies,” Informatica e Telecomunicazioni, University of Trento,
Tech. Rep. DIT-04-058, June 2004. [Online]. Available: http:
/leprints.biblio.unitn.it/archive/00000586/

The W3C, “Simple Object Access Protocol (SOAP),” April 2007.
[Online]. Available: http://www.w3.org/TR/soap/

K. Dietrich, M. Pirker, T. Vejda, R. Toegl, T. Winkler, and P. Lipp,
“A Practical Approach for Establishing Trust Relationships between
Remote Platforms Using Trusted Computing,” in Trustworthy Global
Computing, ser. Lecture Notes in Computer Science, G. Barthe and
C. Fournet, Eds., vol. 4912. Sophia-Antipolis, France: Springer,
November 2007, pp. 156-168. [Online]. Available: http://dx.doi.org/10.
1007/978-3-540-78663-4_12

E. Pelegri-Llopart, Y. Yoshida, and A. Moussine-Pouchkine, “Delivering
a Java EE Application Server,” https:/glassfish.dev.java.net/faq/v2/
GlassFishOverview.pdf, June 2007. [Online]. Available: https://glassfish.
dev.java.net/faq/v2/GlassFishOverview.pdf

J. M. McCune, B. Parno, A. Perrig, M. K. Reiter, and A. Seshadri,
“Minimal TCB Code Execution,” in IEEE Symposium on Security
and Privacy, may 2007, pp. 267-272. [Online]. Available: http:
//dx.doi.org/10.1109/SP.2007.27

S. Munetoh, M. Nakamura, S. Yoshihama, and M. Kudo, “Integrity
Management Infrastructure for Trusted Computing,” IEICE Transactions
on Information and Systems, vol. E91-D, no. 5, pp. 1242-1251, 2008.
[Online]. Available: http://dx.doi.org/10.1093/ietisy/e91-d.5.1242

P. A. Loscocco, S. D. Smalley, P. A. Muckelbauer, R. C.
Taylor, S. J. Turner, and J. F Farrell, “The Inevitability of
Failure: The Flawed Assumption of Security in Modern Computing
Environments,” in Proceedings of the 21st National Information
Systems Security Conference, October 1998. [Online]. Available:
http://csrc.nist.gov/nissc/1998/proceedings/paperF1.pdf

A. Niederl and M. Pirker, “Build Guide for Bootstrapping a
Reduced Trusted Java Compartment,” March 2009. [Online]. Available:
http://trustedjava.sourceforge.net/index.php?item=pca/compartment

J. Wei, L. Singaravelu, and C. Pu, “A Secure Information Flow
Architecture for Web Service Platforms,” IEEE Transactions on
Services Computing, vol. 1, no. 2, pp. 75-87, April-June 2008.
[Online]. Available: http://dx.doi.org/10.1109/TSC.2008.10

M. Franklin, K. Mitcham, S. Smith, J. Stabiner, and O. Wild,
“CA-in-a-Box,” in Public Key Infrastructure, EuroPKI 2005, ser.
Lecture Notes In Computer Science, vol. 3545/2005. Springer
Berlin / Heidelberg, 2005, pp. 180-190. [Online]. Available: http:
/ldx.doi.org/10.1007/11533733_12

T. Jaeger, R. Sailer, and U. Shankar, “PRIMA: policy-reduced integrity
measurement architecture,” in SACMAT ’06: Proceedings of the 11th
ACM Symposium on Access Control Models and Technologies, 2006,
pp. 19-28. [Online]. Available: http://doi.acm.org/10.1145/1133058.
1133063

