
Game Semantics Based Equivalence

Checking of Higher-Order Programs

David Hopkins

St Hugh's College

University of Oxford

A thesis submitted for the degree of

Doctor of Philosophy

Trinity 2012

Abstract

This thesis examines the use of game semantics for the automatic equivalence check-
ing of higher-order programs. Game semantics has proved to be a powerful method
for constructing fully abstract models of logics and programming languages. Further-
more, the concrete nature of the semantics lends itself to algorithmic analysis. The
game-semantic model can be used to identify fragments of languages which have a
decidable observational equivalence problem. We investigate decidability results for
di�erent languages as well as the e�ciency of these algorithms in practice.

First we consider the call-by-value higher-order language with state, RML. This
can be viewed as a canonical restriction of Standard ML to ground-type references.
The O-strict fragment of RML is the largest set of type sequents for which, in the
game-semantic denotation, justi�cation pointers from O-moves are always uniquely
reconstructible from the underlying move sequence. The O-strict fragment is surpris-
ingly expressive, including higher-order types and di�cult examples from the litera-
ture. By representing strategies as Visibly Pushdown Automata (VPA) we show that
observational equivalence of O-strict terms is decidable (and in fact is ExpTime-
complete). We then consider extensions of the O-strict fragment. Adding general
recursion or using most non-O-strict types leads to undecidability. However, a lim-
ited form of recursion can be added while still preserving decidability (although the
full power of DPDA is required).

Next we examine languages with non-local control. This involves adding call/cc
to our language and is known to correspond to dropping the game-semantic bracketing
condition. In the call-by-name game-semantic model of Idealized Algol (IA), in which
answers cannot justify questions, the visibility condition still implies a form of weak
bracketing. By making bracketing violations explicit we show that we can still model
the entire third-order fragment using VPA.

We have also implemented tools based on these algorithms. Our model checkers
Homer and Hector perform equivalence checking for third-order IA and O-strict
RML respectively. Homer uses a naïve explicit state method whereas Hector takes
advantage of on-the-�y model checking. Our tools perform well on small yet chal-
lenging examples. On negative instances, the on-the-�y approach allows Hector to
outperform Homer. To improve their performance, we also consider using ideas from
symbolic execution. We propose a representation for �nite automata using transitions
labelled with formulas and guards which aims to take advantage of the symmetries of
the game-semantic model so that strategies can be represented compactly. We refer
to this representation as Symbolically Executed Automata (SEA). Using SEA allows
much larger data types to be handled but is not as e�ective on larger examples with
small data types.

Acknowledgements

I would like to thank my supervisors Luke Ong and Andrzej Murawski

for all the help and guidance they have provided me. Both have always

freely given me the advice, encouragement and criticism I have needed

from before I started my DPhil, through to the completion of this thesis.

I would also like to acknowledge Microsoft Research and a generous do-

nation from Tony Hoare for funding this work.

Additionally, I would like to express my gratitude to my transfer and con-

�rmation examiners Samson Abramsky, Daniel Kroening and Hongseok

Yang for taking the time to read my work and providing me with valuable

feedback and advice to help keep me on the right track.

I am grateful to my o�cemates for giving helpful advice, answering my

questions and having insightful discussions, as well for as providing an

enjoyable (if not always distraction-free) working environment.

My thanks also go to my friends both in Oxford and beyond who have

provided a welcome relief from work. My housemates, the quiz team, my

school friends and many others have helped keep me going.

Finally, I am incredibly thankful for everything my mum and dad have

done for me. Without their love, advice and support (intellectual, emo-

tional and �nancial) this work would never have happened.

Contents

1 Introduction 1

1.1 Formal Veri�cation . 1

1.2 Higher-Order Programs . 2

1.3 Game Semantics . 3

1.4 Thesis Overview . 4

2 Preliminaries 7

2.1 Idealized Algol . 7

2.2 Game Semantics . 10

2.2.1 Games and Plays . 10

2.2.2 Constructions on Games . 12

2.2.3 Strategies . 13

2.2.4 Game Semantics of Idealized Algol 16

2.3 RML . 18

2.3.1 Game Semantics of RML . 20

2.4 Algorithmic Game Semantics . 25

2.4.1 Call-by-Name . 26

2.4.2 Visibly Pushdown Automata 27

2.4.3 Call-by-Value . 28

3 O-Strict RML 29

3.1 The O-Strict Fragment of RML . 29

3.1.1 Types on the Right of O-Strict Sequents 30

3.1.2 Types on the Left of O-Strict Sequents 32

3.1.3 Examples of O-Strict Terms 34

3.2 Decidability of the O-Strict Fragment 35

3.2.1 P-Pointers . 36

3.2.2 Canonical Forms . 39

i

3.2.3 Construction . 42

3.3 Complexity . 58

3.3.1 Hardness . 59

3.4 Summary . 60

4 Extensions to the O-Strict Fragment 63

4.1 Recursion . 63

4.1.1 Representation . 65

4.1.2 Constructions . 66

4.1.3 Hardness . 68

4.2 Beyond O-Strictness . 70

4.2.1 O-Pointers . 70

4.2.2 Class Memory Automata . 71

4.2.3 RMLCMA . 76

4.2.4 Construction . 78

4.3 Undecidability . 87

4.3.1 On the Right-Hand Side . 87

4.3.2 On the Left-Hand Side . 91

4.3.3 Recursion . 93

4.4 Summary . 94

5 Non-Local Control Flow 99

5.1 Third-Order IAcatch+mkvar . 100

5.1.1 Representation . 100

5.1.2 Construction . 103

5.2 Removing mkvar . 108

5.3 Summary . 113

6 Implementation 115

6.1 Homer . 115

6.1.1 Sorting . 116

6.1.2 Kierstead Terms . 118

6.1.3 No Snapback and Scope Extrusion 119

6.1.4 Model-Checking Regular Properties 120

6.2 Hector . 121

6.2.1 Sorting . 122

6.2.2 Kierstead Terms . 123

ii

6.2.3 �Tricky� Examples . 124

6.2.4 Order . 125

6.2.5 Reachability . 126

6.3 Summary . 129

7 Symbolically Executed Automata 131

7.1 De�nition of Symbolically Executed Automata 133

7.2 Game Semantics to SEA . 136

7.2.1 Local Variable Blocks . 137

7.3 Model Checking SEA . 145

7.4 Implementation . 147

7.4.1 Identities . 148

7.4.2 Sorting . 149

7.4.3 Summing . 149

7.4.4 Wavelet . 152

7.5 Summary . 152

8 Conclusion 157

8.1 RML . 157

8.2 Non-Local Control Flow . 159

8.3 Implementation . 160

Bibliography 162

Index 169

iii

iv

Chapter 1

Introduction

1.1 Formal Veri�cation

Computer programs have become an essential part of everyday life and so when they

go wrong the e�ects can be disastrous. The size and complexity of modern programs

makes it all too easy for bugs to be introduced during coding. Extensive testing can be

used to help �nd and eradicate bugs. However, the number of possible inputs can be

infeasibly large or even in�nite and so testing cannot guarantee the complete absence

of bugs. Formal veri�cation seeks to address this problem by proving that a program

behaves as it is designed to (or at least that it is guaranteed to satisfy some desirable

properties � e.g. termination or not accessing unallocated storage). Veri�cation is one

of the most fundamental �elds in computer science. In fact, Hoare proposes that the

problem of developing a verifying compiler should be viewed as a �Grand Challenge� to

the computer science community [45]. A challenging form of veri�cation is equivalence

checking [33, 43, 50, 59, 110]. This involves checking whether two programs have

exactly the same behaviour. Equivalence actually subsumes many other interesting

properties such as reachability or termination. It is particularly important when

making optimisations (either automatically or manually) or when refactoring code,

as we may wish to check that the optimised code will always behave the same as the

original program. In reference to Hoare's �Grand Challenge�, Godlin and Strichman

suggest that �program equivalence can be thought of as a grand challenge in its own

right� [44].

There are many known e�ective veri�cation techniques. Static analysis and ab-

stract interpretation can be used to e�ciently over-approximate properties of pro-

grams [32]. Alternatively, model checking can be used to check whether a model of

a system satis�es some property, often given as a temporal logic formula [29]. To in-

crease scalability, various techniques such as symbolic model checking [68], bounded

1

model checking [18, 30], predicate abstraction [14, 15] and counterexample guided

abstraction re�nement [28] can be used. However, while these methods have been

proved e�ective, they are all primarily aimed at veri�cation of hardware or �rst-order

imperative programs. The inclusion of higher-order functions in a language can in-

troduce new challenges for veri�cation techniques.

1.2 Higher-Order Programs

In higher-order functional languages such as Haskell or ML, functions are �rst-class

objects which can be passed around. That is, higher-order functions which accept

other functions as arguments are commonplace [27, 51, 85]. Higher-order languages

tend to have strong type systems which can catch many bugs at compile time. Un-

fortunately, the type system will still let some bugs through. Various techniques for

verifying safety properties of higher-order programs involve strengthening the type

system [16, 19, 39, 109]. These tend not to be fully automatic and require manual

assistance or annotation, although there are methods to minimise this by combining

type theoretic approaches with techniques which have been successful for imperative

programs such as predicate abstraction and abstract interpretation [53, 95].

Another approach to verifying higher-order programs is control-�ow analysis [100,

69, 54]. Various forms of control-�ow analysis exist for over-approximating the values

which can appear at di�erent program points. This can be very e�ective at �nding

bugs but as it is an over-approximation it may generate many spurious errors, even

when the program is correct.

Recently, Higher-Order Recursion Schemes (HORS) have been proposed as a suit-

able formalism for verifying higher-order programs. Kobayashi shows how they can

be used to encode pure functional programs over �nite data types and suggests

that HORS should be the target abstraction of CEGAR loops on higher-order pro-

grams [58]. HORS have a decidable modal µ-calculus and so many interesting proper-

ties can be checked [87]. The worst-case complexity of these algorithms is horrendous

(n-ExpTime-complete) but experimental results suggest that in practice many inter-

esting examples can be handled [57].

For proving equivalences in higher-order languages, logical relations have proved

particularly e�ective [90, 101]. Recently, these have utilised step-indexing and other

techniques to handle a wide range of di�erent language features [9, 36]. However,

such methods are not automatic and so require a large amount of proof by hand.

2

1.3 Game Semantics

An alternative method of verifying higher-order programs relies on game semantics.

In recent years, game semantics has emerged as a powerful technique for modelling

programming languages and logics. Game semantics views program execution as the

playing of a two-player game between the program and its environment. It was used

to give the �rst syntax independent fully abstract models of the pure functional pro-

totypical programming language PCF [92, 3, 52, 83]. By making small changes to

the rules of the game, fully abstract models of other languages could be constructed,

including languages with state [6, 7], general references [2], recursive types [4, 66],

non-local control �ow [60] and call-by-value execution [5, 46]. A further develop-

ment was the advent of algorithmic game semantics, which seeks to use the concrete

yet highly accurate nature of game-semantic models to verify programs. Ghica and

McCusker showed that observational equivalence of second-order programs of the

call-by-name higher-order language with state Idealized Algol (IA) was decidable by

representing the game semantics as regular expressions [42]. Further results followed

and a complete picture of the decidable fragments of IA emerged [72, 86, 81, 74, 76].

Perhaps surprisingly, the related call-by-value language RML (which can be viewed

as a restriction of Standard ML to ground-type references) received comparatively less

attention. Prior to the work described in Chapters 3 and 4, there were two papers

which described decidable (and undecidable) fragments of RML [40, 73]. However,

these decidable fragments were not especially higher-order and did not come close to

completing the picture of where the boundary between decidability and undecidability

lay.

Two recent papers which do consider decidability in call-by-value stateful lan-

guages are [78, 79]. In the �rst of these, Murawski and Tzevelekos consider a variant

of RML where variables can only be allocated in a block-structured manner (as in

IA). Removing the ability to pass a reference out of the scope in which it is declared

proves to be quite restrictive and the authors are able to show decidability at type se-

quents which are known to be undecidable in RML. In the second of their papers, they

consider Reduced ML. That is, RML without the �bad variable�-constructor. The dif-

ference between the equivalence relations of the two languages only shows up in type

sequents with negative occurrences of int ref. However, the game-semantic model of

Reduced ML is more complex than that of RML, relying on nominal games [77]. Due

to this, the fragment that is shown decidable does not contain higher-order functions.

3

Tools which rely on the decidability results for IA have also been implemented [1]

and techniques such as on-the-�y model checking [12], data abstraction [35], predicate

abstraction [13] and syntactic approximation [41] have been applied to help improve

the performance. However, these tools all check weaker reachability properties rather

than equivalence and do not consider programs of order higher than two.

1.4 Thesis Overview

In this thesis we investigate the use of game semantics for the automatic equivalence

checking of open higher-order programs. We believe the game-semantic approach has

several bene�ts. Firstly, it has a solid theoretical foundation being based on full ab-

straction results. If we wish to prove anything about a program we should have some

mathematical framework upon which the proof relies. Secondly, the algorithms based

on game semantics are fully automatic. They do not require any annotation on the

part of the user. The identi�cation of the decidable fragments of languages allows us

to know exactly when the methods will work. The algorithms are decision procedures

and do not rely on any over- or under-approximation so within the decidable fragment

the algorithm will always (eventually) be able to tell whether two given programs are

equivalent or not. Further, in the case of inequivalence it is straightforward to con-

struct a counterexample (according to Clarke and Veith �counterexamples are the

single most e�ective feature to convince system engineers about the value of formal

veri�cation� [31]). Finally, the game-semantic method allows us to verify open pro-

grams. That is, we do not need to consider a complete program as a monolithic piece

of code, but can break it up and concentrate on verifying the modules or functions

of interest on their own. Our programs may contain references to functions whose

de�nitions are unknown.

Our work aims towards getting a complete classi�cation of the decidable fragments

of RML, in a similar manner to what was achieved for IA. Further, we implement

prototype tools for equivalence-checking higher-order programs to illustrate the power

of the game-semantic method and to investigate whether these algorithms can be used

in practice.

We start out in Chapter 2 by reviewing the background de�nitions and results we

will rely on in subsequent chapters. In particular, we introduce the languages IA and

RML and their operational semantics before presenting their game-semantic models.

We also recap previous results in algorithmic game semantics.

4

In Chapter 3 we look at the O-strict fragment of RML. This is the largest fragment

of RML for which, in the game-semantic model, justi�cation pointers from O-moves

can always be uniquely reconstructed. This turns out to consist of terms of short

types (order at most two, arity at most one) which may contain free identi�ers as

long as their argument types are also short. This fragment contains large and complex

higher-order types and includes many examples from the literature which are known

to be challenging to handle. It is strictly larger than the fragments of RML previously

identi�ed as having decidable equivalence problems. We �rst show how to precisely

represent the strategy denotations of terms as languages over �nite alphabets. This

is non-trivial as justi�cation pointers from P-moves need to be encoded and existing

methods do not seem su�cient. The main contribution of this chapter is then to

show that these languages can be recognised by Visibly Pushdown Automata (VPA)

constructed inductively over the structure of terms. This shows that the O-strict

fragment of RML has a decidable observational equivalence problem. Further, by

reduction of the equivalence problem for nondeterministic automata on binary trees

we show that the problem is ExpTime-complete.

Next, in Chapter 4 we look at extensions to the O-strict fragment. We �rst

consider adding recursion to the language. In a similar result to that of [76] we

show that recursive �rst-order arity one functions can be added without a�ecting

decidability, although VPA are no longer su�ciently expressive and Deterministic

Pushdown Automata must be used instead. We then consider non-O-strict type

sequents. We use deterministic Class Memory Automata, a form of automata over

in�nite alphabets, to show that observational equivalence is decidable for �rst-order

terms of arity two. Such terms are not O-strict and the in�nite alphabet is needed

to encode the location of justi�cation pointers from O-moves. Finally, we consider at

which point observational equivalence becomes undecidable. From previous results in

the literature it is known that third-order programs are undecidable [72, 73]. Further,

we adapt existing proofs to show that equivalence is undecidable in the presence of

recursive second-order functions or (non-recursive) second-order functions of arity

two or more if there is a �rst-order argument which is not the �nal argument. These

proofs can also be used to show the problem is undecidable if free identi�ers whose

argument types include one of the undecidable types are present.

Subsequently, in Chapter 5 we consider languages which contain non-local control

�ow. Game semantically, this is known to correspond to dropping the bracketing

condition [60]. We show that in call-by-name IA, adding a catch-construct does not

a�ect the decidability of the third-order fragment. The proof relies on the fact that

5

in the absence of bracketing the visibility condition still implies a form of weak brack-

eting. Under this condition, non-local jumps of control (i.e. bracketing violations)

correspond to popping the control-stack and we can make such pops explicit when

we represent the semantics using pushdown automata. Further, we show how to de-

cide the containment relation of [75], proving that decidability holds both with and

without the presence of a �bad-variable� constructor in the language.

In the �nal chapters we move away from theoretical results and consider the

implementation of these algorithms. In Chapter 6 we present our model checkers

Homer and Hector. Homer is an equivalence checker for the third-order fragment

of IA based on the result of [81]. It takes two terms in β-normal form, constructs

VPA which precisely capture their game semantics and checks them for language

equivalence. In case the given terms are inequivalent, Homer constructs both a

game-semantic and an operational-semantic counterexample in the form of a play and

a separating context respectively. We believe Homer was the �rst model checker

for third-order programs. Our tool Hector is an implementation of the result of

Chapter 3 and checks equivalence for terms of O-strict RML. It takes advantage

of on-the-�y model checking which allows it to avoid constructing the whole model

if it �nds a counterexample early. This makes Hector particularly e�ective on

inequivalences. We showcase the abilities of both tools on a number of examples and

evaluate their performance, where appropriate comparing with the tool Mage [12].

Finally, in Chapter 7 we investigate the application of symbolic execution to im-

proving the performance of our model checkers. Symbolic execution involves execut-

ing a program using symbolic formulas rather than concrete values. We present a

representation of �nite automata in which transitions are labelled with formulas and

guards rather than concrete letters. The aim is to take advantage of the symmetries

of the game-semantic model to represent the denotation of terms more compactly and

then utilise e�cient SMT solvers to model check them. We evaluate our implementa-

tion on a number of examples. The symbolic approach gives impressive performance

improvements on examples with large data types, but unfortunately is not as fast

when smaller data types are considered.

6

Chapter 2

Preliminaries

In this chapter we review many of the important de�nitions and results from the

literature upon which the subsequent chapters will rely. In particular, we introduce

the programming languages Idealized Algol and RML and present their fully abstract

game-semantic models. We also present some of the main results in algorithmic game

semantics which utilise these fully abstract models to achieve decidability results.

2.1 Idealized Algol

We start by introducing Idealized Algol (IA) [94]. IA is a prototypical programming

language which combines both functional and imperative features. It can be thought

of as a call-by-name variant of ML. The syntax and typing rules are presented in

Figure 2.1. As can be seen, IA is essentially the (call-by-name) simply-typed λ-

calculus augmented with imperative constructs. The base types are com of commands,

exp of natural number valued expressions and var of natural number valued variables.

Of the IA constructs, the only unusual one is the so-called �bad-variable� constructor

mkvar. This comes from taking an object-oriented view of state, with variables being

the combination of a read method and a write method. While we do not include any

arithmetic operations other than succ(i) and pred(i), this is su�cient to de�ne all

the usual operations and comparisons on natural numbers.

The operational semantics is de�ned for terms of the form x1 : var, . . . , xn : var `
M : θ, by a big-step relation s,M ⇓ s′, V given in Figure 2.2. Here s and s′ are stores,

partial functions from {x1, . . . , xn } to the natural numbers and x1 : var, . . . , xn : var `
V : θ is a term in canonical form. The canonical forms are de�ned by

V ::= skip | i | x | λxθ.M | mkvar(M,N).

7

Γ ` skip : com

i ∈ N
Γ ` i : exp

Γ `M : exp

Γ ` succ(M) : exp

Γ `M : exp

Γ ` pred(M) : exp

Γ, x : θ ` x : θ

Γ `M : exp Γ ` N0 : β Γ ` N1 : β

Γ ` ifM thenN0 elseN1 : β

Γ `M : com Γ ` N : β

Γ `M ;N : β

Γ `M : exp Γ ` N : com

Γ ` whileM doN : com

Γ `M : var Γ ` N : exp

Γ `M :=N : com

Γ `M : var

Γ ` !M : exp

Γ, X : var `M : β

Γ ` newX inM : β

Γ, x : θ `M : θ′

Γ ` λxθ.M : θ → θ′
Γ `M : θ → θ′ Γ ` N : θ

Γ `MN : θ′

Γ `M : exp Γ ` N : exp→ com

Γ `mkvar(M,N) : var

We use θ to denote an arbitrary type, whereas β denotes a base type.

Figure 2.1: Typing rules for Idealized Algol

For closed ` M , we write M ⇓ if there exist s′, V such that ∅,M ⇓ s′, V . The

operational semantics induces a natural notion of equivalence.

De�nition 2.1. We say that Γ `M1 : θ contextually approximates Γ `M2 : θ, writ-

ten Γ `M1
@∼M2, if for all contexts C[−] such that Γ ` C[M1], C[M2] : com, whenever

C[M1] ⇓ then we also have C[M2] ⇓. If Γ ` M1
@∼M2 and Γ ` M2

@∼M1 then we say

Γ `M1 : θ and Γ `M2 : θ are contextually equivalent (or observationally equivalent),

written Γ `M1
∼= M2.

Observational equivalence is a compelling notion of program equivalence. Two

programs are equivalent if, in any programming context, one can always replace the

other without a�ecting the outcome of the computation. For example, λxexp.x is

observationally equivalent to λxexp.new y in y :=x; if !y = 0 then 0 else !y as the local

variable y and the conditional cannot be detected from the outside. However, while a

natural notion of equivalence, the quanti�cation over all programming contexts makes

it notoriously di�cult to reason about. The following examples are less obvious.

Example 2.1 (No Snapback [84]).

p : com→ com ` newX in p(X := 1); if !X = 1 thenΩ else skip ∼= p(Ω)

We write Ω for the (de�nable) term (of a given type) which immediately diverges

without doing anything else. Here p cannot directly observe or modify x, neither can

it undo any side e�ects caused by running its argument. So in both terms, if p ever

runs its argument then the computation will diverge.

8

s, V ⇓ s, V
s,M ⇓ s′, i

s, succ(M) ⇓ s′, i+ 1

s,M ⇓ s′, i+ 1

s,pred(M) ⇓ s′, i
s,M ⇓ s′, 0

s,pred(M) ⇓ s′, 0

s,M ⇓ s′, 0 s′, N1 ⇓ s′′, V
s, ifM thenN0 elseN1 ⇓ s′′, V

i > 0 s,M ⇓ s′, i s′, N0 ⇓ s′′, V
s, ifM thenN0 elseN1 ⇓ s′′, V

s,M ⇓ s′, skip s′, N ⇓ s′′, V
s,M ;N ⇓ s′′, V

s,M ⇓ s′, 0
s,whileM doN ⇓ s′, skip

i > 0 s,M ⇓ s′, i s′, N ⇓ s′′, skip s′′,whileM doN ⇓ s′′′, skip
s,whileM doN ⇓ s′′′, skip

s,N ⇓ s′, i s′,M ⇓ s′′, x
s,M :=N ⇓ s′′[x 7→ i], skip

s,M ⇓ s′, x
s, !M ⇓ s′, s′(x)

s[X 7→ 0],M ⇓ s′, V
s\X,newX inM ⇓ s′\X,V

s,M ⇓ s′, λxθ.M ′ s′,M ′[N/x] ⇓ s′′, V
s,M N ⇓ s′′, V

s,M ⇓ s′,mkvar(M ′, N ′) s′,M ′ ⇓ s′′, i
s, !M ⇓ s′′, i

s,N ⇓ s′, i s′,M ⇓ s′′,mkvar(M ′, N ′) s′′, N ′i ⇓ s′′′, skip
s,M :=N ⇓ s′′′, skip

Figure 2.2: Operational semantics of Idealized Algol

Example 2.2 (Scope Extrusion). Consider the three terms

M1 ≡ λF (exp→exp)→exp.new x := 0 inF (λyexp.if !x = 0 thenx := y elsex := y − 1; !x)

M2 ≡ λF (exp→exp)→exp.F (λyexp.new x := 0 in if !x = 0 thenx := y elsex := y − 1; !x)

M3 ≡ λF (exp→exp)→exp.F (λyexp.y)

The terms M1 and M2 di�er only on the scope of the newX in -block. Now M1 �
M2
∼= M3. The �rst two terms are inequivalent because if F evaluates its argument

more than once, in M1 the value of x will be preserved between calls, whereas in M2

it will be reset to 0 each time. Because of this, F 's argument in M2 is equivalent to

λyexp.y which is why M2
∼= M3.

It is worth noting that the unusual mkvar construct does not a�ect observational

equivalence [67]. Two terms are equivalent if and only if there is no mkvar-free

context which separates them (although the same result does not hold for contextual

approximation).

9

2.2 Game Semantics

To help us reason about observational equivalence in IA we will use game seman-

tics. Game semantics is a way of giving meaning to a program which views program

execution as the playing of a game between the program and its environment. The

game-semantic model for IA is presented by Abramsky and McCusker in [6] and we

review the basic de�nitions here.

2.2.1 Games and Plays

De�nition 2.2. An arena A is given by a tuple 〈MA, λA,`A 〉 where:

• MA is a set of moves.

• λA : MA → {O,P } × {Q,A } is a labelling function which indicates whether

each move belongs to Opponent (O) or Player (P) and whether it is a question or

an answer. We sometimes write λOPA for the O/P projection of λA and similarly

with λQAA .

• `A⊆ (MA] { ? })×MA is an enabling relation which satis�es:

� ? `A m⇒ (λA(m) = OQ ∧ [n `A m⇔ n = ?]).

� m `A n ∧ λQAA (n) = A⇒ λQAA (m) = Q.

� m `A n ∧m 6= ?⇒ λOPA (m) 6= λOPA (n).

The idea of the enabling relation is that when playing a game, a move can only

be played if another move has previously been played which enables it. Games will

start with an initial move, which is enabled by ? and must be an O-question. We

write IA for the set of initial moves from arena A. The other conditions state that

answers can only be enabled by questions and that a move belonging to one of the

players can only be enabled by a move belonging to the other.

In all the arenas we will consider, every question will enable at least one answer

(and so it can be answered). In the model for IA it will also be true that (non-initial)

questions can only be enabled by other questions, although this condition will not

hold when we consider the model of a call-by-value language. Where it aids clarity

we will often present arenas in a graphical form, for example the arena in Figure 2.3.

Here the topmost move, q0, is initial (so an O-question) and each move enables its

children. This determines the ownership of each move due to the condition that a

move can only enable moves of opposite ownership. While this tree-like form does not

10

q0

a0q1

a1q2

a2

Figure 2.3: Example of a graphically represented arena

contain information about λQAA , it should be understood that a move qi is supposed

to be a question and a move ai is an answer.

To play a game over the arena A, the two players must take it in turns to play a

move fromMA which is enabled by a previously played move. This will form a justi�ed

sequence, a sequence of moves in which each non-initial move m is equipped with a

justi�cation pointer to a previous move n such that n `A m. We say that n justi�es

m. Similarly, if we can reach n′ by following a sequence of justi�cation pointers from

m′ then we say that n′ hereditarily justi�es m′. Note that the �rst move in a justi�ed

sequence must be an initial move (as there are no possible justifying moves) and so

justi�ed sequences always start with O-questions. We often use s, t, u to range over

(justi�ed) sequences of moves, m,n to range over moves and q or a to range over

question- or answer-moves respectively. A justi�ed sequence s will be called legal if

the following conditions hold:

• Alternation: The players take it in turns to play. If s = s1 · m · n · s2 then

λOP (m) 6= λOP (n).

• Bracketing: We say that a question q is answered by a in the justi�ed sequence

s if q justi�es a. The bracketing condition holds if for every pre�x t · q · u · a of
s with q answered by a, it is the case that every question asked in u has been

answered (in u). That is, whenever an answer is played, it must answer the

most recently asked unanswered question.

• Visibility: If t · m is a pre�x of s with m non-initial, then the justi�er of m

occurs in view(s). The view function is intended to represent the �currently

11

relevant� subsequence of moves. It is de�ned inductively by

view(ε) = ε

view(sm) = m if ? ` m

view(s m t n) = view(s) m n .

We will often use the term O-view to refer to the view of an even-length sequence

(i.e. by alternation the O-view is the view when it is O's turn to play). Similarly,

by P-view we mean the view of an odd-length sequence.

We will write LA for the set of legal sequences over the arena A. It turns out to

be useful to restrict the set of plays for a game to a subset of LA. For example, we

commonly insist that our games are well-opened meaning that each play can contain

at most one initial move. To achieve this we de�ne a game A to consist of a pair of

an arena 〈MA, λA,`A 〉 and a non-empty, pre�x-closed set PA of legal sequences on

this arena which must satisfy that if s ∈ PA and I is a set of initial moves of s then

s � I ∈ PA. Here we use s � I to denote the subsequence of s consisting of all moves

hereditarily justi�ed by an initial move i ∈ I. If s ∈ PA we say that s is a play.

When representing plays, we sometimes omit the justi�cation pointers and only

present the underlying move sequence. We usually only do this in situations when

the rules of the game can be used to uniquely determine the positions of the omitted

pointers from the underlying move sequence.

2.2.2 Constructions on Games

We will use games to represent IA types. The games for the base types are given

in Figure 2.4. We will also have use for the empty game which we denote 1. From

these basic games we will construct more complex games using the constructions in

Figure 2.5. Here we use s � A to mean the subsequence of the legal sequence s

consisting of moves from the arena A, s � m to mean the subsequence of the legal

sequence s consisting of moves hereditarily justi�ed by the occurrence of move m and

λA for the OP-complement of λA. The game A × B consists of the union of A and

B; a play of A × B must be either a play from A or a play from B. In contrast, a

play from A(B is an interleaving of a play from A and a play from B. However,

the ownership of moves in A is reversed so the play must start in B with initial

moves from A being justi�ed by initial moves from B. Finally, plays of !A consist

12

Type Game Graphical Representation

com

MJcomK = { run, done }
λJcomK = run 7→ OQ, done 7→ PA
`JcomK = { (?, run), (run, done) }
PJcomK = { ε, run, run done }

run

done

exp

MJexpK = { q } ∪ N
λJexpK = q 7→ OQ, i 7→ PA
`JexpK = { (?, q) } ∪ { (q, i) | i ∈ N }
PJexpK = { ε, q } ∪ { q i | i ∈ N }

q

10 . . .

var

MJvarK = { read, ok } ∪ N ∪
{write(i) | i ∈ N }

λJvarK = read 7→ OQ,write(i) 7→ OQ,
ok 7→ PA, i 7→ PA

`JvarK = { (?, read) } ∪
{ (?,write(i)) | i ∈ N } ∪
{ (write(i), ok) | i ∈ N } ∪
{ (read, i) | i ∈ N } ∪

PJvarK = { ε, read } ∪
{write(i) | i ∈ N } ∪
{ read i | i ∈ N } ∪
{ write(i) ok | i ∈ N }

read

10 . . . ok

write(0) write(1) . . .

Figure 2.4: Games for the IA base types

of interleavings of well-opened plays of A. We use these last two constructions to

de�ne A ⇒ B = !A (B. A play from this game consists of a single play from

B interleaved with several plays from A. Although several of these constructions

are de�ned in terms of a simple interleaving of plays, the rules of the games (and

in particular alternation) imply that this interleaving must obey certain switching

conditions . Plays in the game A(B must consist of a play from A interleaved with

a play from B, but for this to be legal only P will be able to switch between A and B;

O must play in the same component as P's last move. Conversely, play in !A consists

of interleavings of plays from A but this time only O can switch between threads. We

will be considering games of the form (A1 × . . .× An)⇒ B and in this game only P

can switch between components or between Ai-threads.

2.2.3 Strategies

Having de�ned games and plays we can now de�ne strategies. While games will be

the denotation of types, strategies will be the denotation of terms, setting out how

the execution of a program will play out over its type.

13

Formal De�nition Graphical Representation
MA×B = MA]MB

λA×B = [λA, λB]
? `A×B n ⇔ ? `A n ∨ ? `B n
m `A×B n ⇔ m `A n ∨m `B n

PA×B = { s ∈ LA×B | s � A ∈ PA ∧ s � B = ε }
∪ { s ∈ LA×B | s � B ∈ PB ∧ s � A = ε }

A B

MA(B = MA]MB

λA(B = [λA, λB]
? `A(B n ⇔ ? `B n
m `A(B n ⇔ m `A n ∨m `B n ∨ (? `B m ∧ ? `A n)

PA(B = { s ∈ LA(B | s � A ∈ PA ∧ s � B ∈ PB } A

B

M!A = MA

λ!A = λA
`!A = `A
P!A = { s ∈ L!A | for each initial m, s � m ∈ PA }

A

Figure 2.5: Basic constructions on games

De�nition 2.3. A strategy σ for a game A is a non-empty set of even-length plays

of A satisfying:

• smn ∈ σ ⇒ s ∈ σ.

• smn, smn′ ∈ σ ⇒ smn = smn′.

We can think of strategies as being a playbook telling P how to play. The condi-

tions state that σ only contains plays reachable when following strategy σ and that

strategies are deterministic. Given an odd length play of A, σ determines at most

one move that P should respond with.

We will be considering game-semantic models for languages with state. In such

models a strategy's response can depend on the entire history of the play so far.

However, we will sometimes �nd it useful to refer to innocent strategies for which

this is not the case. Innocent strategies are used to give models of pure functional

languages [52]. A strategy is innocent if its response depends only on the view of the

play. That is, a strategy σ : A is innocent if and only if

smn ∈ σ ∧ t ∈ σ ∧ tm ∈ PA ∧ view(tm) = view(sm)⇒ tmn ∈ σ.

14

2.2.3.1 Composition

Perhaps the most important operation on strategies is composition. Given two strate-

gies σ : A (B and τ : B (C we wish to compose them to form a strategy

σ; τ : A (C. This will be done by a CSP-style synchronisation plus hiding. To

de�ne it formally, we �rst need some auxiliary de�nitions.

Let u be a sequence of moves from A, B and C together with justi�cation pointers

for all moves except for those initial in C. De�ne u � A,B to consist of the subsequence

of u containing only moves from A and B; if any of these moves had a pointer to a

move from C then delete that pointer. We de�ne u � B,C similarly. We say that u

is an interaction sequence of A, B and C if u � A,B ∈ PA(B and u � B,C ∈ PB(C .
The set of such sequences is denoted int(A,B,C).

Note that for an interaction sequence u, the only pointers from A- or C-moves

to B-moves are from initial A-moves to initial B-moves. Similarly, the only pointers

from B-moves to A- or C-moves are from initial B-moves to initial C-moves. This

allows us to de�ne u � A,C as the subsequence of u containing only moves from A and

C but with any pointers from an initial A-move, i, to an initial B-move, j, redirected

to point at the initial C-move, k, which justi�ed j.

We can now de�ne the composition of two strategies σ : A(B and τ : B(C.

σ; τ = {u � A,C | u ∈ int(A,B,C) ∧ u � A,B ∈ σ ∧ u � B,C ∈ τ }

In our model of IA we will need to be able to compose maps σ : !A (B and

τ : !B (C (i.e. σ : A ⇒ B and τ : B ⇒ C). To do this we need to be able to

promote σ to a map σ† :!A(!B.

σ† = { s ∈ L!A(!B | for all initial m, s � m ∈ σ }

We can then de�ne composition of σ : !A (B and τ : !B (C by σ # τ = σ†; τ :

!A(C. The category with objects as well-opened games and morphisms A→ B as

strategies for !A(B is well-de�ned and cartesian closed.

2.2.3.2 Copycat Strategies

An important class of strategies are the copycat strategies. These are strategies in

which P always responds to O by repeating O's move but in a di�erent component.

For any game A we de�ne idA : A(A as below. We use subscripts to di�erentiate

between the copies of A on di�erent sides of the disjoint sum.

idA = { s ∈ PA1(A2 | for all pre�xes t of s we have t � A1 = t � A2 }

15

These strategies are the identity strategies. That is, for all σ : A(B, idA;σ = σ =

σ; idB.

Similarly, we can de�ne dereliction strategies derA : !A(A as copycats.

derA = { s ∈ P!A(A | for all pre�xes t of s we have t �!A = t � A }

These dereliction strategies form the identities for the promoted form of composition

#.

2.2.4 Game Semantics of Idealized Algol

In the game-semantic model for IA, types will be interpreted as games. The games

for the base types were already presented in Figure 2.4. We will interpret functional

types by Jθ1 → θ2K = Jθ1K ⇒ Jθ2K and typing contexts by Jx1 : θ1, . . . , xn : θnK =

Jθ1K × . . . × JθnK. The denotation of a term JΓ `M : θK is then a strategy for the

game JΓK⇒ JθK. These strategies are constructed compositionally over the structure

of the term. The de�nitions are given in Figure 2.6. Free identi�ers are interpreted as

projections, which are the copycat strategies on JΓK× JθK⇒ JθK where P copies O's

moves between the two copies of JθK. We interpret λ-abstraction using the currying

operator, Λ, which just performs a renaming of moves according to the isomorphism

between JΓK× Jθ1K⇒ Jθ2K and JΓK⇒ (Jθ1K⇒ Jθ2K). Application is performed using

pairing (which is simply the disjoint union of strategies) and composition with the ev

strategy which is the copycat strategy on ((Jθ1K ⇒ Jθ2K) × Jθ1K) ⇒ Jθ2K and can be

constructed as Λ−1(idJθ1K⇒Jθ2K) where Λ−1 just performs the inverse renaming to the

currying operator. The strategies used to interpret the remaining IA constructs are

interpreted using special strategies which are given in Figure 2.7 as regular expressions

describing their complete plays. Justi�cation pointers have been omitted as they can

be uniquely reconstructed and the strategies will contain all even-length pre�xes of

the plays shown. We use subscripts to indicate which component of the arena a move

originates from.

This model of IA turns out to be extremely accurate. We say that a play is

complete if every question asked in it has been answered. Let comp(σ) denote the

set of complete plays from strategy σ. We have the following full abstraction result.

16

JΓ, x : θ ` xK = πx
JΓ ` λx.MK = Λ(JΓ, x `MK)
JΓ `MNK = 〈 JΓ `MK, JΓ ` NK 〉 # ev
JΓ ` skipK = { ε, run done }

JΓ ` i : expK = { ε, q i }
JΓ ` succ(M)K = JΓ `MK # succ
JΓ ` pred(M)K = JΓ `MK # pred

JΓ ` ifM thenN0 elseN1K = 〈 JΓ `MK, JΓ ` N0K, JΓ ` N1K 〉 # cond
JΓ `M ;NK = 〈 JΓ `MK, JΓ ` NK 〉 # seq

JΓ ` whileM doNK = 〈 JΓ `MK, JΓ ` NK 〉 # while
JΓ `M :=NK = 〈 JΓ `MK, JΓ ` NK 〉 # assign

JΓ ` !MK = JΓ `MK # deref
JΓ ` newX inMK = JΓ ` λXvar.MK # cell

JΓ `mkvar(M,N)K = 〈 JΓ `MK, JΓ ` NK 〉 # mkvar

Figure 2.6: Game semantics of Idealized Algol

succ : JexpKL ⇒ JexpKR =
∑
n∈N

qR · qL · nL · (n + 1)R

pred : JexpKL ⇒ JexpKR =

(∑
n∈N

qR · qL · (n + 1)L · nR

)
+ qR · qL · 0L · 0R

cond : (JexpK1 × JβK2 × JβK3)⇒ JβKR = ∑
m`JβKn,i∈N

mR · q1 · (i + 1)1 ·m2 · n2 · nR

 +

 ∑
m`JβKn

mR · q1 · 01 ·m3 · n3 · nR

seq : (JcomK1 × JcomK2)⇒ JcomKR = runR · run1 · done1 · run2 · done2 · doneR
while : (JexpK1 × JcomK2)⇒ JcomKR =

runR ·

(∑
n∈N

q1 · (n + 1)1 · run2 · done2

)∗
· q1 · 01 · doneR

assign : (JvarK1 × JexpK2)⇒ JcomKR =
∑
n∈N

runR · q2 · n2 · write(n)1 · ok1 · doneR

deref : JvarKL ⇒ JexpKR =
∑
n∈N

qR · readL · nL · nR

cell : (JvarK1 ⇒ JβK2)⇒ JβKR =∑
m`JβKn

mR ·m2 · (read1 · 01)∗ ·

(∑
i∈N

write(i)1 · ok1 · (read1 · i1)∗
)∗
· n2 · nR

mkvar : (JexpK1 × (JexpK2 ⇒ JcomK3))⇒ JvarKR =(∑
n∈N

readR · q1 · n1 · nR

)
+

(∑
n∈N

write(n)R · run3 · (q2 · n2)∗ · done3 · okR

)

Figure 2.7: Complete plays of the strategies for the IA constructs

17

Γ ` () : unit

i ∈ N
Γ ` i : int

Γ `M : int

Γ ` succ(M) : int

Γ `M : int

Γ ` pred(M) : int

Γ `M : int Γ `M0 : θ Γ `M1 : θ

Γ ` ifM thenM1 elseM0 : θ

Γ `M : int ref

Γ ` !M : int

Γ `M : int ref Γ ` N : int

Γ `M :=N : unit

Γ `M : int

Γ ` refM : int ref Γ, x : θ ` x : θ

Γ `M : θ → θ′ Γ ` N : θ

Γ `MN : θ′
Γ, x : θ `M : θ′

Γ ` λxθ.M : θ → θ′

Γ `M : int Γ ` N : unit

Γ ` whileM doN : unit

Γ `M : unit→ int Γ ` N : int→ unit

Γ `mkvar(M,N) : int ref

Figure 2.8: Syntax of RML

Theorem 2.1 (Full Abstraction for Idealized Algol [6]). For any two IA terms-in-

context Γ `M,N : θ we have

Γ `M @∼ N ⇔ comp(JMK) ⊆ comp(JNK)

and so

Γ `M ∼= N ⇔ comp(JMK) = comp(JNK).

2.3 RML

A related programming language we are interested in is the call-by-value version of

IA, RML. The syntax and typing judgements are essentially the same as IA. However,

in order to be more in line with the conventions of ML there are some minor changes,

such as using the names unit, int and int ref instead of the base types com, exp and

var and so the syntax is presented in Figure 2.8.

The operational semantics of RML is de�ned in a similar way to that of IA, except

that we use call-by-value evaluation rather than call-by-name [91]. While this may

seem like a small change, it has some large e�ects. In particular, local variables no

longer have a well-de�ned block-structured scope. Under call-by-value, variables can

be declared in one part of the program and passed into another, which is not possible

under call-by-name. To account for this, the stores in our semantics will now be

partial functions s : L → N where L is a countable set of locations. The semantics

is presented in Figure 2.9. We will often write letx = M inN as syntactic sugar for

(λx.N)M . Similarly, we sometimes use M ;N as an abbreviation for (λy.N)M where

y is a fresh variable.

18

V ::= () | i | l | λxθ.M | mkvar(V1, V2)

s, V ⇓ s, V
s,M ⇓ s′, i

s, succ(M) ⇓ s′, i+ 1

s,M ⇓ s′, i+ 1

s,pred(M) ⇓ s′, i
s,M ⇓ s′, 0

s,pred(M) ⇓ s′, 0

s,M ⇓ s′, 0 s′, N1 ⇓ s′′, V
s, ifM thenN0 elseN1 ⇓ s′′, V

s,M ⇓ s′, n+ 1 s′, N0 ⇓ s′′, V
s, ifM thenN0 elseN1 ⇓ s′′, V

s,M ⇓ s′, l
s, !M ⇓ s′, s′(l)

s,M ⇓ s′,mkvar(V0, V1) s′, V0() ⇓ s′′, V
s, !M ⇓ s′′, V

s,M ⇓ s′, l s′, N ⇓ s′′, n
s,M :=N ⇓ s′′[l 7→ n], ()

s,M ⇓ s′,mkvar(V0, V1) s′, N ⇓ s′′, n s′′, V1n ⇓ s′′′, V
s,M :=N ⇓ s′′′, V

s,M ⇓ s′, n
s′, refM ⇓ s′ ⊕ (l 7→ n), l

s,M ⇓ s′, λx.M ′ s′, N ⇓ s′′, V s′′,M ′[V/x] ⇓ s′′′, V ′

s,MN ⇓ s′′′, V ′
s,M ⇓ s′, 0

s,whileM doN ⇓ s′, ()

s,M ⇓ s′, n+ 1 s′, N ⇓ s′′, () s′′,whileM doN ⇓ s′′′, ()
s,whileM doN ⇓ s′′′, ()

s,M ⇓ s′, V1 s′, N ⇓ s′′, V2
s,mkvar(M,N) ⇓ s′′,mkvar(V1, V2)

Figure 2.9: Operational semantics of RML

19

RML is related to Reduced ML [90] the canonical restriction of ML to ground

type references. The only substantial di�erence is the inclusion of the bad-variable

constructor in RML1. Unfortunately, unlike the call-by-name case, this does a�ect

the observational equivalence relation. For example, x := !x ∼= () holds in Reduced

ML but not RML. RML contexts are strictly more powerful and so can separate more

terms than Reduced ML contexts [77]. However, these extra contexts only make a

di�erence if the typing Γ ` θ contains a negative occurrence of int ref (by a negative

occurrence we mean occurring in the left-hand scope of an odd number of →'s and

`'s). That is, for Reduced ML terms Γ ` M,N : θ, if Γ ` θ does not contain any

negative occurrences of int ref then Γ ` M ∼=RML N ⇔ Γ ` M ∼=Reduced ML N and

otherwise Γ `M ∼=RML N ⇒ Γ `M ∼=Reduced ML N [73].

2.3.1 Game Semantics of RML

The two main presentations of game-semantic models for call-by-value languages are

by Abramsky and McCusker [5] and Honda and Yoshida [46]. Abramsky and Mc-

Cusker show how to use a Fam(C) construction to construct a bicartesian closed

category with a strong monad from a cartesian closed category with a form of weak

coproduct. This allows a model of call-by-value computation in the style of Moggi [71]

to be constructed from a model of call-by-name computation. Applying this construc-

tion to the games model, they construct a category in which objects are families of

games and a morphism from {Ai | i ∈ I } to {Bj | j ∈ J } consists of a function

f : I → J and a family of strategies {σi : !Ai (Bf(i) | i ∈ I }. In contrast, Honda

and Yoshida de�ne call-by-value games directly and then show their model has a

strong monad. Super�cially their constructions seem quite di�erent. However, the

models are isomorphic and once the constructions have been applied the resulting

games are actually very similar. That said, our presentation will more closely re-

semble the Honda and Yoshida approach. While less general, their constructions are

more concrete and so seem more suitable for algorithmic analysis. We review their

de�nitions below.

A call-by-value arena (simply referred to as an arena if the call-by-value setting is

clear) is de�ned in the same way as the already introduced call-by-name arenas except

that the initial moves are P-answers. Note that in order to have complex arenas this

implies that we will have answers which justify questions, a situation which does not

happen in call-by-name arenas.

1RML also does not include a reference equality test, but in the absence of bad-variables this is
de�nable.

20

•

write(0) write(1) . . .

ok

read

10 . . .

Figure 2.10: Arena for Jint refK

We will use call-by-value arenas as the denotation of call-by-value types. The arena

JunitK contains a single initial move, •. The arena JintK has the natural numbers as its
set of moves, all of which are initial. For Jint refK the situation is more complicated.

There is a single initial move, •. This justi�es the questions read and write(i) for each

i ∈ N. The moves write(i) have a single answer, ok, whereas the set of answers to

read is the natural numbers. This is shown graphically in Figure 2.10.

The de�nitions of some useful constructions on call-by-value arenas are given in

Figure 2.11. Here we use IA as an abbreviation for MA\IA . Intuitively A ⊗ B is

the union of the arenas A and B, but with the initial moves combined pairwise.

A ⇒ B is slightly more complex. First we add a new initial move, •. We take

the O/P-complement of A, change the initial moves into questions and set them to

now be justi�ed by •. Finally, we take B and set its initial moves to be justi�ed by

A's initial moves. Figure 2.12 gives a graphical representation of these constructions

using superscripts to denote the ownership of moves and whether they are questions

or answers. Note that although the arenas are shown having only a single initial move,

this is not guaranteed to be the case. As the depth of the arenas and the (maximal)

paths of the enabling relation will add to the complexity of our proofs much more

than the breadth of the arenas, when presenting representations of arenas graphically

we will often show only a single move when there could in fact be many moves at the

same level in the arena.

Remark. Honda and Yoshida actually de�ne arenas to consist of forests [46]. Due

to this, their construction for A ⇒ B requires distinct copies of B for each initial

move of A. If we consider only �nite base types, this leads to the number of moves

in the denotation of a type being exponential in its size. Abramsky and McCusker's

constructions lead to the same blow up [5]. However, we have used a common opti-

misation [62, 77, 80] in which arenas do not have to be forests and so moves can have

multiple enablers. This greater sharing means the number of moves in the denotation

of a type grows linearly with its size.

21

MA⇒B = { • }]MA]MB

λA⇒B = m 7→

PA if m = •
OQ if m ∈ IA
λA(m) if m ∈ IA
λB(m) if m ∈MB

? `A⇒B m ⇔ m = •
m `A⇒B n ⇔ m `A n ∨m `B n ∨ (m = • ∧ ? `A n) ∨ (? `A m ∧ ? `B n)

MA⊗B = IA × IB] IA] IB

λA⊗B = m 7→

PA if m ∈ IA × IB
λA(m) if m ∈ IA
λB(m) if m ∈ IB

? `A⊗B m ⇔ m ∈ IA × IB
m `A⊗B n ⇔ m `A n ∨m `B n ∨ (m = (i, j) ∈ IA × IB ∧ (i `A n ∨ j `B n))

MA→B = MA]MB

λA→B(m) =

OQ if m ∈ IA
λA(m) if m ∈ IA
λB(m) if m ∈MB

? `A→B m ⇔ ? `A m
m `A→B n ⇔ m `A n ∨m `B n ∨ (? `A m ∧ ? `B n)

Figure 2.11: Constructions on call-by-value arenas

iPAA

A

iPAB

B

(iA, iB)PA

A B

•PA

iOQA

A
iPAB

B

A BA⊗B A⇒ B

Figure 2.12: Graphical representation of call-by-value constructions

22

(iC , iA)OQ

C A
iPAB

B

iOQC

C
•PA

iOQA

A
iPAB

B

C ⊗ A→ B C → A⇒ B

Figure 2.13: Prearenas involved in pλ(σ)

Although we use call-by-value arenas to represent types, we will not actually play

games on them. Instead we will play games on prearenas in which the initial move is

an O-question (that is they are identical in de�nition to call-by-name arenas). The

distinction in de�nition between the arenas used to represent a type and the prearenas

for which the strategies denoting terms will be de�ned comes about from the monadic

nature of the semantics [71]. We can think of it as being the di�erence between

modelling a value of type θ and modelling a computation of type θ (which may either

not terminate or have some side-e�ects). A term x1 : θ1, . . . , xn : θn ` M : θ will be

represented by a strategy for the prearena Jθ1K⊗ . . .⊗ JθnK→ JθK. The construction
→ is also given in Figure 2.11 and takes two arenas and produces a prearena. It is

essentially the same as ⇒ except we omit the (previously initial) move •.
In call-by-value game semantics we do not distinguish between a prearena and a

game. The set of plays for a prearena is the set of well-opened legal sequences. We

also have no need for the promoted form of composition. This is because in function

application in call-by-value the argument is always evaluated exactly once, whereas

in call-by-name an argument can be evaluated zero or more times. The (unpromoted)

composition of strategies σ : A → B and τ : B → C is de�ned in the same manner

as the call-by-name case using synchronisation plus hiding.

As in the call-by-name semantics, RML free identi�ers will be interpreted by

copycat projection strategies. The construction for λ-abstraction is slightly more

complex. Given a strategy σ : C ⊗A→ B, we can construct a strategy pλ(σ) : C →
A⇒ B. The prearenas for these strategies are shown in Figure 2.13. Upon receiving

the initial move, say iC , pλ(σ) will immediately play •. Now O must respond with an

23

initial A-move, say iA. Having been given both an initial C-move and an initial A-

move P now plays as σ would if given the initial move (iC , iA). However, in C⊗A→ B,

O can only ever play an initial C ⊗ A-move once, as it will be the initial move for

the prearena. In C → A⇒ B though, the move iA is no longer initial and so O may

be able to play initial A-moves multiple times. Every time O does play an initial

A-move, say i′A, it will �open a new σ-thread�, in which pλ(σ) will respond as σ would

when the initial move is (iC , i
′
A). That is, pλ(σ) will contain interleavings of plays

from σ.

The denotation of an application is de�ned by

JΓ `MN : θ2K = 〈〈 JΓ `M : θ1 → θ2K, JΓ ` N : θ1K 〉〉 ; ev.

The strategy ev : ((Jθ1K ⇒ Jθ2K)⊗ Jθ1K) → Jθ2K is the natural copycat strategy. The
operation 〈〈 ·, · 〉〉 is (partial left) pairing. Given strategies σ : C → A and τ : C → B,

〈〈σ, τ 〉〉 is a strategy on the prearena C → A ⊗ B. Play begins with O playing an

initial C-move, say iC . P will then play as σ up to the point at which σ wishes to

play an initial A-move, say iA. At this point, 〈〈 σ, τ 〉〉 instead starts to play as τ would
have played after the initial iC . This then continues until τ wishes to play an initial

B-move, say iB. Now 〈〈 σ, τ 〉〉 has both an initial A-move and an initial B-move, so

it combines them and plays (iA, iB). From this point onwards, P plays as the disjoint

union of σ and τ .

The result of these de�nitions is that JΓ `MNK will �rst play as JΓ `MK up to

the point where it is ready to play the unique initial Jθ1 → θ2K move •. Then JΓ ` NK
takes over, playing up to the point where it is ready to play an initial Jθ1K-move.

From this point on the two strategies play in parallel, synchronising on moves in Jθ1K
which are then hidden.

For conditionals, JΓ ` if N thenM1 elseM2K �rst runs as JΓ ` N : intK up to the

point where it is ready to play an initial JintK-move. If this move is 0 then from then

on it plays as JM2K, otherwise it plays as JM1K. The semantics of whileM doN is

de�ned similarly.

The remaining RML constructs can be viewed as constants and their strategies are

given as regular expressions in Figure 2.14. Just as with IA we have a full abstraction

theorem for RML.

Theorem 2.2 (Full Abstraction for RML [5]). For all RML-terms Γ `M,N : θ, we

have M @∼ N if and only if comp(JMK) ⊆ comp(JNK).

Note that unlike in the call-by-name case, a complete play is not necessarily max-

imal.

24

JΓ ` () : unitK iΓ •
JΓ ` j : intK iΓ j
JΓ ` succ : intL → intRK iΓ •

∑
j∈N jL (j + 1)R

JΓ ` pred : intL → intRK iΓ •
(∑

j∈N (j + 1)L jR + 0L 0R

)
JΓ ` deref : int refL → intRK iΓ • •L readL

∑
j∈N jL jR

JΓ ` assign : int refL →1 intR →2 unitK iΓ •1 •L •2

∑
j∈N jR write(j)L okL •

JΓ ` ref : int refK iΓ • (read 0)∗
(∑

j∈N write(j) ok (read j)∗
)∗

JΓ ` mkvar : (unit1 →2 int3)→4 (int5 →6 unit7)→8 int ref9K
iΓ •4 •2 •8 •6 •9

(
read9 •1

∑
j∈N j3j9 +

∑
k∈N write(k)9 k5 •7 ok9

)
Justi�cation pointers are uniquely reconstructible and so have been omitted. Sub-
scripts are used to show which component a move originates from. With the exception
of ref the strategies will be the minimal innocent strategies containing these plays.
The strategy for ref is not innocent and will contain all even-length pre�xes of the
given plays.

Figure 2.14: Strategies for RML constants

2.4 Algorithmic Game Semantics

We have seen that game semantics can provide highly accurate models of program-

ming languages. These models are also very concrete which lends itself to algorithmic

analysis. We intend to use the game-semantic model to automatically decide obser-

vational equivalence of higher-order programs. Unfortunately, as both IA and RML

are Turing complete, this is in general an undecidable problem. To help overcome

this, we will from now on assume that all base types are �nite. That is, instead of

the natural numbers we use some �nite pre�x and so exp and int refer to expressions

with values in the set { 0 . . . n } for some number n (and similarly var and int ref

are variables with values in this set). The game-semantic denotations are similarly

curtailed (this does not a�ect the full abstraction results). Unfortunately, this is still

not enough for the problem to be decidable. It may seem surprising that equiva-

lence could be undecidable when all base-types are �nite, but higher-order functions

still introduce in�nite behaviours which lead to undecidability [63]. Hence, further

restrictions on programs are necessary to achieve decidability. A natural restric-

tion is to allow only programs up to a certain order. Order is a measure of �how

higher-order� a program is. We de�ne2 ord(com) = ord(exp) = ord(var) = 0 and

ord(θ1 → θ2) = max(ord(θ1) + 1,ord(θ2)). A term Γ ` M : θ is then order n if

2In RML we de�ne ord(int ref) = 1.

25

pure +while +Y0 +Y1

1st-order coNP Pspace DPDA (=1st-order + Y0)
2nd-order Pspace Pspace DPDA Undecidable
3rd-order Exptime Exptime DPDA Undecidable
4th-order Undecidable Undecidable Undecidable Undecidable

Table 2.1: Complexity of observational equivalence for fragments of IA

ord(θ) ≤ n and for every type x : θ′ ∈ Γ, ord(θ′) < n. In call-by-name arenas we

also refer to the order of a move. Initial moves are order 0, answers have the same

order as the question they answer and non-initial questions have order one higher

than their justi�er. The order of an arena is the maximum order of a move occurring

in it. In call-by-name game semantics, order n type sequents give rise to order n

arenas.

By restricting the order of programs (and considering only �nite base types) de-

cidability results can be achieved.

2.4.1 Call-by-Name

The �rst steps in using game semantics to automatically decide observational equiv-

alence were taken by Ghica and McCusker [42]. They showed that in plays from the

games denoting second-order IA types the location of the justi�cation pointers can

always be uniquely reconstructed from the underlying move sequences. This allows

us to unambiguously represent a strategy as a set of sequences of moves. Ghica and

McCusker went on to show that for the strategies denoting second-order IA terms

such sets can be described using regular expressions. This gives a decision procedure

for deciding observational equivalence of IA terms.

Further results in this area led to a complete classi�cation of the decidable frag-

ments of IA [72, 86, 81, 74, 76]. These results are summarised in Table 2.1. The

rows show the maximum order of allowed programs whereas the columns show what

level of recursion is allowed � none at all, allowing loops or including a �xpoint com-

binator Yi for terms of order at most i. The entries labelled DPDA are at least as

hard as the DPDA equivalence problem, which is decidable [99] but the only known

upper-bound is primitive recursive [104].

Of particular interest is the entry for third-order IA programs with loops [81].

This fragment of IA is referred to as IA∗3. Plays from games of third-order types no

longer have the property that the justi�cation pointers can be uniquely reconstructed

26

from the underlying move sequence. However, it is only pointers from P-moves which

can be ambiguous. These can be encoded by adding tags to the appropriate moves. A

second issue is that the sets of plays are not regular. To achieve the ExpTime-bound

a class of automata called Visibly Pushdown Automata were used.

2.4.2 Visibly Pushdown Automata

Visibly Pushdown Automata (VPA) are a subclass of pushdown automata in which

the stack action is uniquely determined by the input letter [11]. That is, a visibly

pushdown alphabet is a tuple Σ̃ = 〈Σpush ,Σpop ,Σnoop 〉 partitioning the alphabet into
three disjoint �nite sets of push-letters, pop-letters and noop-letters and depending

on the input letter only the appropriate stack action can be taken. More formally we

can de�ne VPA as follows.

De�nition 2.4. A (nondeterministic) Visibly Pushdown Automaton over the alpha-

bet 〈Σpush ,Σpop ,Σnoop 〉 is a tuple A = 〈Q, q0,Γ, δ, F 〉 where:

• Q is a �nite set of states.

• q0 ∈ Q is the initial state.

• Γ is the �nite stack alphabet containing a special bottom-of-stack symbol ⊥.

• δ ⊆ (Q×Σpush ×Q× (Γ\{⊥}))∪ (Q×Σpop × Γ×Q)∪ (Q×Σnoop ×Q) is the

transition relation.

• F ⊆ Q is the set of �nal states.

We write Σ for Σpush ∪Σpop ∪Σnoop . For a word w = a1 . . . ak in Σ∗, a run of A on w

is a sequence (q0, σ0), . . . , (qk, σk), where each qi ∈ Q (and q0 is the initial state), each

σi is a stack (a �nite sequence from (Γ\{⊥})∗ · {⊥ }), σ0 = ⊥ and for all 1 ≤ i ≤ k

the following hold:

• If ai ∈ Σpush then for some γ ∈ Γ, (qi, ai, qi+1, γ) ∈ δ and σi+1 = γ · σi.

• If ai ∈ Σpop then for some γ ∈ Γ, (qi, ai, γ, qi+1) ∈ δ and either γ 6= ⊥ and

σi = γ · σi+1 or γ = ⊥ and σi = σi+1 = ⊥.

• If ai ∈ Σnoop then (qi, ai, qi+1) ∈ δ and σi+1 = σi.

A run is accepting if the �nal state qk ∈ F . The language accepted by A is the set

L(A) of words w such that A has an accepting run on w.

27

VPA are designed for recognising well-bracketed words such as well-formed XML.

They can then push when reading an opening bracket and pop when reading a clos-

ing bracket. They have extremely desirable closure properties as, unlike for general

pushdown automata, it is possible to simulate running two VPA (on the same parti-

tioned input alphabet) in parallel using a product construction as the stacks of the

two automata will always be the same height. In particular, for deterministic VPA

language equivalence is decidable in polynomial time.

When describing (visibly) pushdown automata we will use the notation s
a/γ→ t to

mean that the VPA can move from state s to state t, reading input symbol a and

pushing stack symbol γ. Similarly, s
a,γ→ t denotes moving from s to t reading a while

popping γ o� the stack.

We will deal mainly with deterministic VPA but will allow our automata to contain

internal ε-transitions which do not consume any input or use the stack, as long as

they are the only outgoing transition from that state. This is acceptable as we can

easily �compress out� such transitions (e.g. if s1
a→ s2

ε→ s3 we can redirect the �rst

transition as s1
a→ s3 so we can safely remove the second transition).

2.4.3 Call-by-Value

While the decidable fragments of IA are well understood and naturally partition in

line with program order, in RML the situation is much less clear. Prior to the work

described in Chapters 3 and 4, there were only two papers in this area [40, 73]. In

the second of these Murawski showed that observational equivalence is decidable for

terms of the shape x1 : ctype1, . . . , xn : ctypen ` M : ttype where ctype and ttype are

as follows:

ctype ::= α | α→ β ttype ::= α | α→ α
α ::= β | β → β | int ref β ::= unit | int

The game semantics for terms of this fragment can be represented using regular

expressions. Murawski went on to show that the problem is already undecidable at

the type (unit → unit) → (unit → unit) → unit. This is a second-order type. In

contrast, in the call-by-name case the problem does not become undecidable until

fourth order.

In the next chapter we extend the known decidable fragment and identify what

we believe to be the largest fragment of RML whose game semantics can be precisely

captured using VPA.

28

Chapter 3

O-Strict RML

As we have seen, the fragments of the call-by-name language IA for which obser-

vational equivalence is decidable are now well understood. Using the game-semantic

model it was shown that the complexity of the problem increases in line with the type

theoretic order of the programs considered. Further, to represent the game semantics

using automata, the most complex type sequents which are still decidable require the

power of pushdown automata. By contrast, under call-by-value the situation appears

much less clean. It is known that observational equivalence is already undecidable

at second-order, but the largest fragments previously shown to be decidable only re-

quired regular expressions to represent. In this chapter we present a candidate for

the largest fragment of RML whose semantics is representable by VPA (and so obser-

vational equivalence is decidable for this fragment). This work was presented in [47]

and is joint work with Andrzej Murawski and Luke Ong.

We start out by identifying the O-strict fragment of RML. This is the largest

fragment for which, in the game-semantic representation, the location of justi�cation

pointers from O-moves is always uniquely determined. We then discuss how to rep-

resent P-pointers by adding tags to moves. This allows us to represent strategies as

sets of sequences of letters from a �nite alphabet. We then show how to recognise

such sets using VPA. This is su�cient to prove observational equivalence is decidable

for the O-strict fragment. Finally, we examine the complexity of the problem and

show that (when considering terms in canonical form) it is ExpTime-complete.

3.1 The O-Strict Fragment of RML

In order to represent strategies using automata, we need to be able to encode plays

(move sequences with pointers) as words. In some cases pointers can be uniquely

29

reconstructed from the underlying move sequence, thanks to the visibility or well-

bracketing conditions which constrain the position of the justifying move. For in-

stance, the targets of pointers from answers can always be deduced from the un-

derlying sequence of moves. In [73] Murawski identi�ed the type sequents of RML

for which the corresponding prearenas have the property that their plays can always

have their justi�cation pointers uniquely reconstructed in this way. We call this the

bi-strict fragment of RML (bi-strict as justi�cation pointers from both players are

uniquely determined).

Since strategies from the bi-strict fragment can be precisely represented as sets of

move sequences, they lend themselves for recognition by automata. Murawski showed

that a subset of the bi-strict fragment could be represented using regular expressions.

However, we can do better than this. In the call-by-name case it is known that the

third-order fragment of IA is decidable, despite not being bi-strict [81]. This result

requires tagging moves to encode the location of pointers. However, it is only the

location of pointers from P-moves which can be ambiguous in this fragment. This

simpli�es the problem as the location of P-pointers is determined by the term and so

while there may be several legal locations for a pointer, only one can ever occur in a

particular strategy. In contrast, pointers from O-moves are much harder to handle as

they are controlled by the context. Since in observational equivalence we quantify over

all possible contexts, a strategy may include plays with all legal O-pointer locations.

In fact, in IA as soon as we move into a fragment where O-pointers are no longer

uniquely determined, observational equivalence becomes undecidable.

Guided by the intuition that pointers from P-moves may be encodable by adding

tags to moves, yet pointers from O-moves are di�cult to handle, we will consider

the largest fragment of RML for which, in the game-semantic denotation of terms,

O-pointers are always uniquely determined. We refer to this as the O-strict fragment

of RML (RMLO-Str) and will similarly refer to O-strict prearenas or type sequents.

3.1.1 Types on the Right of O-Strict Sequents

Consider the type sequent Γ ` θ1 → θ2 → θ3. Any type sequent in which the type

on the right-hand side has arity at least two has this form1. The corresponding

prearena is shown in Figure 3.1. Notice this has the enabling chain q0 ` a0 ` q1 `
a1 ` q2 (for brevity, we shall say that the arena has a qaqaq-branch). The plays

q0 a0 q1 a1 q1 a1 q2 and q0 a0 q1 a1 q1 a1 q2 are both valid plays. The only

1Arity is the number of arguments a term takes: arity(unit) = arity(exp) = 0, arity(int ref) = 1
and arity(θ1 → θ2) = arity(θ2) + 1.

30

q0

JΓK a0

q1

Jθ1K a1

q2

Jθ2K a2

Jθ3K

q0

JΓK a0

q1

q2

q3Jθ1K

Jθ4K

Jθ3K

Jθ2K

Figure 3.1: Prearenas for JΓ ` θ1 → θ2 → θ3K and JΓ ` ((θ4 → θ3)→ θ2)→ θ1K

di�erence between them is the location of the justi�cation pointer from the O-move

q2. Hence, this play is not O-strict and so the O-strict fragment cannot contain any

types of arity two or greater.

Another troublesome sequent is JΓ ` ((θ4 → θ3)→ θ2)→ θ1K (a type of order at

least 3) for which the prearena is also shown in Figure 3.1. Notice the prearena has a

qaqqq-branch. In a similar manner, q0 a0 q1 q2 q1 q2 q3 and q0 a0 q1 q2 q1 q2 q3

are two plays over this prearena which di�er only in the location of the �nal O-pointer.

Hence, the O-strict fragment cannot contain any types of order three or greater. It

should be noted that in RML we consider int ref to have order 1 (and arity 1), in

contrast to IA where ord(var) = 0. We still have that unit and int are order 0.

We have seen that on the right-hand side of a type sequent, we cannot have types

of arity two or more, or order three or above. This leaves us with types of order at

most two and arity at most one. We will refer to such types as short . It turns out

that all short-types do result in O-strict prearenas.

Proposition 3.1. If θ is a short-type then justi�cation pointers from O-moves in JθK
are always uniquely determined by the underlying move sequence in plays over the

prearena JΓ ` θK (for any Γ).

Proof. The prearena for Γ ` (β → . . .→ β → β)→ β is shown in Figure 3.2. The

prearena for any Γ ` θ where θ is short will have this form, although not all moves

may be present. Note that the only O-questions are the initial move (which does not

have a justi�cation pointer) and q0 which is justi�ed by the unique occurrence of •

31

i

JΓK

•

q0

q1

a1

...

qn

an

a0

Figure 3.2: Prearena for Γ ` (β → . . .→ β → β)→ β

(which answers the initial move and so can occur at most once in a play). The rest

of O's moves are answers and so the bracketing condition uniquely determines their

justi�er. Hence, there can be no ambiguity over the location of O-pointers so all short

types can be included in the O-strict fragment.

3.1.2 Types on the Left of O-Strict Sequents

If θ is a type which gives rise to a non-O-strict prearena when placed on the right-

hand side of the turnstile, then we cannot allow θ to occur negatively in any type on

the left-hand side (that is positively for the sequent as a whole). This is because the

same subset of the prearena which led to the non-O-strict play would occur with the

same polarity and so we could again construct a non-O-strict play. Hence, we cannot

allow any type which takes an argument of arity two or greater, or order three or

greater. So as possible types on the left of the turnstile we are left with types whose

arguments are short. We can again check that these are indeed O-strict.

Proposition 3.2. If Γ is a type environment in which the argument types of all

functional free identi�ers are short, then in plays over the prearena JΓ ` θ0K (for any
θ0) the O-view contains exactly one potential justi�er for each legal O-move from JΓK.

Proof. The basic shape of the prearenas is shown in Figure 3.3, where each JθiK is

the arena of a short type, similar to that of Figure 3.2. The only O-questions (on the

left-hand side) will be justi�ed by qi, i ≥ 1. We claim that there will be at most one

32

occurrence of each such qi in the O-view of any (odd-length) play from this prearena.

We can show this by induction on i. The base case i = 1 is straightforward. As q1

is justi�ed by the initial move, if it occurs in the O-view it will always be the second

move in the view (when constructing the view, if we see a q1 we would follow its

justi�cation pointer back to the initial move, ignoring all moves in between). For

the inductive case, consider an odd-length play s with qi+1 in the view. The view

must have the form t1 qi t2 ai qi+1 t3 where the occurrence of qi+1 shown is the

right-most and each ti is some (possibly empty) sequence of moves. Note that we

know qi must also appear in the view since the view of a play is always a play and

so ai's justi�er must be present. We know qi+1 does not occur in t3 by construction.

Further, t1 · qi = view(s′ · qi) for some pre�x s′ · qi of s. By the induction hypothesis

this implies that qi does not occur in t1. Hence, there can be no ai in t1 and so there

can be no qi+1 either. This only leaves t2 to check. Suppose there is an occurrence of

qi+1 in t2. Then this must be justi�ed by an ai which itself is justi�ed by a qi both of

which must be visible and so occur in t1 ·qi · t2. However, t1 ·qi · t2 = view(s′′) for some

pre�x s′′ of s. By the induction hypothesis, there can only be one occurrence of qi in

t1 ·qi ·t2 (i.e. qi does not occur in either t1 or t2). Hence, the ai in t1 ·qi ·t2 must answer
this qi. However, this means we have two moves ai answering the same occurrence of

qi in s. This contradicts bracketing. Therefore, there cannot be an occurrence of qi+1

in t2. Hence, by induction, the O-view of a play in this arena can contain at most

one occurrence of each qi. So, the O-view contains at most one potential justi�er for

each O-move. Hence, this prearena is O-strict.

We have now shown that the O-strict fragment of RML consists of terms of short

type and for which the arguments of any free identi�ers are also short. That is, we

can de�ne RMLO-Str as follows.

De�nition 3.1. The O-strict fragment of RML consists of terms of the form

x1 : Θ3, . . . , xn : Θ3 `M : Θ2

where the type classes Θi are described below.

Θ0 ::= unit | int Θ2 ::= Θ0 | Θ1 → Θ0 | int ref
Θ1 ::= Θ0 | Θ0 → Θ1 | int ref Θ3 ::= Θ0 | Θ2 → Θ3 | int ref

33

q0

q1

Jθ1K a1

q2

Jθ2K a2

...

qn

JθnK
an

Jθ0K

Figure 3.3: Prearena for Jθ1 → θ2 → . . .→ θn → β ` θ0K

3.1.3 Examples of O-Strict Terms

While the de�nition of the O-Strict fragment may sound restrictive, it is actually

a surprisingly expressive fragment and contains many di�cult examples from the

literature. For example, it includes call-by-value variants of the No Snapback and

Scope Extrusion terms from Example 2.1 and Example 2.2.

Example 3.1 (No Snapback and Scope Extrusion).

p : (unit→ unit)→ unit `
letx = ref 0 in p(λy.x := 1); if !x = 1 thenΩ else () ∼= p(λy.Ω)

M1 ≡ λF (int→int)→int.letx = ref 0 inF (λyint.if !x = 0 thenx := y elsex := y − 1; !x)

M2 ≡ λF (int→int)→int.F (λyint.letx = ref 0 in if !x = 0 thenx := y elsex := y − 1; !x)

M3 ≡ λF (int→int)→int.F (λyint.y)

As in the call-by-name case we have that M1 �M2
∼= M3.

The O-strict fragment also contains programs which contain complicated higher-

order types and terms which di�er only in their use of binders (this will show up in

the game semantics as di�ering locations of P-pointers) such as the following terms.

34

•
{
f : ((unit→ unit)→ unit)→ unit ` f(λxunit→unit.f(λyunit→unit.x())) : unit
f : ((unit→ unit)→ unit)→ unit ` f(λxunit→unit.f(λyunit→unit.y())) : unit

•
{
f : unit→ unit→ unit ` let g = f() in (leth = f() in g()) : unit
f : unit→ unit→ unit ` let g = f() in (leth = f() inh()) : unit

The fragment includes several examples from the literature which are known to

be challenging to verify.

Example 3.2. The following have been analysed respectively by Pitts and Stark [90],

Ahmed et al. [9] and Stark [101].

(i) let c = ref 0 inλfunit→unit.(c := 1; f(); !c) ∼= λfunit→unit.(f(); 1)

(ii) let c = ref 0 inλfunit→unit.(c := 0; f(); c := 1; f(); !c) ∼= λfunit→unit.(f(); f(); 1)

(iii) let a = ref 0 in let r = ref 0 inλf.(r := !r+1; a := f(!r); r := !r−1; !a) 6∼= λf.f(1)

The two equivalences, plus the No Snapback equivalence which appears in [17], are

known to be extremely tricky to prove using methods based on logical relations.

All three occurred in the literature as examples which could not be proved using

particular techniques (although new methods which can handle them have since been

developed [36]). The inequivalence is a somewhat surprising example which requires

a rather delicate context to separate the terms.

Additionally, all of the imperative features of RML are included, allowing complex

ground-type programs to be considered.

3.2 Decidability of the O-Strict Fragment

Having determined the largest fragment of RML for which O-pointers can be uniquely

reconstructed, we can now turn to showing that observational equivalence is decidable

for this fragment. It is already shown in [73] that �nite automata are not powerful

enough to represent the strategies we need. For example, the complete plays of the

strategy J ` λf : (unit→ unit).f()K are described by q0 · a0 · X where X = (q1 · q2 ·
X · a2 · a1 ·X) + ε. This cannot be recognised by a �nite automaton. However, it is

exactly the sort language VPA can capture and so we intend to encode O-strict terms

as VPA.

35

3.2.1 P-Pointers

We aim to show decidability by representing the strategy denotations of O-strict

terms as VPA. One hurdle we need to deal with is that while O-pointers can be safely

omitted, pointers from P-moves can still be ambiguous. We need to encode their

location if we wish to use VPA to recognise strategies.

In call-by-name algorithmic game semantics, one method of modelling pointers is

to tag the appropriate moves with an index which identi�es which of the potential

justi�ers is to be used. For example, the play q0 q1 q2 q1 q2 q3 , which arises from

the term f ` f(λx.f(λy.y)), can be represented as q0 q1 q2 q1 q2 q
2
3 to indicate that

q3 is justi�ed by the occurrence of q2 which is itself justi�ed by the second open

occurrence of a q1 which could potentially hereditarily justify third-order questions.

Since each q1 can justify at most one q2 in the P-view this is su�cient to determine

q3's justi�er. The only way to have multiple open q1's is to have multiple open calls

to second-order identi�ers. In this example the �rst call to f causes a further, nested

call of f to be made. That is, the maximum index we can require is the maximum

level of nested calls of second-order identi�ers present in our term. If we were looking

at the term f ` f(λx.x) (which has the same type), there is only a single call and so

the maximum index we would need is 1. However, the term f ` f(λx.f(λy.f(λx.x)))

contains three nested calls, allowing three occurrences of q1 to be open and requiring

a maximum index of three. Despite the fact that at this type arbitrarily high indices

can be needed, any given term contains only a �nite number of nested calls (since we

consider recursion free terms). This means that for a particular term we require only

a �nite number of indices. Unfortunately, this is no longer true in the call-by-value

model. Consider the program below (which is O-strict).

f : unit→ int, h : unit→ unit→ unit `

while f()do
let g = h() in ();

let ĝ = h() in

while f()do
let g = h() in ();

ĝ()

This gives rise to plays of the form

q (qf 1f q1h a1h)
∗ qf 0f q1h a1h (qf 1f q1h a1h)

∗ qf 0f q2h.

36

The two (qf 1f q1h a1h)
∗ sections correspond to the two loops and can be unbound-

edly long. The �nal move, q2h, is justi�ed by the a1h corresponding to ĝ. However,

there can be an unbounded number of di�erent occurrences of a1h both between the

two moves and between this a1h and the start of the play. All of these moves are

visible. Hence, using indices to indicate which justi�er to use would seem to require

an unbounded number of indices, which seems incompatible with recognition by VPA

with �nite alphabets.

An alternative method used in [76, 81] is to insert additional moves into the play

to count back to the correct justi�er. As we have seen there can be an unbounded

number of potential justi�ers between a move and its actual justi�er, so counting back

in this way using a VPA would seem to require using the stack. Unfortunately, we

will need to use the stack to enforce the bracketing condition, as a play can contain

an unbounded number of open questions and we need to ensure each one is answered

exactly once before a play is considered complete. Hence, the size of the stack will

need to be (roughly) proportional to the number of open questions. In [76, 81] this

is not a problem as the number of open questions between a move and its justi�er

is su�cient to uniquely determine the location of the pointer. By contrast, in RML

this is no longer the case. In the example above, the only open question is the initial

move, so this approach does not seem to work either.

As existing approaches do not seem to su�ce, we use an alternate method. In-

stead of trying to represent all the pointers present in a play, we concentrate only on

representing the position of a single pointer. However, our automata will accept all

strings representing the position of a pointer in an accepted play. So even though

each individual word the automaton accepts may not have enough information to fully

reconstruct the play, when we consider the full language we will be able to uniquely

place all the justi�cation pointers.

If sms′ n s′′ is a sequence of moves, we will use s
•
m s′

◦
n s′′ to represent that

there is a pointer from n to m. We refer to moves tagged with • as target-moves

and those tagged with ◦ as source-moves. When representing a strategy σ we will

construct an automaton Aσ which accept all strings that are either the underlying

move sequence of a complete play in σ, or the underlying move sequence plus the

encoding of a single justi�cation pointer from a P-question (in fact we will not encode

the location of P-pointers which point at the initial move as the initial move is unique).

Since all justi�cation pointers from P-questions must have a representation in the

automaton's language, this is su�cient to ensure that L(Aσ) = L(Aτ) if and only if

comp(σ) = comp(τ).

37

Example 3.3. Consider the term below.

f : unit→ unit→ unit ` let g = f() in leth = f() in g();h()

The only complete play in the strategy denoting this term is (showing only ambiguous

pointers) q0 q1 a1 q1 a1 q2 a2 q2 a2 a0 . Under our single-pointer representation,

this strategy is represented by the language containing the three strings

1. q0 · q1 · a1 · q1 · a1 · q2 · a2 · q2 · a2 · a0 (the underlying move sequence),

2. q0 · q1·
•
a1 ·q1 · a1·

◦
q2 ·a2 · q2 · a2 · a0 (encoding the �rst pointer),

3. and q0 · q1 · a1 · q1·
•
a1 ·q2 · a2·

◦
q2 ·a2 · a0 (encoding the second pointer).

Considering any one of these strings on their own is not su�cient to uniquely deter-

mine the play. For example, the �rst and second strings would also be included in

our representation of

f : unit→ unit→ unit ` let g = f() in leth = f() in g(); g()

whereas the �rst and third would be in the language for

f : unit→ unit→ unit ` let g = f() in leth = f() inh();h().

However, considering all three strings together allows us to tell which strategy we are

representing and di�erentiate between these three terms.

Remark. Our single-pointer representation is not the only possible way of encoding

P-pointers using a �nite alphabet. For example, we could equally have chosen to insist

that all P-moves whose justi�cation pointers have the same target are encoded in the

same word. We also choose to encode the location of pointers from all P-questions

(except those pointing at the initial move since they are always uniquely determined

and it will prove convenient to omit the initial move from plays when we construct

our VPA) regardless of whether their location is actually ambiguous. We hope our

choice gives an encoding which is both straightforward to understand and simple to

implement.

38

3.2.2 Canonical Forms

In the decidability results for IA, the automata were constructed inductively over the

β-normal forms of the language. Only having to consider β-normal forms made the

constructions simpler. Unfortunately, in a call-by-value setting β-reduction no longer

preserves observational equivalence. For example, (λx.()) Ω � (). However, there is

a di�erent notion of canonical form which is appropriate.

De�nition 3.2. The canonical forms of RML are de�ned by the grammar below.

C ::= () | i | xβ | succ(xβ) | pred(xβ) | if xβ thenC elseC | xint ref := yint |
!xint ref | λxθ.C | mkvar(λxunit.C, λyint.C) | letx = ref 0 inC |
whileCdoC | letxβ = C inC | letx = zyβ inC |
letx = zmkvar(λuunit.C, λvint.C) inC | letx = z(λxθ.C) inC

Proposition 3.3. For every RML-term Γ ` M : θ there exists an RML-term Γ `
N : θ in canonical form, e�ectively constructible from M , such that JΓ `MK =

JΓ ` NK.

We prove two auxiliary results �rst, which are special cases of the Proposition.

Lemma 3.1. Any identi�er xθ satis�es Proposition 3.3. Moreover, the canonical

form is of the form λyθ1.C when θ ≡ θ1 → θ2 and of the shape mkvar(λyunit.C, λzint.C)

if θ ≡ int ref.

Proof. Induction with respect to the structure of θ.

• If θ is a base type, xθ is already in canonical form. xint ref can be converted to

one using the rule

xint ref −→mkvar(λuunit.!x, λvint.x := v).

• For θ ≡ θ1 → θ2 we use the rule

xθ1→θ2 −→ λzθ1 .let vθ2 = xz in v

and appeal to the inductive hypothesis for zθ1 and vθ2 .

Lemma 3.2. Suppose C1, C2 are canonical forms. Then let yθ = C1 inC2, if typable,

satis�es Proposition 3.3.

39

Proof. Induction with respect to the structure of θ. If θ is a base type, the term is

already in canonical form. If θ is not a base type, C1 can take one of the following

four shapes: mkvar(λxunit.C, λyint.C), λxθ11 .C, if xβ thenC elseC or let · · · inC. We

focus on the �rst two, to which the remaining cases will be reduced later.

• Suppose C1 ≡ mkvar(λxunit1 .C11, λx
int
2 .C12). Then θ ≡ int ref. Since C2 is in

canonical form, y can only occur in it as part of a canonical subterm of the form

yint ref := zint or !y. Hence, substitution for y creates non-canonical subterms of

the shape mkvar(λxunit1 .C11, λx
int
2 .C12) := z and !(mkvar(λxunit1 .C11, λx

int
2 .C12)).

Using the rules

!mkvar(λuunit.D1, λv
int.D2) −→ letu = () inD1

mkvar(λuunit.D1, λv
int.D2) := z −→ D2[z/v]

we can easily convert them (and thus the whole term) to canonical form.

• Suppose C1 ≡ λxθ11 .C3 and θ ≡ θ1 → θ2. Let us substitute C1 for the rightmost

occurrence of y in C2. This will create a non-canonical subterm in C2 of the form

letxθ2 = (λxθ11 .C3)C4 inC5 ≡ letxθ2 = (letxθ11 = C4 inC3) inC5. By inductive

hypothesis for θ1, letx
θ1
1 = C4 inC3 can be converted to canonical form, say,

C6. Consequently, the non-canonical subterm letxθ2 = (λxθ11 .C3)C4 inC5 can be

transformed into the form letxθ2 = C6 inC5, which � by inductive hypothesis

for θ2 � can also be converted to canonical form. Thus, we have shown how

to recover canonical forms after substitution for the rightmost occurrence of

y. Because of the choice of the rightmost occurrence, the transformation does

not involve terms containing other occurrences of y, so it will also decrease

their overall number in C2 by one. Consequently, by repeated substitution

for rightmost occurrences one can eventually arrive at a canonical form for

let yθ = (λxθ11 .C3) inC2.

For the remaining two cases it su�ces to take advantage of the following conversions

before referring to the two cases above.

let y = (if x thenD1 elseD0) inE −→
if x then (let y = D1 inE) else (let y = D0 inE)

let y = (letx = D inE) inF −→ letx = D in (let y = E inF)

40

Now we are ready to prove Proposition 3.3 by induction on term structure. The

base cases of () and i are trivial. That of xθ follows from Lemma 3.1. The cases of

λxθ.M and whileM doN follow directly from the inductive hypothesis. The cases of

succ(M), pred(M), ifM thenN1 elseN0 and refM are only slightly more di�cult.

After invoking the inductive hypothesis one needs to apply the rules given below (and

in the last case convert the occurrence of the int ref-typed variable to canonical form

using Lemma 3.1). Note that the let-bindings are all either of base type or of the

form letx = ref 0 inM .

succ(D) −→ letx = D in succ(x)
pred(D) −→ letx = D in pred(x)

if D thenD1 elseD0 −→ letx = D in (if x thenD1 elseD0)
ref D −→ letx = ref 0 in (let y = D in (let z = x := y inx))

For !M and M :=N we take advantage of the fact that a canonical form of type

int ref can only take three shapes: mkvar(λxunit.C, λyint.C), if xβ thenC elseC or

let · · · inC. An appeal to the inductive hypothesis forM and N and the conversions

given below will then yield the canonical forms for !M and M :=N .

!mkvar(λuunit.D1, λv
int.D2) −→ letu = () inD1

mkvar(λuunit.D1, λv
int.D2) := E −→ let v = E inD2

!(if x thenD1 elseD0) −→ if x then !D1 else !D0

(if x thenD1 elseD0) :=D −→ if x then (D1 :=D) else (D0 :=D)
!(letx = D inE) −→ letx = D in !E

(letx = D inE) :=F −→ letx = D in (E :=F)

To convert mkvar(M,N) to canonical form we observe that a canonical form of

function type can only take three shapes: λxθ.C, if xβ thenC elseC or let · · · inC.
Hence, by appealing to the inductive hypothesis and then repeatedly applying the

rules below we will arrive at a canonical form.

mkvar(letx = M inD,E) −→ letx = M inmkvar(D,E)

mkvar(if x thenD1 elseD0, E) −→ if x thenmkvar(D1, E) elsemkvar(D0, E)

mkvar(λuunit.D, letx = M inE) −→ letx = M inmkvar(λuunit.D,E)

mkvar(λuunit.D, if x thenE1 elseE0) −→

if x thenmkvar(λuunit.D,E1) elsemkvar(λuunit.D,E0)

Finally, we handle application MN . First we apply the inductive hypothesis

to both terms. Then we use the rules below to reveal the λ-abstraction inside the

41

canonical form of M .

(if x thenD1 elseD0)E −→ if x then (D1E) else (D0E)
(letx = D inE)F −→ letx = D in (EF)

Now it su�ces to be able to deal with terms of the form (λxθ.C1)C2 ≡ letx = C2 inC1

and this is exactly what Lemma 3.2 does.

All our transformations preserve denotations. This is straightforward to check

using the axioms resulting from Moggi's monadic approach to modelling call-by-value

languages [71].

3.2.3 Construction

We can now construct VPA which represent RMLO-Str-terms. To simplify our con-

structions we will omit the initial move from our plays and represent a strategy

by a family of VPA indexed by the initial move. That is, if we de�ne J. . .Ki by
JΓ `M : θK =

∑
i∈IJΓK

i JΓ `M : θKi, then we will de�ne automata AiΓ`M which ac-

cept representations of all complete plays in JMKi. Throughout our constructions

we will not enforce the constraint that at most one pointer is encoded in each run.

This is simple to ensure at the end of the construction. However, we will make sure

that a move cannot be tagged as a source-move unless the target of its justi�cation

pointer was previously tagged as a target-move. The alphabet of AiΓ`M :θ will contain

all moves from the prearena JΓ ` θK except the initial moves, plus additional copies

of P-questions and their justi�ers tagged as source- and target-moves respectively.

This gives alphabets which are �nite and of size linear in the size of Γ ` θ. We will

partition the alphabets such that all P-questions are pushes, all O-answers pops and

everything else noops. When describing our constructions we may omit the stack

information from the transitions if it aids clarity. We will further insist that if we

include a transition s1

◦
m/γ→ s2, then we must also have a transition s1

m/γ→ s2 (i.e.

the tagged and untagged transitions both push the same symbol and have the same

destination). Due to determinacy of the strategies we are representing, such states

with outgoing source-transitions will be the only P-states in which more than one

transition can be taken.

Our construction proceeds inductively over the canonical forms of RMLO-Str, so we

consider each case in turn.

42

3.2.3.1 Simple Cases

The denotations of several of the canonical forms can be described using regular

expressions.

• L(Ai()) = •.

• L(Aij) = j.

• L(Ai
xβ

) = πx(i) where πx is a suitable projection function which picks out the

component of the initial move associated with x.

• L(Ai
succ(xβ)

) = πx(i) ⊕ 1 and L(Ai
pred(xβ)

) = πx(i) 	 1 where πx is a suitable

projection function and ⊕,	 are addition and subtraction modulo the size of

int.

• L(Ai
xint ref := yint

) = write(πy(i))x okx •.

• L(Ai
!xint ref) =

∑
j∈int readx jx j.

Conditionals simply act as one of their branches.

• Ai
if xβ thenM elseN

=

{
AiM if πx(i) > 0
AiN if πx(i) = 0

.

3.2.3.2 Relatively Simple Cases

Several other cases can be handled by simple modi�cations of the automata for their

subterms. In all of these cases we do not need to worry about justi�cation pointers

as long as we preserve those encoded by the sub-automata.

• mkvar(λxunit.M, λyint.N)

� The bad-variable constructor takes a read-function and a write-function

and combines them together to form an int ref. In the game-semantic

model this will combine the two sets of plays and rename them into the

int ref-arena. Due to the switching condition we cannot start a new play

from JMK or JNK until the previous one has �nished.

� Let LM = L(A(i,•)
Γ,x:unit`M :int) and LjN = L(A(i,j)

Γ,y:int`N :unit)[•\ok] (that is the

language accepted by the automaton for JNK(i,j) but with the �nal move

renamed to ok instead of the singleton move from JunitK, •). Then

L(Aimkvar(λxunit.M,λyint.N)) = • ·

(
read · LM +

∑
j

write(j) · LjN

)∗
.

43

• letx = ref 0 inM

� Constructing Ailetx=ref 0 inM requires restricting the behaviour of x to that

of a �good variable�. To do this we take a copy of A(i,•)
Γ,x:int ref`M for each

j ∈ int, denoting state s in the jth copy as sj. The initial state will be the

initial state from the 0th copy, whereas the �nal states in every copy will

still be �nal. As stack symbols we just use those of A(i,•)
Γ,x:int ref`M .

� All non-x-transitions are preserved. That is, if s1
m→ s2 in A(i,•)

Γ,x`M where

m is not an x-move, then sj1
m→ sj2 for all j ∈ int (if the original transition

is a push- or pop-transition then the new transitions will be too).

� If A(i,•)
Γ,x`M contains transitions s1

write(k)x/γ→ s2
okx,γ→ s3 then instead we add

sj1
ε→ sk3 for each j ∈ int. Note that after write(k)x, due to visibility O's

only legal response is to respond with okx.

� If A(i,•)
Γ,x`M contains transitions s1

readx/γ→ s2
jx,γ→ s3 then instead we add

sj1
ε→ sj3.

� Once the construction is complete, if a state has an ε-transition then this

will be the only transition out of that state (since readx and write(k)x

were P-moves). This means we can easily compress the ε-transitions and

maintain determinacy. That is, if s1

ε

→∗ s2
m→ s3 then we can safely remove

the ε-transitions and instead add s1
m→ s3 without losing determinacy. Note

also that if there is a cycle of ε-transitions then this represents divergent

behaviour and we can just remove these transitions.

• whileM doN

Constructing AiwhileM doN requires a copy of both AiM and AiN (we take the

disjoint union of both their states and stack symbols). The initial and �nal

states will be those of AiM . We denote the initial states of AiM and AiN by

iM and iN respectively. All JΓK-transitions will be kept unchanged. All �nal

transitions s1
j→ s2 for j > 0 in AiM will be replaced by s1

ε→ iN , whereas

s1
0→ s2 will be changed to s1

•→ s2. Finally, if AiN contains a transition

s1
•→ s2 then this is replaced by s1

ε→ iM . As in the previous case, if a state has

an outgoing ε-transition then this will be the only transition out of this state

so we can compress them out.

• letxβ = M inN

44

i

JΓK

•

q0

q1

a1

...

qn

an

a0

Figure 3.4: Prearena for JΓ ` (θ0 → . . .→ θ0)→ θ0K

The game semantics of letxβ = M inN is essentially a concatenation of a play

from JMK and a play from JNK.

To construct Ai
letxβ=M inN

, we take a copy of AiΓ`M and a copy of A(i,j)
Γ,x`N for

each j ∈ MJβK (again taking the disjoint union of both their states and stack

symbols). The initial state is the initial state from AiΓ`M , the �nal states are
those of A(i,j)

Γ,x`N and all transitions are maintained unchanged, except that if

s1
j→ s2 in AiΓ`M where j is a JβK-answer, then instead s1

ε→ ijN where ijN is the

initial state of A(i,j)
Γ,x`N .

3.2.3.3 λ-abstraction

We now consider the trickier cases, starting with λ-abstraction. Since the conversion

to canonical form preserves types, we will only have to deal with λ-abstractions of

types of the form Θ1 → Θ0. The relevant prearena is shown in Figure 3.4, where

n ≥ 0. The de�nition of the semantics of JΓ ` λx.MK describes it as an interleaving

of plays from JΓ, x `MK, each of which is started by O playing q0. However, only O

will switch between threads and visibility and the switching condition restrict this to

occur only after P plays on the right-hand side (i.e. after •, a0 or some qj). Further,

since all of O's moves on the right-hand side except q0 are answers, bracketing prevents

O from returning to a previously opened JMK-thread until all subsequently opened

threads have been closed. That is, the semantics will actually consist of nested copies

of plays from JΓ, x `MK. We will use the stack to keep track of this nesting and

45

ensure we only accept when the �nal thread is closed and all questions have been

answered.

This is the �rst construction for which we will need to add pointer information2.

We can rely on the automaton for JΓ, x `MK to keep track of the pointers from JΓK-
moves and also those from qi moves for i > 1. However, in JΓ, x `MK q1 is justi�ed

by the initial move and so no pointer information will be recorded. In the prearena

used for JΓ ` λx.MK this is no longer the case, so we must include plays where q1 and

q0 are tagged as source- and target-moves. To deal with this, as our set of states we

will take:

• Four copies of the states of each A(i,q0)
Γ,x:θ1`M :θ0

for each q0 ∈ IJθ1K.

� We write (s, q0) for the �rst copy of state s from A(i,q0)
Γ,x`M to indicate that

this state belongs to a thread opened by q0 (if x is of type int then q0

represents multiple moves).

� The second copy is needed to keep track of whether a thread was the �rst

opened thread. This allows us to know when we have reached a complete

play. We write (s, q0)′ for the copy of state s from A(i,q0)
Γ,x`M in the �rst

opened thread.

� Finally, we need an additional copy of both marked and unmarked states

to allow us to encode pointers. We write (s,
•
q0) or (s,

•
q0)′ to indicate that

the q0 which opened this thread was tagged as a target move. Whenever

this thread can perform a P-question justi�ed by q0 (i.e. a q1) we will need

to allow it to be tagged as a source-move.

• We will also need three fresh states (1), the initial state, (2), the only �nal state,

and (3) which will be reached whenever O could open a new JMK-thread but

the play is not complete.

As stack symbols we will use the disjoint union of the stack symbols of eachA(i,q0)
Γ,x:θ1`M :θ0

plus the states of the new automaton. Our transitions will be as follows.

• (1)
•−→ (2).

2The location of the justi�cation pointer from q1 is always uniquely determined. However, for
consistency our representation requires us to encode the location of pointers from all P-questions
(except those pointing at the initial move).

46

• If the initial state of A(i,q0)
Γ,x`M is j, then (2)

q0−→ (j, q0)′,(2)
•
q0−→ (j,

•
q0)′, (3)

q0−→

(j, q0) and (3)
•
q0−→ (j,

•
q0). New threads can be opened from state (2) (when the

play is complete) or state (3) (when P has played on the right-hand side but

the play is incomplete). Threads opened from (2) are marked as being the �rst

opened thread, whereas those opened from (3) are not. In both cases we must

allow the opening move to be a target-move.

• If A(i,q0)
Γ,x`M contains a transition s1

a0−→ s2 then we instead have transitions

(s1, q0)
a0−→ (3),(s1,

•
q0)

a0−→ (3), (s1, q0)′
a0−→ (2) and (s1,

•
q0)′

a0−→ (2). When we

close a thread we return to either (2) or (3) depending on whether the play is

complete.

• Suppose A(i,q0)
Γ,x`M contains transitions of the form s1

qj/γ−→ s2
aj ,γ−→ s3. Note that as

s1 is a P-state this will be the only transition out of s1
3. Due to visibility and the

switching condition, the only transitions which can be taken immediately after

qj are on aj's. There could be many di�erent possible aj's (if the appropriate

part of the type is int or int ref) but s3 is uniquely determined by s1 and aj.

Our new automaton will have transitions (s1, q0)
qj/(s1,q0)−→ (3), (s1, q0)′

qj/(s1,q0)′−→

(3),(s1,
•
q0)

qj/(s1,
•
q0)−→ (3) and (s1,

•
q0)′

qj/(s1,
•
q0)′−→ (3). After qj O has the option of

starting a new thread.

We also have the transitions (3)
aj ,(s1,q0)−→ (s3, q0), (3)

aj ,(s1,q0)′−→ (s3, q0)′ ,(3)
aj ,(s1,

•
q0)−→

(s3,
•
q0) and (3)

aj ,(s1,
•
q0)′−→ (s3,

•
q0)′. This allows O to resume the pending thread.

Additionally, if j = 1 then we also have the transitions (s1,
•
q0)

◦
q1/(s1,

•
q0)−→ (3) and

(s1,
•
q0)′

◦
q1/(s1,

•
q0)′−→ (3) encoding a pointer.

Also, note that if the qj or aj in the original automaton were source- or target-

moves then the transitions we create in the new automaton should be too.

• Finally, all transitions on JΓK-moves are preserved unchanged. That is, ifA(i,q0)
Γ,x`M

contains a transition s1
m−→ s2 where m is a JΓK-move, then we keep this

transition in the forms (s1, q0)
m−→ (s2, q0), (s1, q0)′

m−→ (s2, q0)′,(s1,
•
q0)

m−→
(s2,

•
q0) and (s1,

•
q0)′

m−→ (s2,
•
q0)′. Here s1

m−→ s2 could be a push-, pop-, or

a noop-transition and possibly a source- or target- move, in which case these

3Actually, due to our encoding of justi�cation pointers, it is possible there will be two transitions
out of s1, one tagged as a source-transition and the other untagged. However, we insist that they
will both push γ and move into s2.

47

properties (and the pushed/popped symbol) should all be the same in the new

automaton.

Example 3.4. Consider the term f : unit→ int ` λx : int.if x > 0 then 1 else f().

For simplicity we will assume that int contains only 0 and 1. Our family of automata

for f, x ` if x > 0 then 1 else f() consists of two members:

• A(•f ,0x)

f,x`if x>0 then 1 else f() = 3 4

5

6

7
qf/γ

0f , γ

1f , γ

0

1

• A(•f ,1x)

f,x`if x>0 then 1 else f() = 8 9
1

Applying our construction for λ-abstraction produces the VPA in Figure 3.5. Re-

stricting this to allow only a single pointer to be represented (or in this case, as there

will never be any pointers encoded, removing unmatched source-transitions) gives the

VPA in Figure 3.6. In this case (and in any case where x has base type) there can be

no nesting of threads or encoding of pointers. The abstraction simply iterates plays

of the unabstracted strategies.

1 2

(8, 1x)
′

(8,
•

1x)
′

(3, 0x)
′

(4, 0x)
′(5, 0x)

′

(6, 0x)
′

(3,
•

0x)
′

(4,
•

0x)
′(5,

•
0x)
′

(6,
•

0x)
′

•
1x

•
1x

0x

•
0x

1

1

qf/γ

0f , γ

1f , γ
0

1

qf/γ

0f , γ

1f , γ
0

1

Figure 3.5: VPA for f : unit→ int ` λx : int.if x > 0 then 1 else f()

48

1 2

(8, 1x)
′

(3, 0x)
′ (4, 0x)

′

(5, 0x)
′

(6, 0x)
′

•

1x

0x

1

qf/γ

0f , γ

1f , γ

0

1

Figure 3.6: Simpli�ed VPA for f : unit→ int ` λx : int.if x > 0 then 1 else f()

Example 3.5. Now consider the term ` λf : unit→ unit.f(). The family of au-

tomata for f ` f() is a singleton family containing only the automaton below.

Aqf`f() = 4 5 6 7
qf/γ af , γ a

Applying our construction gives the automaton shown in Figure 3.7. The stack is

used to keep track of open questions. Every time P plays qf or a, we return to state

3, unless the play is complete in which case we enter the �nal state 2.

3.2.3.4 let x= z N inM

The remaining cases have the form Γ, z : θ3 ` letx = zN inM : θ2. We consider them

in order of increasing complexity.

• letx = zyβ inM

We must have x : θ3, y : θ0, z : θ0 → θ3 and M : θ2, where each θi is a type

from the corresponding Θi. Play will commence with P questioning z, using

the value of y contained in the initial move. O must respond with an initial

Jθ3K-move. Play then continues as it would in Γ, x, y, z `M on this initial move

except with all x-moves renamed into z-moves.

If there are any P-questions justi�ed by the initial Jθ3K-move then we will have

to encode their justi�cation pointer location.

49

1 2 3

(4, q)′

(6, q)′

(4,
•
q)′

(6,
•
q)′

(4, q)

(4,
•
q)

(6, q)

(6,
•
q)

•

q

q

•
q

•
q

qf/(4, q)
′

qf/(4,
•
q)′

◦
qf /(4,

•
q)′

qf/(4, q)

qf/(4,
•
q)

◦
qf /(4,

•
q)

af , (4, q)
′

af , (4,
•
q)′

af , (4, q)

af , (4,
•
q)

a

a

a

a

Figure 3.7: VPA for ` λf : unit→ unit.f()

50

To construct A(i,•,j)
Γ,z,y`letx=zy inM , we will take two copies of A(i,•,j,k)

Γ,z,y,x`M for each

k ∈ IJxK. The second copy is required for encoding pointers as in the previous

case. We will di�erentiate between the two copies by tagging state s in the

second copy
•
s. The �nal states of these automata are preserved. We will

also include two fresh states (1) and (2) with (1) being initial. We take as

stack symbols the disjoint union of the stack symbols of each A(i,•,j,k)
Γ,z,y,x`M . Our

transitions are then

� (1)
jz→ (2) where jz is the copy of j (the initial y-move) in the z-component.

� For each k ∈ IJxK, (2)
k−→ skM and (2)

•
k−→

•
skM where skM is the initial state

of A(i,•,j,k)
Γ,z,y,x`M .

� All x-transitions are relabelled into z-transitions. That is, if s
mx−→ t in

A(i,•,j,k)
Γ,z,y,x`M wheremx is a move from the x-component, then instead we have

s
mz−→ t and

•
s
mz−→
•
t where mz is the appropriate relabelling. Additionally,

if mx was a P-move justi�ed by the initial move, we include the transition
•
s
◦
mz−→
•
t.

� All other transitions are included unmodi�ed. So if s
m−→ t in A(i,•,j,k)

Γ,z,y,x`M

where m is not from the x-component we have s
m−→ t and

•
s

m−→
•
t.

• letx = zmkvar(λuunit.M, λvint.N) inQ

This case is similar to the previous one. The complication is that after P plays

•z (the initial int ref-move in the z-component) and whenever P plays in x, O

can play read or write(n) which will start an JMK- or JNK-thread as appropriate.
Control cannot leave the JMK- or JNK-thread until it is closed, whereupon play

resumes in the same place it was before the thread was opened. Similarly to

the previous case, to construct A(i,•)
Γ,z`letx=zmkvar(λuunit.M,λvint.N) inQ

, we will use

two fresh states (1) and (2), with (1) being the initial state, and two copies of

A(i,•,j)
Γ,z,x`Q for each j ∈ IJxK (as in previous cases the two copies are required for

encoding pointers). The only �nal states will be the ones from these automata.

Finally, we will also have distinct copies of A(i,•,•)
Γ,z,u`M and A(i,•,k)

Γ,z,v`N for each k ∈ int

and each state in

S={ (2) }]{ r | (r = s∨ r =
•
s)∧ t mx→ s in some A(i,•,j)

Γ,z,x`Q with mx a P-x-move }.

We will denote these states (s1, s2) where s1 is either an JMK- or an JNK-state
and s2 ∈ S. As stack symbols we take the disjoint union of the stack symbols

from each A(i,•,j)
Γ,z,x`Q, A

(i,•,•)
Γ,z,u`M and A(i,•,k)

Γ,z,v`N .

51

Transitions are as follows:

� (1)
•z−→ (2).

� (2)
jz−→ sjQ and (2)

•
jz−→

•
sjQ where j ∈ IJxK and sjQ is the initial state of

A(i,•,j)
Γ,z,x`Q.

� For each s ∈ S we have s
read−→ (sM , s) where sM is the initial state of

A(i,•,•)
Γ,z,u`M . Similarly, for each k ∈ int and s ∈ S we have s

write(k)−→ (skN , s)

where skN is the initial state of A(i,•,k)
Γ,z,v`N .

� Transitions within A(i,•,j)
Γ,z,x`Q are kept unchanged except that x-moves are

relabelled as z-moves. If s
mx−→ t in A(i,•,j)

Γ,z,x`Q where mx is a move from the

x-component, then instead we have s
mz−→ t and

•
s
mz−→
•
t. Additionally, if mx

was a P-move justi�ed by the initial move, we also include the transition
•
s
◦
mz−→
•
t. If s

m−→ t in A(i,•,j)
Γ,z,x`Q where m is not from the x-component then

we have s
m−→ t and

•
s

m−→
•
t.

� Transitions within any of the copies of A(i,•,•)
Γ,z,u`M or A(i,•,k)

Γ,z,v`N are also kept

unchanged, except for the �nal moves which are redirected back to the

state this thread was opened from. That is, if s1
m−→ s2 in A(i,•,•)

Γ,z,u`M or

A(i,•,k)
Γ,z,v`N where s2 is not �nal then we have transitions (s1, s)

m−→ (s2, s)

for all s ∈ S. If s1
j−→ s2 in A(i,•,•)

Γ,z,u`M where s2 is �nal, then (s1, s)
j−→ s

for all s ∈ S. Similarly, if s1
•−→ s2 in A(i,•,k)

Γ,z,v`N for �nal s2 then we have

(s1, s)
ok−→ s.

• letx = z(λy.M) inN

This is the �nal and most complicated part of the construction. Note that we

must have x : θ3, y : θ1, M : θ0, z : (θ1 → θ0) → θ3 and N : θ2 where each θi

is a type from Θi. The relevant prearena is shown in Figure 3.8 (n ≥ 0). Play

proceeds as follows:

� After the initial move, P will play •z. At this point, O can either play j

(an initial Jθ3K-move) or play q0, opening an JMK-thread.

� If O chooses the latter, control shifts to the λy.M subterm. In a similar

manner to the construction for λ-abstraction this can result in stacked

copies of plays from JMK. O can open a new JMK-thread whenever P

plays in Jθ1 → θ0K (that is either P plays a0, closing the JMK-thread, or
some qi). Note that if O opens a new JMK-thread while the old one is still

52

(i, •)

JΓK
•z

q0

q1 a0

a1

...

qn

an

j

Jθ3K

Jθ2K

Figure 3.8: Prearena for JΓ, (θ1 → θ0)→ θ3 ` θ2K

open, the old thread will be left in a position where the only valid move is

for O to answer the pending qi with ai. Thus, bracketing ensures that we

cannot revisit an old JMK-thread until we have closed the current one.

� If eventually all JMK-threads are closed and O plays j, then play proceeds

as in JNK. In a similar way to the other letx = zM inN cases all x-moves

will be relabelled as z-moves.

� While playing as JNK, if P ever plays in x (that is in Jθ3K), then O again

gets the chance to play q0 and open an JMK-thread. If this happens then
the threads can be stacked in a similar manner as before. However, an

additional complication is that whenever O could open a new JMK-thread,
O also has the option of resuming play in JNK. The resumption will have to

obey bracketing, so if there are open JMK-threads then for O to rejoin JNK
he must play a Jθ3K-question. As before, the JMK-threads interrupted in

this manner can only be resumed with an O-answer, so to obey bracketing

they cannot be resumed until the Jθ3K-question has been answered.

We describe below how to construct an automaton A(i,•)
Γ,z`letx=z(λy.M) inN for this

strategy from the families of automata A(i,•,q0)
Γ,z,y`M and A(i,•,j)

Γ,z,x`N . We will use

the stack to keep track of the stacked JMK-threads and the pending question,

so that we can tell whether O can resume an earlier thread without violating

bracketing. We must also encode the P-pointers of moves justi�ed by initial

53

x-moves (as in the other letx = zM inN cases) and moves justi�ed by q0 (as

in the λ-abstraction case).

We will need as our set of states:

� Two fresh states (1) and (2).

� Two copies of every state of each A(i,•,j)
Γ,z,x`N . We tag the second copy of state

s as
•
s to indicate that the initial x-move which opened play in JNK was a

target-move.

� In a similar manner to the previous case, we de�ne the set of states S
(from which an JMK-thread can be opened) as

S = { (2) }]

{ r | (r = s ∨ r =
•
s) ∧ t

mx→ s in some A(i,•,j)
Γ,z,x`Nwith mx a P-x-move }.

For each state s from some A(i,•,q0)
Γ,z,y`M and t from S we will have two states

(s, t) and (
•
s, t). These will be for when we are in an JMK-thread and

we need to keep track of where we are in the thread, where we should

return when it is closed (or interrupted) and whether it was opened with

a target-move.

The initial state will be (1) and the �nal states will be those of A(i,•,j)
Γ,z,x`N .

Our set of stack symbols will be the disjoint union of all the symbols used by

each A(i,•,j)
Γ,z,x`N and A(i,•,q0)

Γ,z,y`M , plus the fresh symbol (1) and two copies of the

states of each A(i,•,q0)
Γ,z,y`M .

Our transitions will be as follows.

� (1)
•/(1)→ (2).

� From state (2) we can start JNK if there are no open JMK-threads. This will
be the case only if the symbol (1) is at the top of the stack. So (2)

j,(1)→ ijN

and (2)
•
j,(1)→

•
ijN where ijN is the initial state in A(i,•,j)

Γ,z,x`N .

� We can start a new JMK-thread from any state in S. So, we have s
q0→

(iq0M , s), s
•
q0→ (

•
iq0M , s) where i

q0
M is the initial state in A(i,q0)

Γ,y`M and s ∈ S.

� When we close an JMK-thread we should return either to state (2) or to

the current state of the JNK-thread. This will be stored in the second

component of the state. So if s
a0→ t in A(i,•,q0)

Γ,z,y`M , then (s, r)
a0→ r and

(
•
s, r)

a0→ r for all r ∈ S.

54

� We need to be able to open a new JMK-thread or possibly resume JNK
whenever JMK plays in y (and we must relabel y-moves as z-moves). If

s1

qyi /γ→ s2

ayi ,γ→ s3 in A(i,•,q0)
Γ,z,y`M (note that � aside from pointer encodings �

this must be the only transition out of s1 as it is a P-move and that the

only valid response in JΓ, z, y `MK is for O to answer), then for all t ∈ S
we have transitions

∗ (s1, t)
qi/s1→ t and (

•
s1, t)

qi/
•
s1→ t

∗ t ai,s1→ (s3, t) and t
ai,
•
s1→ (

•
s3, t).

Note that the qi or ai from the original automata may be source- or target-

moves in which case this should be preserved in the new transitions.

Further, if i = 1 then we need to be able to encode a pointer and so we

also have transitions (
•
s1, t)

◦
q1/
•
s1→ t.

� All other transitions within each copy of A(i,•,q0)
Γ,z,y`M are preserved. If s1

m→ s2

in A(i,•,q0)
Γ,z,y`M where m is a JΓ, zK-move then (s1, t)

m→ (s2, t) and (
•
s1, t)

m→
(
•
s2, t) for all t ∈ S.

� All transitions in A(i,•,j)
Γ,z,x`N are preserved but we need to rename x-moves

into z-moves. So if s1
m→ s2 in A(i,•,j)

Γ,z,x`N where m is not an x-move then

s1
m→ s2 and

•
s1

m→ •
s2. If s1

mx→ s2 in A(i,•,j)
Γ,z,x`N where mx is an x-move then

instead we have s1
mz→ s2 and

•
s1
mz→ •
s2 where mz is the same move but in

the z-component. Additionally, if mx is an x-move immediately justi�ed

by the initial move in JΓ, z, x ` θ2K then we have the transition
•
s1

◦
mz→ •
s2.

Example 3.6. As an example, we apply our construction to the term

z : ((unit→ unit)→ unit)→ unit→ unit ` letx = z(λy.y()) inx().

The automata for our subterms are:

• A(•,•y)

z,y`y() = 3 4 5 6
qy/γ ay, γ a

• A(•,•x)
z,x`x() = 7 8 9 10

qx/γ̂ ax, γ̂ a

55

Combining these using our construction produces the VPA in Figure 3.9. Here we

are tagging moves so that the prearena is

q

•1

q0

q1

a1

a0

•2

q2

a2

a

.

We can see that in states 2, 8 and
•
8 plays from Jy()K can be nested.

This completes the inductive stage of our construction. The automata constructed

actually accept a superset of the languages we are interested in. This is because

during our constructions we do not attempt to restrict our automata to accept at

most one source- and target-move. We do, however, ensure that each source-move

can only occur if the corresponding target-move occurs earlier in the run. Due to this

condition it is straightforward to restrict the automata to accept only the words we

want. The �nal step in the construction is to restrict the languages of the automata

to accept only words which either contain no source- or target-moves or have exactly

one of each. This is simple to do by tripling the number of states and gives the

following result:

Theorem 3.1. For every RMLO-Str term Γ ` M : θ and every initial move i of the

prearena JΓ ` θK we can construct a deterministic VPA AiΓ`M which recognises the

smallest set containing:

• For every complete play s in JΓ `M : θKi, the underlying move sequence of s.

• For every complete play s in JΓ ` M : θKi and every pointer from a P-question

to a non-initial move in s, the underlying move sequence of s tagged with exactly

one target-move and one source-move encoding that pointer.

The family of automata AiΓ`M exactly characterises JΓ `MK. Since the set of

initial moves is �nite and VPA equivalence is decidable, the full abstraction theorem

then gives us the result below.

Theorem 3.2. Observational equivalence of RMLO-Str-terms is decidable.

56

1

2 7

8

9

10

•
7

•
8

•
9

•
10

(3, 2) (5, 2)

(
•
3, 2) (

•
5, 2)

(3, 8) (5, 8)

(
•
3, 8) (

•
5, 8)

(3,
•
8) (5,

•
8)

(
•
3,
•
8) (

•
5,
•
8)

•1/(1)

q0

•
q0

a1, 3

a1,
•
3

q1/3

q1/
•
3

◦
q1 /

•
3

a0

a0

q0

•
q0

a1, 3

a1,
•
3

q1/3

q1/
•
3

◦
q1 /

•
3

a0

a0

q0

•
q0

a1, 3

a1,
•
3

q1/3

q1/
•
3

◦
q1 /

•
3

a0

a0

•2, 1
••2, 1

q2/γ̂

q2/γ̂◦
q2 /γ̂

a2, γ̂a2, γ̂

aa

Figure 3.9: VPA for letx = z(λy.y()) inx()

57

3.3 Complexity

Having shown that observational equivalence is decidable for the O-strict fragment of

RML, we now consider the complexity of the problem. First we consider the size of

the automata our constructions produce. Following [81], we de�ne the size of a VPA

to be the sum of the number of states and the number of stack symbols. The size of

the alphabet is linear in the size of the type sequent and so we ignore it. The number

of transitions is bounded by a polynomial in the size of the automaton.

Proposition 3.4. For an RML-term in canonical form Γ `M and initial JΓK-move
i, the size of the automaton AiΓ`M is bounded by an exponential in the size of Γ `M .

Proof. In each case of the construction, the set of states consists of a number of

fresh states, a number of copies of the states from sub-automata and a number

of copies of pairs of states from di�erent sub-automata. The set of stack symbols

is similar. The largest number of sub-automata is three (in the case of letx =

zmkvar(λuunit.M, λvint.N) inQ). This means that the size is bounded by the equa-

tion

|AM | ≤ c×

(
1 +

∑
1≤i≤3

|AMi
|+

∑
0≤i<j≤3

|AMi
| × |AMj

|

)
for some constant c where M1,M2,M3 are disjoint proper subterms of M (so |M | >
|M1|+ |M2|+ |M3|). This gives an exponential bound on the size of the automata.

Now we consider the total running time of the algorithm.

Proposition 3.5. The observational equivalence problem for RMLO-Str-terms in can-

onical form is in ExpTime.

Proof. The time required to construct each automaton is polynomial in its size (so

exponential in the size of the input). The time taken to check whether two determin-

istic VPA are equivalent is polynomial in the size of the two VPA. Finally, the number

of VPA we will need to check is exponential in the size of the input (in the number

of int-components in the context). Altogether, this gives an exponential bound on

the total amount of time required to check two RMLO-Str-terms in canonical form for

observational equivalence.

Note that this result only holds for RMLO-Str terms which are already in canonical

form. In general, converting an RML term into canonical form can take a non-

elementary amount of time. This follows from the complexity of β-reduction in the

simply typed λ-calculus [102, 64]. However, in practice we would not expect to hit

this bound for most terms.

58

q

qgen

agen

•

q0

a0q1

a1

Figure 3.10: Prearena for gen : unit→ int ` C : (unit→ unit)→ unit

3.3.1 Hardness

It turns out that this bound is optimal. We can show ExpTime-hardness using a

reduction of the ExpTime-complete equivalence problem for nondeterministic au-

tomata on binary trees [98].

A binary-tree automaton (BTA) A is a tuple 〈Q,Σ, δ0, δ2, F 〉, where Q is the

�nite set of states, F ⊆ Q contains the �nal states, Σ = Σ0 + Σ2 is the input

alphabet partitioned into the sets of nullary and binary symbols and δ0 : Σ0 → 2Q,

δ2 : Q×Q×Σ2 → 2Q are the transition functions. The automaton processes the tree

bottom-up and accepts by �nal state. T (A) will denote the set of trees accepted by

A.
We will use plays to represent trees. A strategy is then a set of trees and we

will show how to convert a BTA A into an RMLO-Str-term whose strategy denota-

tion represents T (A). We will do this using the type sequent gen : unit→ int `
C : (unit→ unit)→ unit. The associated prearena A is shown in Figure 3.10. For

simplicity, but w.l.o.g., we assume that Σ0 + Σ2 = int. In fact the argument can still

be carried out if Σ is larger than int by encoding each label using multiple ints.

We will represent a tree T using the play q • S(T) on A, where S(T) is de�ned as

S(l) := q0 qgen lgen a0 S(n(T1, T2)) := q0 qgen ngen q1 S(T1) a1 q1 S(T2) a1 a0.

Note that S(T) can be seen as a record of a depth-�rst traversal of T . For a given

tree automaton A we construct a term gen : unit→ int ` CA : (unit→ unit)→ unit

such that comp(Jgen ` CAK) = { q • } ∪ { q • S(T) |T ∈ T (A) }. This term is given

in Figure 3.11. The automata we want to simulate are nondeterministic. In order to

keep track of all possible states they can reach at any stage of the computation, we

rely on vectors of boolean variables X = 〈Xq 〉q∈Q (Xq is set to true i� we want to

59

represent the fact that the automaton can reach state q). To model the behaviour of

the automaton at binary nodes, the sets of states reachable after processing its left

subtree are recorded in Xl, while those corresponding to the right one are stored in

Xr. δ2 is then applied to compute the next set of states RESULT , reachable after

processing the binary node.

The MODE variable forces the players to explore only scenarios corresponding to

binary trees. In particular, when the symbol acquired from gen is a binary label, two

calls to f() occur to generate the requisite two q1 . . . a1 segments.

A complete play (di�erent from q •) will be reached by the players only if the

�rst q0-thread (distinguished by its local variable FIRST being equal to true) records

reachability of a �nal state (RESULT ∩ F 6= ∅) by A.
Clearly, the reduction can be carried out in polynomial time, so the ExpTime-

hardness of BTA equivalence implies ExpTime-hardness of observational equivalence.

Theorem 3.3. Observational equivalence of RMLO-Str-terms in canonical form is

ExpTime-complete.

Our previous proof showed that the ExpTime-bound can be reached at the type

sequent

unit→ int ` (unit→ unit)→ unit.

ExpTime-hardness of contextual equivalence can also be shown for RMLO-Str-terms

typable as

gen : unit→ int, y : ((unit→ unit)→ unit)→ unit ` C : unit

The relevant prearena is shown in Figure 3.12 and the corresponding term C′A in

Figure 3.13. Trees are then represented by plays q0q1S(T)a1a0, where S(T) is given

below.

S(l) = q2 qgen lgen a2 S(n(T1, T2)) = q2 qgen ngen q3 S(T1) a3 q3 S(T2) a3 a2

3.4 Summary

In this chapter we have introduced the O-strict fragment of RML. This is the largest

fragment of RML for which, in the game-semantic model, the location of justi�cation

pointers from O-moves is uniquely determined. This fragment consists of terms of

60

letRESULT = ref 0 in
letMODE = ref down in
letFIRST_OPEN = ref false in

λf com→com.
letFIRST = ref false in

letXl = ref 0 in

letXr = ref 0 in
letZ = ref 0 in

if (!FIRST_OPEN) then FIRST := false
else (FIRST := true;FIRST_OPEN := true);

[!MODE = down]; Z := gen();

if (!Z ∈ Σ0) then (RESULT := δ0(!Z);MODE := up);

if (!Z ∈ Σ2) then
(f(); [!MODE = up];Xl := !RESULT ;

MODE := down;
f(); [!MODE = up];Xr := !RESULT ;
RESULT := δ2(!Xl, !Xr, !Z);MODE := up

) ;

[FIRST ⇒(RESULT ∩ F 6= ∅)]

We write [assertion] as an abbreviation for if assertion then () elseΩ.

Figure 3.11: gen : com→ exp ` CA : (com→ com)→ com

q0

a0q1

a1q2

a2q3

a3

agen

qgen

Figure 3.12: Prearena for gen : unit→ int, y : ((unit→ unit)→ unit)→ unit ` C : unit

61

letRESULT = ref 0 in
letMODE = ref down in

y(λfunit→unit.

letXl = ref 0 in

letXr = ref 0 in
letZ = ref 0 in

[!MODE = down]; Z := gen();

if (!Z ∈ Σ0) then (RESULT := δ0(!Z);MODE := up);

if (!Z ∈ Σ2) then
(f(); [!MODE = up];Xl := !RESULT ;

MODE := down;
f(); [!MODE = up];Xr := !RESULT ;
RESULT := δ2(!Xl, !Xr, !Z);MODE := up

) ;

); [RESULT ∩ F 6= ∅]

Figure 3.13: gen : unit→ int, y : ((unit→ unit)→ unit)→ unit ` C′A : unit

short type (order at most two, arity at most one) which can contain free identi�ers

whose argument types are also short. The fragment includes complex higher-order

types and examples from the literature which are known to be hard to reason about.

We showed that observational equivalence for terms in this fragment is decidable. We

did this by constructing (inductively over the canonical forms of the language) VPA

which recognise the strategy denotation of terms. Further, we went on to show that

(for terms in canonical form) the problem is ExpTime-complete.

In the next chapter we consider extensions to this fragment. We examine the

e�ect of adding recursion (instead of only allowing while-loops) and of extending the

types allowed. In most cases these extensions will lead to undecidability but we �nd

a few cases where decidability can be preserved.

62

Chapter 4

Extensions to the O-Strict Fragment

In the previous chapter we considered the O-strict fragment of RML. We believe this

is the largest fragment for which the game semantics can be represented using VPA.

In this chapter we consider fragments which do not seem to be representable using

VPA and consider whether observational equivalence is still decidable. We start out

by considering recursion. Our previous result referred to RML with while-loops but

no recursive functions. We show that the game semantics of recursive functions of

type β → β (where β ∈ { unit, int }) can be represented using DPDA and hence

observational equivalence remains decidable. We also show that DPDA really are

required as we show hardness by representing any DPDA in this fragment of RML.

Next we consider going beyond O-strict types. The simplest such type (on the

right-hand side of the turnstile) is β → β → β. The strategy denotations of terms of

this type have plays in which O-moves have unboundedly many potential justi�ers.

The single-pointer representation we used to represent P-pointers does not su�ce

to model O-pointers. It appears that automata with in�nite alphabets are needed

to precisely capture such strategies. One such form of automata are Class Memory

Automata. We show how deterministic CMA can be used to model terms of type

β → β → β and decide observational equivalence.

Despite these results, most extensions to the O-strict fragment lead to undecid-

ability. In the �nal section of this chapter we prove undecidability at various type

sequents and also when recursive functions of type (β → β)→ β are allowed.

The results presented in this chapter are joint work with Andrzej Murawski.

4.1 Recursion

The results of Chapter 3 apply to recursion-free RML (although while-loops are

allowed). In this section we consider the e�ect of allowing a limited form of recursion

63

(i, •, q0)

JΓK q1

a1

a0

i

JΓK •

q

a

Figure 4.1: Prearenas for JΓ, F : β → β′, x : β ` β′K and JΓ ` β → β′K

into our language.

It is standard in call-by-value languages to only allow recursive functions which

are λ-abstractions [38, 90, 108]. The simplest allowable recursive de�nitions will then

have the form Γ ` (µF : β → β′.λx : β.M) : β → β′ where β, β′ ∈ { unit, int }.
The prearena for JΓ, F : β → β′, x : β ` β′K and JΓ ` β → β′K are shown in Fig-

ure 4.1. As our recursive term involves various identi�ers and terms with the same

type and values being passed around between them, we have various moves which

appear in di�erent components of the prearena. We will use subscripts to denote

which component a move comes from and primes to denote whether the values of the

moves are (or may be) di�erent. For example, q0 and q1 should be taken to refer to

the same move in two di�ering components of the prearena. However, a1 and a′1 are

moves from the same component of the prearena but are not guaranteed to have the

same value.

Play in JΓ ` µF.λx.MK proceeds as follows. P responds to the initial move, i, with

•. Then, whenever O plays q play proceeds as JΓ, F, x `MK would respond to the

initial move (i, •, q0). If JΓ, F, x `MK would answer the initial question with a0 then

instead P plays a. However, if JΓ, F, x `MK ever questions F with q′1 then instead we

start up a new thread of JΓ, F, x `MK on initial move (i, •, q′0). We can open further

threads in the same manner whenever P wishes to play q′′1 . If P plays a0 in any thread

other than the �rst, this closes the current thread and play resumes in the previous

thread as if a1 had been played. This is the only way to revisit a previously open

thread. In summary, JΓ ` µF.λx.MK will consist of nested threads of JΓ, F, x `MK,
with complete plays of JΓ, F, x `MK replacing each q1a1 pair.

It should be clear that to recognise plays from JΓ ` µF.λx.MK we will need to be

able to keep track of how many threads have been opened (that is, how many recursive

calls have been made). As the depth of the recursion can be independent of the length

of a play, VPA do not seem to be su�ciently expressive to capture this (the stack on

a VPA can never be larger than the number of letters of the input word that have

64

been consumed). To capture the recursive behaviour using VPA we would need to add

extra (visible) moves corresponding to calls and returns. However, functions with very

di�erent recursive behaviours can still be observationally equivalent. Making recursive

calls visible would only allow us to prove equivalences where the two programs made

the same recursive calls. This is clearly not what we want. In fact, the situation is

very similar to adding ground recursion to IA [76]. We will follow their approach and

capture strategies using DPDA. Since DPDA equivalence is decidable [99, 103] this

is su�cient to show decidability of observational equivalence.

4.1.1 Representation

In a similar manner to [76] we will partition our automata into O-states and P-states

according to whose turn it is to play and only P states will be allowed to perform

ε-transitions. However, di�ering from their de�nitions, we will allow stack actions on

non-ε-transitions so that we can reuse our existing constructions.

• In O-states the automata will be able to read an O-move from the input. If it

is an answer then it will also pop a single symbol o� the stack, otherwise it will

leave the stack unchanged. It will then transition into a P-state.

• In a P-state the automata may be able to perform an ε-transition (possibly

changing the stack) and transition into another P-state. The automata must

be deterministic, so if a state has an outgoing ε-transition then either this is the

only transition out of that state, or all transitions out of that state are ε-pop-

transitions on di�erent stack symbols. Alternatively, a P-state may be able to

perform a visible transition on a P-move and transition into an O-state. If it is

a question then this will push a single symbol onto the stack, otherwise it will

leave the stack unchanged. There can be at most two such visible transitions

from a P-state. If there are two, then they must both be on the same move,

have the same destination, push the same symbol and di�er only in that one of

them is tagged as a source-move for encoding a P-pointer.

In our VPA construction for RMLO-Str the contents of the stack could be mapped

to the sequence of open P-questions. We will insist our DPDA respect a slightly

weaker condition:

• The set of open P-questions must appear in the stack.

65

• Immediately after a visible (i.e. non-ε) P-transition, the stack will be the same

as it was immediately after the pending (P-)question was played (or empty if

there is no such question). This implies that when in an O-state the pending

question will be at the top of the stack and that when we reach a �nal state the

stack is empty. Furthermore, we can rely on our automata to never attempt

to pop the empty stack. During our constructions we often want to combine

strategies and insert complete plays from one into the middle of plays from

another. These properties allow us to do this safely as they ensure that if we

combine automata and insert an accepting run of one DPDA into the run of

another, the inserted automaton will pop exactly the symbols that it pushed,

leaving the stack unchanged at the end of its run.

4.1.2 Constructions

Again we will construct our automata inductively over the canonical forms of the

language. The addition of recursion requires us to add one new canonical form.

De�nition 4.1. The canonical forms of RML with �rst-order arity one recursive

functions are those of RML plus the additional form let y = (µF : β → β′.λx :

β.C)z inC.

Proposition 4.1. For every term Γ `M : θ of RML with �rst-order arity one recur-

sive functions, there is a term Γ ` N : θ in canonical form, e�ectively constructible

from M , such that JΓ `MK = JΓ ` NK.

Proof. The proof is almost identical to the proof of Proposition 3.3. Lemma 3.1 and

Lemma 3.2 still hold and their proofs do not require any modi�cation. The proof of

Lemma 3.2 handles all the let . . . inC forms in the same manner and so our new

canonical form does not cause any problems. For the same reason, the addition of

recursion does not break any of the cases of the inductive proof of Proposition 3.3.

Hence, we just need to add a clause for terms of the form Γ ` µF.λx.M . By the

inductive hypothesis Γ, F, x ` M can be converted to a canonical form Γ, F, x ` C.
So we can convert the term as a whole to λy.let z = (µF.λx.C)y in z.

Now we can construct our automata. For the old canonical forms we can reuse all

our existing constructions for RMLO-Str, (interpreting the result as DPDA rather than

VPA). There is a danger that the potential for additional stack actions on ε-transitions

could cause our previous constructions to fail, but the properties we insist our DPDA

66

have ensure that this cannot happen. In the majority of cases where automata for

subterms are manipulated, we only use complete plays from the strategies for subterms

and these must occur in a well-nested manner. As we have already described, our

automata will pop exactly the symbols they push and so when nesting complete plays

in a well-bracketed manner the additional symbols that may now appear on the stack

cannot break our previous constructions.

The only case in which plays are not combined in a well-bracketed manner (at

least in the sense that we may return to a play coming from one subterm before the

play originating in a di�erent subterm has completed) is JΓ ` letx = z(λy.M) inNK.
In this construction, the well-nested JMK-threads can be interleaved with part of

the (single) global JNK-thread. However, such interruptions are started with an O-

question and ended with the corresponding P-answer and so we know they leave the

stack unchanged. This ensures that the construction is safe. Furthermore, all our

existing constructions satisfy the required properties and so we can reuse all of our

RMLO-Str constructions without modi�cation.

For the new form, play in JΓ, z : β ` let y = (µF : β → β′.λx : β.M)z inNK is sim-

ilar to the strategy JµF : β → β′.λx : β.MK described previously. Instead of the initial
• followed by O playing q, we immediately start the �rst JMK-thread on the initial

move provided in z. Further JMK-threads can be nested as before. If JMK wants to
close the �rst JMK-thread with a, then instead we start playing as in JNK given a as

the initial y-move.

To construct A(i,qz)
Γ,z`let y=(µF.λx.M)z inN we take a copy of each A(i,qz ,•,q′x)

Γ,z,F,x`M for each

q′ ∈ MJβK (so the initial moves qz and q
′
x for z and x can have di�erent values) and

an additional (marked) copy of A(i,qz ,•,qx)
Γ,z,F,x`M (where the value of the initial x-move is

the same as the value of the initial z-move) to correspond to the initial call to the

recursive function. To make the disjoint union over the moves of JβK explicit we refer
to state s from A(i,qz ,•,q′x)

Γ,z,F,x`M as (s, q′) and mark the additional copy (̂s, q). We also

need a copy of A(i,qz ,ay)
Γ,z,y`N for each a ∈ MJβ′K. As any particular run will only involve

states from one of these automata, we do not make the disjoint union as explicit for

JNK-states as we do for JMK-states.
Our initial state will be that of the marked copy of A(i,qz ,•,qx)

Γ,z,F,x`M and the �nal states

will be those of A(i,qz ,ay)
Γ,z,y`N . As stack symbols we use those of each A(i,qz ,•,q′x)

Γ,z,F,x`M and

A(i,qz ,ay)
Γ,z,y`N plus the states of the new automaton. Then we have the following transitions.

• If s
q′′1 /γ→ t in A(i,qz ,•,q′x)

Γ,z,F,x`M then (s, q′)
ε/(s,q′)→ (s0, q

′′) where s0 is the initial state of

A(i,qz ,•,q′′x)
Γ,z,F,x`M .

67

If q = q′ then we also include a similar transition for the initial JMK-thread,

(̂s, q)
ε/(̂s,q)→ (s0, q

′′).

These transitions correspond to recursive calls. The call is hidden and the stack

is used to remember where the call was made from.

• If s1

q′′1 /γ→ s2
a1,γ→ s3 in A(i,qz ,•,q′x)

Γ,z,F,x`M and t1
a0→ t2 in A(i,qz ,•,q′′x)

Γ,z,F,x`M then (t1, q
′′)

ε,(s1,q′)→
(s3, q

′).

As in the previous case, if q = q′ then we include a similar transition for the

initial JMK-thread, (t1, q
′′)

ε,(̂s1,q)→ (̂s3, q).

These transitions corresponds to returns from recursive calls. We should return

to where the call was made from.

• If s1
a0→ s2 in A(i,qz ,•,qx)

Γ,z,F,x`M then (̂s1, q)
ε→ t0 where t0 is the initial state of A(i,qz ,ay)

Γ,z,y`N .

When the initial call is answered and we have a value for y, control switches to

JNK.

• All other transitions from JMK and all transitions from JNK are preserved. That
is, if s1

m→ s2 is a transition in A(i,qz ,•,q′x)
Γ,z,F,x`M and m is not a move from JF, x ` β′K

then (s1, q
′)

m→ (s2, q
′) and if q = q′ then (̂s1, q)

m→ (̂s2, q). Also if s
m→ t

in A(i,qz ,ay)
Γ,z,y`N then we keep this transition unchanged. Note these transitions

may involve stack actions, in which case this should be the same in the new

automaton as in the old.

4.1.3 Hardness

In [76], it is shown that not only is observational equivalence of third-order IA with

ground recursion decidable, but that it is at least as hard as the DPDA equivalence

problem. Using thunks we can easily adapt the hardness proof from [76] to show

that RMLO-Str with recursive functions of type β → β is also as hard as the DPDA

equivalence problem.

Suppose we are given a DPDA B over alphabet Σ which accepts by empty stack

(initially the stack contains Z0) and that each transition either pushes or pops one

symbol. Any DPDA can be converted into such a form. We will de�ne a term

x : unit→ int ` MB : unit which encodes the language of B. For a language L ⊆ Σ∗

we de�ne the strategy L̂ by

comp(L̂) = { •l · q · w1 · . . . · q · wn · •r | w1 . . . wn ∈ L }.

68

1 x : unit→ int `
2 l et Q = ref q0 in

3 l et top = ref Z0 in

4 l et ch = ref 0 in

5 (µz : unit→ unit.λy : unit .
6 l et pop = ref 0 in

7 l et X = ref ! top in

8 while (not ! pop) do

9 i f δ(!Q, ε, !X) = (q′, α) then

10 Q := q′ ;
11 i f α = ε then

12 pop := 1
13 else //α = α0 · α1, α0 =!X
14 top := α1 ;
15 z () ;
16 else

17 ch := x () ;
18 i f δ(!Q, !ch, !X) = (q′, α) then

19 Q := q′ ;
20 i f α = ε then

21 pop := 1 ;
22 else //α = α0 · α1, α0 =!X
23 top := α1 ;
24 z ()
25 else Ω) ()

Figure 4.2: The Term MB Representing a DPDA

The term MB such that Jx `MBK = L̂(B) is shown in Figure 4.2. We use the call-

stack to simulate the DPDA's stack. Calls correspond to pushes and returns to pops.

Before each call, the value to be pushed is stored in global variable top; after the

call it is immediately stored in X. The current input character is read from x into

ch (after �rst checking whether an ε-transition can be performed). The while-loop

is used to ensure we do not return until the current symbol has been popped. The

term is such that given two DPDA B and B′ we have L(B) = L(B′) if and only if

MB ∼= MB′ . Constructing MB from B can be done in polynomial time, giving the

following result.

Theorem 4.1. Observational equivalence of RMLO-Str augmented with recursive func-

tions of type β → β′ is decidable. Further, it is at least as hard as the DPDA equiva-

lence problem.

69

4.2 Beyond O-Strictness

Adding recursion to RMLO-Str is a strict extension which VPA are not expressive

enough to capture. However, allowing recursion does not change the fact that the

fragment is O-strict. Justi�cation pointers from O-moves are still uniquely recon-

structible even in the presence of recursion. In this section we consider a fragment of

RML which is not O-strict but still has a decidable observational equivalence problem.

4.2.1 O-Pointers

When representing RMLO-Str, we noted in Section 3.2.1 that there can be an un-

bounded number of potential justi�ers for each P-move. Tagging moves with indices

to indicate the distance between the source and target of a justi�cation pointer seemed

to require an in�nite alphabet. We got around this problem by using a single-pointer

representation. Each word our automata accepted contained the encoding of the lo-

cation of at most one P-pointer. Since there would be an accepted word for every

P-pointer which needed to be encoded, when considering the language as a whole this

representation was su�cient to uniquely determine the location of all justi�cation

pointers from P-moves. This relies on the property of the O-strict fragment that if σ

is a strategy over an RMLO-Str prearena and s is a sequence of moves, then there is

at most one play in σ such that its underlying move sequence is s. This ensures that

if we have two words on the same sequence, both encoding di�erent pointers then we

know that both those pointers occur in the same play. When we consider prearenas

outside the O-strict fragment this no longer holds. There exist strategies containing

two di�erent plays whose underlying sequences of moves are the same. This can be

exploited to construct two di�erent strategies whose single-pointer representations are

the same. Consequently, the single-pointer representation is not good enough outside

the O-strict fragment.

Example 4.1. Consider the strategies σ1, σ2 on J ` unit→ unit→ unitK containing

exactly all even-length pre�xes of the respective complete plays given below (pointers

from q1 always point at a0 and we omit them; pointers from answers are also omitted).

σ1 : q0 a0 q1 a1 q1 a1 q2 a2 q2 a2 and q0 a0 q1 a1 q1 a1 q2 a2 q2 a2

σ2 : q0 a0 q1 a1 q1 a1 q2 a2 q2 a2 and q0 a0 q1 a1 q1 a1 q2 a2 q2 a2

70

Note that the two strategies are clearly di�erent, yet their single-pointer representa-

tions (as used by us to encode pointers from P-moves) adapted to O-moves would be

identical. This indicates that our encoding scheme for pointers cannot be extended

to pointers from O-moves.

The previous example implies that in order to go beyond the O-strict fragment,

we need to be able to represent multiple pointers in a single play. Since pointers

may be nested or cross each other, this seemingly requires the use of an in�nite

alphabet. In particular, it seems that our letters should consist of the pairing of a

letter from a �nite alphabet (the move) and an index potentially from an in�nite

domain (encoding a justi�cation pointer). Such words are referred to as data strings.

Various classes of automata recognising data languages have been proposed, including

register automata [56], pebble automata [82] and data automata [22]. For a survey

of di�erent formalisms and results see [97].

The simplest non-O-strict type (on the right-hand side of the turnstile) is unit→
unit→ unit. The non-O-strict semantics of J ` λx : unit.M : unit→ unit→ unitK con-
sists of interleavings of plays of Jx : unit `M : unit→ unitK. The plays which are

interleaved must satisfy a �local� condition, namely being in Jx `MK. They cannot,

however, be interleaved in any arbitrary manner. They must be interleaved in a way

which satis�es some �global� condition; they must satisfy the rules of the game and

in particular must satisfy the switching condition implied by visibility. The require-

ment that a set of sequences satisfying a local condition are interleaved in a manner

respecting a global condition is very similar to the properties of languages accepted

by data automata. Data automata work by �rst transducing the input string and

checking it has the desired shape, then splitting the result into classes and verifying

that each class is accepted by a �nite automaton. However, an equivalent but sim-

pler form of automata called Class Memory Automata was introduced in [21]. In the

following section we review their de�nition and properties.

4.2.2 Class Memory Automata

We have said that to encode plays from outside the O-strict fragment we expect that

the letters we use to represent moves will consist of a pair of the move itself and an

index from an in�nite set encoding pointer information. Formally, let Σ be a �nite

alphabet and ∆ an in�nite set. A data word is a �nite sequence over Σ×∆. We refer

to values in Σ as letters and those in ∆ as data values. A data language is a set of

such words. The string projection of a data word is the word in Σ∗ formed by taking

71

the �rst projection of each letter. For each data value d, the set of all positions in a

data word w with value d is called a class of w. The actual data values used in our

languages will be irrelevant. We will not be able to perform any operations on data

values other than comparing them for equality. As such, they are only used to de�ne

classes.

Example 4.2. Let Σ = { q0, q1, q2, a0, a1, a2 } and ∆ = N.
s = (q0, 0)·(a0, 0)·(q1, 1)·(a1, 1)·(q1, 2)·(a1, 2)·(q2, 2)·(a2, 2)·(q2, 2)·(a2, 2) is a data

word over this alphabet. The string projection of s is q0 ·a0 ·q1 ·a1 ·q1 ·a1 ·q2 ·a2 ·q2 ·a2.

The classes of s are

• q0 · a0,

• q1 · a1,

• and q1 · a1 · q2 · a2 · q2 · a2.

When representing plays as data words we will insist that q2's occur in the same class

as their justifying a1. So s could unambiguously represent the play

q0 a0 q1 a1 q1 a1 q2 a2 q2 a2 .

Representing strategies as data languages, we could represent σ1 from Example 4.1

as the set of all even-pre�xes of the data words

(q0, i) · (a0, i) · (q1, j) · (a1, j) · (q1, k) · (a1, k) · (q2, k) · (a2, k) · (q2, k) · (a2, k)

(q0, i) · (a0, i) · (q1, j) · (a1, j) · (q1, k) · (a1, k) · (q2, j) · (a2, j) · (q2, j) · (a2, j)

for any distinct i, j, k. Similarly, we can de�ne σ2 as the data language containing all

even-pre�xes of

(q0, i) · (a0, i) · (q1, j) · (a1, j) · (q1, k) · (a1, k) · (q2, k) · (a2, k) · (q2, j) · (a2, j)

(q0, i) · (a0, i) · (q1, j) · (a1, j) · (q1, k) · (a1, k) · (q2, j) · (a2, j) · (q2, k) · (a2, k)

for any distinct i, j, k. These two data languages will be distinct, just as the strategies

they represent are inequivalent.

To recognise data languages, we will use Class Memory Automata [21].

De�nition 4.2. A Class Memory Automaton (CMA) is a tuple 〈Q,Σ, δ, qI , FL, FG 〉
where:

72

• Q is a �nite set of states.

• Σ is a �nite alphabet.

• qI ∈ Q is the initial state.

• FG ⊆ FL ⊆ Q are the sets of globally and locally accepting states respectively.

• δ : (Q× Σ× (Q ∪ {⊥}))→ P(Q).

The transition function looks at the current state, the Σ-component of the input

and the state the automaton was in last time a member of this class was read before

deciding which state to move into. More formally, a class memory function is a func-

tion f : ∆→ Q ∪ {⊥} such that f(d) 6= ⊥ for only �nitely many d. A con�guration

of a CMA is a pair (q, f) where q ∈ Q and f is a class memory function. The initial

con�guration is (qI , fI) where fI(d) = ⊥ for all d. When reading a pair (a, d) ∈ Σ×∆,

the automaton can go from con�guration (q, f) to (q′, f ′) if

• q′ ∈ δ(q, a, f(d)),

• f ′(d) = q′,

• and for all d′ 6= d, f ′(d′) = f(d′).

The automaton accepts if, for the �nal con�guration (q, f), q ∈ FG and f(d) ∈
FL ∪ {⊥} for all d ∈ ∆. A CMA is deterministic if each δ(p, a, q) is a singleton.

When representing CMA we write q1
(a,q3)→ q2 if q2 ∈ δ(q1, a, q3), i.e. when the

automaton is in state q1, the input is (a, d) and the last state the CMA entered when

reading input in class d was q3 (or if q3 = ⊥ then this is the �rst occurrence of data

value d) then the automaton can transition into state q2.

Example 4.3. The data languages suggested for σ1 and σ2 in Example 4.2 are recog-

nised by the two CMA in Figure 4.3. Those states shown as accepting are both

locally and globally accepting. Note that these are both deterministic CMA and that

although they appear similar they do accept di�erent languages. The transitions out

of states 9 and 13 force the data value to either be the same as the previous value or

di�er as appropriate.

73

1 2 3 4 5 6 7

8 9 10 11

12 13 14 15

q0,⊥ a0, 2 q1,⊥ a1, 4 q1,⊥ a1, 6
q2, 7

a2, 8 q2, 9 a2, 10

q2, 5
a2, 12 q2, 13 a2, 14

1 2 3 4 5 6 7

8 9 10 11

12 13 14 15

q0,⊥ a0, 2 q1,⊥ a1, 4 q1,⊥ a1, 6
q2, 7

a2, 8 q2, 5 a2, 10

q2, 5
a2, 12 q2, 7 a2, 14

Figure 4.3: CMA for the languages in Example 4.2

4.2.2.1 Complementation

CMA are closed under intersection and have a decidable emptiness problem [21,

22]. Unfortunately, they are not closed under complementation. However, we show

that for any deterministic CMA, there is a nondeterministic CMA which accepts its

complement. This is su�cient for equivalence checking deterministic CMA.

Proposition 4.2. Given a deterministic CMA C = 〈Q,Σ, δ, qI , FL, FG 〉 we can con-

struct a nondeterministic CMA C which accepts the complement of L(C).

Proof. Given C and a data word w, C has exactly one run on w, ending in con�guration
(q, f). C accepts w if q ∈ FG and f(d) ∈ FL ∪ {⊥} for all d ∈ ∆. Taking the

contrapositive, C will reject if and only if either q /∈ FG or there is some d appearing

in w such that f(d) /∈ FL. We construct C by guessing the reason the word is rejected.
If the nondeterminism is unable to �nd a reason why C would reject the given word

then it must be because C accepts and so we should reject.

• Our set of states is { (1) }] (Q×{ 1, 2, 3, 4 }). Our four copies of Q will denote:

1. We are guessing that the word is globally rejected.

2. We are guessing that the word is locally rejected by some class, but have

not guessed which class yet.

3. We are guessing that the word is locally rejected by the current class.

4. We are guessing that the word is locally rejected by a class other than this

one.

74

• The initial state is (1). It is globally and locally accepting if and only if C rejects
the empty word (i.e. if the initial state of C is globally rejecting).

• Every state (s, 1) is locally accepting, but only those for which s /∈ FG are

globally accepting.

• Every state (s, 2) is locally accepting but not globally accepting.

• Every state (s, 3) is locally and globally accepting if and only if s /∈ FL.

• Every state (s, 4) is locally and globally accepting.

• Our transitions are as follows.

� If qI
(m,⊥)→ s2 then (1)

(m,⊥)→ (s2, 1), (1)
(m,⊥)→ (s2, 2) and (1)

(m,⊥)→ (s2, 3).

� If s1
(m,s3)→ s2 where s3 6= ⊥ then we have the following transitions:

∗ (s1, 1)
(m,(s3,1))−→ (s2, 1)

∗ (s1, 2)
(m,(s3,2))−→ (s2, 2)

∗ (s1, 2)
(m,(s3,2))−→ (s2, 3)

∗ (s1, 3)
(m,(s3,3))−→ (s2, 3)

∗ (s1, 3)
(m,(s3,2))−→ (s2, 4)

∗ (s1, 3)
(m,(s3,4))−→ (s2, 4)

∗ (s1, 4)
(m,(s3,2))−→ (s2, 4)

∗ (s1, 4)
(m,(s3,3))−→ (s2, 3)

∗ (s1, 4)
(m,(s3,4))−→ (s2, 4).

� If s1
m,⊥−→ s2 then we have the following transitions:

∗ (s1, 1)
(m,⊥)−→ (s2, 1)

∗ (s1, 2)
(m,⊥)−→ (s2, 2)

∗ (s1, 2)
(m,⊥)−→ (s2, 3)

∗ (s1, 3)
(m,⊥)−→ (s2, 4)

∗ (s1, 4)
(m,⊥)−→ (s2, 4).

Accepting runs of C can have two distinct forms, depending on whether we are

guessing that the word is globally or locally rejected. If we guess the word is globally

rejected then every state of the run will be in component 1. Alternatively, if we

guess the word is locally rejected then the run will start with some number (possibly

75

zero) of transitions through states labelled 2. At this stage the automaton has not

guessed which class will be locally rejecting. Eventually, the automaton transitions

into a state labelled with 3. This corresponds to guessing that class will be locally

rejecting. From this point on, every transition on a letter from this class will go to a

state labelled with 3 and every transition on a letter from a di�erent class will go to

a state in component 4.

If word w is rejected by C because the unique run does not end in a globally

accepting state, then the run of C which initially transitions into the component

labelled with 1 will accept w. If w is rejected by C because some class ends in a

locally rejecting state, then the run which transitions into a state labelled with 3 on

the �rst input letter of this class (and so does not move into a component labelled 1

initially) will accept. Note that the �nal state visited in each class on this run will

always be a state labelled 2, 3 or 4 and that the �nal state must be labelled either 3

or 4. As such, the �nal state in every class will be locally accepting (the unique class

in which the �nal state is labelled 3 is not locally accepting in C) and the �nal state

will be globally accepting.

Also note that if w is accepted by C there is no accepting run of C on w. The

unique run which transitions into a 1-labelled state must end in a globally rejecting

state. Similarly, the unique run which always stays in 2-labelled states must end in

a globally rejecting state. On any run which transitions into a state labelled with 3,

the �nal state visited in that class will be locally rejecting. Hence, C accepts exactly
L(C).

Since CMA are closed under intersection and have a decidable emptiness problem,

this shows that equivalence of deterministic CMA is decidable (as X ⊆ Y ⇔ X∩Y =

∅).

4.2.3 RMLCMA

We now consider a fragment of RML for which we can represent the game semantics

using CMA. We call this fragment RMLCMA.

De�nition 4.3. The fragment RMLCMA consists of terms which can be typed

x1 : ctype1, . . . , xn : ctypen `M : ttype

where ctype and ttype are as follows

ctype ::= α | α→ ctype ttype ::= α | β → α
α ::= β | β → β | int ref β ::= unit | int

76

This de�nition means that we allow type sequents of the form

(β → β)→ . . .→ (β → β)→ β ` β → β → β.

For terms which can be given type α we will represent their game semantics using

deterministic �nite automata. We know how to do this from [73, 47]. Plays for terms

which can only be given type β → α will be represented as data words accepted by

deterministic CMA. Note that the prearena will have the form in Figure 4.4. The

q0

a0

q1

a1

q2

a2

JΓK

Figure 4.4: Shape of prearena for JΓ ` β → αK

moves a0 and a1 must be the only move at that level (as depicted) but all the rest

could potentially represent multiple moves if the corresponding part of the type is int

(or int ref).

The string projection of the data word will be the underlying move sequence of

the play it represents, plus the encoding of at most one P-pointer in the manner we

used for RMLO-Str.

The data values will be such that:

• Every letter up to and including the unique occurrence of a0 has the same data

value.

• Every move hereditarily justi�ed by a q1 has the same data value as that q1.

• Every JΓK-move played after the unique occurrence of a0 has the same data

value as the unique q1 or q2 which is open at that point.

• All occurrences of a0 and q1 have distinct data values.

77

This labelling scheme is su�cient to uniquely reconstruct the location of all jus-

ti�cation pointers and is such that (the complete plays of) two strategies are equal if

and only if their representations are equal. The data languages in Example 4.2 follow

this encoding.

4.2.4 Construction

We will recognise strategies represented as sets of such plays using deterministic CMA.

Again, during our construction we do not actually restrict our automata to having

at most one P-pointer, just to be such that a source-move can only be played if the

corresponding target-move was played earlier. It is then easy to restrict the �nal

automaton to only allow plays with at most one pointer. Also as before, we will

omit the initial move from plays and instead construct a family of automata for each

strategy. The construction proceeds inductively over the normal forms. We only need

to consider terms which have to be given type β → α. Conditionals are again trivial

to handle and we consider each of the remaining normal forms we have to deal with

in turn.

4.2.4.1 λ-abstraction

The strategy for λx.M responds to the initial move with a0. Then, every time O

plays q1 it opens a new JMK-thread. Each thread is a play from JΓ, x : β `M : αK,
only O can switch between threads and this switch can only happen after P plays a1

or a2. This is exactly when we have reached a complete play.

Suppose we have a family of DFAM(i,q1) which accepts plays of JΓ, x `MK. We

will construct a family of CMA Ci which accepts plays from JΓ ` λx.MK.

• The set of states is the disjoint union of the set of states of each M(i,q1), plus

fresh states (1) and (2).

• The initial state is (1).

• The sets of globally and locally �nal states are equal and consist of the �nal

states of eachM(i,q1) plus (2).

• Our transition relation is as follows:

� (1)
(a0,⊥)→ (2).

� For each q1, (2)
(q1,⊥)→ Iq1 where Iq1 is the initial state ofM(i,q1).

78

� If s1
m→ s2 inM(i,q1) then s1

(m,s1)→ s2.

� If f is �nal inM(i,q1), then for any q′1 we have f
(q′1,⊥)
→ Iq′1 where Iq′1 is the

initial state ofM(i,q′1) (we use the prime to emphasise that although q1 and

q′1 come from the same part of the prearena, they may be di�erent moves).

� If s1
q2→ s2 inM(i,q1) and f is �nal in someM(i,q′1) then f

(q2,s1)→ s2.

Note that this is deterministic. The overlap between the third and �fth clauses

is not a problem as in the cases that fall in the intersection they de�ne the same

transition.

After the initial a0, the language accepted will be an interleaving of words from

M(i,q1) (started by qis). Each thread can only be started from an accepting state,

which can only have been reached by an ai. Furthermore, we preserve the invariant

that at most one class memory is a non-�nal state. Note that whenM(i,q1) is in an

accepting state, the only letters it can transition on are q2's. Further, M(i,q1) can

never transition on a q2 when not in a �nal state. This ensures that switching can

only happen after an ai.

We do not need to add any additional encoding of pointers as there are no new

P-questions.

Example 4.4. As an example, let us consider the term

` λx : unit.let c = ref 0 inλy : unit.if !c = 0 then c := 1 elseΩ.

The DFA representing Jx ` let c = ref 0 inλy : unit.if !c = 0 then c := 1 elseΩK is
shown below.

3 4 5 6
a1 q2 a2

Applying our construction to λ-abstract x gives the automaton below. The states

shown as accepting are both locally and globally accepting. Note that after the

initial a0, the language accepted will consist of interleavings of classes each of which

is either q1 ·a1 or q1 ·a1 ·q2 ·a2. That is, it will consist of interleavings of complete plays

from the DFA for Jx ` let c = ref 0 inλy : unit.if !c = 0 then c := 1 elseΩK (pre�xed

with the initial x-move q1). Further, the switching between classes can only occur

after P has played (i.e. only O can switch threads).

79

1 2 3 4 5 6
a0,⊥ q1,⊥ a1, 3 q2, 4 a2, 5

q1,⊥

q1,⊥

q2, 4

4.2.4.2 letx = ref 0 inM

This construction is standard. We must restrict the behaviour of x to that of

a good variable and then hide all x-moves. We are given a family of CMA Ci,•
for JΓ, x : int ref `M : β → αK. We construct a family of CMA which recognise

JΓ ` letx = ref 0 inMK. We perform the construction in two stages.

Restriction to good-variable behaviour First we restrict the behaviour of Ci,•
to good-variable behaviour by storing the value of x in the states. We refer to the

resulting family of CMA as Di.

• The set of states is the set of pairs of a state from Ci,• and an integer value from

int.

• The initial state is (I, 0) where I is initial in Ci,•. The locally (resp. globally)

�nal states are those of the form (f, j) where f is locally (resp. globally) �nal

in Ci,•.

• If s1
(m,s3)−→ s2 in Ci,• where m is not an x-write or the response to an x-read and

s3 6= ⊥ then (s1, j)
(m,(s3,k))−→ (s2, j) for all j, k.

• If s1
(m,⊥)−→ s2 in Ci,• where m is not an x-write or the response to an x-read then

(s1, j)
(m,⊥)−→ (s2, j) for all j.

• If s1
(write(l)x,s1)−→ s2 in Ci,• (note that we know all x-moves must occur in the same

class as the preceding move) then (s1, j)
(write(l)x,(s1,j))−→ (s2, l) for all j.

Also, in case P's �rst move is a an x-write, if s1
(write(l)x,⊥)−→ s2 (in which case s1

must be initial) in Ci,• then (s1, 0)
(write(l)x,⊥)−→ (s2, l).

• If s1
(jx,s1)−→ s2 in Ci,• (where jx is the response to an x-read) then (s1, j)

(jx,(s1,j))−→
(s2, j).

Di will be deterministic and accept all complete plays in Ci,• which obey good-

variable behaviour.

80

Hiding We now consider how to hide the x-moves. If we are in a con�guration

(s1, f) of Di where we can perform a transition s1
(mx,s3)→ s2 where mx is an x-move

then, due to the determinacy of our strategies and the restriction to good-variable

behaviour, this must be the only possible transition we can perform from this con�gu-

ration. Further, we know this transition must occur in the same class as the preceding

move, so (unless this is P's �rst move) s3 = s1. Hence, for every state s0 of Di there
is a unique maximal (and not necessarily �nite) sequence of transitions

s0

(m0,s′0)
→ s1

(m1,s1)→ s2
(m2,s2)→ . . .

where each mi is an x-move and either s′0 = s0 or s0 is initial in which case s′0 = ⊥.
We construct a family of CMA Ei for JΓ ` letx = ref 0 inMK by considering where

this sequence ends up for each state. We keep everything the same as Di except the
transition relation.

• If the maximal sequence of x-moves out of state s0 is empty then all transitions

out of state s0 are unchanged.

• If the maximal sequence out of s0 is �nite and non-empty and ends in state sn

and sn contains a transition sn
(m,sn)→ sn+1 (note that m cannot be an x-move

and this transition must be in the same class as all the x-transitions) then we

add a transition s0

(m,s′0)
→ sn+1.

• All transitions on x-moves are removed.

The resulting CMA is deterministic and accepts the language of Di with all x-

moves hidden. That is, it recognises JΓ ` letx = ref 0 inMK.

4.2.4.3 letxβ = N inM

The strategy for this term essentially consists of the concatenation of the strategies

for JNK and JMK. We are given a family of DFA Ai for JΓ ` N : βK and a family of

CMA Ci,j for JΓ, x : β `M : β → αK. We assume that each Ai and Ci,j never return
to their initial states (this should be true already for the Ci,j and is easy to ensure for

Ai).
We construct a family of CMA Di for JΓ ` letxβ = N inMK.
If L(Ai) = { j } then Di = Ci,j. Otherwise:

• The set of states is the disjoint union of the set of states of Ai and each Ci,j.

81

• The initial state is that of Ai.

• The locally and globally accepting states are those from each Ci,j.

• If I
m→ s in Ai where I is the initial state then I

(m,⊥)→ s.

• If s1
m→ s2 in Ai where s1 is not initial and s2 is not �nal then s1

(m,s1)→ s2.

• If s1
j→ s2 in Ai where s2 is �nal (so s1 is not initial) and Ij

(m,⊥)→ s3 in Ci,j
where Ij is the initial state of Ci,j then s1

(m,s1)→ s3.

• All other Ci,j transitions are preserved unchanged. That is, if s1
(m,s3)→ s2 in Ci,j

where s1 is not initial (and s3 could be ⊥) we have the same transition in Di.

Determinacy is inherited from Ai and Ci,j.

4.2.4.4 letx = zyβ inM

We assume that x is not of type β as otherwise this can be handled in the manner

described in Section 4.2.4.3.

Play starts o� with P copying the component of the initial move corresponding to

y into the z component with the move jz. O must respond with the unique answer,

•z. From then on play is exactly as in JΓ, z, y, x `MK except that all x-moves are

relabelled as z-moves. Any such move which was justi�ed by the initial move is now

justi�ed by the occurrence of •z O was forced to play. These pointers will have to be

made explicit as part of our construction.

We are given CMA C(i,•,j,•x) for JΓ, z : β → ctype, y : β, x : ctype `M : β → αK.
We assume that each C(i,•,j,•x) can never re-enter its initial state.

We construct a family of CMA D(i,•,j) for JΓ, z, y ` letx = zyβ inMK.

• As our set of states we take two copies of the set of states of C(i,•,j,•x). The second

copy is required to encode P-pointers and so we tag state s in the second copy

as
•
s. We also need two fresh states (1) and (2).

• The initial state is (1).

• The locally and globally accepting states are those of C(i,•,j,•x) (both tagged and

untagged).

• The transitions are:

82

� (1)
(jz ,⊥)→ (2) where jz is the initial move for y copied into the z-component.

� (2)
(•z ,(2))→ s0 and (2)

(
••z ,(2))→ •

s0 where s0 is the initial state of C(i,•,j,•x).

� If s0
(m,⊥)→ s1 in C(i,•,j,•x) where s0 is the initial state of C(i,•,j,•x) and m is

not an x-move then s0
(m,s0)→ s1 and

•
s0

(m,
•
s0)→ •
s1.

� If s0
(mx,⊥)→ s1 in C(i,•,j,•x) where s0 is the initial state of C(i,•,j,•x) and mx

is an x-move then s0
(mz ,s0)→ s1,

•
s0

(mz ,
•
s0)→ •
s1 and

•
s0

(
◦
mz ,

•
s0)→ •
s1 where mz is the

relabelling of mx into the z-component.

� If s1
(m,s3)→ s2 in C(i,•,j,•x) where s1 is not the initial state of C(i,•,j,•x) and m

is not an x-move then s1
(m,s3)→ s2 and

•
s1

(m,
•
s3)→ •
s2. If s3 = ⊥ then instead of

•
s3 the second transition should use ⊥.

� If s1
(mx,s1)→ s2 in C(i,•,j,•x) where mx is an x-move then s1

(mz ,s1)→ s2 and

•
s1

(mz ,
•
s1)→ •
s2 where mz is the relabelling of mx into the z-component. Ad-

ditionally, if mx was justi�ed by the initial move then we also have a

transition
•
s1

(
◦
mz ,

•
s1)→ •
s2.

4.2.4.5 letx = z(λy.M) inN

Again we assume that x is not of type β as otherwise this can be handled as in Sec-

tion 4.2.4.3. Our subterms must be typed Γ, z : (β → β)→ ctype, y : β ` M : β and

Γ, z : (β → β)→ ctype, x : ctype ` N : β → α. The prearena for this type sequent is

shown in Figure 4.5. Play starts with P playing •. O can then either play jz, starting

(i, •)

JΓK •

jz

kz

•z

JctypeK

a0

q1

a1

q2

a2

Figure 4.5: Prearena for JΓ, z : (β → β)→ ctype ` N : β → αK

an JMK-thread, or play •z the initial x-move. If O chooses the former, then this

83

JMK-thread must be played to completion before anything else can happen. Once it

is �nished (with P playing kz as the �nal move) we return to the situation where O

can either play jz or •z.
Once O does eventually play the initial x-move •z we can start playing as JNK. We

play exactly as JNK except that all x-moves are renamed into z-moves. Additionally,

whenever P plays in x (which becomes a z-move), O can again play jz and start

an JMK-thread. Again this thread must be played to completion before we can do

anything else.

We are given a family of DFA M(i,•,j) for JΓ, z, y `MK and a family of CMA

N(i,•,•x) for JΓ, z, x ` NK. We again assume that none of our automata can re-

turn to their initial states. We construct a family of CMA C(i,•) which recognise

JΓ, z ` letx = z(λy.M) inNK.

• Our set of states consists of

� Two fresh states (1) and (2).

� Two copies of the set of states of N(i,•,•x). We mark states of the second

copy
•
s.

� De�ne S, the states from which an JMK-thread can be opened, as

S = { (2) }]{ r | (r = s ∨ r =
•
s) ∧ t mx→ s in N(i,•,•x)with mx a P-x-move }.

We will then take states (s, t) where s is a state from someM(i,•,j) and t

is a state in S.

• The initial state is (1).

• The local and global �nal states are those ofN(i,•,•x) (both tagged and untagged;

we will never enter a �nal state paired with anM(i,•,j) state).

• The transitions will be:

� (1)
(•,⊥)→ (2).

� (2)
(•z ,(2))→ s0 and (2)

(
••z ,(2))→ •

s0 where s0 is the initial state of N(i,•,•x).

� If s0
(m,⊥)→ s1 in N(i,•,•x) where s0 is the initial state of N(i,•,•x) and m is not

an x-move then s0
(m,s0)→ s1 and

•
s0

(m,
•
s0)→ •
s1.

84

� If s0
(mx,⊥)→ s1 in N(i,•,•x) where s0 is the initial state of N(i,•,•x) and mx

is an x-move then s0
(mz ,s0)→ s1,

•
s0

(mz ,
•
s0)→ •
s1 and

•
s0

(
◦
mz ,

•
s0)→ •
s1 where mz is the

relabelling of mx into the z-component.

� If s1
(m,s3)→ s2 in N(i,•,•x) where s1 is not the initial state of N(i,•,•x) and m

is not an x-move then s1
(m,s3)→ s2 and

•
s1

(m,
•
s3)→ •
s2. If s3 = ⊥ then instead of

•
s3 the second transition should use ⊥.

� If s1
(mx,s1)→ s2 in N(i,•,•x) where mx is an x-move then s1

(mz ,s1)→ s2 and

•
s1

(mz ,
•
s1)→ •
s2 where mz is the relabelling of mx in the z-component. Addition-

ally, if mx was justi�ed by the initial move then we also have a transition
•
s1

(
◦
mz ,

•
s1)→ •
s2.

� If s ∈ S then for all j we have s
(jz ,s)→ (Ij, s) where Ij is the initial state of

M(i,•,j).

� If s1
m→ s2 in M(i,•,j) where s2 is not �nal, we have (s1, s)

(m,(s1,s))→ (s2, s)

where s ∈ S.

� If s1
k→ s2 in M(i,•,j) where s2 is �nal, we have (s1, s)

(kz ,(s1,s))→ s for all

s ∈ S where kz is the relabelling of k into the z-component.

4.2.4.6 letx = z(mkvar(λu.M, λv.N)) inP

This construction is very similar to the last case. We again assume x is not of type β.

We are given families of DFA M(i,•,•) for JΓ, z, u `MK and N(i,•,j) for JΓ, z, v ` NK
and a family of CMA P(i,•,•x) for JΓ, z, x ` P K. We assume that none of our au-

tomata can return to their initial states. We construct a family of CMA C(i,•) for

JΓ, z ` letx = z(mkvar(λu.M, λv.N)) inP K.

• Our set of states consists of

� Two fresh states (1) and (2).

� Two copies of the set of states of P(i,•,•x). We mark states of the second

copy
•
s.

� De�ne S, the set of states from which JMK-thread and JNK-threads can be

opened, as

S = { (2) }]{ r | (r = s ∨ r =
•
s) ∧ t mx→ s in P(i,•,•x)with mx a P-x-move }.

We will then take states (s, t) where s is a state from some M(i,•,•) or

N(i,•,j) and t is a state in S.

85

• The initial state is (1).

• The local and global �nal states are those of P(i,•,•x).

• The transitions will be:

� (1)
(•,⊥)→ (2).

� (2)
(•z ,(2))→ s0 and (2)

(
••z ,(2))→ •

s0 where s0 is the initial state of P(i,•,•x).

� If s0
(m,⊥)→ s1 in P(i,•,•x) where s0 is the initial state of P(i,•,•x) and m is not

an x-move then s0
(m,s0)→ s1 and

•
s0

(m,
•
s0)→ •
s1.

� If s0
(mx,⊥)→ s1 in P(i,•,•x) where s0 is the initial state of P(i,•,•x) and mx

is an x-move then s0
(mz ,s0)→ s1,

•
s0

(mz ,
•
s0)→ •
s1 and

•
s0

(
◦
mz ,

•
s0)→ •
s1 where mz is the

relabelling of mx into the z-component.

� If s1
(m,s3)→ s2 in P(i,•,•x) where s1 is not the initial state of P(i,•,•x) and m

is not an x-move then s1
(m,s3)→ s2 and

•
s1

(m,
•
s3)→ •
s2. If s3 = ⊥ then instead of

•
s3 the second transition should use ⊥.

� If s1
(mx,s1)→ s2 in P(i,•,•x) where mx is an x-move then s1

(mz ,s1)→ s2 and

•
s1

(mz ,
•
s1)→ •
s2 where mz is the relabelling of mx into the z-component. Ad-

ditionally, if mx was justi�ed by the initial move then we also have a

transition
•
s1

(
◦
mz ,

•
s1)→ •
s2.

� If s ∈ S then s
(readz ,s)→ (t0, s) where t0 is the initial state of M(i,•,•).

Similarly, for all j ∈ int we have s
(write(j)z ,s)→ (rj0, s) where rj0 is the initial

state of N(i,•,j).

� If s1
m→ s2 inM(i,•,•) or N(i,•,j) where s2 is not �nal, we have (s1, s)

(m,(s1,s))→
(s2, s) where s ∈ S.

� If s1
j→ s2 in M(i,•,•) where s2 is �nal, we have (s1, s)

(jz ,(s1,s))→ s for all

s ∈ S where jz is the relabelling of j into the z-component. Similarly, if

s1
•→ s2 in N(i,•,j) where s2 is �nal, we have (s1, s)

(okz ,(s1,s))→ s for all s ∈ S.

This completes our constructions. For any RMLCMA-term, the CMA constructed

to recognise its game semantics will be deterministic. Hence, we get the following

result.

Theorem 4.2. Observational equivalence of RMLCMA is decidable.

86

4.3 Undecidability

We have shown that observational equivalence of the two fragments of RML RMLO-Str

and RMLCMA are decidable. These fragments are not directly comparable; each con-

tains type sequents the other does not. So, Theorem 4.2 does not strictly extend

the result of Theorem 3.2. It does, though, add to our understanding of the land-

scape of decidable fragments of RML. However, to get a full picture we must also

consider when the problem becomes undecidable. In this section we consider which

type sequents are expressive enough for us to prove undecidability. We also return

to RML with recursion. Having previously shown that recursive functions of type

β → β can be included in RMLO-Str while preserving decidability, we present a proof

(due to Murawski) that allowing recursive functions of type (β → β)→ β is already

too expressive and that observational equivalence is undecidable in their presence.

4.3.1 On the Right-Hand Side

We �rst consider which types are su�cient on the right-hand side of the turnstile (in

recursion-free RML) to show undecidability. In [72] it is shown that observational

equivalence is undecidable for �fth-order terms. The proof takes the strategy that

was used to show undecidability for fourth-order IA (by encoding a Turing powerful

automaton) and �nds an equivalent call-by-value strategy. This relies on a qqqqq-

branch in the prearena. In fact, the �rst two questions are played only once so it is

relatively straightforward to adapt the proof to show that observational equivalence is

undecidable at third-order types (e.g. ((unit→ unit)→ unit)→ unit) as these contain

qaqqq-branches. A further result in [73] showed that the problem is undecidable at

the type (unit→ unit)→ (unit→ unit)→ unit. Both of these results easily generalise

to show that observational equivalence is undecidable at any third-order type and

any second-order type which takes at least two �rst-order arguments.

We will now modify the second of these proofs to extend these results further and

show undecidability at (unit→ unit)→ unit→ unit. Our proof will easily adapt to any

second-order type (of arity greater than one) which contains a �rst-order argument

which is not the �nal argument.

4.3.1.1 Q-Stores

Following previous game semantics based undecidability results, we will reduce the

halting problem for a class of �nite state machines equipped with a queue to obser-

vational equivalence of RML-terms. The universality of such machines goes back to

87

Post's work on simple rewriting systems [93, 70]. In particular, we will utilise au-

tomata equipped with a Q-store [72]. Q-stores are a generalisation of a queue which

do not always follow queue behaviour. However, we will be able to detect whether

the queue discipline has been followed correctly or not.

De�nition 4.4. A Q-store stores characters from a �nite alphabet Σ. Its content is

de�ned by a natural number n and a function f : { 0, . . . , n } → Σ×{+,−}×{+,−}.
The three �elds of f(i) will be referred to as f(i).SYMBOL, f(i).ACCESSED and

f(i).MARKED respectively. The �rst holds the character stored in this element of

the Q-store and the other two are used for bookkeeping.

The empty Q-store is de�ned by n = 0 and f(0) = (†,+,−) where † is a dummy

symbol set as accessed but unmarked.

There are two operations which can be performed on a Q-store.

• ADD x adds x ∈ Σ to the store. The new Q-store f ′ : { 0, . . . , n + 1 } →
Σ× {+,−} × {+,−} is de�ned by f ⊆ f ′, f ′(n+ 1) = (x,−,−).

• FETCH is the only access method. It can return any previously unaccessed

element in the store f(i).SYMBOL (i.e. f(i).ACCESSED = −) provided an

index j can be found such that 0 ≤ j < i ≤ n, f(j).ACCESSED = + and

f(j).MARKED = −. As well as returning the value stored in the ith element,

the operation sets f(i).ACCESSED and f(j).MARKED to +.

We see that a FETCH operation can return any unaccessed element i provided

there is an earlier element j which has already been accessed but has not yet been

marked. The choice of (i, j) is made nondeterministically and di�erent choices can

a�ect the store in di�erent ways. It is possible that the Q-store might behave as a

queue. This will occur if during a FETCH the choice of i will always be the �rst

unaccessed element and j to be i − 1. If this happens then the Q-store will have a

characteristic pattern: no unaccessed element occurs between two accessed elements.

The only way to have a Q-store with this pattern is if its behaviour has been that

of a queue. In particular, if all elements of a Q-store have been accessed then its

behaviour was that of a queue.

We can now consider �nite state machines equipped with Q-stores.

De�nition 4.5. A Q-machine is a tuple A =
〈
Q,Σ, q0, F, δ

ADD , δFETCH
〉
, where:

• Q = QA +QF + F is the �nite set of states with q0 ∈ Q the initial state.

88

q0

a0

q1

a1

q2

a2

q̂

â

Figure 4.6: Prearena for ` (unit→ unit)→ unit→ unit

• δADD : QA → Q×Σ de�nes transitions out of states in QA. If the machine is in

state q1 and δADD(q1) = (q2, a) then the machine transitions into state q2 and

performs ADD a on the machine's Q-store.

• δFETCH : QF × Σ → Q de�nes the machine's action when in a state from QF .

When in state q1 ∈ QF the Q-machine will attempt to perform a FETCH. If

this is successful and returns symbol a then the machine transitions into state

δFETCH (q1, a).

We say that a Q-machine halts if there exists a run (starting in the initial state)

which ends in a �nal state (a state in F) with a Q-store in which all elements have

been accessed.

Since Q-machines only halt when every element in the Q-store has been accessed

(so when the Q-store has acted as a queue) as far as halting is concerned they are

the same as �nite state automata equipped with a queue. Hence, from Post's work

we can infer that they have an undecidable halting problem.

4.3.1.2 Representing Q-machines

We now consider how to represent the run of an arbitrary Q-machine at the type

sequent ` (unit→ unit)→ unit→ unit. The relevant prearena is shown in Figure 4.6.

For technical convenience we will assume that the initial state of the Q-store results

from a dummy ADD action executed once at the very start of the run.

Our representation of the Q-machine will begin with q0 a0 .

Each ADD operation (including the dummy operation initializing the store) will

then be interpreted by the segment q1 q̂ q1 a1 .

89

Each FETCH will be represented by segments q2 q̂ q2 a2 â a2 where the �rst

q2 is justi�ed by the a1 from the ith ADD, q̂ is justi�ed by the q1 immediately before

that a1 and the second q2 is justi�ed by the a1 in the jth ADD. Here we are using

the visibility condition to force the choice of j to be a strictly earlier ADD-block than

the choice of i.

q0 a0 . . . q1 q̂ q1 a1 . . . q1 q̂ q1 a1 . . . q2 q̂ q2 a2 â a2

jth ADD ith ADD FETCH

Once the Q-machine has reached a �nal state at the end of the computation, we

must check that the Q-store has the correct shape. This is performed in a �nishing

up state where we visit each ADD-block from last to �rst and check each of them has

been accessed.

q0 a0 . . . q1 q̂ q1 a1 . . . q2 a2 â a1

ith ADD Finishing Up

In order to construct a term which follows this strategy we �rst consider some

terms which perform the various responses. Our �nal term will keep track of which

state the simulation is in and imitate one of these terms accordingly.

• λf. . . . will respond to the initial q0 with a0.

• λf.f();λx.Ω responds to q1 with q̂. Once this is (eventually) answered with â

it responds with a1. This a1 can never be used to justify anything or else P will

not respond.

• λf.λx.f() responds to q1 with a1. If this a1 is used to justify a q2 then it responds

with q̂. If this is answered with â then it responds with a2.

• λf.λx.() responds to q1 with a1 and to q2 with a2.

In order to keep track of which stage of the computation we are in, we will use a

number of global variables.

• State � keeping track of which state the simulated Q-machine is in.

90

• First � a �ag letting us know if the �rst dummy ADD-operation has occurred.

• AddState � keeping track of how far through an ADD-operation we are.

• FetchState � keeping track of how far through a FETCH-operation we are.

• FinishingState � keeping track of how far through a �nishing up operation we

are.

Additionally, we will create several local variables for each ADD.

• Symbol, Accessed and Marked � representing the appropriate �elds in the Q-

store.

• Finalised � a �ag keeping track of whether this ADD-operation has been visited

during the �nishing up stage. This is needed to ensure that each ADD is visited

exactly once during this phase.

The term is shown in Figure 4.7. We use the syntax [B1, . . . , Bn] as an abbreviation for

if
∧
Bi then () elseΩ. The local variables are associated with the q1 · a1 part of each

ADD-block. This ensures they can be accessed during a FETCH or the �nishing up

stage when moves are hereditarily justi�ed by them. Note that we cannot enforce that

during the �nishing up stage, the q2 is justi�ed by the last un�nalised a1. However,

we do ensure that each a1 justi�es at most one q2 during this phase. Since we can

rely on the second part of the �nishing up state (â · a1) to hide (by visibility) the a1

from the last (by bracketing) un�nalised ADD-block, we know that the only way to

reach a complete play is if O does indeed �nalise the ADD-blocks in order from last

to �rst.

To establish undecidability we note that the represented Q-machine will halt if

and only if the term is not observationally equivalent to λf.Ω. Hence, observational

equivalence is undecidable if the type contains a �rst-order (or higher) argument

which is not the �nal argument (i.e. any type of the form θn → . . . → θ4 → (θ3 →
θ2)→ θ1 → θ0 for any RML types θi and n ≥ 3).

4.3.2 On the Left-Hand Side

We now consider which types are su�cient to show undecidability on the left-hand side

of the turnstile. Note that `M ∼= N : θ if and only if f : θ → unit ` fM ∼= fN : unit.

Thus, for any type sequent ` θ at which observational equivalence is undecidable, we

know that the type sequent θ → unit ` unit is also undecidable. So on the left-hand

91

1 l et

2 State = ref q0
3 F i r s t = ref 1
4 AddState = ref 0
5 FetchState = ref 0
6 Fin i sh ingS ta t e = ref 0
7 in

8 λ f .
9 [! State ∈ QA] ;
10 i f ! AddState = 0 then

11 AddState := 1 ;
12 f () ;
13 [! State ∈ F , ! F in i sh ingS ta t e = 1] ;
14 Fin i sh ingS ta t e := 0 ;
15 λ x . Ω
16 else i f ! AddState = 1 then

17 let

18 Symbol = ref ‡
19 Accessed = ref (i f ! F i r s t then + else −)
20 Marked = ref −
21 F ina l i s e d = ref −
22 in

23 AddState := 0 ;
24 i f ! F i r s t then

25 F i r s t := 0 ; Symbol := † ;
26 else

27 (Symbol , State) := δADD (! State) ;
28 λ x .
29 i f ! S tate ∈ QF then

30 i f ! FetchState = 0 then

31 [! Accessed = −] ;
32 Accessed := +; FetchState := 1 ;
33 f () ;
34 [! FetchState = 2] ;
35 FetchState := 0 ; State := δFETCH (! State , ! Symbol) ;
36 else i f ! FetchState = 1 then

37 [! Accessed = +, ! Marked = −] ;
38 FetchState := 2 ; Marked := +;
39 else Ω
40 else i f ! S tate ∈ F then

41 [! F in i sh ingS ta t e = 0 , ! Accessed = +, ! F i na l i s e d = −] ;
42 Fin i sh ingS ta t e := 1 ; F i n a l i s e d := +;
43 else Ω
44 else Ω

Figure 4.7: The term encoding a Q-machine

92

side of the turnstile we know the problem is undecidable if we have any fourth-order

types or any (third-order) type which has a second-order argument whose �rst-order

argument is not the last.

4.3.3 Recursion

In IA, observational equivalence becomes undecidable if we add recursive �rst-order

functions. The proof appears in [86] and is based on a result from [55]. Murawski

has shown how to adapt this proof to RML with recursive functions of type (unit→
unit)→ unit. We brie�y review his proof.

We again rely on �nite state systems equipped with a queue. However, rather

than rely on Q-machines, this time we utilise a programming system called Queue.

De�nition 4.6. A Queue program has a single memory cell z that can store a symbol

from Σ and a queue (which can contain symbols from Σ). A program consists of a

�nite sequence of instructions of the form 1 : I1, 2 : I2, . . . ,m : Im, where each Ii is

one of the following:

• enqueue a: add the symbol a ∈ Σ to the end of the queue and go to the next

instruction.

• dequeue: if the queue is empty then halt, otherwise remove the element at the

front of the queue and store it in z then go to the next instruction.

• if z = a goto L where a ∈ Σ and L ≥ 0 is a label. If the value stored in z is

a then go to the Lth instruction, otherwise go to the next instruction.

• halt.

The halting problem for Queue programs is undecidable [55].

We will simulate Queue programs using a recursive function of type (unit →
unit) → unit. We will model the queue using the call-stack. Every enqueue will

cause a recursive call which will allocate a variable cur containing the value to be

enqueued. When an item is removed from the queue we will set cur to 0 which we

assume is a special value not in Σ. This means that we know that the head of the

queue corresponds to the oldest recursive call whose cur does not contain 0.

In addition to the local variable cur we will also need global variables halt (a

�ag letting us know we should stop the computation and collapse the call-stack), pc

(which instruction we are currently on), z (the Queue program's memory cell) and

93

Ii Ji

enqueue n

pc := i+ 1;
G :=n;
F (λx.if !H = 0 thenL elseR)

where
L ≡ G := !cur
R ≡ if (H := 0; arg(); !G = 0) then z := cur ; cur := 0

elseH := 1; arg()

dequeue

if !cur = 0 then halt := 1 else
if H := 0; arg(); !G = 0 then z := !cur ; cur := 0 else

H := 1; arg();
pc := i+ 1

halt halt := 1
if z = n goto L if !z = n then pc :=L else pc := i+ 1

Table 4.1: Simulations for each Queue program instruction

two variables G and H. When we make our recursive call, the new value to be added

to the queue will be (temporarily) stored in G. Further, the argument to the call

(a function of type unit → unit) will be such that if it is run when H = 0 then the

value of cur from the previous call will be written to G. If, on the other hand, the

argument is run when H = 1 it will cause the value at the front of the queue to be

written to G and the appropriate cur to be set to 0 (i.e. that element is removed from

the queue).

Our term encoding a queue program is then

let halt , pc, z, G,H = ref 0, ref 1, ref 0, ref 0, ref 0 in
(µF (unit→unit)→unit.λargunit→unit.body)(λcunit.Ω)

where body has the form

let cur = ref (!G) inwhile !halt = 0do case(!pc)[1 7→ J1, . . . ,m 7→ Jm].

Each Ji depends on Ii according to Table 4.1. This term is equivalent to ` () if

and only if the simulated Queue program halts. Hence, observational equivalence of

RMLO-Str with recursive functions of type (unit→ unit)→ unit is undecidable.

4.4 Summary

In the previous chapter we considered the O-strict fragment of RML which consisted

of terms of short types (order at most two, arity at most one) which could contain

94

free identi�ers with short arguments. We showed that observational equivalence was

decidable and ExpTime-complete for this fragment. In this chapter we considered

extensions to this fragment. First we showed that adding recursive functions of order

one and arity one still preserves decidability but that the power of DPDA is needed;

VPA are no longer expressive enough. In Section 4.3.3 we saw that allowing recursive

second-order functions is already su�cient for the problem to become undecidable.

We also considered non-O-strict type sequents. Encoding the location of O-

pointers is a lot harder than encoding P-pointers as they are controlled by the environ-

ment rather than the term. As observational equivalence is de�ned by a quanti�cation

over all contexts, this means that the strategy for a term may have to consider all legal

locations of O-pointers rather than just a single location as is the case for P-pointers.

This means that representing non-O-strict strategies as languages seems to require

an in�nite alphabet. One class of automata which recognise languages over in�nite

alphabets are CMA and we showed that terms of order one and arity two (whose

free variables can take arguments of order one and arity one) can be represented as

deterministic CMA. Hence, they have a decidable observational equivalence problem.

However, many non-O-strict types are undecidable. At third-order types and any

type which takes a �rst-order argument which is not the last argument (and any type

sequent with free identi�ers which accept arguments of such types) we can show un-

decidability. Our proofs take advantage of the location of O-pointers to encode the

Q-store actions of a Q-machine.

Unfortunately, though close, we still do not have a complete picture of the decid-

able fragments of RML. There are still cases for which we do not know whether the

problem is decidable or not. We could represent terms of type β → β → β as CMA

since λ-abstracting to reach this type requires interleaving plays of type β → β which

can be represented as regular expressions. Ensuring each thread is in its own class

allowed us to not only determine the position of justi�cation pointers but also to keep

track of the state of each thread. If we move to type β → β → β → β, it appears that

we would need to interleave threads consisting of data words. This is much harder

to do in the same way and it seems this might require some form of nested data

values. There has been some work on words with nested data [20] but it is not yet

clear whether we can obtain a similar decidability result using this method. A similar

problem occurs if we allow free identi�ers to have more complex types. Representing

the type sequent (β → β → β)→ β ` β → β → β requires encoding the location of

O-pointers on both the left- and right-hand side of the turnstile. This again appears

to require data words with nested data.

95

A di�erent problem occurs when we consider terms of type β → (β → β) →
β. Here the game semantics consists of interleaved threads, each of which can be

represented as a VPA. The VPA stack seems necessary as an arbitrary number of

questions can be open at once and we would need to match them all with answers.

However, an in�nite alphabet also appears to be required to encode the location of

O-pointers. We currently do not know whether a form of Visibly Pushdown CMA

could be used which would be expressive enough to capture the desired languages and

still have a decidable equivalence problem. This problem also occurs at type sequents

such as ((β → β)→ β)→ β ` β → β → β where we need to encode O-pointers on the

right-hand side, but the free identi�ers can lead to an arbitrary number of questions

being open.

While we currently do not know how to show decidability at these type sequents,

we also cannot adapt our existing undecidability results to these type sequents either.

In our representation of Q-machines we had sequences of moves representing ADD-

operations and FETCH-operations. A crucial part of the encoding was that during

a FETCH, O had to select two ADD-blocks and P could use visibility to force to

the second one to have occurred earlier than the �rst one. Unfortunately, at these

sequents it does not appear possible to enforce this.

Finally, we have not got a full picture of recursion either. We know the problem is

decidable for (O-strict RML with) �rst-order arity one recursive functions. Further, it

is undecidable when second-order functions are allowed. Allowing �rst-order recursive

functions with arity greater than one again seems to require combining pushdown

automata (in this case not Visibly Pushdown) with CMA.

A summary of the di�erent fragments and some representative type sequents is

shown in Table 4.2. We also show what level of recursion is allowed in each fragment.

We write Ω to mean that an undecidability result holds (or a result is unknown) even

if no recursion or loops are present and non-termination is introduced only through

the constant Ω.

In the next chapter we consider languages with non-local control �ow. In partic-

ular, we will examine call-by-name IA augmented with catch. We will see that the

addition of such a construct does not a�ect the decidability result for IA∗3.

96

Fragment Type Sequents Recursion
Decidable

O-Strict
(ExpTime-Complete)

((β → . . .→ β)→ β)→ . . .→ β `
(β → . . .→ β)→ β

while

O-Strict + Recursion
(DPDA-Hard)

((β → . . .→ β)→ β)→ . . .→ β `
(β → . . .→ β)→ β

β → β

RMLCMA (β → β)→ . . .→ β ` β → β → β while
Undecidable

Third-Order
` ((β → β)→ β)→ β

(((β → β)→ β)→ β)→ β ` β Ω

Second-Order
` (β → β)→ β → β

((β → β)→ β → β)→ β ` β Ω

Recursion Any (β → β)→ β
Unknown

Visibly Pushdown CMA
` β → (β → β)→ β

((β → β)→ β)→ β ` β → β → β
Ω

RMLCMA + Recursion (β → β)→ . . .→ β ` β → β → β β → β → β

Nested Data
` β → β → β → β

(β → β → β)→ β ` β → β → β
Ω

Table 4.2: Summary of decidability results for RML

97

98

Chapter 5

Non-Local Control Flow

In the previous two chapters we have considered the language RML and for which

fragments its observational equivalence problem is decidable. RML is a language

which is both higher-order and stateful. It does not however, contain any constructs

which allow non-local jumps of control to be made. By contrast, most programming

languages do allow such jumps through various constructs such as exceptions, goto or

call/cc. In this chapter we consider languages with non-local control �ow, primarily

in the context of call-by-name IA.

The �rst to study control operators in the context of game semantics was Laird [60,

61]. He showed that adding call/cc to PCF corresponded to dropping the game-

semantic bracketing condition of [52]. He also showed that in the absence of the

bracketing rule, the visibility rule still implies a �Weak Bracketing Condition� (as

long as no answer ever justi�es a question):

�Only open questions may be answered. A question is open if it is unan-

swered, and no questions asked before it have been answered since it was

asked.�

If as well as dropping bracketing we additionally remove the innocence condition

(moving along a di�erent axis of the semantic square [8]) then we get a model of

Idealized Algol with control. This language is IAcatch+mkvar, which is IA (with a bad

variable constructor) extended with a control operator:

Γ, x : com `M : com

Γ ` catchx inM : com

This term will behave as M , unless M attempts to run x at which point control

jumps out of the block and terminates. It is a simple yet expressive control operator

99

which can be used to encode more complex constructs such as those of SPCF [26].

The game semantics is de�ned in the same manner as for IA without catch except

that plays can violate bracketing and catch is interpreted using the strategy catch :

J(com2 → com1)→ com0K which responds to the initial move run0 with run1 and to

O's second-move (regardless of whether it is a run2 or a done1) with done0.

The model is fully abstract and has the nice property that for any IAcatch+mkvar

terms Γ `M1,M2 : T ,

Γ `M1
@∼ IAcatch+mkvar

M2 ⇐⇒ JΓ `M1K ⊆ JΓ `M2K [75].

Note that this relation on strategies compares all even-length plays, rather than just

complete plays as is the case with IA without catch.

Example 5.1. Consider the two terms x : com ` Ω and x : com ` x; Ω. The strategies

denoting these terms in the game-semantic model (of both IA and IAcatch+mkvar)

are { ε } and { ε, run · runx } respectively. Since neither of these strategies contain

any complete plays, the two terms are equivalent in IA. This should be expected

as if either the terms is ever run it will not terminate. Despite the fact that the

sets of complete plays are equal, the two strategies are clearly not equal. Hence, in

IAcatch+mkvar the two terms are inequivalent. They are simple to separate using the

context C[−] ≡ catchx in−. This will diverge if given the �rst term but terminate

when given the second.

We know that the third-order fragment of IA (without catch) has a decidable

observational equivalence problem. We aim to show that this is still the case when

non-local control �ow is allowed. That is, we will show that the third-order fragment

of IAcatch+mkvar is decidable.

5.1 Third-Order IAcatch+mkvar

5.1.1 Representation

We aim to prove that the third-order fragment of IAcatch+mkvar is decidable. As with

previous decidability results, we will represent the strategy denotations of terms as

languages. To do this, we need to be able to encode the location of justi�cation

pointers. Recall that arenas in this fragment will have the form shown in Figure 5.1.

An ith-order arena will contain only those moves qj and aj for j ≤ i. We �rst consider

all the moves in arenas in this fragment and whether their justi�cation pointers are

uniquely reconstructible.

100

q0

a0q1

a1q2

a2q3

a3

Figure 5.1: Shape of third-order arenas

• The initial move, q0, does not require a justi�cation pointer.

• First-order questions, q1, and ground answers, a0, are justi�ed by the initial

move. Since the initial move is unique these pointers are uniquely recon-

structible.

• Since �rst-order questions are justi�ed by the initial move, there can only ever be

one in the O-view (as when constructing the O-view we would follow the pointer

back to the initial move and no moves precede the initial move). This implies

that second-order questions, q2, and �rst-order answers, a1, have uniquely re-

constructible justi�cation pointers.

• Sadly, second- and third-order questions are not always unique in the view and

so pointers from third-order moves (both questions, q3, and answers, a3) and

second-order answers, a2, are not always unique. For example, the standard

example showing that third-order questions require explicit justi�cation point-

ers is the pair of plays q0 q1 q2 q1 q2 q3 and q0 q1 q2 q1 q2 q3 , which are

di�erentiated only by the location of the �nal pointer.

We consider below how we can encode the location of the justi�cation pointers

where necessary.

5.1.1.1 Third-Order Questions

The problematic third-order questions occur in the well-bracketed case too. A method

of encoding them is presented in [81, 76]. An alternative (and perhaps simpler)

method was mentioned in Section 3.2.1. That is, each third-order question is tagged

with a natural number. A tag of i indicates that this question is hereditarily justi�ed

101

by the ith oldest open �rst-order question belonging to a second-order identi�er.

While this potentially needs an in�nite number of indices, for any given term the

number needed will be �nite. This is because the maximum number required will

be the maximum nesting depth of calls to second-order identi�ers. This method is

also easy to implement. All third-order questions are initially tagged with 1. Then,

whenever we see a term of the form fM , where f is a second-order identi�er, we

increment all the tags coming from our representation of JMK.

5.1.1.2 Bracketing Violations

The remaining cases where the locations of pointers are ambiguous are second- and

third-order answers. In the well-bracketed case these are never ambiguous because

they must answer the most recently asked unanswered question. In the absence of

bracketing we need to know how many questions an answer closes in order to count

back and �nd its justi�er. The following proposition simpli�es this by allowing us to

only record the number of second-order questions an answer closes.

Proposition 5.1. To determine the location of the justi�cation pointer for any an-

swer in a strategy for third-order IAcatch+mkvar, it su�ces to know how many second-

order questions the answer closes.

Proof. For ground and �rst-order answers we already know that their pointers are

uniquely determined. For second-order answers we can immediately count back the

appropriate number of open second-order questions to �nd our justi�er. To establish

the result for third-order answers �rst note that the only questions O can play are

the initial move (which can only be played once) and second-order questions. Hence,

whenever P plays a third-order question, q3, O must either play an answer, closing

(although not necessarily answering) P's question, or a second-order question, q2. The

only way to close q2 without closing q3 is for P to answer q2. However, if this occurs

then we are back in a situation where O must either play an answer and close q3 or

play another second-order question. From this it follows that between any two open

third-order questions there must be at least one open second-order question. Hence,

if we know how many second-order questions a third-order answer closes, then we can

uniquely �nd its third-order question justi�er by counting back.

We can now give our encoding of plays as words. A play is represented by its

underlying move sequence, with all third-order questions tagged as explained above.

Further, before any answer which closes (but does not answer) n second-order ques-

tions, we insert n copies of the new letter break. This converts a play s into a

102

word ŝ in such a way that the original play can be uniquely reconstructed. That is,

s = t ⇐⇒ ŝ = t̂. This allows us to represent a strategy σ by an automaton which

accepts all words ŝ where s ∈ σ.

Example 5.2. The play q0 q1 q2 q1 q2 q3 q2 a2 a1 a0 would be represented as the

word q0 · q1 · q2 · q1 · q2 · q2
3 · q2 · break · break · a2 · a1 · a0.

5.1.2 Construction

Having decided on our encoding of strategies as languages, we can now start to con-

struct automata to accept them. Our construction will closely follow the construction

used to show decidability of third-order IA without non-local control �ow [81]. As

in that case, we will represent strategies using VPA. However, we will partition our

VPA alphabets di�erently. As might be expected from the way we are representing

strategies, second-order questions will be push-letters whereas second-order answers

and breaks will be pop-letters. All other moves will be noop-letters. In [81] the VPA

instead push and pop on third-order questions and answers respectively.

Since we are in a call-by-name setting, it is su�cient to consider only β-normal

forms. In a similar manner to [81], this leaves us only needing to be able to handle:

• The special strategies used to interpret the IA constructions (while, seq, etc.).

• Identity strategies idJθK (ord(θ) ≤ 2).

• Composition of strategies σ : Jθ1K⇒ Jθ2K and τ : Jθ2K⇒ Jθ3K when either:

� ord(θ2) = 0,

� ord(θ2) = 1 and τ ∈ { cell,mkvar, catch },

� or ord(θ2) = 1 and σ # τ = JΓ, f ` fM1 . . .MnK for some second-order

identi�er f and terms M1, . . . ,Mn.

We also need to handle pairing and currying, but these are trivial, consisting of union

and relabelling respectively. Excluding catch, the strategies for the IA constants

and �rst-order identities will be the same as in the well-bracketed case. This is

because P will not violate bracketing and O cannot violate bracketing as the arenas

they play over are at most second-order. We know from [42] how to represent the

complete plays of these strategies as �nite automata. To adapt these automata to our

103

framework we just need to make minor changes; we must ensure they accept all even

length pre�xes of complete plays and push/pop a dummy symbol on any second-order

questions/answers. Similarly, composition when ord(θ2) = 0 or τ ∈ { cell,mkvar }
cannot lead to new bracketing violations and so we can reuse the constructions of [81]

making only minor adaptations so that the automata �t our framework.

This leaves us just needing to handle catch, second-order identi�ers and their

applications. It should not be surprising that these are the only cases which signi�-

cantly di�er from the well bracketed construction, as these are the cases where P and

O respectively can violate bracketing.

• To construct AΓ`catchx inM we start with a copy of AΓ,x:com`M . Whenever we

see a transition runx, we instead wish to perform done. However, we must �rst

empty the stack by performing breaks. It is simple to keep track of when the

stack is empty by doubling the number of states and stack symbols and using

a marked copy to indicate that the stack is empty and an unmarked copy to

indicate it is not.

That is, given a VPA AΓ,x`M for JΓ, x : com `M : comK we take two copies of

all the states of AΓ,x`M , marking state s in the second copy with a prime, s′.

The initial state will be the initial state in the marked copy. All states which

were accepting in AΓ,x`M will still be accepting. Similarly, we take two copies

of all the stack symbols in AΓ,x`M . We also take three fresh states (1), (2) and

(3) with (3) �nal. Then as our transitions we take:

� If s
m→ t is a noop-transition in AΓ,x`M not on an x-move then we have

s
m→ t and s′

m→ t′.

� If s
m/γ→ t in AΓ,x`M then we have s

m/γ→ t and s′
m/γ′→ t.

� If s
m,γ→ t in AΓ,x`M then we have s

m,γ→ t and s
m,γ′→ t′.

� If s
runx→ t in AΓ,x`M then s

ε→ (1) and s′
ε→ (2).

� (1)
break,γ→ (1) and (1)

break,γ′→ (2) for all stack symbols γ of AΓ,x`M .

� (2)
done→ (3).

• The remaining cases are second-order free identi�ers and applications of them.

As in the well-bracketed cases described in [81, 76], these boil down to the dagger

construction (described in Section 2.2.3.1 which promotes a strategy σ : !A(B

to σ† : !A(!B) plus some simple renamings. For example, idA⇒B = id†A(idB

104

and in the well-bracketed case complete plays of Γ, f : (com→ com)→ com `
fM : com are of the form

r · rf
(
{ ε } ∪ comp(JΓ, f `MK†) [r1f , r2f , d1f , d2f/r, r1, d, d1]

)
df · d.

Since we also need incomplete, non-well-bracketed plays, we will need our au-

tomaton to accept all even-length pre�xes of plays having the form

r · rf
(
JΓ, f `MK† [r1f , r2f , d1f , d2f/r, r1, d, d1]

)
∪ r · rf

(
{ ε } ∪ answerable(JΓ, f `MK†) [r1f , r2f , d1f , d2f/r, r1, d, d1]

)
df · d

where answerable(JΓ, f `MK†) is the set of plays in JΓ, f `MK† which end

in d or r1 (visibility prevents O from answering rf unless P has played one

of these moves). The only complicated part of constructing this is the dagger

construction and we discuss this below.

5.1.2.1 The Dagger Construction

We only need the dagger construction for strategies σ : !JΓK (JθK where θ is a

�rst-order type. We consider what this construction will look like. We let q0 and q1

range over questions of order zero and one from JθK and a0, a1 over their respective

answers.

For a strategy σ : !JΓK(JθK, its promotion σ† : !JΓK(!JθK is de�ned as { s ∈
P!JΓK(!JθK| for all initial m, s � m ∈ σ }. So σ† appears to be a simple interleaving

of plays from σ. However, the restriction that s ∈ P!JΓK(!JθK and in particular that

s � JΓK is a valid play on !JΓK and s � JθK is a valid play on !JθK enforces a switching

condition: only O can switch between (or create new) threads of σ and further O

can only do this after P plays in JθK (which must be either q1 or a0). When P plays

such a move, the O-view will have the form (q0 · (q1 + a0))∗ (i.e. only moves from JθK
will be visible). Further, an unanswered q1 from every open σ thread will be visible

(since a thread can only be left after P plays q1 or a0, every open thread will have

an unanswered q1 and the only way an unanswered q1 could not be present in the

view is if that thread was closed by O playing a1 to return to an earlier thread). So

whenever P plays q1 or a0, O has the option of either opening a new σ-thread with

q0 or answering any currently open q1, possibly violating bracketing.

Now we consider how to construct a VPA Aσ† to recognise σ† from the VPA Aσ
which recognises σ. Similarly to [81] and [76], we use a slightly di�erent scheme for the

105

automata resulting from the dagger construction to those we use for representing de-

notations of terms. In particular, we partition our VPA alphabets slightly di�erently.

We will continue to push and pop on second-order moves (from JΓK) and to count

the number of such questions closed by bracketing violations using break. However,

we will also push, pop and count closures for order zero JθK-moves (which are noop-

letters in Aσ). The rationale behind this is that after we use the dagger construction,

the next step will always involve renaming JθK-moves in a way which increases their

order by two (as in the renamings presented above for JΓ, f ` fMK). Thus, once the
renaming is performed, the VPA will have the desired alphabet partitioning.

We can now describe the construction. We start with Aσ. We will have fresh

stack symbols s2 for each state s2 with an incoming transition s1
q1→ s2. These will

be pushed on to the stack when we start a new σ-thread in order to remember which

state we were in. All our uses of the dagger construction will want the empty word ε

to be accepted and so we make the initial state accepting. We also add a new stack

symbol INITIAL to be pushed when opening a σ-thread when there are no other open

σ-threads. This will allow us to know when the stack is empty. We then add a new

non-�nal state rγ for each stack symbol γ (of the newly expanded stack alphabet).

These will only be visited after a q1 to allow O to pop the stack and violate bracketing.

We modify the transition relation as follows:

• Each initial transition i
q0→ j needs to be changed into a push-transition, pushing

the new symbol INITIAL to indicate this is the �rst symbol on the stack,

i
q0/INITIAL→ j.

• For each transition s1
q1→ s2 and initial transition i

q0→ j we add transitions

s2
q0/s2−→ j and for each stack symbol γ the transition s2

break,γ→ rγ. That is, after

a q1 move, as well as being allowed to continue in the same thread as before,

we also allow O to start a new thread, remembering the state of the old one on

the stack, or to violate bracketing in order to return to an old thread.

• For each pair of transitions s1
q1→ s2

a1→ s3 we add transition rs2
a1→ s3. So if O

is violating bracketing and the last question which we pop o� the stack is a q0

then we can return to the thread which was running before that q0 was played.

• For each pair of stack symbols γ, γ′ we add rγ
break,γ′→ rγ′ . So when in rγ we can

continue to pop the stack until we �nd a previous thread we wish to return to.

Note that since each rγ is non-�nal we do not have to worry about popping too

far � if we get stuck in rγ the word will not be accepted.

106

• Finally, we will change each transition t1
a0→ t2 into a pop-transition t1

a0,s2−→ s2

and t1
a0,INITIAL−→ i. That is, when closing a thread with a0, we return to whatever

state we were in before it was opened.

Example 5.3. To illustrate this construction, we consider the second-order identi�er

f : (com→ com)→ com ` f . For clarity we will use r, d and b as abbreviations for the
moves run, done and break respectively. As we have previously indicated, we will use

the dagger construction and take advantage of the equivalence idA⇒B = id†A (idB.

So, our starting point is the �rst-order identi�er g : com→ com ` g. The VPA for

this term is shown in Figure 5.2. Using our dagger construction on this VPA results in

1 2 3 4 5

6

7

8

r rg dg d

r1g/γ

r1 d1

d1g, γ

Figure 5.2: VPA for g : com→ com ` g

the VPA shown in Figure 5.3. Finally, we can utilise idA⇒B = id†A(idB to transform

this automaton into a VPA for f : (com→ com)→ com ` f . This requires a simple

relabelling of the moves, pre�xing the moves r · rf to all runs and allowing df · d to

occur (possibly violating bracketing) after any r1 or d. We know that when df is

played the stack should be empty (as it closes any open second-order questions) and

that the only states reachable after a r1 or d (and possibly some number of b's) are

states 1, 7 and the rsym's. Since we want the stack to be empty, we allow df to occur

from states 1 and rI . The �nal automaton is shown in Figure 5.4.

This completes the construction and allows us to represent the strategy denotation

of any third-order IAcatch+mkvar-term as a VPA.

Theorem 5.1. Observational equivalence of the third-order fragment of IAcatch+mkvar

is decidable.

107

1

2

3

4 6

7

8

rγ

rI

r7

r/I rg

dgd, I

r1g/γ r1

d1d1g, γ

d, 7

r/7

b, γ

b, I

b, 7

b, γ

b, I

b, 7

b, γ

b, I

b, γ

b, 7

d1

b, Ib, 7

Figure 5.3: VPA for Jg : com→ com ` gK†

5.2 Removing mkvar

The results as presented so far apply to the language IAcatch+mkvar which includes

the bad-variable constructor mkvar. In the well-bracketed case we know that the

inclusion of mkvar does not a�ect the equivalence relation � two mkvar-free terms

are equivalent in IA if and only if they are equivalent in IAmkvar [67]. Sadly this

is not the case when we include catch. For example, the two terms x := 0; Ω and

x := 1; Ω are equivalent in IAcatch but not in IAcatch+mkvar because the context can

instantiate x with a bad-variable and use catch to break out of the assignment before

control-�ow reaches the divergent Ω.

In [75] Murawski de�nes an alternative ordering on strategies (based on Mc-

Cusker's relation in [67]) to deal with the presence of mkvar.

De�nition 5.1. The relation on plays �P can be de�ned as t �P t′ if and only if

t = s1 · q · s2 and t′ = s1 · q′ · s2 where q, q′ are P-questions from the same var

component (so they must be either read or write(i) for some i) which have not been

answered in t, t′.

The relation on plays /P is de�ned as t /P t′ if and only if t = s1 read s2 i s3

and t′ = s1 write(i) s2 ok s3 , where read and write(i) are P-moves from the same

var-component.

108

9

10

1

11

12

2

3

4 6

7

8

rγ

rI

r7

r

rf

df

d df

r1f/I

r1

d1

d1f , I r11/γ r
1
11f

d11fd11, γ

d1f , 7

r1f/7

b, γ

b, I

b, 7

b, γ

b, I

b, 7

b, γ

b, I

b, γ

b, 7

d11f

b, Ib, 7

Figure 5.4: VPA for Jf : (com→ com)→ com ` fK

109

Finally we can de�ne the ordering on strategies σ v τ if and only if for all s ∈ σ
there exists t ∈ τ such that s(�P ∪ /P)∗t.

Under this ordering the game-semantic model for IAcatch is fully abstract [75].

That is,

M1
@∼ IAcatch

M2 ⇐⇒ JM1K v JM2K.

Example 5.4. Returning to the two terms x := 0; Ω and x := 1; Ω, we have that

Jx ` x := 0; ΩK = { ε, run·write(0) } and Jx ` x := 1; ΩK = { ε, run·write(1) }. These sets
are clearly not equal and so the two terms are not equal in IAcatch+mkvar. However,

run·write(0)�P run·write(1) (and vice versa) so the two terms are equivalent in IAcatch.

We now consider how to decide this new relation. We will use a slightly di�erent

representation of plays. As well as pushing, popping and counting premature closures

of second-order moves, we do the same for moves from negative occurrences of var.

This means that there may be more breaks than under our previous representation

but the location of justi�cation pointers is still uniquely encoded. We also insist that

the symbols pushed on var-moves must identify which move they were pushed on (e.g.

the symbol pushed could be the same as the input letter).

It is simple to modify our previous constructions to �t this scheme. Changing

var-moves to push or pop as appropriate is straightforward. We then just need to

deal with break-transitions. These are only introduced in the construction for catch

and the dagger construction. In catch when we start using breaks to pop the stack,

we keep going until the stack is empty. This is una�ected by the additional symbols

which could be on the stack. Similarly, in the dagger construction we always keep

performing breaks until either the stack is empty or a q0 is popped o� the stack. Again

this will be una�ected by the possibility of extra symbols on the stack.

Now, given two terms M1 and M2 and VPA AM1 and AM2 which recognise their

denotations, we aim to produce a new automaton AM1\M2 which will accept (repre-

sentations of) all plays s ∈ JM1K such that there is no t ∈ JM2K such that s(�P ∪/P)∗t.

Then we will have JM1K v JM2K if and only if AM1\M2 's language is empty.

We build our automaton using a product construction. States will either be a

state from AM1 or a pair of states from AM1 and AM2 . We will reach the unpaired

states only when we are considering a play s from JM1K for which there is no play t

from JM2K such that s(�P ∪/P)∗t. Hence, the �nal states will be unpaired �nal states

from AM1 . The initial state will be the pair of the initial states. The stack alphabet

will be the set of pairs of stack symbols from AM1 and AM2 . The transition relation

will be as follows.

110

• For moves which are not from a negative occurrence of var we run the two

automata in lock step. That is, if s
m→ s′ in AM1 and t

m→ t′ in AM2 then

(s, t)
m→ (s′, t′) in AM1\M2 . If m is a push- or pop-letter then we push or pop

the pair of the relevant symbols.

• If AM2 cannot match AM1 then we allow AM1 to continue on its own. That is,

for a move m which is not from a negative occurrence of var:

� If s
m→ s′ is a noop-transition in AM1 but there is no transition t

m→ t′ in

AM2 then (s, t)
m→ s′.

� If s
m/γ→ s′ is a push-transition in AM1 but there is no transition t

m/γ′→ t′

(for any γ′) in AM2 then (s, t)
m/(γ,γ′′)→ s′ for an arbitrary γ′′.

� If s
m,γ→ s′ is a pop-transition in AM1 but there is no transition t

m,γ′→ t′ in

AM2 then (s, t)
m,(γ,γ′)→ s′.

• If s
q/γ→ s′ in AM1 and t

q′/γ′→ t′ in AM2 where q, q′ are (possibly di�erent) P-

questions from the same JvarK-component then (s, t)
q/(γ,γ′)→ (s′, t′). This allows

us to handle the case when the two plays are related by �P .

• If s
a,γ→ s′ in AM1 and t

a′,γ′→ t′ in AM2 where a, a′ are O-answers from the same

JvarK-component and γ, γ′ were pushed by JvarK questions q,q′ respectively then

(s, t)
a,(γ,γ′)→ (s′, t′) provided that either q = q′ and a = a′ or for some i we have

that q = read, q′ = write(i), a = i and a′ = ok. Note that even though the �nal

transition does not mention a′, it is uniquely determined by a, γ and γ′. This

allows us to handle the case when the two plays are related by /P .

• We also need to add transitions for the case when AM2 cannot match AM1 on

var-moves. So if s
q/γ→ s′ in AM1 where q is a P-question from JvarK but there is

no JvarK-question q′ such that t
q′/γ′→ t′ (for any γ′) in AM2 then (s, t)

q/(γ,γ′′)→ s′

for an arbitrary γ′′.

We have similar transitions for answers. Let γ and γ′ be stack symbols pushed

by q and q′ from a negative occurrence of var, a be an answer from the same

var occurrence, s be a state of AM1 such that s
a,γ→ s′ and t a state of AM2 .

� If q = q′ and there is no transition t
a,γ′→ t′ in AM2 then (s, t)

a,(γ,γ′)→ s′.

� If q = read, q′ = write(i), a = i and there is no transition t
ok,γ′→ t′ in AM2

then (s, t)
a,(γ,γ′)→ s′.

111

� Finally, if q 6= q′ and it is not the case that q = read, q′ = write(i) and

a = i then we also have (s, t)
a,(γ,γ′)→ s′.

• All the transitions of AM1 except those on moves from negative occurrences of

var will be included unchanged for unpaired states. For those from negative

occurrences of var we simply modify them to push and pop pairs of symbols.

Pushes should push an arbitrary symbol in the second component, while pops

should pop any symbol in the second component.

Example 5.5. Let M1 = x : var ` if !x = 3 then skip elseΩ and M2 = x : var `
x := 3. The VPA for these terms are:

• AM1 : 1 2 3 4 5
run readx/readx 3x, readx done

• AM2 : 6 7 8 9 10
run write(3)x/write(3)x okx,write(3)x done

Now we can apply our construction to these two automata.

• AM1\M2 :

1, 6 2, 7 3, 8 4, 9 5, 10
run readx/(readx,write(3)x) 3x, (readx,write(3)x) done

This automaton has no reachable �nal states. Hence, its language is empty and

so for all s ∈ JM1K there exists a t ∈ JM2K such that s(�P ∪ /P)∗t, JM1K v JM2K
and M1

@∼ IAcatch
M2. This is because M1 will terminate only if it is placed in

a context where x is bound to a (term which evaluates to) a variable currently

storing the value 3. If M2 is placed in the same context then the assignment

will have no e�ect but will also terminate.

• We can also perform the construction the other way around to get AM2\M1 :

6, 1 7, 2 8, 3 9 10
run write(3)x/(write(3)x, readx) okx, (write(3)x, readx) done

This time, we can reach an accepting state. The play s = run·write(3)x ·okx ·done
is in JM2K but there is no play t in JM1K such that s(�P ∪ /P)∗t. Hence, we do

not haveM2
@∼ IAcatch

M1 (orM1
∼=IAcatch

M2). This is easy to see if we consider

the context C[−] = new x in− which binds x to a new variable with value 0

and then runs whichever term it is given. When passed M2 it will terminate,

but given M1 it diverges.

112

This construction allows us to extend the decidability result of the previous section

to IA with catch but without a bad-variable constructor.

Theorem 5.2. Observational approximation and equivalence of the third-order frag-

ment of IAcatch is decidable.

5.3 Summary

In this chapter we have considered decidability results for IA with non-local control

�ow. Game semantically, allowing non-local control �ow corresponds to dropping the

bracketing condition. We started out considering third-order IA with both catch and

mkvar. Since the game-semantic model still satis�es a weak bracketing condition,

it was possible to model bracketing violations by making them explicit and popping

closed questions o� the stack. This allowed us to use VPA to recognise the strategies

of all third-order terms and hence show observational equivalence is decidable for this

fragment. We then showed how to check the inclusion relation of [75], using a product

construction and storing P-questions from negative occurrences of var on the stack.

This means that our decidability result also holds for the language IAcatch without

the bad-variable constructor.

An obvious direction for future work is to consider RML with non-local control

�ow. Our decidability results for IA with catch relied on the weak bracketing condi-

tion. Unfortunately, when answers can justify questions, the visibility condition is no

longer su�cient to imply weak bracketing. In fact, when bracketing is dropped from

the game-semantic model of RML, weak bracketing is not even preserved by compo-

sition of strategies. This di�erence is re�ected in the power of the control operators.

Dropping bracketing from the model of IA corresponds to adding the catch operator

which allows us to �pop the control stack downwards�. Removing bracketing from the

call-by-value model corresponds to adding call/cc (or equivalently Felleisen's C [37]

or the naming operators of µPCFv [89, 88]) which can additionally �pop the control

stack upwards� [61].

Without weak bracketing, there is very little about the semantics which resembles

a stack-like behaviour. As such it appears unlikely that the same ideas we used for

IA with catch can be used to show decidability for a fragment of RML with call/cc.

We hope it may be possible to show that the O-strict fragment of RML with call/cc

is decidable. However, without bracketing many type sequents which are O-strict for

RML without non-local control are no longer O-strict in the presence of call/cc, so

the O-strict fragment is much smaller.

113

Alternatively, we have seen in Chapter 4 that automata with in�nite alphabets

can be used to capture non-O-strict strategies. It is possible that these might prove

useful in deciding fragments of RML with non-local control �ow.

The work we have presented so far has concentrated on decidability and complexity

results. In the next chapters we move away from theoretical results and present tools

we have implemented using game semantics based algorithms.

114

Chapter 6

Implementation

Thus far we have considered theoretical results. We have identi�ed fragments of

languages which have decidable observational equivalence problems. We now turn

to implementation. We know that observational equivalence is decidable for both

third-order IA and O-strict RML. Further, we know that it is an ExpTime-complete

problem in both cases. However, it is unclear whether this bound is reached only in

pathological cases or whether in practice it is possible to e�ciently equivalence check

many interesting programs. In this chapter we discuss our implementations of these

algorithms and explore their performance on a number of examples.

6.1 Homer

We �rst examine Homer [49]. Homer (Higher-order Observational equivalence

Model checkER) is an equivalence checker for the third-order fragment of IA. We

used F# to implement the result of [81]. When presented with two β-normal forms

of IA, Homer constructs VPA which precisely represent their game semantics. This

construction is performed inductively over the structure of the terms. The automata

are constructed so that the two terms are observationally equivalent if and only if

the languages accepted by the automata are equal. We then construct a VPA which

recognises the symmetric di�erence of the languages of the two automata using a

product construction. This reduces language equivalence to an emptiness test. The

emptiness test is performed using Schwoon's pre* algorithm for reachability in push-

down automata [96]. If the two VPA do not accept the same language, then the

reachability check will �nd a word accepted by one but not the other. This word will

be a complete play from the strategy denotation of one of the terms. This acts as a

game-semantic counterexample and is essentially a sequence of interactions which one

of the terms can have with the context which the other cannot. For the bene�t of those

115

less familiar with the game-semantic model, Homer also generates an operational-

semantic counterexample in the form of a separating context. This is generated from

the discovered play using innocent factorisation and �nite de�nability in the style

of [6]. When given a term of the correct type, the generated context will terminate if

and only if that term can perform the sequence of interactions corresponding to the

play.

Since Homer uses an explicit state representation, large increases in the state

space can badly a�ect the running time. Further, at each stage in the construction it

is possible for many unreachable states to be generated. To prevent this, Homer uses

a naïve reachability algorithm to detect states which can be safely deleted. This works

by following all transitions out of the initial state, but only following pop-transitions

if at least one push-transition on the appropriate stack-symbol has previously been

seen. This is very fast and can be performed many times during the construction. It

is also (usually) very e�ective, but it is not guaranteed to delete all unreachable states

and does not attempt to identify and merge bisimilar states. Hence, the produced

automata are not minimal but experiments showed that this was a good compromise.

We believe Homer was the �rst model checker for third-order programs, which

makes a fair comparison with existing tools tricky. Two pre-existing game semantics

based model checkers are Mage [12] and GameChecker [35]. These both check

only reachability and only at most second-order programs. We had di�culty getting

GameChecker to run but compare against Mage where appropriate (Mage is

supposed to be signi�cantly faster than GameChecker). All performance data

refers to running the tools on a quad-core 2.4GHz Intel(R) Xeon(R) with 12GB of

memory.

6.1.1 Sorting

As a �rst example we consider sorting algorithms. Sorting is a di�cult problem for

a model checker due to the complex interplay between state and control �ow. In

Figure 6.1 we give a version of bubble-sort. Note that we use the free-identi�er x as

an input/output-stream. First we read from x to populate the array a, then we sort

the array, before �nally writing the contents of the array back to x in order. The

VPA produced by Homer for sorting arrays of length two containing three-valued

elements is shown in Figure 6.2. For larger arrays the automaton quickly becomes too

large to display. The compilation to VPA from IA∗3 only pushes and pops on third-

order questions. As this is a �rst-order example the VPA does not use its stack (i.e.

this is a degenerate case where we actually produce a �nite automaton). We can see

116

1 x : var `
2 new a [N] in

3 {new i in while ! i < N do {a [! i] := ! x ; i := (! i + 1)}} ;
4 {
5 new f l a g in

6 f l a g := 1 ;
7 while ! f l a g do{
8 new i in

9 f l a g := 0 ;
10 while ! i < N−1 do{
11 i f ! a [! i] > ! a [! i + 1] then{
12 new temp in

13 f l a g := 1 ;
14 temp := ! a [! i] ;
15 a [! i] := ! a [! i + 1] ;
16 a [! i + 1] := ! temp
17 }
18 else skip ;
19 i := ! i + 1
20 }
21 }
22 } ;
23 {new i in while ! i < N do {x:= ! a [! i] ; i := ! i + 1}}

Figure 6.1: Bubble-sort

Figure 6.2: VPA produced by Homer for bubble-sort

117

n Time (Homer) States (Final) States (Max) Mage (Bubble) Mage (Select)
5 1.5s 500 2,700 0.3s 1s
7 9.5s 2,800 19,000 3.3s 10s
10 7min 61,000 470,000 1.75min 5.75min

Table 6.1: Running times for comparing sorting algorithms

that the reads and writes to x are all that is visible to the environment. Hence, if we

replace the body of the bubble-sort algorithm with another sorting algorithm, such as

select-sort the result is observationally equivalent. The amount of time Homer takes

to perform this check is listed in Table 6.1 for various lengths of lists of three-valued

elements. We also list the state space of the �nal model. This state space is relatively

small as the game semantics hides all of the internals of the program and exposes

only the aspects which can be detected from outside. Unfortunately, the size of some

of the intermediate VPA constructed before reaching the �nal model are larger (the

maximum size is also listed in the table) but are still signi�cantly smaller than the

overall state space of the program. For comparison, we also include running times

for Mage in Table 6.1. Since Mage can only check reachability we cannot perform

the same test. Instead, we modify the input program given to Mage to run the

algorithm and then check the resulting array is sorted by asserting that each element

in the array is less than or equal to the next element. Mage then checks that none

of these assertions can ever fail. Since Mage only looks at one program at a time

we list running times for its performance on both bubble sort and select sort. As can

be seen Homer's performance is within an order of magnitude of Mage's which is

encouraging considering Homer is checking a more complex property.

6.1.2 Kierstead Terms

In the sorting example, the VPA we produced were actually �nite automata. To get

automata which utilise the stack, we consider the Kierstead terms:

λf (com→com)→com.f(λx.f(λy.x)) and λf (com→com)→com.f(λx.f(λy.y)).

These terms give rise to the smallest plays for which the location of justi�cation point-

ers is ambiguous. The automata produced by Homer are shown in Figure 6.3. The

stack is used to keep track of nested calls performed by the context. The justi�cation

pointers are encoded by tagging the third-order P-questions. In the �rst automaton

we tag the move labelled run_1_1_1 with an additional tag of 0 to show that this

move refers to f 's argument's argument from the outermost of the nested calls to f

118

Figure 6.3: Automata for the Kierstead terms

performed by the term. In the second automaton this move is instead tagged with a

1 to show it refers to the argument from the �rst nested call. It seems intuitive that

the two terms should be inequivalent, but it is not at all obvious how to construct

a separating context which exhibits their inequivalence. Homer is able to do this

automatically. The separating context generated for these terms is shown (suitably

adjusted for readability) in Figure 6.4. The context is generated from the shortest

game-semantic play found in the denotation of one but not the other. That is, it is

designed so that when a term of the correct type is placed in it, the resulting program

will terminate if and only if the supplied term can follow a particular execution path.

The variable X is used to force the term to perform speci�c actions in a speci�c order,

diverging if it does not. By carefully following the execution path we can see that it

will terminate when given the second of the Kierstead terms, but diverges when given

the �rst at the point where the term tries to run its argument's argument from the

�rst invocation, deviating from the expected execution path.

6.1.3 No Snapback and Scope Extrusion

Recall the No Snapback and Scope Extrusion examples from Example 2.1 and Ex-

ample 2.2.

p : com→ com ` newX in p(X := 1); if !X = 1 thenΩ else skip ∼= p(Ω)

119

1 (fun G: (((com → com) → com) → com) .new X in

2 X:=1;
3 G (fun z : (com → com) .
4 i f !X = 1 then

5 (
6 X:=2;
7 z Ω ;
8 i f !X = 5 then X:=6 else Ω
9)
10 else i f !X = 2 then

11 (
12 X:=3;
13 z (i f !X = 3 then X:=4 else Ω) ;
14 i f !X = 4 then X:=5 else Ω
15)
16 else

17 Ω
18) ;
19 i f !X = 6 then X:=7 else Ω
20) ([−])

Figure 6.4: Separating context for Kierstead terms

M1 ≡ λF (exp→exp)→exp.new x := 0 inF (λyexp.if !x = 0 thenx := y elsex := y − 1; !x)

M2 ≡ λF (exp→exp)→exp.F (λyexp.new x := 0 in if !x = 0 thenx := y elsex := y − 1; !x)

M3 ≡ λF (exp→exp)→exp.F (λyexp.y)

M1 �M2
∼= M3

All these terms are in the third-order fragment of IA. These (in)equivalences are

tricky to reason about by hand. However, for Homer they are straightforward and

can be checked in less than a second as seen in Table 6.2. These examples are

inherently equivalence checks and the scope extrusion examples are third-order so we

cannot give running times for Mage.

6.1.4 Model-Checking Regular Properties

Another feature of Homer is the ability to check whether a program satis�es some

property which can be described as a regular expression. Consider the property

120

Time (Homer) States (Final) States (Max)
No Snapback 400ms 9 30

Scope Extrusion (Inequivalence) 600ms 92 1,400
Scope Extrusion (Equivalence) 500ms 40 420

Table 6.2: Running times for no snapback and scope extrusion examples

�Whenever p is run, it is given the value of X as its argument and whenever it ter-

minates its return value is immediately written to X�. We can describe this property

by the regular expression

(
∑
i

q_1_p read_X i_X i_1_p+
∑
i

i_p write(i)_X + Y)∗

where Y is the set of all moves except q_1_p and i_p. We can then check whether

a term satis�es this by checking if the language of the VPA-translate of the term

is included in the language of the regular expression. For example, skip satis�es it

trivially. More interestingly, X := (p !X) and X := (X := (p !X) ; (p !X)) both

satisfy it but X := ((p !X) + 1) does not.

6.2 Hector

We also have an F# implementation of the decidability result for O-strict RML.

We call this tool Hector (Higher-order Equivalence Checker for Terms of O-strict

RML) [48]. Following the example of Mage, we decided to follow an on-the-�y

model checking approach. That is, rather than building up the entire model and

then exploring it, we construct our model as we explore it. In our case, given two

programs we need to build an automaton that recognises the symmetric di�erence of

their game-semantic denotations. We initially build up this automaton as a function

which maps each state to the set of transitions out of that state. This does not actually

evaluate and construct the transitions until it is called by the exploration function.

The exploration algorithm then needs to determine whether the language accepted by

the automaton is empty or not. If a counterexample is found, the exploration can be

terminated without having fully constructed the automaton. Emptiness for pushdown

automata is a non-trivial problem. Whereas Mage, which deals only with �nite

automata, can simply ascertain whether there is a path from the initial state to the

�nal state in the transition graph, Hector needs to take into account stack actions.

On-the-�y reachability for recursive state machines (which are equivalent to pushdown

automata) was studied in [10] and so we follow their approach. The algorithm, shown

121

1 Reachability(s, sen, γ)
2 V i s i t ed . add (s, sen, γ)
3 i f s ∈ Target then

4 print ` Target Reached '
5 break

6 for e ∈ Trans i t i on s (s) do

7 i f e is a γ-pop transition s
a,γ→ sret then

8 Vis i t edReturns [sen, γ] . add (sret)
9 for (s′, s′en, γ

′) ∈ Vi s i t e dCa l l s [sen, γ] do

10 i f (sret, s
′
en, γ

′) /∈ Vi s i t ed then

11 Reachability(sret, s
′
en, γ

′)

12 else i f e is a noop-transition s
a→ s′ then

13 i f (s′, sen, γ) /∈ Vi s i t ed then

14 Reachability(s′, sen, γ)

15 else i f e is a push transition s
a/γ′→ s′en then

16 V i s i t e dCa l l s [s′en, γ
′] . add(s, sen, γ)

17 i f (s′en, s
′
en, γ

′) /∈ Vi s i t ed then

18 Reachability(s′en, s
′
en, γ

′)
19 else

20 for sret ∈ Vis i tedReturns [s′en, γ
′] do

21 i f (sret, sen, γ) /∈ Vi s i t ed then

22 Reachability(sret, sen, γ)

At each point s is the state we are exploring, γ is the symbol at the top of the stack
and sen is the state which was entered as γ was pushed. These last two are needed to
add summary edges, as we maintain the invariant that s is reachable from sen using
only internal and summary edges.

Figure 6.5: On-the-�y reachability for pushdown automata

in Figure 6.5, relies on summary edges which summarise the transitions the automaton

can make between when a symbol is pushed on to the stack and when it is popped

o�. The exploration essentially proceeds as a depth-�rst search, recording push- and

pop-sites so that the additional summary edges can be added when two matching

transitions are found.

6.2.1 Sorting

We again start out by considering sorting algorithms. As before we can compare

whether two di�erent sorting algorithms are observationally equivalent. The running

times for Hector compared to Homer are shown in Table 6.3. It can be seen

that Hector is outperformed on this example by Homer. As this is an example

of an equivalence, it is possible that the slow performance of Hector is due to

122

n Hector to Compare States Homer Final States Max States
5 4s 720 1.5s 500 2,700
7 1.5min 4,900 10s 2,800 19,000
10 2hours 120,000 7.5min 61,000 470,000

With A Comparison Function
5 220ms 100 2.25min 74,000 74,000
7 225ms 130 Time Out Time Out Time Out
10 300ms 190 Time Out Time Out Time Out
15 400ms 280 Time Out Time Out Time Out

Table 6.3: Time to compare sorting algorithms

the on-the-�y approach being slower when the entire model has to be constructed.

However, we suspect that it is actually due to the added complications of the call-

by-value model. The constructions Hector has to perform require more work and

the resulting automata use their stacks more often (as this is a �rst-order example

the automata generated by Homer do not use their stacks at all, whereas those

Hector produces do so on almost every transition). The added stack actions make

the exploration algorithm slower.

We can also consider a version of the sorting algorithms which are parameterised

by a comparison function compare : int → int → int. Instead of using the less-than

ordering, the programs can make a call to compare. In this case a malicious context

could pass in a comparison function which does not act as a total order and can use

this function to gain more information about the internals of the algorithm. Hence,

the two programs are no longer equivalent. Due to the added size of the model when

parameterised in this manner, Homer runs out of memory for lists of length 7. On the

other hand, due to the on-the-�y approach Hector �nds the counterexample almost

immediately and so can terminate early without having to construct the entire model.

The running times are also included in Table 6.3.

6.2.2 Kierstead Terms

We can also revisit the Kierstead terms. Previously we considered the terms

λf (com→com)→com.f(λx.f(λy.x)) and λf (com→com)→com.f(λx.f(λy.y)).

These generalise into a family of call-by-name terms

Kn,i := λf (com→com)→com.f(λx1.f(λx2. . . . f(λxn−1.f(λxn . xi)))).

123

n Hector to Compare States Homer Final States Max States
10 120ms 150 1s 74 1,400
25 140ms 370 6s 190 4,100
50 180ms 580 22s 360 7,200
100 530ms 1,600 2min 800 18,000
200 2min 37,000 7min 1,300 42,000

Table 6.4: Time to compare Kierstead terms

For n, i 6= m, j we have that Kn,i � Km,j. Under call-by-value we can de�ne the

Kierstead terms as

Kn,i ≡ f : ((unit→ unit)→ unit)→ unit ` f(λx1.f(λx2. . . . f(λxn.xi()) . . .)).

The running times for checking that Kn,i � Kn,j for various values of n and

i 6= j are shown in Table 6.4. As this is an inequivalence, the on-the-�y approach of

Hector allows it to signi�cantly out-perform Homer.

6.2.3 �Tricky� Examples

Several examples in the literature are known to be challenging to verify. Recall the

terms below from Example 3.1 and Example 3.2.

(i) let c = ref 0 inλfunit→unit.(c := 1; f(); !c) ∼= λfunit→unit.(f(); 1)

(ii) let c = ref 0 inλfunit→unit.(c := 0; f(); c := 1; f(); !c) ∼= λfunit→unit.(f(); f(); 1)

(iii)

p : (unit→ int)→ unit `
letx = ref 0 in
p(λz.x := 1; 0); ∼= p(λz.Ω)
let y = !x in if y = 0 then () elseΩ

(iv) let a = ref 0 in let r = ref 0 inλf.(r := !r + 1; a := f(!r); r := !r − 1; !a) 6∼=
λf.f(1)

As previously mentioned, the three equivalences are known to be extremely tricky

to prove using methods based on logical relations [90, 9, 17] and the inequivalence

requires a rather delicate context to separate the terms [101]. However, all of these

examples are in the O-strict fragment and Hector can easily handle them in mil-

liseconds as seen in Table 6.5.

124

Example Time to Compare State Space
(i) [90] 180ms 67
(ii) [9] 130ms 230
(iii) [17] 160ms 16
(iv) [101] 150ms 57

Table 6.5: Running times for tricky examples

6.2.4 Order

Inspired by our previous examples we can consider a series of small terms which

illustrate the increasing complexity as we increase the order of functions. Starting at

order 0 we have that

` let count = ref 0 in (count := !count + 1; if !count < 10 then () elseΩ)

is equivalent to ` (). This is because an order 0 type can only be run once and so

the value in count can never be increased beyond 1.

If we move to order 1 and consider similar terms the equivalence no longer holds.

The term

` let count = ref 0 in (λc : unit.count := !count + 1; if !count < 10 then c elseΩ)

is not equivalent to the term λc : unit.c. The λ-abstraction allows the body to be

called multiple times which can increase count above 10. However, at order 1 these

repeated calls must be performed sequentially; in the absence of recursion (and higher-

order identi�ers) we cannot have multiple calls to the same �rst-order function open

at once. Hence, the following terms are equal

` let count = ref 0 in
λc : unit.(count := !count + 1; (if !count < 10 then c elseΩ); count := !count − 1)

and λc : unit.c. Since count is incremented after the function is called and decremented

at the end of the function body, its value can never grow above 1.

However, if we increase the order again and consider order 2 functions then this

property that there can only be one copy of a function open at once fails. That is,

the following terms are inequivalent.

` let count = ref 0 in
λf : unit→ unit.
(count := !count + 1; (if !count < 10 then f() elseΩ); count := !count − 1)

125

and λf : unit → unit.f(). This is similar to Stark's tricky example. The identi�er

f can be instantiated with a function which makes further calls to the term. In

particular, they are separated by an application of the term

λF : (unit→ unit)→ unit.
F (λx1.F (λx2.F (λx3.F (λx4.F (λx5.F (λx6.F (λx7.F (λx8.F (λx9.F (λx10.())))))))))).

This causes 10 copies of the function F (which will be bound to one of our terms)

to be open at once. When provided with the �rst term this causes count to reach

value 10 leading to divergence. Hector can easily verify all of these equivalences

and inequivalences, taking around 150ms for each. These examples illustrate the

increasing power contexts gain as the order of our terms increase. This shows up

in the types of automata we need to capture their game semantics. The order 0

terms we considered could not be run more than once and so �nite automata without

any loops su�ce to capture these. At order 1 we can iterate the function body but

cannot contain any nesting. This can still be captured using �nite automata but the

automata will need to contain cycles (or if using regular expressions we will need to

use Kleene star). Finally, for our second-order example regular expressions no longer

provide su�cient expressive power as the context can perform nested calls to our

function. To represent this we need to use pushdown automata so that we can use

the stack to match calls to returns.

6.2.5 Reachability

In addition to checking equivalences, Hector can also perform reachability tests.

To do this we add assertions to terms. The statement assert(b) is treated as an

abbreviation for if b then () else fail() where fail is a special identi�er only able to be

introduced through assertions. Hector then checks if the strategy denoting a term

contains any plays with fail -moves. This will be the case if there exists a context the

term could be placed in which would cause any of the assertions to fail.

In Figure 6.6 is an implementation for a stack data structure using a �xed length

array. The function to push an element on to the stack �rst asserts that the array

is not full. Similarly, before popping we assert that the stack is non-empty. We also

have an invariant function which checks that if we push an element on to the stack and

then immediately pop it o�, we do indeed get the same element back. The unde�ned

function VERIFY is used to allow the environment to call these functions in any way

it desires. Clearly this will allow the context to pop the empty stack or push to a full

stack causing our assertions to fail. By removing all but one of the assertions we can

126

1 VERIFY : (int → unit) → (unit → int) → (int → unit) → unit `
2 l et a = [| 0 , 0 , 0 , 0 , 0 |] in

3 l et s i z e = 5 in

4 l et cur r ent = ref 0 in

5 l et isEmpty = fun x . ! cu r r ent = 0 in

6 l et i s F u l l = fun x . ! cur r ent = s i z e in

7 l et push =
8 fun x .
9 assert (i s F u l l () = 0) ;
10 a [! cu r r ent] := x ;
11 cur r ent := ! cur rent + 1
12 in

13 l et pop =
14 fun x .
15 assert (isEmpty () = 0) ;
16 cur r ent := ! cur rent − 1 ;
17 ! a [! cu r r ent]
18 in

19 l et i n va r i an t =
20 fun x . (push x ; assert (pop () = x)) in

21 VERIFY push pop inva r i an t

Figure 6.6: Code for a stack data structure

check for over�ow, under�ow and violation of the invariant separately (although since

attempts to access non-existing array elements cause divergence, the invariant will

always hold). Running times for a variety of array lengths are shown in Table 6.6. We

compare running times against those forMage on an similar encoding of a stack. As

this is exactly the type of exampleMage is designed to handle it should be no surprise

that Hector is outperformed. However, the performance, at least when checking

for over�ow, is still encouraging. Since we pass VERIFY the push function before

the pop and invariant functions, the model checkers' depth �rst searches both explore

the uses of push �rst. This means that the possible over�ow is detected relatively

quickly. Unfortunately, the downside of this is that when we check for under�ow,

the search explores the wrong part of the model. Even though the shortest possible

counterexample is in fact very short, as we are using a depth-�rst search we do not

�nd it. Consequently, Hector struggles to �nd the under�ow error. When checking

the invariant holds both model checkers struggle as this is an example where the

entire state space needs to be explored.

Interestingly, for the over�ow and under�ow errors in this example, the actual val-

ues of the data stored on the stack are almost irrelevant. Mage uses data abstraction

127

Size of Array Hector State Space Mage

Over�ow
5 175ms 36 4ms
10 190ms 61 5ms
20 260ms 130 9ms
40 700ms 250 19ms
80 4.2s 490 38ms

Under�ow
5 1.5s 6,000 6ms
10 Time Out Time Out 9ms

Invariant
5 Time Out Time Out 21s
10 Time Out Time Out Time Out

Over�ow 1024
5 240ms 6,200 4ms
10 330ms 11,000 6ms
20 700ms 22,000 9ms
40 2s 42,000 18ms
80 10.5s 83,000 37ms

Table 6.6: Running times on the stack example

to take advantage of this and so its performance is almost una�ected by the size of

the data. Hector does not use any abstraction but even so can still handle large

integers. Most of the entries in Table 6.6 were carried out with three-valued integers,

but the �nal section gives running times for over�ow checking stacks of 1024-valued

integers.

This example also illustrates a downside to the way Hector is implemented.

Hector performs its model checking on-the-�y, but this refers to the construction

and exploration of the automata. Before this construction is performed, the input

is parsed and then converted into canonical form explicitly. In most examples this

is not a problem as the model checking is still the most expensive part of the com-

putation. However, when checking for over�ow in the stack example, the normal

form is very large but the counterexample is very small and Hector spends more

time preprocessing the term than actually model checking. In examples like this it

would perhaps be better to work with the term directly (or convert to canonical form

on-the-�y) rather than explicitly performing the conversion before model checking.

128

6.3 Summary

In this chapter we have presented our equivalence checkers Homer and Hector for

third-order IA and O-strict RML respectively. These both follow an explicit state

representation for the VPA translates of terms. As such, on large examples they

struggle to deal with the state space explosion problem. However, despite this they

are both still able to handle many interesting and challenging examples. Hector uses

an on-the-�y model checking approach which allows it to perform particularly well

on inequivalences as it can terminate as soon as a counterexample is found without

having to construct the whole model.

As there are no other existing equivalence checkers which can handle such higher-

order languages, a fair comparison with existing tools is tricky. We chose to compare

against Mage as it is a similar tool, with a similar input language even though it

cannot handle as higher-order programs and checks only for reachability. SinceMage

checks a simpler problem (and also takes advantage of CEGAR) it is not surprising

that on most examples Mage runs quicker, but the fact that Homer and Hector's

running times are often within an order of magnitude is encouraging.

In the next chapter we move away from the explicit state representation and

consider a method for representing strategies based on symbolic execution.

129

130

Chapter 7

Symbolically Executed Automata

In the previous chapter we discussed our model checkers Homer and Hector which

determine observational equivalence of third-order IA and O-strict RML respectively.

Although Hector follows an on-the-�y approach, both tools work by constructing an

explicit representation of a VPA which recognises the strategy denotation of a term.

One downside of this approach is that the size of the alphabets can be very large as it

can be proportional to the size of the integer-type. Large alphabets usually entail large

automata and slow model checking. For example, consider the two versions of the IA

identity function λx : exp.x and λx : exp.newX inX :=x; !X. These two functions

are equivalent since the outside environment cannot detect the use of the local variable

X. Complete plays from their denotation will have the form q · q1 ·
∑

i i1 · i. This

seems very simple but the sum is over all values in exp. If we increase the maximum

integer value, then the size of both the alphabet and state space of the automaton

required to represent this strategy grow proportionally (so exponentially in the size

of the integers). Even on this simple example, Homer takes 5mins if 10-bit integers

are considered.

To overcome the state space explosion problem, model checking methods based

on symbolic representations have been proposed [68]. These often involve using

BDDs [24] to encode a transitions system [25] or (if BDDs no longer scale su�ciently)

using SAT- or SMT solvers and bounded model checking [18]. Here we focus on sym-

bolic execution (or symbolic simulation) which has proved successful in hardware

veri�cation [23]. It involves executing a program (or circuit) using symbolic formulas

instead of concrete values. The formulas describe the possible values which can be

associated with a variable or program point. Recently, symbolic execution has been

used for equivalence checking high-level speci�cations against circuit descriptions [50],

equivalence of C-like circuit speci�cations [65] and equivalence of embedded software

131

in assembly-language [33]. As symbolic execution is known to be an e�ective tech-

nique for equivalence checking, it is natural to investigate whether it can be adapted

to the game-semantic setting.

Symbolic execution is based on following the execution path of a program. Game

semantics, on the other hand, completely hides the actual computation, exposing only

those actions observable from the outside. At �rst glance then, we may conclude that

the two ideas are incompatible. However, recall our previous example of the identity

function. We said that the plays from the identity strategy and its observational

equivalence class have the form q ·q1 · i1 · i. Our two programs have di�erent execution

paths, since the second involves the allocation, assignment and dereferencing of a

local variable, but both result in the same plays. In fact, any term equivalent to the

identity will have the same plays and the exact execution paths that give rise to these

plays will be hidden. However, in a certain sense, this sequence of visible actions is

still executed. Intuitively, the move i1 is an input to the execution and the second

i, which must match the �rst, is an output. As we previously noted, i is allowed

to range over the exp data type, so if we represent the automaton for this strategy

explicitly then the number of states will grow exponentially with the length of the

integers we allow. Since the relationship between the moves is so simple this seems

rather excessive. All we want is an automaton similar to the one in Figure 7.1 with

�ve states. Here we use the notation of question marks for inputs and exclamation

marks for outputs. This is obviously much more compact and, assuming the range

1 2 3 4 5
q q1 ?i1 !i

Figure 7.1: A compact representation of the identity strategy

of possible inputs is clear, precisely represents the desired automaton. By viewing all

O-moves as inputs and all P-moves as outputs we can extend this idea beyond this

single example. In this chapter we propose a formal de�nition for such automata,

discuss how to compile IA terms to such automata via game semantics and how to

model check them. We also test our implementation on a number of examples and

evaluate its performance.

132

7.1 De�nition of Symbolically Executed Automata

We start by de�ning a class of automata which aim to capture this intuition. We

assume that our �nite alphabet Σ is given and that we have a countable set of variables

Var which range over Σ, a set of expressions Expr over Var which denote members of

Σ and a set of formulas Form over Var and Expr (sometimes referred to as predicates).

We assume that for an expression E and valuation function V mapping the (free)

variables of E to members of Σ, evalV (E) returns the member of Σ represented by E

under valuation V .

In our intended usage, Σ will be the set of moves from our arena, Expr will contain

all the arithmetic operators of IA and Form will contain all the comparison operators

of IA as well as the usual boolean connectives. This contains some implicit typing,

for example the expression q + 1 (where q is the question-move corresponding to

asking for the value of an expression) does not make sense. Typing information can

be encoded into the formulas used but we will not make this explicit. Similarly, while

moves are often tagged to make it explicit which side of a disjoint sum they come

from, we will not always explicitly detag them when using them in expressions. For

example, 11 + 32 should be taken to have the (untagged) value 4.

De�nition 7.1. A Symbolically Executed Automaton (SEA) is a tuple 〈Q, q0, F, δ 〉
where:

• Q is a �nite set of states.

• q0 ∈ Q is the initial state.

• F ⊆ Q is the set of �nal (or accepting) states.

• δ : (Q× (Pf (Var)× Form)×Q) + (Q× (Expr × Form)×Q) is the transition

function.

A transition q1
(X,ψ)−→ q2 from Q× (Pf (Var)× Form)×Q, will be referred to as an

input (or an X-input, or x-input for any x ∈ X). We will often denote this q1
?X : ψ−→ q2,

or if X is the singleton set {x}, q1
?x : ψ−→ q2. Conversely, a transition q1

(E,ψ)−→ q2 from

Q × (Expr × Form) × Q, will be referred to as an output. We will often denote this

q1
!E : ψ−→ q2, sometimes omitting the !. We will use q1

T : ψ−→ q2 to range over transitions

which could be either an input or an output.

We let a path be a sequence of transitions q0
T0 : ψ0−→ q1

T1 : ψ1−→ . . .
Tn−1 : ψn−1−→ qn

starting at the initial state, such that each transition is in δ. A path is well-formed

133

if whenever a variable x occurs (free) in some ψi or output expression Ei, there is an

x-input transition earlier in the sequence (qk
?Xk : ψk−→ qk+1, k ≤ i, x ∈ X). Note that it

is intended that this does allow ψi to contain variables from Xi if the ith transition

is an input qi
?Xi : ψi−→ qi+1. We say an automaton is well-formed if every possible path

is well-formed. From now on we assume all our automata are well-formed.

Given a word w (or path π), let wi (πi) be the pre�x of w (π) of length i. Also,

let wi be the i-th letter of w (counting from zero). So if w = a · b · c then w2 = a · b
and w2 = c. Given a path π, a word w of the same length and a variable x (of which

π contains at least one x-input transition) let

valπ,w(x) = wi where i is the index of the last x-input transition in π.

Example 7.1. Recall the automaton from Figure 7.1. This can be made to �t

our de�nition by making some of the expressions and predicates more explicit as in

Figure 7.2. This is well-formed, since the only variables occurring in predicates are

1 2 3 4 5
?{x } : x = q !q1 : true ?{ y } : y = i1 for some i ∈ exp !detag(y) : true

Figure 7.2: The automaton from Figure 7.1 with explicit formulas and expressions

on input transitions for that variable and the only variable on an output transition is

y, which clearly must occur after the y-input transition.

If π is the (unique) path from state 1 to state 4 and w is the word q · q1 · 21, then

valπ,w(x) = q and valπ,w(y) = 21.

We say a path π = q0
T0 : ψ0−→ q1

T1 : ψ1−→ . . .
Tn−1 : ψn−1−→ qn is a run on word w if for

each output transition qi
Ei : ψi−→ qi+1, we have eval valπi,wi (Ei) = wi. A run is valid if

∀i : 0 ≤ i < n : valπi+1,wi+1 |= ψi. A run is accepting if it is valid and ends in a �nal

state. For an automaton M , L(M) = {w | M has an accepting run on w}.
Intuitively, each input transition binds all its variables to whichever input is pro-

vided. Output transitions can only consume a particular letter, which may depend

on the latest values bound to each variable. Both input and output transitions can

only be taken if the guard on that transition holds. This may also depend on the last

value bound to each variable.

Example 7.2. In the automaton from Example 7.1, the (unique) path from state 1

to state 5 is an accepting run on the word q · q1 · 21 · 2. In fact, this path will be an

accepting run on any word of the form q · q1 · i1 · i for some i, which is exactly what

we wanted.

134

Example 7.3. In Figure 7.3 we show an SEA for comparing two integers. The

automaton reads two integers x and y and then writes their values into z in non-

decreasing order. This time we have omitted the implicit typing and untagging, as

well as predicates for inputs and outputs that can only take one value.

1 2 3 4 5 6

7 8 9 10

11

12 13 14 15

q qx ?Xx qy ?Yy

!write(X)z : X ≤ Y

okz !write(Y)z okz

done

!write(Y)z : X > Y

okz !write(X)z okz

done

Figure 7.3: An SEA for comparing two integers

Translation to Finite Automata SEA are designed to be a compact represen-

tation of �nite automata. Given an SEA A1 = 〈Q, q0, F, δ 〉, we can construct an

equivalent �nite automaton A2 which accepts the same language. If the �nite set of

variables occurring in transitions of A1 is VarA1 then let ValA1 be the �nite set of

partial valuation functions VarA1 ⇀ Σ. We construct A2 as follows:

• The set of states is Q× ValA1 .

• The initial state is (q0, ∅).

• The set of �nal states is { (f, V) | f ∈ F }.

• There is a transition (q, V)
a→ (q′, V ′) if

� q
?X : ψ→ q′ ∈ δ such that V ′ = V [X 7→ a] and V ′ |= ψ,

� or q
!E : ψ→ q′ ∈ δ such that V = V ′, evalV (E) = a and V |= ψ.

The constructed �nite automaton A2 will accept exactly the same language as the

SEA A1. By keeping track of the valuation function, the runs of A2 correspond

exactly to the valid runs of A1.

135

7.2 Game Semantics to SEA

We now consider how to translate IA terms into SEA. We consider only the �rst-order

imperative fragment of IA. This simpli�es the semantics while still being relatively

expressive, so is a suitable fragment for testing our ideas on. This fragment is con-

tained in the language given a regular language semantics in [42]. We will insist that

all O-transitions are input-transitions while all P-transitions are outputs. Most of

the constructions from [42] are simple to adapt to construct SEA. For example, free

identi�ers are copycat strategies and so every P-output will just output the immedi-

ately preceding O-input. We just need to constrain the possible inputs to obey the

rules of the game. The majority of the imperative constructs just involve combining

the automata representing subterms, usually redirecting and hiding initial and �nal

moves. Care has to be taken with the hidden formulas and expressions, but it is not

too di�erent from the explicit case.

Example 7.4. As an illustrative example, consider the case of whileM doN . We

are given SEA AM and AN which recognise JMK and JNK respectively. Note that

as these automata will be deterministic and the strategies JMK and JNK both have

unique initial moves, AM and AN must have only one transition which can be taken

from the initial state and its guard will be equivalent to true. We refer to the states

reached by following these initial transitions as q1M and q1N respectively.

To construct an SEA Awhile to recognise JwhileM doNK we take as the set of

states the disjoint union of the states from AM and AN . The initial and �nal states

will be those of AM .
The transitions will be as follows:

• The initial transition of AM is relabelled with run. That is, we have q0M
run : true−→

q1M .

• All transitions which are not initial or �nal are preserved. That is, if s1
T : ψ−→ s2

in either AM or AN where s1 is not initial and s2 is not �nal in the appropriate

automaton, then we keep this transition unchanged in Awhile.

• If s1
!E : ψ−→ f in AM where f is �nal, we have two transitions based on whether

the value of E requires us to run the body of the loop or terminate. We use the

guards to check the value of E. We have s1
done : E=0∧ψ−→ f and s1

ε : E>0∧ψ−→ q1N .

136

• Lastly, �nal transitions in the body-automaton are redirected back to the guard

automaton. If s1
!E : ψ−→ f in AN where f is �nal (E must evaluate to done in any

valid run) then s1
ε : ψ−→ q1M .

This construction involves ε-transitions which are not part of our de�nition of

SEA. This is not a problem though, as we can easily remove such transitions as the

�nal step of the construction. For every sequence of transitions

s1
ε : ψ1−→ s2

ε : ψ2−→ . . .
ε : ψn−→ sn+1

!E : ψn+1−→ sn+2

where each si is distinct (and the �nal transition is not an ε-transition), we add a

new transition s1

!E :
∧
i ψi−→ sn+1. We can then safely remove all ε-transitions.

Example 7.5. We now give a concrete example of the above construction. Consider

the IA term x : var ` while !x < 4dox :=!x + 2. Note that we are not wrapping x

in a new-block so its behaviour is not constrained. The automata for the guard and

body of the loop (before they are combined by the while construction) are shown

in Figure 7.4. Applying our construction gives the SEA in Figure 7.5. We can then

1 2 3 4 5

6 7 8 9 10 11 12

q readx ?Xx

1 : X < 4

0 : X ≥ 4

run readx ?Yx !write(Y + 2)x okx done

Figure 7.4: SEA for the guard and body of the while-loop

compress the ε-transitions as outlined above. Additionally, we can clearly remove

transitions with guards which are always unsatis�able (such as 1 = 0) and similarly

simplify guards containing conjuncts which are always true. The �nal SEA is shown

in Figure 7.6 and has the form we might have expected.

7.2.1 Local Variable Blocks

The above ideas essentially allow us to model the control �ow of the program in a

reasonably simple manner. Unfortunately, things become more complicated when we

try to model the state as well. To construct an automaton for JΓ ` newX inMK we
need to take the SEA for JΓ, X `MK, restrict it to �good-variable� behaviour and hide

137

1 2 3 4 5

7

8910

11

run readx ?Xx

done : 1 = 0 ∧X < 4

done : 0 = 0 ∧X ≥ 4

ε : 1 > 0 ∧X < 4 ε : 0 > 0 ∧X ≥ 4

readx

?Yx!write(Y + 2)x

okx

ε

Figure 7.5: SEA for the while-loop

1 2 3 4 5

8910

run readx ?Xx done : X ≥ 4

readx : X < 4

?Yx!write(Y + 2)x

okx

Figure 7.6: SEA for the while-loop with ε-transitions removed and guards simpli�ed

138

all X-transitions. When representing this with �nite automata rather than SEA, we

take a copy of the automaton for JΓ, X `MK for each value which can be written to

X. We then redirect write-moves so that write(i)X goes to the corresponding state in

the ith copy and restrict the answers to readXs such that in the ith copy the answer

is always iX . Having done this we turn all the JvarXK-moves into ε-moves. These

ε-transitions can be compressed out by adding them onto the next visible transition.

We can attempt to do the same thing in the symbolic case. In our SEA, instead

of having moves of the form write(0)X , we may have transitions on write(E)X where

E is some expression. Instead of creating a new copy for each possible value the

variable could take, we create a new copy for each expression that can be �written� to

the variable. Whenever an input-variable is bound by the response to a readX-move,

we syntactically replace any occurrences of that variable by the formula �stored� in

the local variable in that copy of the automaton. Again, write(E)X-moves transition

between copies. After performing this construction we hide allX-moves. We illustrate

this through an example.

Example 7.6. Consider the SEA A in Figure 7.7 which recognises the denotation of

the program
x : exp, y : var `
y :=x;
if !y > 5 then y := 0 else y := y × 2;
!y.

If we wrap this program in a new y in -block we will need to create a new copy of

1 2 3 4 5 6 7 8

9

10 11 12 13

14

15

16

q qx ?ix !write(i)y oky ready ?jy

write(0)y : j > 5 oky

ready ?ly !l

ready : j ≤ 5

?ky write(k × 2)y

oky

Figure 7.7: Automaton A

A for each expression which can be �written� to y. Initially, y has the value 0 so we

create a corresponding copy of A. We note that the input variables j, k and l are

bound by responses to readys. Hence, we replace all occurrences of them in this copy

of A with 0. The resulting automaton is shown in Figure 7.8.

139

1, 0 2, 0 3, 0 4, 0 5, 0 6, 0 7, 0 8, 0

9, 0

10, 0 11, 0 12, 0 13, 0

14, 0

15, 0

16, 0

q qx ?ix !write(i)y oky ready 0y

write(0)y : 0 > 5 oky

ready 0y !0

ready : 0 ≤ 5

0y write(0× 2)y

oky

Figure 7.8: The initial copy of A corresponding to y being 0

We note that this SEA has a (reachable) write(i)y-transition and so we will need

to create a fresh copy of A corresponding to y containing the expression i1. In a

similar manner as before, all copies of j, k and l in this new copy are replaced by i.

Further, the write(i)y-transition is redirected to the appropriate state in the i-valued

copy of A. Similarly, the write(0)y-transition in the new copy is redirected back to

the 0-valued version of A. The automaton after performing these changes is shown

in Figure 7.9.

1, 0 2, 0 3, 0 4, 0 5, 0 6, 0 7, 0 8, 0

9, 0

10, 0 11, 0 12, 0 13, 0

14, 0

15, 0

16, 0

1, i 2, i 3, i 4, i 5, i 6, i 7, i 8, i 10, i9, i 11, i 12, i 13, i

14, i

15, i

16, i

q qx ?ix

!write(i)y

oky ready 0y

write(0)y : 0 > 5 oky

ready 0y !0

ready : 0 ≤ 5

0y write(0× 2)y

oky

q qx ?ix !write(i)y oky ready iy

write(0)y : i > 5

oky ready iy !i

ready : i ≤ 5

iy write(i× 2)y

oky

Figure 7.9: After creating copies of A for 0 and i

We can see that this automaton has a (reachable) write(i × 2)y-transition. So,

we again create a new copy of A, replacing j, k and l by i × 2 and redirecting

1We also have write(0)y- and write(0 × 2)y-transitions. However, these are both equivalent to
storing 0 in y for which we already have a copy and furthermore we will see that neither of these
transitions will be reachable from the initial state.

140

1, 0 2, 0 3, 0 4, 0 5, 0 6, 0 7, 0 8, 0

9, 0

10, 0 11, 0 12, 0 13, 0

14, 0

15, 0

16, 0

1, i 2, i 3, i 4, i 5, i 6, i 7, i 8, i 10, i9, i 11, i 12, i 13, i

14, i

15, i

16, i

1, 2i 2, 2i 3, 2i 4, 2i 5, 2i 6, 2i 7, 2i 8, 2i

9, 2i

10, 2i 11, 2i 12, 2i 13, 2i

14, 2i

15, 2i

16, 2i

q qx ?ix

!write(i)y

oky ready 0y

write(0)y : 0 > 5 oky

ready 0y !0

ready : 0 ≤ 5

0y write(0× 2)y

oky

q qx ?ix !write(i)y oky ready iy

write(0)y : i > 5

oky ready iy !i

ready : i ≤ 5

iy

write(i× 2)y

oky

q qx ?ix

!write(i)y

oky ready i× 2y

write(0)y : i× 2 > 5

oky

ready i× 2y !i× 2

ready : i× 2 ≤ 5

i× 2y write(i× 2× 2)y

oky

Figure 7.10: After creating copies of A for 0, i and 2× i

the write(i × 2)y-transition into the new copy and the new write(0)y-transition back

into the 0-valued copy, giving the automaton in Figure 7.10. This SEA contains a

write(i× 2× 2)y-transition. However, it is not reachable from the initial state, so we

can safely ignore it and we do not need any further copies of A. Now this unrolling has

been completed, we just need to hide all the y-transitions. The SEA in Figure 7.11

shows the result of replacing all the y-transitions with ε-transitions and removing all

unreachable states. Compressing out the ε-transitions and moving the (conjunction

1, 0 2, 0 3, 0 4, 0 5, i 6, i 7, i 8, i 9, 0 10, 0 11, 0 12, 0 13, 0

14, i

15, i

16, 2i

10, 2i 11, 2i 12, 2i 13, 2i

q qx ?ix ε ε ε ε !0ε ε ε ε : i > 5

ε : i ≤ 5

ε ε

ε ε !i× 2

ε

Figure 7.11: SEA resulting from replacing y-moves with ε and deleting unreachable
states

141

of) the guards on to the next visible transition gives the �nal automaton shown in

Figure 7.12. This has the form we would have hoped for given the original program.

1, 0 2, 0 3, 0 4, 0

13, 0

13, 2i

q qx ?ix

!0 : i > 5

!i× 2 : i ≤ 5

Figure 7.12: Final SEA, created by compressing ε-transitions

One subtlety with this construction is that we need to avoid variable capture.

The value bound to an input-variable can change if a run contains multiple input-

transitions on the same variable. We do not want these changes to a�ect the value

stored in a local variable.

Example 7.7. To illustrate the possibility of variable capture, consider the SEA in

Figure 7.13. This SEA recognises the strategy denotation of the term

x : exp, y : var ` y :=x+ 1; if x > 5 then !y else 0.

1 2 3 4 5 6 7 8 9 10 11
q qx ?ix !write(i+ 1)y oky qx ?ix ready : i > 5 ?jy !j

0 : i ≤ 5

Figure 7.13: SEA with multiple i-input transitions

Note that the automaton has two i-input transitions, either side of a write(i+ 1)y-

transition. If we naïvely apply our construction for a new y in -block as before, we

create copies of the SEA corresponding to storing 0 (initially) and i in y. The result

is shown in Figure 7.14. Unfortunately, this is incorrect. The transition from state

(8, i + 1) when i > 5 is supposed to output the value stored in y. In this state,

the expression i + 1 was the last expression �written� to y and so the automaton

outputs i+ 1. However, the value of i when this was written to y was from the input-

transition in state (3, 0). This value has since been overwritten by the transition from

state (7, i+ 1). Hence, the automaton incorrectly accepts the word q · qx · 1x · qx · 6x · 7
but rejects the word q · qx · 1x · qx · 6x · 2 which should be accepted.

142

1, 0 2, 0 3, 0 4, 0 7, i+ 1 8, i+ 1 11, i+ 1
q qx ?ix qx ?ix

!i+ 1 : i > 5

0 : i ≤ 5

Figure 7.14: Variable capture results from naïvely applying the local variable block
construction

In the example above, the variable capture could easily have been avoided by

insisting that in the original automaton each input transition (and in particular the

transitions out of states 3 and 7) was on a di�erent variable. However, in automata

with cycles this does not solve the problem, as a single input-transition can be taken

multiple times in a single run. To get around this, we use the same construction as

before, but every time we create a new copy of the SEA due to a new expression

being written to a variable, we α-convert the input variables in the new copy so that

they are distinct from the variable used by existing copies. This solves the problem

and results in an automaton which recognises the correct strategy.

In order to produce an automaton with a �nite number of states, this method

requires there to be only a �nite number of distinct expressions that can be written

to a variable. For programs without loops this will clearly be the case, as in the

previous examples. This will sometimes be the case in the presence of loops as well,

as long as we can detect equivalence or unsatis�ability of formulas.

Example 7.8. Consider the program below. We take two inputs, a and b, and store

their values in local variables X and Y . Then as long as the value of X is less than

or equal to the value of Y we keep switching them. Finally we return the value of X.

1 a : exp , b : exp `
2 new X,Y,Z in

3 X := a ;
4 Y := b ;
5 while !X ≤ !Y do

6 {
7 Z := !X;
8 X := !Y;
9 Y := !Z ;
10 } ;
11 !X

Despite the fact that the loop can continue forever (if a = b), there will clearly only

be a �nite number of di�erent formulas that can be stored in each variable, namely

143

0 (initially), a and b. While this example is rather contrived, there are many other

examples, such as sorting a list, which consist of receiving input and then permuting

or processing that data in a limited way for which the number of di�erent formulas

required will also be �nite.

Example 7.9. Recall, in Example 7.6, although we created a copy of the automaton

A for each expression which could be written to y, we ignored the write(i× 2× 2)y-

transition because it was clear that the transition could never be taken as it was

unreachable in the underlying control states graph.This is a fairly naïve approach.

By utilising the formulas we may be able to detect many more unreachable transitions.

Consider the program:

1 a : exp `
2 new X,Y,Z in

3 X := a ;
4 i f !X < 10 then

5 {
6 Z := 0 ;
7 Y := 0 ;
8 while ! Z ≤ !X do

9 {
10 Z := !Z + 1 ;
11 Y := !Y + a ;
12 }
13 } ;
14 !Y

If we can detect that there is no valid path that loops more than ten times, this

will allow us to restrict the number of formulas that Y can take to a �nite number.

Searching for a valid run for each transition as we construct the model could prove

infeasible. However, if we use on-the-�y model checking then we can perform these

checks as we are exploring the model, at which time we will have more information

on which paths are valid.

Our previous two examples show that even in the presence of loops, our newX in

construction can still produce a �nite SEA. Unfortunately, we can construct examples

where there is not a �nite limit on the number of distinct formulas which can be

written to a variable and so our construction fails to produce a �nite SEA.

Example 7.10.
1 a : exp , b : exp `
2 new X in

3 while b do

4 X := !X + a ;

144

5 !X

Here the number of times we loop is unbounded, determined by the input variable

b. Every time through the loop we read an input through a and add it to X. The

values in X will have the form
k∑
i=0

ai where ai is the ith value read from a and k ∈ N.

This gives an in�nite number of distinct expressions describing the values X can

have at di�erent points in the execution and so using our construction will lead to

an in�nite state space. Note that this occurs even though the SEA for the program

before the newX in -construction is applied is �nite and contains only a �nite number

of expressions; every time we unroll a new copy of the automaton corresponding to

a di�erent expression being written to X, it creates new write-transitions on new

expressions.

Despite this problem, we hope that for many interesting examples we can use this

method to construct (�nite) automata. As long as we can detect that only a �nite

number of di�erent expressions are �written� to a variable in the reachable part of

the SEA, the construction will terminate.

7.3 Model Checking SEA

Having translated IA terms into a representation as SEA, the next question is how

to equivalence check them. Since SEA are expressively equivalent to �nite automata,

their equivalence problem is clearly decidable. We consider how to complement and

intersect SEA without resorting to converting to �nite automata. Then we show how

to decide their emptiness problem. This allows us to perform equivalence checking.

Complementation An SEA is deterministic if for each word w it has exactly one

run on w. Deterministic SEA can be complemented by complementing their set of

�nal states. The automata resulting from our translation will be deterministic by

construction.

Intersection We say an automaton A is bipartite if every path in A strictly al-

ternates between input and output transitions, starting with an input. Since all

our plays strictly alternate between O-moves (inputs) and P-moves (outputs), au-

tomata resulting from our construction will be bipartite. Given two bipartite au-

tomata A1 = 〈Q1, s1, F1, δ1 〉 and A2 = 〈Q2, s2, F2, δ2 〉, we can construct their inter-

section via a product construction. We assume that the (�nite) set of variables used

145

in the two automata are distinct (this can always be achieved via α-conversion). The

resulting automaton will be AA1∩A2 = 〈QA1∩A2 , sA1∩A2 , FA1∩A2 , δA1∩A2 〉 where

• QA1∩A2 = Q1 ×Q2.

• sA1∩A2 = (s1, s2).

• FA1∩A2 = F1 × F2.

• If q1
?X1 : ψ1−→ q′1 ∈ δ1 and q2

?X2 : ψ2−→ q′2 ∈ δ2, then (q1, q2)
?(X1∪X2) : (ψ1∧ψ2)−→ (q′1, q

′
2) ∈

δA1∩A2 .

• If q1
!φ1 : ψ1−→ q′1 ∈ δ1 and q2

!φ2 : ψ2−→ q′2 ∈ δ2, then (q1, q2)
!φ1 : ((φ1=φ2)∧ψ1∧ψ2)−→ (q′1, q

′
2) ∈

δA1∩A2 .

Then AA1∩A2 has an accepting run on w if and only if both A1 and A2 have

accepting runs on w.

Emptiness With a �nite automaton we can check for emptiness by using a breadth-

�rst search. We maintain a set of visited states and a queue of states we need to

process. At each step we take the front element of the queue, say q, and for each

state q′ reachable by a transition from q, if q′ is not in the set of visited states then

we add it to that set and also to the end of the queue. If we ever reach a �nal state

we return �non-empty�. If we get to the point of having an empty queue without

encountering a �nal state then we return �empty�.

With SEA the situation is a little more complex because we may wish to revisit

an already visited state if the valuation function will be di�erent from the previous

visit. To overcome this, instead of maintaining a set of visited states, we associate

with each state q a formula φq such that if for a valuation V , V |= φq then we know

that there is some run π on w which ends in q and valπ,w = V . To simplify things,

we add a special ⊥ value which is not in Σ. If V (x) = ⊥ then it should be taken to

mean valπ,w(x) is not de�ned for a particular run that led to this state (i.e. that run

does not pass through an x-input transition). Initially φq = false for all non-initial

q. For the initial state, φq0 =
∧
x

(x = ⊥), where the conjunction is for all variables

occurring in the automaton.

When performing a breadth-�rst search of a �nite automaton, when we visit a

state we add all unvisited neighbours to the queue of states to explore. Instead,

146

when searching an SEA we will construct for each outgoing transition a new for-

mula ψq de�ning what the new φq should be if we take this transition into ac-

count. We will then need to see whether this adds any new valuations. To do

this we de�ne a partial order on formulas: φ ≤ ψ if and only if φ ⇒ ψ is valid.

Then φ < ψ if and only if φ ≤ ψ ∧ ¬(ψ ≤ φ). Note that φ < ψ if and only if

{V | V |= φ} ⊂ {V | V |= ψ}.
Now we can give our emptiness algorithm which is shown in Figure 7.15. When

we encounter an input transition, the new formula uses existential quanti�cation to

ensure that the path up to the previous state was valid but that in the new state

the input variables can have a di�erent value (not ⊥) but must satisfy the guard.

For output transitions the valuation does not change and so we just check that the

previous state can be reached and the guard is valid. Each time we assign a new

1 while queue non−empty
2 q := dequeue (queue)
3 i f q ∈ F return "non−empty"

4 for each outgoing t r a n s i t i o n e = q
T : ψ−→ q′

5 i f e = q
?X : ψ−→ q′

6 Ψ := φq′ ∨ ((∃X.φq) ∧ ψ ∧ (
∧
x∈X(x 6= ⊥))

7 else i f e = q
!E : ψ−→ q′

8 Ψ := φq′ ∨ (φq ∧ ψ)
9
10 i f Ψ > φq′ then

11 φq′ := Ψ
12 enqueue (q′ , queue)
13 return "empty"

Figure 7.15: Reachability algorithm for SEA

value to a φq, the new formula has more satisfying valuations than the old one. Since

there are a �nite number of valuations (there are a �nite number of variables with a

�nite number of values) the algorithm must terminate.

7.4 Implementation

We have a working F# implementation of the ideas presented in this chapter. We

follow an on-the-�y approach so that we can detect when a path is no longer worth

exploring and so often limit models to be �nite. Since it is often the case that a

transition (whether input or output) will be constrained to only take a single value,

147

we make this a special case of transition. This simpli�es the guards required which

in turn simpli�es the formulas we have to ask the SMT solver about. Additionally,

we have to allow ε-transitions. While we might like to compress out ε-transitions

by pushing the guard on to the next visible transition (as we did in Example 7.6)

this does not always work. The problem is that we may have an in�nite chain of ε-

transitions with unsatis�able guards. Clearly attempting to move the guards onto the

next visible transition will not work. However, making the ε-transitions �visible� to the

exploration algorithm allows us to use the SMT solver to determine that the guards

are unsatis�able and so we know that we should ignore this path. Unfortunately, the

presence of the ε-transitions can drastically increase the state-space (since paths can

be much longer). This could be particularly bad in the product automaton used for

the symmetric di�erence construction in the equivalence check. This is because all

the ε-transitions from the two automata do not require any synchronisation and so

the state space multiplies. However, since it does not make any di�erence in which

order the ε-transitions in the two automata are explored we can apply some symmetry

reduction and enforce an ordering to stop this occurring.

For the SMT solver we use Z3, [34]. This has the advantages of being an e�cient

theorem prover which supports our required language and having a .NET interface.

Unfortunately, we had di�culty accessing Z3's .NET API under mono (which is used

to run .NET programs on Linux) and so the performance data presented in this

chapter refers to execution on a di�erent machine than that used for the previous

chapter. In the following sections, our implementation is tested and compared to

Homer running on a laptop with a 2.53GHz Intel Core 2 Duo processor and 4GB

RAM under Windows Vista.

7.4.1 Identities

We motivated SEA by noting that the explicit state representation fails to take advan-

tage of the symmetries of the game-semantic model. This is particularly evident when

considering the identity functions. In the game-semantic model these are represented

as copycat strategies and have a very simple description. However, as we have seen,

if the base types are very large the explicit state representation can be excessively

big. Hence, we would hope this is an example on which the SEA approach would be

successful.

Consider the two identity functions, x : exp ` x and x : exp ` newX inX :=x; !X.

The running times for our SEA implementation are shown in Figure 7.1 for various

sizes of the base type exp. The value n refers to the size of exp (i.e. if n = 32 this

148

refers to 32-bit integers). We also list the number of states found, the number of calls

to the SMT solver and the total amount of time spent waiting for the SMT solver.

For comparison we also give the running time of Homer and the �nal and maximum

number of states that Homer uses. It can be seen that, as we expected, using SEA

drastically speeds up equivalence checking this example. The running time is hardly

a�ected by the size of exp. By contrast, as the size of exp increases, the number of

states Homer has to consider explodes and consequently the running times are much

slower.

n SEA States Z3 Calls Z3 time Homer Final Size Max Size
2 .6s 7 6 .001s 0.8s 11 32
5 .7s 7 6 .001s 1s 67 1,200
10 .6s 7 6 .001s 5min 2,100 1,100,000
32 .7s 7 6 .001s TIMEOUT TIMEOUT TIMEOUT

Table 7.1: Running times on the identity example

7.4.2 Sorting

We now return to the example of sorting lists. Previously when we used this example,

we only considered varying the length of the list. Since we hope SEA will help deal

with large alphabets, we now consider varying both the length of the list and the size

of the integers stored in the list. The results are shown in Table 7.2. Again n refers

to the size of the integers. As can be seen, the SEA approach allows the size of the

data stored in the list to be increased well beyond the size Homer can deal with.

However, on some of the cases with 2-bit integers, the symbolic approach does not

pay o� and Homer is faster. We can also see that the number of calls made to the

SMT solver grows rapidly with the size of the list. As the size of the integers increase,

these calls come to dominate the running time.

7.4.3 Summing

As another example involving a loop, we consider the programs in Figure 7.16. The

�rst program reads its input into Z and checks whether it is less than N . If it is,

the program then calculates the sum of all integers less than or equal to Z using

a loop and outputs the result. The second program instead immediately outputs

((!Z + 1)∗!Z) >> 1. By summing the arithmetic series we can see that these two

programs should be equivalent. The game-semantic model will need to calculate

the output for every possible input. Hence, the value of N plays a major role in

149

n SEA States Z3 Calls Z3 time Homer Final Size Max Size
Lists of Length 2

2 .7s 34 37 .002s 1.4s 71 270
5 .7s 34 37 .002s 54s 3,200 38,000
10 .8s 34 37 .004s TIMEOUT TIMEOUT TIMEOUT
32 .8s 34 37 .02s TIMEOUT TIMEOUT TIMEOUT

Lists of Length 5
2 8s 5,800 8,200 .03s 5.7s 1,400 17,000
5 9s 5,800 8,200 1s TIMEOUT TIMEOUT TIMEOUT
10 11s 5,800 8,200 3s TIMEOUT TIMEOUT TIMEOUT
32 22s 5,800 8,200 13.5s TIMEOUT TIMEOUT TIMEOUT

Lists of Length 7
2 9min 290,000 420,000 12s 90s 13,000 270,000
5 15min 400,000 570,000 102s TIMEOUT TIMEOUT TIMEOUT
10 18min 400,000 570,000 5min TIMEOUT TIMEOUT TIMEOUT
32 38min 400,000 570,000 24min TIMEOUT TIMEOUT TIMEOUT

Table 7.2: Running times for comparing bubble-sort and insertion-sort

the complexity of the problem. The running times for this example are shown in

Table 7.3. These were performed under the assumption that all integers were 32-bit.

By contrast, Homer could not handle this example even for N = 10 and with all

integers as small as possible while avoiding over�ow.

N Time States Z3 Calls Z3 time
10 1s 80 160 0.1s
100 3s 620 1,300 1s
1,000 51s 6,000 13,000 19s
5,000 950s 30,000 65,000 300s
10,000 TIMEOUT TIMEOUT TIMEOUT TIMEOUT

Table 7.3: Running times for comparing summing programs

This example shows that as well as comparing programs with loops and very dif-

ferent control �ow, we can also handle programs which perform arithmetic. However,

on some examples the SMT solver struggles to cope with the arithmetic. For ex-

ample, consider the very simple program x : exp ` 207 ∗ x. Comparing this to itself

(assuming 32-bit integers) requires checking only 7 states. However, the check takes

3 minutes, almost all of which time is taken up waiting for the SMT solver to per-

form 6 satis�ability tests. In particular checking the seemingly innocuous formula

x = y ∧ ¬(x× 207 = y × 207) takes Z3 40 seconds to determine unsatis�able. If the

multiplication is part of a larger program, the formulas can be much more complicated

150

1 input : exp `
2 new X in new Y in new Z in

3 {
4 Z := input ;
5 i f ! Z > N then 0 else {
6 while !Y < !Z do

7 {
8 Y := !Y +1;
9 X := !X + !Y
10 } ;
11 !X
12 }
13 }

1 input : exp `
2 new X in new Z in

3 {
4 Z := input ;
5 i f ! Z > N then 0 else {
6 X := ((! Z + 1) ∗ ! Z) >> 1 ;
7 !X
8 }
9 }

Figure 7.16: Two programs for calculating a sum

151

and the SMT solver can be overwhelmed.

7.4.4 Wavelet

As a �nal example we consider the Discrete Wavelet Transform example used in [65].

The program is shown in Figure 7.17. It uses several loops to populate, manipulate

and then output the contents of an array of 100 8-bit integers. We consider two

variants. One in which loop fusion has been used to reduce the number of while

loops and another which has additional optimisations using scalar replacement. We

compare these both when run on a �xed input and when run on arbitrary input. The

results are shown in Table 7.4.

Prog. 1/Input Prog. 2/Input Time States Z3 Calls Z3 time
Original/Fixed Fusion/Fixed 10s 200 200 0.002s
Original/Fixed Scalar Replacement/Fixed 11s 200 200 0.002s
Fusion/Fixed Scalar Replacement/Fixed 11s 200 200 0.002s
Original/Any Fusion/Any 533s 600 600 520s
Original/Any Scalar Replacement/Any 525s 600 600 512s
Fusion/Any Scalar Replacement/Any 530s 600 600 514s

Table 7.4: Running times for comparing the wavelet examples

These examples contain a large state space (the loop fusion optimisation involves

four arrays of 100 integers) and di�ering control �ows (the original involves �ve pro-

cessing loops, whereas the other two versions only have two). While we cannot com-

pete with the results listed in [65] (though it is not clear which variant of the problem

is considered there, nor how much manual preprocessing their tool requires), the fact

that we can handle these examples is very encouraging as they are far beyond the size

Homer can cope with. It is interesting (if not necessarily surprising) to note that

the extra running time caused by allowing arbitrary input rather than considering a

�xed input is almost entirely spent waiting for the SMT solver. This might suggest

that any future work targeting improved performance on this sort of example should

focus on heuristics to optimise the queries sent to Z3.

7.5 Summary

In this chapter we have introduced the idea of Symbolically Executed Automata.

These are automata in which the transitions are labelled with formulas and guards

instead of concrete letters. They are intended as a compact representation which

152

1 i o : var `
2 new i in new a [1 0 0] in new b [1 0 0] in

3 { i := 0 ;
4 while ! i < 100 do

5 { a [! i] := ! i o ; i := ! i + 1 } ;
6 i := 0 ;
7 while ! i < 50 do

8 { i f (! i =49) then

9 a [2 ∗ ! i +1] := ! a [2 ∗ ! i +1] − (! a [2 ∗ ! i] + ! a [2 ∗ ! i])>>1
10 else

11 a [2 ∗ ! i +1] := ! a [2 ∗ ! i +1] − (! a [2 ∗ ! i] + ! a [2 ∗ ! i +2])>>1;
12 i := ! i + 1
13 } ;
14 i := 0 ;
15 while ! i < 50 do

16 { i f (! i =0) then

17 a [2 ∗ ! i] := ! a [2 ∗ ! i] + (! a [1] + ! a [2 ∗ ! i +1] + 2)>>2
18 else

19 a [2 ∗ ! i] := ! a [2 ∗ ! i] + (! a [2 ∗ ! i −1] + ! a [2 ∗ ! i +1] +2)>>2;
20 i := ! i + 1
21 } ;
22 i := 0 ;
23 while ! i < 50 do

24 { b [! i] := ! a [2 ∗ ! i] ;
25 i := ! i + 1
26 } ;
27 i := 0 ;
28 while ! i < 50 do

29 { b [50+! i] := ! a [2 ∗ ! i +1] ;
30 i := ! i + 1
31 } ;
32 i := 0 ;
33 while ! i < 100 do

34 { a [! i] := ! b [! i] ;
35 i := ! i + 1
36 } ;
37 i := 0 ;
38 while ! i < 100 do

39 { i o := ! a [! i] ; i := ! i + 1
40 }
41 }

Figure 7.17: Wavelet original

153

�ts naturally with the game-semantic model, taking advantage of its symmetries

and alleviating the problem of requiring large alphabets. We have discussed how to

translate IA programs into SEA and shown that often (but not always) this can be

done automatically in a way which gives small (�nite) automata. These automata

can then be checked for equivalence which requires calling an SMT solver. We have

implemented these ideas and tested the resulting tool on a number of examples. The

symbolic approach allows us to handle much larger data types than are possible

using an explicit state representation, including 32-bit integers and arrays containing

hundreds of elements. However, on examples with small data types but complex

control �ow, the explicit state approach wins out.

Our implementation accepts terms of �rst-order IA. It should be straightforward

to extend this to second-order IA as the game semantics is still regular. Extend-

ing further to third-order would present more of a challenge as pushdown automata

would be needed. However, it may still be possible to augment our notion of SEA

with a stack and perhaps consider symbolically executed visibly pushdown automata.

Another possible way to extend the range of examples we can handle would be to

modify the compilation algorithm. As noted, on some examples the compilation will

not produce a �nite SEA, so the algorithm is not a decision procedure. It may be

possible to �nd some heuristic to compromise between storing expressions stored in

a local variable and storing concrete values. In some cases this might allow us to

produce a �nite representation which is still relatively compact.

The other direction further work could take would be on improving the perfor-

mance. On many examples, the SMT solver proves to be a bottle neck. However,

in some cases the problem is that we perform a very large number of (often fairly

simple) calls to Z3 while in other cases only a few calls are made but they are partic-

ularly di�cult for Z3 to handle. It would be interesting to consider whether it were

possible to �nd a balance between performing many calls and performing complex

calls. Further, it may be possible to �nd a way to phrase the queries in a way that

the SMT solver �nds easier to deal with.

Related Work Veanes et al. have proposed a similar framework to ours [107, 106,

105]. They also attempt to represent �nite automata over large alphabets by labelling

transitions with symbolic expressions rather than concrete values. Transitions in their

Symbolic Finite Automata (SFA) are labelled with a formula containing a single free

variable. A transition can be followed on a given input letter if substituting the letter

for the free variable results in a true formula. This allows them to perform constraint

154

solving and recognise, for example, strings which have the form of an email address in

a very compact and e�cient manner. SFA, though, do not contain input-transitions

in the sense of SEA. A transition cannot refer to a value that occurred in a previous

transition of a run. This makes SFA inappropriate for recognising our motivating

example of the identity strategy, as we require consecutive transitions to be on the

same value (in di�erent components). Our SEA (which were developed independently

and, dating from 2009, predate their publications) were designed with capturing game-

semantic strategies in mind and the ability to refer to the value of previous transitions

is crucial to this.

155

156

Chapter 8

Conclusion

In this thesis we have explored the use of game semantics for the equivalence checking

of higher-order programs. Game semantics provides highly accurate models of higher-

order programming languages by viewing the execution of a program as the playing

of a two player game between the program and its environment. By taking advantage

of the concrete nature of the semantics and representing the strategy denotation

of terms using automata, we can decide observational equivalence of fragments of

languages. Thanks to the fully abstract nature of the game-semantic models, this

methodology is both sound and complete. Further, as we can consider open terms,

it is also compositional. This approach is fully automatic and does not require any

annotation on the part of the user.

8.1 RML

We started out by considering the call-by-value higher-order language with ground

type references RML [5]. We identi�ed the O-strict fragment of RML. That is, the

largest fragment in which (in RML's fully abstract game-semantic model) the location

of justi�cation pointers from O-moves is always uniquely determined. We showed that

this fragment consists of terms of short-type, by which we mean order at most two

and arity at most one. Further, terms may contain free identi�ers as long as all

their argument types are also short. This means large higher-order type sequents are

included (order-three free identi�ers of arbitrary arity are allowed so long as their

arguments are short). The fragment includes many examples which are known to be

di�cult to reason about. We showed that the strategy denotations of terms can be

precisely represented as languages of �nite words over a �nite alphabet. To do this

we needed to encode the location of P-pointers which we did using a single-pointer

representation. Each word encoded the location of at most one P-pointer, but every

157

ambiguous pointer was encoded by some word. Hence, when the language as a whole

was considered, the location of every P-pointer could be recovered. Further, we

showed that the languages denoting O-strict terms could be recognised by VPA. We

constructed the VPA inductively over the structure of the normal forms of RML. This

is su�cient to show that observational equivalence of O-strict RML is decidable. Our

constructions could be performed in ExpTime. We went on to show that the problem

is ExpTime-complete by reduction of the equivalence problem for nondeterministic

automata on binary trees. These results were presented in [47].

We then considered extensions to the O-strict fragment. Our initial decidability

result was for RML with loops but without any other form of recursion. We showed,

in the style of [76], that �rst-order recursive functions of arity one could be added

while preserving decidability. However, we needed to use DPDA rather than VPA.

This increase in power from VPA to DPDA really was necessary as we were able to

show that the problem is as hard as the DPDA equivalence problem.

The next extension we considered was to allow types that were no longer O-

strict. Encoding O-pointers is a lot more challenging than encoding P-pointers. This

is because O-pointers are controlled by the environment and as we must consider

all possible environments we have to allow all possible locations for O-pointers. In

contrast, P-pointers are controlled by the term so the strategy for a given term will

contain plays with only one pointer location. Due to this, our previous single-pointer

representation does not work for O-pointers. Instead, to encode plays we had to use

in�nite alphabets. We showed how strategy denotations of terms of order one and

arity two (with free variables whose arguments were at most order one and arity one)

could be encoded as data languages [97]. Furthermore, we showed how to recognise

such languages using deterministic CMA [21] and how such automata could be checked

for equivalence.

Completing our analysis of RML, we �nally considered when observational equiv-

alence becomes undecidable. We showed that order-three types or types of order

two in which an argument other than the last was �rst-order can be used to show

undecidability. Furthermore, free identi�ers which take an argument of such a type

are also enough to make the problem undecidable. The proofs rely on encoding the

computation of a Q-machine [72] (equivalent to a �nite automaton equipped with

a queue) using O-pointers to simulate the Q-store's FETCH action. Additionally,

second-order recursive functions can also be used to simulate a queue and so lead to

undecidability.

158

A summary of the known decidable and undecidable fragments was presented in

Table 4.2. We originally hoped to gain a complete picture of the decidable fragments

of RML as has been achieved for IA. We have made large amounts of progress towards

this aim. Our decidable fragments greatly extend those of [40, 73], allowing precise

representations of higher-order functions. Further, our undecidability results narrow

the gap from the other side. Unfortunately, though, we have not quite managed

to complete the picture. There are still a small number of type sequents which we

have not yet been able to show either decidable or undecidable. An obvious goal of

future work is to resolve this. These unknown cases are all non-O-strict. They do

not seem to have enough expressivity to encode a Q-machine in the same manner

as our existing undecidability proofs. However, it is also not clear what class of

automata would be suitable for recognising their semantics. Some of the unresolved

cases seem to require VPA (or DPDA in the case of recursion) over in�nite alphabets.

Others appear to need some form of nesting of data values. We are not currently able

to ascertain whether automata exist which can recognise such languages yet have a

decidable equivalence problem.

We would also like to know the exact complexity of deciding observational equiv-

alence for RMLCMA. It is not yet clear whether our use of CMA results in an optimal

complexity bound or not.

8.2 Non-Local Control Flow

In Chapter 5 we moved on to looking at languages with non-local control �ow. Game

semantically, allowing non-local jumps of control corresponds to dropping the brack-

eting condition. We �rst looked at IA augmented with catch. In the game-semantic

model of IA, answers can never be used to justify another move. Because of this, when

bracketing is removed the visibility condition still implies a weak bracketing condi-

tion [60]. This means that although an answer does not have to answer the most

recently asked question, it cannot answer a question if another earlier asked question

has already been answered. Essentially, non-local jumps in control can pop the call

stack, but cannot �pop the stack upwards�. This allowed us to encode the location

of ambiguous justi�cation pointers which violate bracketing by making the violations

explicit and to capture strategies using VPA which pop moves o� the stack when they

are closed. In doing this we showed that decidability of third-order IA is preserved

when catch is added to the language. Further, by using a product construction to

159

recognise an alternative ordering on strategies, we showed that this result holds for

the language both with and without a bad-variable constructor [75].

For future work we would like to �nd decidable fragments of RML with non-local

control �ow. Unfortunately, this appears more challenging than in the call-by-name

case. Since answers can justify questions in the call-by-value model, the visibility

condition is no longer su�cient to imply weak bracketing. This means that control

�ow jumps no longer just correspond to popping the call stack and so we cannot

encode bracketing violations in the same manner. It does not appear that pushdown

automata are suitable for capturing strategies of this language, as there is little about

the semantics which resembles a stack-like behaviour. It is possible that some form of

automata with in�nite alphabets may be able to capture a class of terms, in the same

manner as for well-bracketed RML. Any further progress on capturing non-O-strict

well-bracketed strategies may also feed directly into this.

It would also be interesting to investigate decidability results for other language

extensions. Recursive types and general references are both standard features of ML-

like languages and can be captured using game semantics [66, 2]. Unrestricted, their

addition to our languages would immediately lead to undecidability. However, it

may be possible to �nd some natural conditions on their use to recover decidability.

Similarly, rather than completely dropping bracketing from the call-by-value model,

there may be a weaker form of non-local control �ow which could be added to RML.

Weak bracketing is not preserved by composition in the call-by-value model, but there

may be a di�erent condition (and corresponding control construct) which is preserved

and can be used to �nd a decidable fragment.

8.3 Implementation

We also presented our tools Homer [49] and Hector [48] which are equivalence

checkers for the third-order fragment of IA and the O-strict fragment of RML respec-

tively. These both construct VPA precisely representing the game-semantic denota-

tions of terms. The constructed VPA are language equivalent if and only if the terms

they represent are observationally equivalent. Both tools rely on an explicit state

representation but Hector uses on-the-�y model checking. This avoids constructing

unreachable parts of the VPA and also allows early termination if a counterexample is

found. Both tools are easily able to handle many challenging examples. Compared to

the game semantics based model checker Mage [12], they are outperformed (unsur-

prising given that Mage checks simpler properties and uses abstraction techniques)

160

but are encouragingly competitive. However, due to their explicit state representa-

tions, on larger examples they run into the state space explosion problem. To help

deal with large data types we proposed SEA, adopting ideas from symbolic execution.

We showed how to represent the game semantics of terms as a form of automata with

transitions labelled with formulas and guards. This allowed a more compact repre-

sentation, particularly reducing the size of our automata's alphabets. For simplicity

we only considered �rst-order programs but the idea should work for higher-order

programs too. Our implementation relied on the SMT solver Z3 [34] to check satis�-

ability of formulas. Using SEA allowed us to handle much larger data types (32-bit

integers). However, the compilation to SEA was not guaranteed to produce a �nite

automaton and so the method was incomplete. It also struggled with the state space

explosion problem on larger examples and gave little bene�t when only small data

types were used.

One direction of future work would be to try to �nd ways to optimise the SEA

implementation. On some examples, the tool makes an excessive number of calls to

the SMT solver or asks about formulas that Z3 �nds hard to deal with. It may be

possible to �nd heuristics to cut back on the number of calls or rephrase formulas to

speed up the process.

Our current algorithm for constructing SEA does not always produce a �nite au-

tomaton. On the examples we tested our tool on, this was not a problem. However,

it may also be worth exploring compromises between the symbolic and explicit ap-

proaches to try to �nd a compilation algorithm which is both compact and complete.

We would also like to extend the input language to include higher-order types and

potentially integrate the result into Homer.

Finally, our tools would also bene�t from other model checking techniques. Meth-

ods such as data abstraction [12], predicate abstraction [13] and CEGAR [35] have

been used in a game-semantic setting, but only for reachability checking. Adapting

these for equivalence checking would be non-trivial but might improve performance.

161

162

Bibliography

[1] S. Abramsky, D. R. Ghica, A. S. Murawski, and C.-H. L. Ong. Applying game

semantics to compositional software modeling and veri�cation. In TACAS, 2004.

[2] S. Abramsky, K. Honda, and G. McCusker. A fully abstract game semantics

for general references. In LICS, 1998.

[3] S. Abramsky, R. Jagadeesan, and P. Malacaria. Full abstraction for PCF. In

TACS, 1994.

[4] S. Abramsky and G. McCusker. Games for recursive types. In Theory and

Formal Methods of Computing, 1994.

[5] S. Abramsky and G. McCusker. Call-by-value games. In CSL, 1997.

[6] S. Abramsky and G. McCusker. Linearity, sharing and state: a fully abstract

game semantics for Idealized Algol with active expressions. In Algol-like lan-

guages, Birkhauser, 1997.

[7] S. Abramsky and G. McCusker. Full abstraction for Idealized Algol with passive

expressions. Theor. Comput. Sci., 227(1-2), 1999.

[8] S. Abramsky and G. McCusker. Game semantics. In Computational Logic:

Proceedings of the 1997 Marktoberdorf Summer School, 1999.

[9] A. Ahmed, D. Dreyer, and A. Rossberg. State-dependent representation inde-

pendence. In POPL, 2009.

[10] R. Alur, S. Chaudhuri, K. Etessami, and P. Madhusudan. On-the-�y reacha-

bility and cycle detection for recursive state machines. In TACAS, 2005.

[11] R. Alur and P. Madhusudan. Visibly pushdown languages. In STOC, 2004.

[12] A. Bakewell and D. R. Ghica. On-the-�y techniques for game-based software

model checking. In TACAS, 2008.

[13] A. Bakewell and D. R. Ghica. Compositional predicate abstraction from game

semantics. In TACAS, 2009.

[14] T. Ball, R. Majumdar, T. Millstein, and S. K. Rajamani. Automatic predicate

abstraction of C programs. In PLDI, 2001.

[15] T. Ball and S. K. Rajamani. The SLAM toolkit. In CAV, 2001.

163

[16] J. Bengtson, K. Bhargavan, C. Fournet, A. D. Gordon, and S. Ma�eis. Re�ne-

ment types for secure implementations. In CSF, 2008.

[17] N. Benton and B. Leperchey. Relational reasoning in a nominal semantics for

storage. In TLCA, 2005.

[18] A. Biere, A. Cimatti, E. M. Clarke, and Y. Zhu. Symbolic model checking

without BDDs. In TACAS, 1999.

[19] L. Birkedal, N. Torp-Smith, and H. Yang. Semantics of separation-logic typing

and higher-order frame rules for Algol-like languages. CoRR, abs/cs/0610081,

2006.

[20] H. Björklund and M. Boja«czyk. Shu�e expressions and words with nested

data. In MFCS, 2007.

[21] H. Björklund and T. Schwentick. On notions of regularity for data languages.

Theor. Comput. Sci., 411(4-5), 2010.

[22] M. Boja«czyk, C. David, A. Muscholl, T. Schwentick, and L. Segou�n. Two-

variable logic on data words. ACM Trans. Comput. Log., 12(4), 2011.

[23] R. E. Bryant. A methodology for hardware veri�cation based on logic simula-

tion. Journal of the ACM, 38:299�328, 1991.

[24] R. E. Bryant. Symbolic boolean manipulation with ordered binary-decision

diagrams. ACM Comput. Surv., 24(3), 1992.

[25] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang.

Symbolic model checking: 1020 states and beyond, 1990.

[26] R. Cartwright and M. Felleisen. Observable sequentiality and full abstraction.

In POPL, 1992.

[27] A. Cataldo. The Power of Higher-Order Composition Languages in System

Design. PhD thesis, University of California, 2006.

[28] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-

guided abstraction re�nement. In CAV, 2000.

[29] E. M. Clarke, O. Grumberg, and D. Peled. Model Checking. MIT Press, 2001.

[30] E. M. Clarke, D. Kroening, and F. Lerda. A tool for checking ANSI-C programs.

In TACAS, 2004.

[31] E. M. Clarke and H. Veith. Counterexamples revisited: Principles, algorithms,

applications. In Veri�cation: Theory and Practice, 2003.

[32] P. Cousot and R. Cousot. Abstract interpretation: A uni�ed lattice model for

static analysis of programs by construction or approximation of �xpoints. In

POPL, 1977.

164

[33] D. Currie, X. Feng, M. Fujita, A. J. Hu, M. Kwan, and S. Rajan. Embedded

software veri�cation using symbolic execution and uninterpreted functions. Int.

J. Parallel Program., 34(1), 2006.

[34] L. de Moura and N. Bjørner. Z3: An e�cient SMT solver. In TACAS, 2008.

[35] A. Dimovski, D. R. Ghica, and R. Lazic. Data-abstraction re�nement: A game

semantic approach. In SAS, 2005.

[36] D. Dreyer, G. Neis, and L. Birkedal. The impact of higher-order state and

control e�ects on local relational reasoning. In ICFP, 2010.

[37] M. Felleisen and R. Hieb. The revised report on the syntactic theories of se-

quential control and state. Theor. Comput. Sci., 103:235�271, 1992.

[38] M. P. Fiore. Axiomatic Domain Theory in Categories of Partial Maps. Cam-

bridge University Press, 1996.

[39] T. Freeman and F. Pfenning. Re�nement types for ML. In PLDI, 1991.

[40] D. R. Ghica. Regular-language semantics for a call-by-value programming lan-

guage. In MFPS, 2001.

[41] D. R. Ghica and A. Bakewell. Clipping: A semantics-directed syntactic approx-

imation. In LICS, 2009.

[42] D. R. Ghica and G. McCusker. Reasoning about Idealized Algol using regular

languages. In ICALP, 2000.

[43] B. Godlin and O. Strichman. Inference rules for proving the equivalence of

recursive procedures. Acta Inf., 45(6), 2008.

[44] B. Godlin and O. Strichman. Regression veri�cation. In DAC, 2009.

[45] C. A. R. Hoare. The verifying compiler, a grand challenge for computing re-

search. In VMCAI, 2005.

[46] K. Honda and N. Yoshida. Game theoretic analysis of call-by-value computa-

tion. In ICALP, 1997.

[47] D. Hopkins, A. S. Murawski, and C.-H L. Ong. A fragment of ML decidable by

visibly pushdown automata. In ICALP, 2011.

[48] D. Hopkins, A. S. Murawski, and C.-H L. Ong. Hector: An equivalence

checker for a higher-order fragment of ML. In CAV, 2012.

[49] D. Hopkins and C.-H L. Ong. Homer: A higher-order observational equivalence

model checker. In CAV, 2009.

[50] A. J. Hu. High-level vs. RTL combinational equivalence: An introduction, 2006.

[51] G. Hutton. Higher-order functions for parsing. J. Funct. Program., 2(3), 1992.

[52] J. M. E. Hyland and C.-H. L. Ong. On full abstraction for PCF: I, II, and III.

Inf. Comput., 163(2), 2000.

165

[53] R. Jhala, R. Majumdar, and A. Rybalchenko. HMC: Verifying functional pro-

grams using abstract interpreters. In CAV, 2011.

[54] N. D. Jones and N. Andersen. Flow analysis of lazy higher-order functional

programs. Theor. Comput. Sci., 375(1-3), 2007.

[55] N. D. Jones and S. S. Muchnick. The complexity of �nite memory programs

with recursion. J. ACM, 25(2), 1978.

[56] M. Kaminski and N. Francez. Finite-memory automata. Theor. Comput. Sci.,

134(2), 1994.

[57] N. Kobayashi. Model-checking higher-order functions. In PPDP, 2009.

[58] N. Kobayashi. Types and higher-order recursion schemes for veri�cation of

higher-order programs. In POPL, 2009.

[59] D. Kroening and E. M. Clarke. Checking consistency of C and Verilog using

predicate abstraction and induction. In ICCAD, 2004.

[60] J. Laird. Full abstraction for functional languages with control. In LICS, 1997.

[61] J. Laird. A Semantic Analysis of Control. PhD thesis, University of Edinburgh,

1999.

[62] J. Laird. A game semantics of local names and good variables. In FOSSACS,

2004.

[63] R. Loader. Finitary PCF is not decidable. Theor. Comput. Sci., 266(1-2), 2001.

[64] H. G. Mairson. A simple proof of a theorem of Statman. Theor. Comput. Sci.,

103, 1992.

[65] T. Matsumoto, K. Seto, and M. Fujita. Formal equivalence checking for loop

optimization in C programs without unrolling. In ACST, 2007.

[66] G. McCusker. Games and full abstraction for FPC. In LICS, 1996.

[67] G. McCusker. On the semantics of the bad-variable constructor in Algol-like

languages. In MFPS, 2003.

[68] K. L. McMillan. Symbolic Model Checking: An Approach to the State Explosion

Problem. PhD thesis, Carnegie Mellon University, 1992.

[69] J. Midtgaard. Control-�ow analysis of functional programs. Technical report,

BRICS, 2007.

[70] M. L. Minsky. Computation: Finite and In�nite Machines. Prentice-Hall, Inc.,

1967.

[71] E. Moggi. Notions of computation and monads. Inf. Comput., 93(1), 1991.

[72] A. S. Murawski. On program equivalence in languages with ground-type refer-

ences. In LICS, 2003.

166

[73] A. S. Murawski. Functions with local state: regularity and undecidability.

Theor. Comput. Sci., 338(1-3), 2005.

[74] A. S. Murawski. Games for complexity of second-order call-by-name programs.

Theor. Comput. Sci., 343(1-2), 2005.

[75] A. S. Murawski. Bad variables under control. In CSL, 2007.

[76] A. S. Murawski, C.-H. L. Ong, and I. Walukiewicz. Idealized Algol with ground

recursion, and DPDA equivalence. In ICALP, 2005.

[77] A. S. Murawski and N. Tzevelekos. Full abstraction for Reduced ML. In FOS-

SACS, 2009.

[78] A. S. Murawski and N. Tzevelekos. Block structure vs. scope extrusion: Between

innocence and omniscience. In FOSSACS, 2010.

[79] A. S. Murawski and N. Tzevelekos. Algorithmic nominal game semantics. In

ESOP, 2011.

[80] A. S. Murawski and N. Tzevelekos. Game semantics for good general references.

In LICS, 2011.

[81] A. S. Murawski and I. Walukiewicz. Third-order Idealized Algol with iteration

is decidable. In FOSSACS, 2005.

[82] F. Neven, T. Schwentick, and V. Vianu. Finite state machines for strings over

in�nite alphabets. ACM Trans. Comput. Logic, 5(3), 2004.

[83] H. Nickau. Hereditarily sequential functionals. In LFCS, 1994.

[84] P. W. O'Hearn and J. C. Reynolds. From Algol to polymorphic linear lambda-

calculus. J. ACM, 47(1), 2000.

[85] C. Okasaki. Even higher-order functions for parsing. J. Funct. Program., 8(2),

1998.

[86] C.-H L. Ong. An approach to deciding the observational equivalence of Algol-

like languages. Annals of Pure and Applied Logic, 130, 2004.

[87] C.-H. L. Ong. On model-checking trees generated by higher-order recursion

schemes. In LICS, 2006.

[88] C.-H. L. Ong and C. A. Stewart. A Curry-Howard foundation for functional

computation with control. In POPL, 1997.

[89] M. Parigot. λµ-calculus: An algorithmic interpretation of classical natural

deduction. In LPAR, 1992.

[90] A. M. Pitts and I. D. B. Stark. Operational reasoning for functions with local

state. Higher order operational techniques in semantics, 1998.

[91] G. D. Plotkin. Call-by-name, call-by-value and the λ-calculus. Theor. Comput.

Sci., 1(2), 1975.

167

[92] G. D. Plotkin. LCF considered as a programming language. Theor. Comput.

Sci., 5(3), 1977.

[93] E. L. Post. Formal reductions of the general combinatorial decision problem.

AJM, 65(2), 1943.

[94] J. C. Reynolds. The essence of Algol. In Algorithmic Languages, 1981.

[95] P. M. Rondon, M. Kawaguci, and R. Jhala. Liquid types. In PLDI, 2008.

[96] S. Schwoon. Model-Checking Pushdown Systems. PhD thesis, Tech. Univ. of

Munich, 2002.

[97] L. Segou�n. Automata and logics for words and trees over an in�nite alphabet.

In CSL, 2006.

[98] H. Seidl. Deciding equivalence of �nite tree automata. SIAM J. Comput., 19(3),

1990.

[99] G. Sénizergues. L(A) = L(B)? Decidability results from complete formal sys-

tems. Theor. Comput. Sci., 251(1-2), 2001.

[100] O. Shivers. Control-Flow Analysis of Higher-Order Languages or Taming

Lambda. PhD thesis, CMU, 1991.

[101] I. D. B. Stark. Names and Higher-Order Functions. PhD thesis, Univ. of

Cambridge, 1995.

[102] R. Statman. The typed λ-calculus is not elementary recursive. Theor. Comput.

Sci., 9, 1979.

[103] C. Stirling. Decidability of DPDA equivalence. Theor. Comput. Sci., 255(1-2),

2001.

[104] C. Stirling. Deciding DPDA equivalence is primitive recursive. In ICALP, 2002.

[105] M. Veanes and N. Bjørner. Symbolic automata: The toolkit. In TACAS, 2012.

[106] M. Veanes, N. Bjørner, and L. de Moura. Symbolic automata constraint solving.

In LPAR (Yogyakarta), 2010.

[107] M. Veanes, P. de Halleux, and N. Tillmann. Rex: Symbolic regular expression

explorer. In ICST, 2010.

[108] G. Winskel. The Formal Semantics of Programming Languages: An Introduc-

tion. MIT Press, 1993.

[109] D. N. Xu, S. Peyton Jones, and K. Claessen. Static contract checking for

Haskell. SIGPLAN, 44(1), 2009.

[110] H. Yang. Relational separation logic. Theor. Comput. Sci., 375(1-3), 2007.

168

Index

!, 14

Ω, 8

⇒ (Call-by-Name), 13

⇒ (Call-by-Value), 22

#, 15
†, 15, 105
(, 14

⊗, 22
→, 22

×, 14

Alternation, 11

Arenas, 10

Call-by-Value, 20

Arity, 30

Bad-Variable Constructor, 7

In IAcatch, 108

In IA, 9

In RML, 20

Bi-Strict, 30

Binary-Tree Automaton (BTA), 59

Bracketing Condition, 11

Canonical Forms (of RML), 39

catch, 99

Class (of a Data Word), 72

Class Memory Automata (CMA), 72

Complementation, 74

Complete Plays, 16

Complexity of RMLO-Str, 58

Composition of Strategies, 15

Call-by-Value, 23

Copycat Strategies, 15

Dagger, see †
Data Word, 71

Decidability

In IAcatch, 113

In IAcatch+mkvar, 107

In RMLCMA, 86

In RMLO-Str, 56

In RMLO-Str with Recursion, 69

In IA, 26

Decidable Fragments

Of IA, 26

Of RML, 96

Enabling Relation, 10

Full Abstraction

For IAcatch+mkvar, 100

For Idealized Algol, 16

For RML, 24

Games, 12

For IA Base Types, 13

Hardness

Of RMLO-Str, 60

Of RMLO-Str with Recursion, 68

Hector, 121

Homer, 115

IA∗3, 26

169

Idealized Algol, 7

Game Semantics, 16

Operational Semantics, 9

Syntax, 8

Identity Strategies, see Copycat Strate-

gies

Innocence, 14

Interaction Sequence, 15

Justi�cation Pointers, 11

Encoding, 36, 78, 101

In IAcatch, 100

In RML, 29, see also Single Pointer

Representation

Kierstead Terms, 118, 123

Negative Occurrence (of a Type), 20

O-Strict, 30

Fragment of RML, 33

O-View, 12

Observational Equivalence, 8

On-the-Fly Reachability, 122

Order

In RML, 31

Of Moves and Arenas, 26

Of Types and Terms, 26

pλ(·), 24
P-View, 12

Plays, 12

Prearena, 23

Q-Machine, 88

Q-Store, 88

Recursion in RML, 63

RML, 18

Game Semantics, 23

Operational Semantics, 19

Syntax, 18

RMLCMA, 76

Representation as Data Words, 78

RMLO-Str, see O-Strict

Scope Extrusion, 9, 34, 119

Short Types, 31

Single Pointer Representation, 37

Failure for O-Pointers, 70

Snapback, 8, 34, 119

Sorting, 116, 122, 149

Strategy, 14

Switching Condition, 13

Symbolic Finite Automata (SFA), 154

Symbolically Executed Automata (SEA),

133

Compilation From Game Semantics,

136

Implementation, 147

Model Checking, 145

Translation to Finite Automata, 135

�Tricky� Examples, 35, 124

Undecidability

In IA, 26

In RML, 87

In RML with Recursion, 93

View Function, view(·), 12
Visibility, 11

Visibly Pushdown Automata (VPA), 27

Wavelet, 152

Weak Bracketing, 99

Well-Opened, 12

170

