
Towards Query Formulation and Query-Driven
Ontology Extensions in OBDA Systems

B. Cuenca Grau2, M. Giese4, I. Horrocks2, T. Hubauer3, E. Jiménez-Ruiz2,
E. Kharlamov2, M. Schmidt1, A. Soylu4, D. Zheleznyakov2

1 fluid Operations AG, Germany
2 Department of Computer Science, University of Oxford, Oxford UK,

3 Siemens Corporate Technology, Germany
4 Department of Informatics University of Oslo, Norway

Abstract. The process of translating end-users’ information needs into execu-
table and optimised queries over the data is the main problem that end-users face
in Big Data scenarios. In this paper we present the recently started EU project Op-
tique, which advocates for a next generation of the well known Ontology-Based
Data Access (OBDA) approach to address this problem. We discuss challenges,
present ongoing work, and our current preliminary solutions with regards to the
query formulation and query-driven ontology extension.

Keywords: Ontology-Based Data Access, Query Formulation, Ontology Navigation

1 Introduction

Massive amounts of data have been accumulated over decades; moreover, data keeps
increasing fast; and it is spread over a vast variety of formats and sources, being mod-
eled using different conceptualisations of the domain, often using schemata that are
optimized for efficient processing rather than for intuitive access. These three aspects
go hand in hand with the volume, velocity, and variety dimensions of Big Data [7].

Accessing the relevant data in this context is becoming increasingly difficult for
end-users. For example, in large enterprises, such as Statoil,5 end-users work with ap-
plications that allow accessing data through a limited set of predefined queries. In sit-
uations where an end-user needs data that these predefined queries do not provide, the
help of IT-experts (e.g., database managers) is required. The IT-experts need to trans-
late the end-users’ information needs into suitable queries and this process may require
several iterations. In particular in the oil and gas industry, IT-experts spend 30–70%
of their time gathering and assessing the quality of data [5]. This is clearly very ex-
pensive in terms of both time and money. The Optique project6 [7] advocates for the
well-known Ontology-Based Data Access (OBDA) approach (e.g., [20, 2]) to address
the bottlenecks that end-users face when accessing Big Data and aims at solutions that
significantly reduce the cost of data access.

5 Statoil ASA is an oil and gas company and it is one of the uses case scenarios in Optique,
which aims in particular at providing access to data for geologists, petrophysicists, etc.

6 http://www.optique-project.eu/

streaming data

end-user IT-expert

Ontology Mappings

...
heterogeneous
data sources

query

results

Query
Formulation

Ontology & Mapping
Management

...

end-user IT-expert

Application
Ontology Mappings

Query Answering

...
heterogeneous
data sources

query

results

Classical OBDA Optique OBDA

Application
(Analytics)

Query Transformation
Distributed Query Optimisation and Processing

Fig. 1. The general architecture of a classical (left) and the Optique (right) OBDA system

OBDA systems have the potential to address the data access problem by present-
ing a general ontology-based and end-user oriented query interface over heterogeneous
data sources. The core elements in a classical OBDA system (Figure 1, left) are an
ontology, which describes the application domain in terms of user-oriented vocabulary
of classes (usually referred as concepts) and relationships between them (usually re-
ferred as roles), and a set of mappings, which relates the terms in the ontology and the
schema of the underlying data sources. End-users formulate queries using the terms de-
fined by the ontology, which should correspond to their view of the domain, and thus,
they are not required to understand the data source schemata. For example, in the Sta-
toil use case the ontology would provide concepts such as WellBores, their purpose,
etc., while the mappings would associate SQL queries to each term of the ontology
vocabulary, i.e., similarly to SQL view definitions. For example, the ontology concept
Water Injection Wellbore would be mapped to the SQL query:

SELECT *
FROM DevelopmentWellBore
WHERE purpose=Injection and content=Water

To be precise, one should extend this mapping with a reification function that transforms
tuples returned by the query above into constants, i.e, exact identifiers of water injection
wellbores. Another alternative is to adjust the query by changing the select clause to the
following: SELECT ID.

State-of-the-art OBDA systems that are based on classical OBDA architecture (Fig-
ure 1, left), however, have shown among others the following four limitations.

1. The usability of OBDA systems regarding the user interface is still an open issue.
Even if the vocabulary provided by the ontology is familiar to end-users, they may
find difficult to formulate complex queries when several concepts and roles are
involved.

2. OBDA systems critically depend on a suitable ontology and the corresponding set
of mappings, which are in practice expensive to obtain. Even if we assume that
the ontology and the mappings are given, they are not static artifacts and should
evolve according to the new end-users’ information requirements. Both bootstrap-
ping of ontologies and mappings for an initial installation of OBDA systems and
subsequent maintenance are challenging topics which are still in a premature stage.

3. Treatment of query answering is usually limited to query rewriting and there is little
support of distributed query optimisation and processing in OBDA systems.

4. Streaming, e.g., sensor, data and corresponding analytical tools are generally ig-
nored by OBDA systems, which seriously limits their applicability in enterprises
such as Statoil.

The Optique project, which started in November 2012 and has a four years time
span, aims at addressing these four limitations by developing a next generation OBDA
system that targets the demands of today’s Big Data challenges. The core components
of the Optique’s OBDA solution are presented in Figure 1, right: (i) query formulation,
(ii) ontology and mapping management, (iii) query transformation, and (iv) distributed
query optimisation and processing. Besides the core components, Optique’s OBDA sys-
tem integrates both data streams and databases, and supports data analytics.

In this paper we focus on the first and partially the second limitation above. More
specifically, we focus on the query formulation component of Optique’s solution. We
will also discuss the query-driven ontology extension sub-component of the query for-
mulation component which in fact partially addresses issues of the second limitation
(ontology maintenance). In the following sections we discuss challenges, introduce our
ongoing work, and illustrate our preliminary solutions. Moreover, we present an envis-
aged architecture of our query formulation component.

2 Challenges in Query Formulation

The ontology in an OBDA system, as already mentioned, is intended to provide a user-
oriented conceptual model of the domain. This allows users to formulate queries us-
ing familiar terms and shields from understanding the structure of the underlying data
sources. However, in order to provide the necessary power and flexibility, the required
query language will inevitably be rather complex and it would be unrealistic to expect
all end-users to formulate queries directly in such a query language.

In Optique we advocate for a query by navigation (QbN) approach combined with
faceted search to address the usability problem. We refer interested readers to [23, 17,
10, 21] for some state-of-the-art solutions. There are, however, two important concep-
tual challenges related to the query by navigation approach: (i) representation paradigms
for ontologies, and (ii) correlations between navigation and query construction. We will
now elaborate on these challenges.

Representation paradigms. Query by navigation approaches usually combine naviga-
tional search and faceted search techniques over an underlying ontology graph (or any
other kind of structured knowledge). Thus, in this scenario, the ontology not only pro-
vides the domain vocabulary but also guides the end-user to formulate complex queries.

Existing approaches, however, are mostly dominated with one type of representation
paradigm (e.g., forms, diagrams etc.), hence limited to the confines of a particular
model. We believe that multiple representation paradigms should be used in collabo-
ration where each paradigm is responsible for the tasks for which it is best suited.

We have also observed that current solutions do not adequately employ a very im-
portant paradigm, namely the graph representation metaphor of OWL ontologies. The
formal underpinning of OWL (and its revision OWL 2) is provided by Description Log-
ics (DLs) where the fundamental modelling concept is an axiom (i.e., a logical statement
relating roles and/or concepts). This is a key difference from traditional graph-based
knowledge representation paradigms (e.g., semantic networks). OWL ontologies may
include complex axioms and concept constructors such as universal restrictions that do
not have a direct representation in a graph structure.

Correlations between navigation and query construction. Given a navigation paradigm,
one has to understand how the actual navigation influences the construction of a query.
More precisely, how the navigation corresponds to operators in a given query language.
For example, how to form a query with negation, disjunction, or aggregation via a graph
navigation? For navigation over graphs there is a natural correspondence to conjunctive
queries: moving along a graph can be seen as an extension of the corresponding query
with more conjuncts corresponding to the (labels of) edges and nodes met on the way.
This correspondence gives good opportunities for designing QbN algorithms. For other
types of queries, however, establishing the correlation is a challenging problem that will
require further research.

The representation paradigms and the correlation between navigation and query
construction give two dimensions of choices for query by navigation approaches. Or-
thogonally, the ontology and query languages give another two dimensions to choose
from. In the following we elaborate on the OWL 2 QL ontology language and queries
that essentially correspond to a conjunctive fragment of SPARQL. For this choice we
will discuss possible issues and challenges.

OWL 2 QL and conjunctive queries. Even in the simplified scenario where the ontology
language is reduced to the OWL 2 QL profile [19], and only conjunctive queries are
formulated, there are still several issues regarding to the representation and navigation
of the information shown to the user:

1. Top-down propagation of property restrictions. Traditional graph representations
usually only include explicit information attached to a concept in the ontology;
however, inherited restrictions will also play an important role in graph navigation.
For example if the ontology includes the axiom Wellbore v ∃hasPath.Path,7 then
the subconcepts of Wellbore should also suggest a link to the concept Path. How-
ever, this can make the representation unfeasible when Wellbore has many subcon-
cepts; thus a trade-off between readability and the amount of necessary information
provided to the user should be achieved.

2. Bottom-up propagation of property restrictions. Since from a model-theoretic point
of view the interpretation of an OWL concept also includes the interpretations of all

7 The axiom says that every wellbore has (at least) one path.

its subconcepts, it may also make sense to suggest for a given concept the (poten-
tial) restrictions of its subconcepts. For example, consider an ontology including
GasWell and OilWell as (direct or indirect) subconcepts of Well and the axioms
OilWell v ∃hasProduction.Oil and GasWell v ∃hasProduction.Gas, then the con-
cept Well could potentially be related to the concepts Oil and Gas.

3. Cycles in the ontology graph. Ontology axioms such as inclusion between concepts
or inverse roles can lead to cycles in the ontology graph. Thus, the navigation should
take into account these cycles and, in some cases, avoid repetitive suggestions. For
example, if one constructs a query by navigating through the following ontology
and starts the navigation from the concept Wellbore, then one gets back to Wellbore
in two steps, via the concepts Core and StratigraphicLayer.

Wellbore v ∃hasCore.Core
Core v ∃hasLayer.StratigraphicLayer

StratigraphicLayer v ∃layerOf.Wellbore.

Should the system suggest or allow the user to go to Wellbore via the layerOf re-
lation when StratigraphicLayer is reached? The answer depends on the query that
the user has in mind. For example, if the user has the following query in mind,8

then Wellbore should be recommended.

Q(x) :- Wellbore(x), hasCore(x,y), hasLayer(y,“Neolithic”),
layerOf(“Neolithic”,u), Wellbore(u).

Since the way to cope with cycles depends on the user’s intention, we do not envi-
sion generic solutions to this problem. At the same time, it is useful to notify users
when they are confronted by cycles and to provide them with some form of control,
e.g., by restricting the depth of constructed queries or by allowing recursion.

4. Negative information. Negative information such as disjointness between concepts
should be exploited accordingly. For example, if the end-user selects the wells with
oil as a production type and the concepts OilWell and GasWell are disjoint in the on-
tology, then the navigation system could safely skip suggestions related to GasWell.

5. Role inclusion axioms will also lead to extra complexity when navigating over
the ontology graph. For example, consider the axioms BottomHoleAssembly v
∃hasBit.DrillBit and hasBit v hasPart, then the concept DrillBit should also be
suggested as a part of BottomHoleAssembly.

In Optique we intend to design and implement novel techniques that take into ac-
count the issues above. We aim at providing an intuitive end-user interface while pre-
serving the semantics of the underlying ontology in order to formulate both complex
and valid queries. In particular, we intend to look at existing work, where query formu-
lation is driven from a Description Logic model of the domain, e.g., [1, 4].

8 This query is written in the Datalog notation

2.1 Query-driven ontology extensions

The ontology may not include all the vocabulary expected or needed by the end-user.
Moreover, the vocabulary is to a certain extent specific to individuals, projects, depart-
ments, etc. and subject to change. Thus, keeping the ontology up-to-date with respect
to the end-user needs arises as an indirect (but crucial) challenge in query formula-
tion. In Optique we differentiate the following changing scenarios driven by end-user
information requirements:

1. Adding new synonyms. Concept synonyms (e.g. annotation labels) do not represent
new logical extension of the ontology, and hence end-users will be able to add
them to the ontology with no (logical) harm. For example, the concept WellBore
can be extended with the labels “drill hole” or “borehole”. In order to avoid an
overloading of the ontology with synonyms, we advocate a separation between the
ontology (e.g. logical axioms) and the terminological information (e.g. synonyms,
descriptions, related terms, etc.) as proposed in [14].

2. Adding basic extensions. End-user queries may also require basic extension of
the ontology hierarchy, such as adding a new concept GeologicalWellBore un-
der WellBore (i.e. GeologicalWellBore v WellBore). These types of additions
can be considered safe since they represent a conservative extension of the ontol-
ogy [12]. However other additions to the ontology may require further analysis by
the IT-expert if they are not conservative extensions (e.g. reclassifying the concept
WellBore under the new concept PlannedSideTrack).

3. “On the fly” extensions. This represents the more challenging scenario where we
intend to exploit ontology learning techniques in order to mine formulated queries
and to identify relevant new concepts and relations (e.g., [24, 16]). Ontology align-
ment techniques (e.g. [11]) will also be required in order to relate the new vocabu-
lary to the existing ontology concepts.

4. IT-expert assistance. In the cases where the manual or on-the-fly extensions are
insufficient, the assistance of the IT expert will be required to extend the ontology
accordingly.

3 Envisaged Architecture and Approach

Figure 2 shows the main query formulation components envisaged for the Optique
OBDA solution and their interaction with other components of the system. Next we
give a brief overview of each of them. Note that many components deal with both one-
time queries, e.g., SPARQL queries, and continuous queries, e.g., CSPARQL queries.

1. Editing components. Different users may cooperate on the same query or set of
queries, thus, the Optique solution aims at providing (at least) three kind of in-
terfaces to formulate the query (i.e. components): (i) direct editing, (ii) context
sensitive editing, and (iii) query by navigation exploiting faceted search and other
navigation paradigms. Technically versed users may prefer the direct editing of the
query using a formal language (e.g. SPARQL, stream query language), while other
end-user should be provided with a less technical interface such as query by nav-
igation. Additionally, direct editing should also allow the possibility of exploiting

External
visualisation

engines

Workbench
visualisation

engine

Shared
triple
store

Sesame API
- ontology
- mappings
- configuration
- queries
- answers
- history
- lexical
 information
- etc.

mining
log analysis

...

Stream analytics

Query Formulation Processing Components

Context Sens. Ed.
1-time Q
SPARQL Stream Q

Direct Editing
1-time Q
SPARQL Stream Q

Export
functionality

Answers to stream
queries, e.g., CSPARQL

Answers to 1-time
queries, e.g., SPARQL

Users Feedback
functionality

Integrated via Information Workbench

Information Workbench frontend API (E.g., widget dev., Java, REST)

Application
Layer

Query Formulation
Interface

Presentation
Layer

Ontology &
Mapping Manager's

Processing
Components

Ont/Mapp
revision,
control,
editing

Communication
Chanel or Hub

Query Answering Component

Query transformation

Answer manager
1-time Q

SQL->RDF Stream Q

Distrib. Query
Execution

Shared
database

Query by Navig.
1-time Q
SPARQL Stream Q

Faceted
search

Answer
Manager

Hub

1-time Q
SPARQL Stream Q

QDriven ont
construction

OWL API

Front end:
mainly Web-basedComponent

Group of components

Optique solution
External solution

Components Colouring Convention
Expert users

Types of Users

End users API

Application receiving
answers

Configuration
 of modules

LDAP
authentification

Ontology Processing

Ontology
modularization

Ontology reasoner 1
Ontology reasoner 2

...

Fig. 2. Query Formulation components of the Optique OBDA system

the ontology, and provide context sensitive completion. All three interfaces should
provide views on the partially constructed query, and users should be able to switch
between views at will.

2. Query-driven ontology extension component will manage the ontology extensions
driven by the query requirements and will send the new ontology versions to the
Ontology Revision Control component for further analysis and validation of the
performed changes.

3. The Ontology Processing component. The ontology will be a key element for the
query formulation component and thus, the ontology processing component (e.g.
OWL API, OWL reasoners) will also play an important role. Furthermore, logic-
based ontology modularization techniques [6] will also be exploited to achieve a
good balance between overview and focus when dealing with large ontologies. The
properties of such modules guarantee that the semantics of the concepts of interest
are preserved while providing (in general) a much smaller fragment of the ontology.

4. The The Query Answering component will transform the formulated queries into
executable and optimized queries with respect to the data sources (e.g. streaming
data, relational databases).

5. The Answer Manager component. This component should deal with the (basic)
visualization of the query results and their transformation (i.e. export functionality)
into the required output formats (e.g. input formats of external Statoil tools).

6. The User Feedback component. This component is intended to allow the user to
semi-automatically refine a query if the (partially) obtained results are not the ex-
pected ones. Furthermore, similar or related queries to the partially constructed
query will also be suggested in order to help end-users in the refinement.

7. The Ontology Revision Control component. Different versions of the ontology may
exist concurrently (e.g. extensions driven by different formulated queries or query
requirements). These versions will be managed by the IT-experts through a revision
control system in order to detect logical defects (e.g. unsatisfiabilities), logical con-
flicts among versions as in [13], and OWL 2 profile violations (e.g. a new version
is outside the OWL 2 QL profile).

All components will be integrated into the Information Workbench [9, 8], a generic plat-
form for semantic data management, which provides a central triple store for managing
the OBDA system assets (such as ontologies, mappings, etc.), generic interfaces and
APIs for semantic data management, and a flexible user interface that will be used for
implementing the query formulation components. The user interface follows a semantic
wiki approach, based on a rich, extensible pool of widgets for visualization, interaction,
mashup, and collaboration, which can be flexibly integrated into semantic wiki pages,
allowing developers to compose comprehensive, actionable user interfaces without any
programming effort. The following subsection presents the technical architecture for the
query formulation interface and the solution approach based on widget-based mashups.

3.1 Widget-based solution

A mashup based approach (cf. [22]) is promising for the construction of an extensible
and flexible query formulation interface. The mashup idea, in our context, is grounded
on the possibility to combine the functionality and data of a set of individual applica-
tions in a common graphical space, for common tasks. Widgets are the building blocks
of mashups, where each widget corresponds to a standalone application with less com-
plex functionality and presentation compared to full-fledged applications. In query for-
mulation scenario, a set of widgets can be employed, for instance, one for query by
navigation and one for faceted search for handling the construction of queries; and one
for representing results in table and one for visualizing the result in a graph to handle
communication of results to the end-users.

Widgets are managed by a widget environment which provides basic communi-
cation and persistence services to widgets. The orchestration of widgets relies on the
requirement that each widget discloses its functionality to the environment through a
client side interface and notifies any other widget in the environment (e.g., broadcast,
subscription etc.) and/or the widget environment upon each user action. Then, either
each widget decides on what action to execute in response, by considering the syntactic
or semantic signature of the received event; or, the environment decides which widgets
to invoke with which functionality. The core benefits of such an approach are that,

Widget based implementation of Query Formulation Interface

Server side

Query Formulation
Processing Components

Export

Interface
Controller

Client side

Dynamic
Result

Presentation
Layer

Query by
Navigation
Interface

Faceted
Search

Interface

Direct
Editing

Interface
Context Sens.
Edit. Interface

Query Driven
Ont. Contract.

Communication Chanel

Application Layer

Query by
Navigation

Logics

Faceted
Search
Logics

Direct
Editing
Logics

Feedback

Answering
Logic

Ranking

Context
Sensitiv
Logics

Logics of
Query Driven
Ont. Contract.

Component
Control
Logic

Front end:
mainly Web-basedComponent Widget Optique solution

Components Colouring Convention
Expert users

Types of Users
End users

Fig. 3. Query Formulation interface based on widget-based mashups

i it becomes easier to deal with the complexity, since the management of functionality
and data can be delegated to different widgets;

ii each widget can employ a different visualization paradigm that best suits the func-
tionality that it is expected to provide;

iii widgets can be used alone or together, in different combinations, for different con-
texts and experiences; and,

iv the functionality of the overall interface can be extended by introducing new wid-
gets (e.g., such as for result visualization).

A possible architecture for a query formulation interface based on widget-based
mashups is depicted in Figure 3. The architecture assumes that each widget has client
side and server side components (for complex processing), and that widgets can com-
municate with each other and with the environment through a communication channel.
Communication usually happens through the client side, but a server side communica-
tion mechanism can also be realized in order to support remote experiences (e.g., while
widgets running on remote devices). The architecture assumes that there exists an en-
vironment controller at the client side and a component control logic at the server side.
The former is responsible for operational tasks such as collecting the event notifications
from widgets and submitting control commands to them. The latter is responsible for
the orchestration logic, that is it decides how widgets should react to specific events.

JOIN	
	

Menu-‐based	 and	 Icon-‐based	 Widget	
(QbN)	

SELECT	 and	 PROJECT	
	

Form-‐based	 and	 Menu-‐based	 Widget	
(Faceted	 Search)	

	
JOIN	
	

Diagram-‐based	 Widget	
(QbN)	
	
	

	
JOIN	 and	 VIEW	

	
Form-‐based	 (table	 result)	 Widget	

(QbN)	

Widget	 1	 Widget	 3	

Widget	 2	

Widget	 4	

Fig. 4. An initial approach combining different paradigms for query formulation

3.2 Query formulation interface

Catarci et al. [3] categorize data access efforts into understanding the reality of inter-
est (i.e., exploration), which relates to activities for finding and understanding schema
concepts and relationships relevant to information need; and query construction, which
concerns the compilation of relevant concepts and constraints into formal information
needs. The query construction task is normally considered as a series of actions, each
of which can be either a select, join, or project action. The join type of actions enables
users to combine different concepts and to form path expressions for queries, where
the select and project type of actions allow users to specify the properties that are to
be returned and to impose constraints to filter the results. As such, the choice of visual
representation and interaction paradigm, along with underlying metaphors, analogies
etc., is of primary importance for the query formulation interface.

We have observed that a single representation and interaction paradigm is not suf-
ficient for developing a successful query formulation interface. Therefore, we strive to
combine the best parts of different paradigms (cf. [18]). A conceptual sketch of our first
attempt is shown in Figure 4. Initially, there are four widgets available. The first wid-
get is based on a menu-based approach with QbN interaction paradigm, where domain
concepts, properties, and relationships are distributed into a set of layers, with respect
to a certain hierarchy or organization, and presented in the form of lists. This wid-
get also employs an icon-based paradigm by supplementing domain vocabulary with
meaningful icons. The second widget follows a diagram-based approach with QbN.
The diagram-based approach utilizes geometric symbols to depict relationships among
schema concepts. The third widget employs a form-based and menu-based approach in
the form of a faceted search interface. The form-based approach adopts conventional
paper forms as a metaphor. The final widget is also form-based, more specifically table-
based, and employs a QbN based interaction style.

The first widget is responsible for join actions, and determines the focus of inter-
face. First, available domain concepts are shown to the user; as soon as a user selects a
domain concept, the selected concept becomes the focus, and relationships pertaining to
this concept are listed. The second widget is responsible for providing an overview by
allowing the user to switch between a graph visualization of the query and the ontology.
The third widget presents the properties of the focus concept in the form of fields and
menu-items to enable the user to select properties of interest and to specify constraints
on them. The fourth widget represents query results in a common table view and en-
ables user to navigate at instance level by accessing other facts that are linked to the
result items in the table view.

The proposed approach provides a good balance between view and overview and
supports domain exploration and query construction efforts. It also provides an ample
amount of room for supportive features, since it is typically not possible to address every
requirement with visual representations [15]. This particularly becomes true for large
ontologies, in which guiding the user to relevant vocabulary is of crucial importance.
For instance, a keyword search facility can support finding relevant concepts, properties
and relationships in the first and second widgets. Each representation paradigm can han-
dle different ontology axioms, for instance, a faceted search paradigm is better suited
for representing disjointness, and a menu-based paradigm with QbN may be a better
option for handling cycles (e.g., with path coloring).

4 Conclusions

We have presented the main challenges to be faced in the design and development of
the query formulation and query-driven ontology extension solutions. Although the EU
project Optique is still in an early stage, we aim at turning our preliminary ideas into
novel solutions in the very near future, and to evaluating their effectiveness in our indus-
try use cases. This will provide us with invaluable feedback to inform ongoing research
and development of enhanced query formulation components.

Acknowledgements. The research presented in this paper was financed by the Sev-
enth Framework Program (FP7) of the European Commission under Grant Agreement
318338, the Optique project. Cuenca Grau, Horrocks, Jiménez-Ruiz, Kharlamov, and
Zheleznyakov were also partially supported by the EPSRC projects ExODA and Score!

References

1. Bechhofer, S., Horrocks, I.: Driving User Interfaces from FaCT. In: Proceedings of the 2000
International Workshop on Description Logics. pp. 45–54 (2000)

2. Calvanese, D., Giacomo, G.D., Lembo, D., Lenzerini, M., Poggi, A., Rodriguez-Muro, M.,
Rosati, R., Ruzzi, M., Savo, D.F.: The MASTRO system for ontology-based data access.
Semantic Web 2(1), 43–53 (2011)

3. Catarci, T., Costabile, M., Levialdi, S., Batini, C.: Visual query systems for databases: A
survey. Journal of Visual Languages and Computing 8(2), 215–260 (APR 1997)

4. Catarci, T., Dongilli, P., Mascio, T.D., Franconi, E., Santucci, G., Tessaris, S.: An ontology
based visual tool for query formulation support. In: ECAI. pp. 308–312 (2004)

5. Crompton, J.: Keynote talk at the W3C Workshop on Semantic Web in Oil & Gas Indus-
try: Houston, TX, USA, 9–10 December (2008), available from http://www.w3.org/
2008/12/ogws-slides/Crompton.pdf

6. Cuenca Grau, B., Horrocks, I., Kazakov, Y., Sattler, U.: Modular reuse of ontologies: Theory
and practice. J. Artif. Intell. Res. 31, 273–318 (2008)

7. Giese, M., Calvanese, D., Haase, P., Horrocks, I., Ioannidis, Y., Kllapi, H., Koubarakis, M.,
Lenzerini, M., Möller, R., Özçep, O., Rodriguez Muro, M., Rosati, R., Schlatte, R., Schmidt,
M., Soylu, A., Waaler, A.: Scalable End-user Access to Big Data. In: Rajendra Akerkar: Big
Data Computing. Florida : Chapman and Hall/CRC. To appear. (2013)

8. Haase, P., Hütter, C., Schmidt, M., Schwarte, A.: The Information Workbench as a Self-
Service Platform for Linked Data Applications. In: the WWW 2012 Developer Track (2012)

9. Haase, P., Schmidt, M., Schwarte, A.: The Information Workbench as a Self-Service Platform
for Linked Data Applications. In: Proceedings of the Second International Workshop on
Consuming Linked Data (COLD) (2011)

10. Heim, P., Ziegler, J.: Faceted visual exploration of semantic data. In: Second IFIP WG 13.7
conference on Human-computer interaction and visualization. pp. 58–75 (2011)

11. Jiménez-Ruiz, E., Cuenca Grau, B.: LogMap: Logic-based and Scalable Ontology Matching.
In: Int’l Sem. Web Conf. (ISWC). pp. 273–288 (2011)

12. Jiménez-Ruiz, E., Cuenca Grau, B., Sattler, U., Schneider, T., Berlanga, R.: Safe and eco-
nomic re-use of ontologies: A logic-based methodology and tool support. In: The 5th Euro-
pean Semantic Web Conference, ESWC. vol. 5021, pp. 185–199 (2008)

13. Jiménez-Ruiz, E., Grau, B.C., Horrocks, I., Llavori, R.B.: Supporting concurrent ontology
development: Framework, algorithms and tool. Data Knowl. Eng. 70(1), 146–164 (2011)

14. Jimeno-Yepes, A., Jiménez-Ruiz, E., Llavori, R.B., Rebholz-Schuhmann, D.: Reuse of ter-
minological resources for efficient ontological engineering in life sciences. BMC Bioinfor-
matics 10(S-10), 4 (2009)

15. Katifori, A., Halatsis, C., Lepouras, G., Vassilakis, C., Giannopoulou, E.: Ontology visual-
ization methods - A survey. ACM Computing Surveys 39(4) (2007)

16. Kotis, K., Papasalouros, A., Maragoudakis, M.: Mining query-logs towards learning useful
kick-off ontologies: an incentive to semantic web content creation. IJKEDM 1(4) (2011)

17. Lim, S.C.J., Liu, Y., Lee, W.B.: Faceted search and retrieval based on semantically annotated
product family ontology. In: Proc. of teh Workshop on Exploiting Semantic Annotations in
Information Retrieval. pp. 15–24 (2009)

18. Lohse, G., Biolsi, K., Walkner, N., Rueter, H.: A classification of visual representations.
Communications of the ACM 37(12), 36–49 (DEC 1994)

19. Motik, B., Cuenca Grau, B., Horrocks, I., Wu, Z., Fokoue, A., Lutz, C.: OWL 2 Web Ontol-
ogy Language: Profiles (2009), W3C Recommendation

20. Rodriguez-Muro, M., Calvanese, D.: High Performance Query Answering over DL-Lite On-
tologies. In: the 13th Int’l Knowledge Representation and Reasoning Conf. (KR) (2012)

21. Soylu, A., Modritscher, F., De Causmaecker, P.: Ubiquitous web navigation through harvest-
ing embedded semantic data: A mobile scenario. Integrated Computer-Aided Engineering
19(1), 93–109 (2012)

22. Soylu, A., Modritscher, F., Wild, F., De Causmaecker, P., Desmet, P.: Mashups by orches-
tration and widget-based personal environments Key challenges, solution strategies, and an
application. Program-Electronic Library and Information Systems 46(4), 383–428 (2012)

23. Suominen, O., Viljanen, K., Hyvänen, E.: User-Centric Faceted Search for Semantic Portals.
In: Proc. of the 4th European Semantic Web Conf. (ESWC 2007). pp. 356–370 (2007)

24. Zhang, J., Xiong, M., Yu, Y.: Mining query log to assist ontology learning from relational
database. In: Frontiers of WWW Research and Development (APWeb). pp. 437–448 (2006)

