
Updating TBoxes in DL-Lite

Dmitriy Zheleznyakov, Diego Calvanese, Evgeny Kharlamov?, and Werner Nutt

KRDB Research Centre
Free University of Bozen-Bolzano, Italy

zheleznyakov,calvanese,kharlamov,nutt@inf.unibz.it

Abstract. We study the problem of updates for TBoxes represented in Descrip-
tion Logics of the DL-Lite family. DL-Lite is at the basis of OWL 2 QL, one of
the tractable fragments of OWL 2, the recently proposed revision of the Web On-
tology Language. In this paper, we address for the first time the problem of updat-
ing TBoxes. We propose some principles that TBox updates should respect. We
review known model- and formula-based approaches for updates of logical theo-
ries, and exhibit limitations of model-based approaches to handle TBox updates.
We propose a novel formula-based approach, and present a polynomial time al-
gorithm to compute TBox updates for DL-LiteFR. We also study the relationship
between propositional logic satisfiability for Horn clauses and computation of
TBox updates for DL-Lite.

1 Introduction

Ontology languages, and hence Description Logics (DLs), provide excellent mecha-
nisms for representing structured knowledge, and as such they have traditionally been
used for modeling at the conceptual level the static and structural aspects of applica-
tion domains [1]. A family of DLs that has received great attention recently, due to its
tight connection with conceptual data models, such as the Entity-Relationship model
and UML class diagrams, is the DL-Lite family [2]. Such a family of DLs exhibits nice
computational properties, in particular when complexity is measured wrt the size of the
data stored in the ABox of a DL ontology [2, 3]. It is also at the basis of the tractable
profiles of OWL 2, the forthcoming edition of the W3C standard Web Ontology Lan-
guage.

The reasoning services that have been investigated for the currently used DLs and
implemented in state-of-the-art DL reasoners [4], traditionally focus on so-called stan-
dard reasoning, both at the TBox level (e.g., TBox satisfiability, concept satisfiability
and subsumption wrt a TBox), and at the ABox level (e.g., knowledge base satisfiabil-
ity, instance checking and retrieval, and more recently query answering) [5, 6]. Recently,
however, the scope of ontologies has broadened, and they are now considered to be not
only at the basis of the design and development of information systems, but also for
providing support in the maintenance and evolution phase of such systems. Moreover,
ontologies are considered to be the premium mechanism through which services oper-
ating in a Web context can be accessed, both by human users and by other services.

? The author is co-affiliated with INRIA Saclay, Île-de-France.

Supporting all these activities, makes it necessary to equip DL systems with additional
kinds of inference tasks that go beyond the traditional ones, most notably that of ontol-
ogy evolution [7], where new knowledge is incorporated into an existing KB. Two main
types of ontology evolution have been considered, namely revision and update [8].

In revision, we assume that the new knowledge is certainly true in the real world.
Therefore, every model of a revised KB should satisfy this knowledge and should have
minimal distance to the old KB, where the notion of distance depends on the appli-
cation. An important feature of revision is that the distance is defined “globally” and
depends on all the models of the old KB. In [9, 10] revision of DL knowledge bases was
considered. In update, we assume that the new knowledge reflects a change in the real
world, and we update every model of the old KB with this new knowledge. Note that
update operators, in contrast to revsion operators, work “locally”. In our work we focus
on ontology update.

A request for an ontology update (or simply update request) represents the need
of changing an ontology so as to take into account changes that occur in the domain
of interest described by the ontology. In general, such a request is represented by a set
of formulas denoting those properties that should be true after the change. In the case
where the update request causes an undesirable interaction with the knowledge encoded
in the ontology, e.g., by causing the ontology or relevant parts of it to become unsat-
isfiable, the update request cannot simply be added to the ontology. Instead, suitable
changes need to be made in the ontology so as to avoid the undesirable interaction, e.g.,
by deleting parts of the ontology that conflict with the update request. Different choices
are possible in general, corresponding to different update semantics, which in turn give
rise to different update results [11]. Moreover, it is necessary to understand whether the
desired update result can be represented at all as a KB in the DL at hand.

Previous work on updates in the context of DL ontologies has addressed ABox
(or instance level) update [12, 13], where the update request consists of a set of ABox
assertions. In [12] the problem is studied for DLs of the DL-Lite family, while [13]
considers the case of expressive DLs. Both works show that it might be necessary to
extend the ontology language with additional features/constructs in order to guarantee
that the updated ontology can be represented.

Instead, the problem of TBox level update has not been considered before. In this
paper we take first steps at filling this gap. Specifically, for the case of DLs of the DL-
Lite family, we study the problem of updating a TBox with a set of TBox assertions.
We address first the issue of which semantics to adopt for TBox updates, and specify
some general principles that updates should respect. This leads us to argue that none
of the previously proposed semantics [14–17], neither model-based nor formula-based
is totally appropriate: either too many formulas need to be thrown out in the result of
the update, or such a result is not representable as a DL-Lite TBox. Hence, we propose
an alternative formula-based semantics, called Bold Semantics , and provide polyno-
mial time algorithms to compute it for various members of the DL-Lite family (we
restrict the attention to those DLs of the DL-Lite family that exhibit polynomial time
TBox reasoning, specifically we consider only the case where the interaction between
functionality assertions and role inclusions is restricted). The task at the core of our
algorithm is the problem of checking full satisfiability of a DL-Lite TBox, i.e., whether

DL-LiteFR

DL-LiteR DL-LiteF

DL-Litecore

Fig. 1. DL-Lite hierarchy.

all atomic concepts and roles are (simultaneously) satisfiable. We provide a novel algo-
rithm for this problem that is based on a reduction to reasoning in propositional binary
Horn theories. This gives us also an alternative proof technique that is not based on the
Chase for tractability of TBox reasoning in DL-Lite.

2 Preliminaries

Description Logics (DLs) [18] are knowledge representation formalisms, tailored for
representing the domain of interest in terms of concepts and roles. In DLs, complex
concept and role expressions (or simply, concepts and roles) are obtained starting from
atomic concepts and roles (which are simply names) by applying suitable constructs.
Concepts and roles are then used in a DL knowledge base (KB) to model the domain
of interest. Specifically, a DL KB K = 〈T ,A〉 is formed by two distinct parts, a TBox
T and an ABox A. The TBox T represents the intensional-level of the KB, that is, the
general knowledge. The ABox provides information on the instance-level of the KB. In
this paper we focus on a family of DLs called DL-Lite [2], that corresponds to one of
the tractable fragments of OWL 2, the recently proposed revision of the Web Ontology
Language.

The basic logic of the DL-Lite family is DL-Litecore , which includes constructs that
are used in all others logics of the family. These constructs are the following:

B ::= A | ∃R, C ::= B | ¬B, R ::= P | P−,

where A denotes an atomic concept, B a basic concept, and C a general concept. The
symbol P denotes an atomic role, and R a basic role.

A DL-Litecore TBox is a set of concept inclusion assertions of the form: B v C,
and an ABox is a set of membership assertions of the form: A(a), P (a, b).

The two logics DL-LiteF and DL-LiteR both extend DL-Litecore . They have ABoxes
of the same form as DL-Litecore , but their TBoxes are different. A DL-LiteF TBox may
include functionality assertions for roles of the form (funct R). DL-LiteR has role in-
clusion assertions of the form R1 v R2 (instead of functionality assertions). There
are proposals that consider DL-LiteR also with role disjointness assertions of the form
R1 v ¬R2, but we do not take them into account in our paper. Both DL-LiteF and
DL-LiteR have nice computational properties, for example, knowledge base satisfia-
bility has polynomial-time complexity in the size of the TBox and logarithmic-space
complexity in the size of the ABox, so-called data complexity.

DL-LiteFR is a hybrid of DL-LiteF and DL-LiteR. It allows for both functional
assertions and role inclusion assertions in its TBox. The use of functionality and role
inclusion assertions together may lead to an increase in the complexity of reasoning. A
way to avoid this is to introduce the following syntactic restriction: if R1 v R2 appears
in a TBox, then (funct R2) is not in the TBox. Hence, when talking about DL-LiteFR
knowledge bases in this paper, we assume they satisfy the syntactic restriction above.

In Figure 1 we list the four logics of the DL-Lite family and show the relationships
between them in terms of expressiveness. If there is an arrow from a logic X to a logic
Y in the figure, it means that the logic Y is more expressive than X .

The semantics of a DL is given in terms of first order interpretations. Let ∆ be
a fixed countably infinite set. All interpretations that we consider are over the same
domain ∆.

An interpretation I is a function ·I that assigns to each concept C a subset CI

of ∆, and to each role R a binary relation RI over ∆ in such a way that AI ⊆ ∆,
P I ⊆ ∆×∆, (¬B)I = ∆ \BI , and

(∃R)I =
{
a | ∃a′. (a, a′) ∈ RI

}
, (R−)I =

{
(a2, a1) | (a1, a2) ∈ RI

}
.

An interpretation I is a model of an inclusion assertion D1 v D2 if DI1 ⊆ DI2 . An
interpretation I is a model of a functionality assertion (functR) ifR is a partial function
over ∆, that is, I |= ∀x, y1, y2.

(
RI(x, y1) ∧RI(x, y2)

)
→ y1 = y2.

Given an assertion F and an interpretation I, we denote by I |= F the fact that I is
a model of F . A model I is a model of a knowledge base (KB) K = 〈T ,A〉 (denoted
as I |= K) if I is a model of each of the assertions of T ∪ A. A KB is satisfiable if it
has at least one model. A KB K logically implies an assertion F , written K |= F , if all
models ofK are also models of F . Similarly, a TBox T logically implies an assertion F ,
written T |= F , if all models of T are also models of F .

Let T be a set of TBox assertions. The deductive closure of T , denoted cl(T), is
the set of all assertions that are entailed by T . Clearly, the closure cl(T) is quadratic in
the number of atoms of T and can be computed in time polynomial wrt the size of T .

3 Understanding TBox Updates

Let K = (T ,A) be a KB and U be a set of (TBox or/and ABox) assertions, called an
update request. What we want to study is how to “incorporate” the assertions U into K,
that is, to perform an update of K. In this paper we consider only updates on the TBox
level (TBox updates), that is, when U consists of TBox assertions only.

When dealing with updates, both in the knowledge management and the AI com-
munity, it is generally accepted that the updated KB K′, or the update for short, should
comply with the principle of Minimality of Change [11, 17], which states that the knowl-
edge base should change as little as possible if new information is incorporated. There
are different approaches to updates, suitable for particular applications, and the current
belief is there is no general notion of minimality that will “do the right thing” under all
circumstances [17]. A number of candidate semantics for updates have appeared in the
literature [14–17]. All these approaches can be classified into two groups: model-based
and formula-based.

Let us first understand what are the requirements for updates of knowledge bases
and then review known model- and formula-based approaches.

3.1 Principles of TBox Updates

Let T be a TBox, B a basic concept, and R a basic role occurring in T . We say that B
(resp. R) is satisfiable in T if there is a model I |= T of T such that BI 6= ∅ (resp.
RI 6= ∅). If all the atomic concepts and roles occurring in T are satisfiable, then we say
that T is fully satisfiable. Intuitively, a concept “makes sense” if one can instantiate it
and we assume that we update TBoxes that make sense, that is, that are fully-satisfiable.

Satisfiability Preservation. A TBox update is a modification of a KB on the schema
level. Such updates make sense, for example, when a company decides to restructure,
say, the sales department, and the update U consists of new requirements for the de-
partment. Our first concern is that updates should not make parts of the schema, or
TBox constructs, useless, that is, unsatisfiable. For example, for a basic concept of an
enterprise ontology, say the concept Manager, we want to reject updates that eliminate
managers from the enterprise, that is, that force Manager to be unsatisfiable.

Protection. Our next expectation is that the schema update of the sales department
should not affect the schema of, say, the production department. At the same time we
do not mind if it affects the schemas of other departments, like for instance accounting.
That is, we would like some fragment of T , denoted Tp, to be protected from any
changes, that is, we would like Tp to be kept in the KB after the update. Therefore, we
accept an update request U only if Tp ∪ U is fully satisfiable, otherwise we reject U .

To sum up these desiderata, we list our update principles.

Satisfiability Preservation. Updates should preserve satisfiability of basic concepts
and roles.

Protection. Updates should preserve the protected fragment of the KB.

3.2 Model-Based Approach to Semantics

Poggi et al. [19, 12] proposed to use Winslett’s semantics to update ABoxes. Let us try
to understand whether this approach is suitable for TBox updates.

Under the model-based paradigm, the objects of change are individual models I
of T . For a model I of T , an update with U results in a set of models of U . In order to
update the entire TBox T with U , one has to

(i) update every model I |= T with U , and then
(ii) take the union of the resulting models.

To define the update formally we recall the following definitions. We say that an
interpretation I is contained in I ′, written I ⊆ I ′, if for every atomic concept or role
symbol S it holds that SI ⊆ SI′ . We write I (I ′ if I ⊆ I ′ and not I ′ ⊆ I. We denote
with 	 the symmetric difference between sets according to the standard definition.

PermStaff

Manager

AreaManager TopManager

PermStaff

Manager

AreaManager TopManager

U

Fig. 2. Updates of ontologies. U = {TopManager v Manager}.

Let Tp ⊆ T be the protected fragment of T and U an update request accepted for
Tp. The update of an interpretation I with U wrt Tp, denoted w-updTp(I,U), where ’w’
indicates Winslett’s semantics, is the set of interpretations defined as follows:

{I ′ | I ′ ∈ Mod(Tp ∪ U), there is no I ′′ ∈ Mod(Tp ∪ U) s.t. I 	 I ′′ (I 	 I ′}.

Then the update of a TBox T with U wrt Tp is the following set of interpretations:

w-updTp(T ,U) =
⋃

I∈Mod(T)

w-updTp(I,U).

Returning to a user the result of an update as a set of models is not desirable. What
we want is to return a KB that describes exactly this set of models. We say that a TBox
T ′ represents the update w-updTp(T ,U) if Mod(T ′) = w-updTp(T ,U).

Example 1. Consider the TBox T of an enterprise on the left diagram of Figure 2. In
DL-Litecore the diagram can be written as follows:

Manager v PermStaff , AreaManager v Manager ,

where PermStaff stand for Permanent Staff. The TBox says that every Manager belongs
to PermStaff and every AreaManager is a Manager . Suppose the TBox is under
construction and it was decided to extend it by introducing the inclusion assertion that
every TopManager is a Manager , that is,

U = {TopManager v Manager}.

Since there are no disjointness assertions in both T and U , the update request will be
accepted for T , regardless of which fragment is protected, and the desired result of the
update is the one in the right diagram of Figure 2. Unfortunately, Winslett’s semantics
gives an undesirable result.

First, consider the following model I of T :

TopManagerI = {john}, ManagerI = {frank}, PermStaff I = {frank}.

Assume that the protected fragment of T is empty. Then, according to Winslett’s se-
mantics, the update of the model I contains the following interpretation I ′ is in the
update of I, which is a model of U that differs minimally from I:

TopManagerI
′
= {john}, ManagerI

′
= {john, frank}, PermStaff I

′
= {frank}.

As one can see, in I ′ there is a Manager , john , who does not belong to PermStaff .
Therefore, the update w-upd(T ,U) does not satisfy the assertion Manager v PermStaff .

Second, every DL-Lite representation T ′ of w-upd(T ,U) should satisfy the follow-
ing assertions, which we denote as T0, that is, T0 ⊆ T ′:

TopManager v Manager ,AreaManager v Manager ,AreaManager v PermStaff .

Is it the case that T ′ = T0? It turns out that not. Consider the following model. Let I ′′
be an interpretation, where all concepts are empty, except for Manager , which contains
one individual, say fred . It is easy to see that I ′′ |= T0 and I ′′ |= U , but it cannot be
obtained by minimally changing a model of T . Intuitively, there is no reason for fred to
have become a Manager .

Therefore, there should be some other inclusion assertions in T ′, besides the ones
of T0, that forbid the model I ′′. One can see that these assertions should be entailed by
T ∪ U . Otherwise there are models of T whose update is not expressed by T ′. Hence,
the only candidate to be included in T ′ is Manager v PermStaff , but it cannot be in
T ′, due to the first observation above. Therefore, the update is not expressible in DL-
Lite. ut

We conclude that:
(i) Winslett’s semantics cannot be expressed by DL-Lite TBoxes.

(ii) The principle of minimal change at the level of interpretations forces one to give
up important assertions at the TBox level (in Example 1, we gave up the assertion
Manager v PermStaff).

We consider this situation as unsatisfactory. Hence, we next examine the formula-based
approach to updates and their notion of minimality.

3.3 Formula-Based Approach to Semantics

The key notion in this approach is the one of a maximal non-contradicting set of for-
mulas, which we introduce now.

Let T be a TBox and U be an update request that is accepted for Tp. We define a
maximal non-contradicting set of formulas for T and U , denoted by Tm, as a set of
TBox assertions that satisfies the conditions:

(i) T |= Tm,
(ii) Tm ∪ U is fully satisfiable,

(iii) the set Tm is maximal (wrt set inclusion) among the sets that satisfy (i) and (ii),
that is, there is no T̂ satisfying (i) and (ii) such that Tm ⊂ T̂ .

Intuitively, Tm keeps as many TBox assertions as possible that are entailed by T and
do not conflict with U .

Obviously, the set Tm is not unique. We denote the set of all such Tm for T and
U as M(T ,U). There are two main approaches to construct updates T ′ of T with U
based on Tm [11, 17].

WIDTIO. The first approach is called When In Doubt Throw It Out, or WIDTIO for
short. It suggests to add to U the intersection of all Tm-s, as on the left of Equation 1:

T ′ = U ∪
⋂

Tm∈M(T ,U)

Tm, T ′ = U ∪ {
∨

Tm∈M(T ,U)

(
∧
φ∈Tm

φ)}. (1)

Cross-Product. According to this approach, one adds to U the disjunction of all Tm-s,
viewing each Tm as the conjunction of its assertions, as on the right of Equation 1.

Example 2. Consider the DL-Lite ontology from Example 1 (Figure 2) and the update
request U = {AreaManager v ¬PermStaff }. It is easy to see that U ∪ T is not
fully satisfiable and in order to resolve the conflict one can drop either Manager v
PermStaff or AreaManager v Manager . Thus, M(T ,U) = {T (1)

m , T (2)
m }, where

T (1)
m = {Manager v PermStaff }, and T (2)

m = {AreaManager v Manager}. Let us
now consider WIDTIO and Cross-Product semantics. According to the left formula of
Equation 1, the TBox under WIDTIO semantics is equal to

U ∪
(
T (1)
m ∩ T (2)

m

)
= U ∪ ∅ = U = {AreaManager v ¬PermStaff }.

The TBox under Cross-Product semantics is

U ∪ {(Manager v PermStaff) ∨ (AreaManager v Manager)},

where we have combined DL notation with First Order Logic notation. ut

As one can see from the example above, a disadvantage of the WITDIO approach is
that it may lose a lot of assertions entailed by T that do not conflict with U . On the other
extreme is the Cross-Product approach that suggests to keep all possible entailed and not
conflicting assertions. A drawback of the approach is that the result of the update cannot
be represented in DL-Lite anymore since it requires disjunction. Another drawback is
that the resulting set of formulas may be exponentially large wrt the original TBox.

Therefore, any practical solution should be one where one chooses some T (0)
m among

the Tm, where the result of the update is:

T ′ = U ∪ T (0)
m .

We call this semantics Bold Semantics. The question is which Tm to choose. There are
basically three options. Choose (i) an arbitrary one, (ii) one that has maximal cardinality,
(iii) one that fulfills some preferences. For all options, the solution is expressible in DL-
Lite. Note that we rely for this on the fact that in DL-Lite the set of assertions entailed
by a TBox is finite.

The first option has the advantage that T ′ is expressible in DL-Lite and can be com-
puted in polynomial time. Figure 3 presents a nondeterministc algorithm that, given a
TBox T and an update request U , returns a set Tm ⊆ cl(T) that is a maximal non-
contradicting set of assertions for T and U . The algorithm loops at most as many times
as there are assertions in cl(T). The number of such assertions is at most quadratic in

INPUT: sets T , U of TBox assertions, Tp ⊆ T fully satisfiable with U
OUTPUT: a set Tm ⊆ cl (T) of TBox assertions
[1] Tm := U ∪ Tp; S := cl(T)
[2] repeat
[3] choose some φ ∈ S; S := S \ {φ}
[4] if {φ} ∪ Tm is fully satisfiable then Tm := Tm ∪ {φ}
[5] until S = ∅

Fig. 3. Algorithm NDMax(T , Tp,U) for nondeterministic computation of Tm

the number of atomic concepts and roles. The crucial step is a check for full satisfia-
bility, which is performed once per loop. If the latter test is polynomial in the size of
the input, like in DL-LiteFR (see Section 4), then the entire runtime of the algorithm
is polynomial. For the second option we showed Tm computation is NP-hard, but we
cannot present the proof due to lack of space. The third option is good as far as one has
reasonable preferences either on the concepts or assertions of the TBox, that gives us
polynomial time computation.

Example 3. Consider the KB and the update request from Example 2. As it has been
mentioned,M(T ,U) = {T (1)

m , T (2)
m }. According to the Bold Semantics computed by

the algorithm NDMax, the result of the update is a TBox T = U∪T (0)
m for some T (0)

m ∈
M(T ,U). Thus, the result of the update is either U ∪{AreaManager v Manager} or
U ∪ {Manager v PermStaff }. In the former case, the ontology makes sense if man-
ageres could be temporary staff, in the latter one, if area managers are not necessarily
managers. Selecting one or the other of these two options could be done by the use of
preferences. But we do not consider this here. ut

Theorem 4 (Correctness of Semantics). Bold Semantics satisfies the principles of
Satisfiability Preservation and Protection.

4 Checking Full Satisfiability

Testing full satisfiability is the key operation in computing updates under Bold Seman-
tics. We show that for DL-LiteFR the problem of checking full satisfiability of a TBox
can be translated into a problem of propositional Horn logic. The translation can be used
as the starting point for the design of efficient algorithms and it provides additional in-
sight as to why full satisfiabilty can be solved in polynomial time for DL-LiteFR.

As a first step, we define a translation function ν that translates TBoxes T into
propositional theories ν(T). For every basic concept B resulting from the signature
of T we introduce a fresh propositional variable vB and for every basic role R we
introduce the two variables v∃R and v∃R− and denote the set of all such variables as
VT . Then ν(T) consists of all propositional formulas that can be obtained from T
using the translation in Table 1.

Let V be a set of propositional variables and F a set of formulas over V . Then we
say that F is fully satisfiable (over V) if F ∪ {v} is satisfiable for every v ∈ V .

TBox assertion φ PL formulas ν(φ)
B1 v B2 vB1 → vB2

B1 v ¬B2 vB1 → ¬vB2

R1 v R2 v∃R1 → v∃R2 , v∃R−1
→ v∃R−2

Table 1. Translation of DL-LiteFR TBoxes to propositional theories

Theorem 5. Let T be a DL-LiteR TBox. Then T is fully satisfiable if and only if ν(T)
is fully satisfiable over VT .

Proof. The “only if” direction being clear, we only show the “if” direction.
Suppose that ν(T) is fully satisfiable over VT . Then for every basic conceptB there

is a truth assignment αB for the variables in VT such that ν(T) ∪ {vB} is satisfiable.
Intuitively, this can be seen as putting a test individual into B and letting αB propagate
this individual into additional concepts B′ so that the inclusions in T are satisfied.

Now we choose, for every B, a distinct element dB ∈ ∆. Moreover, we define a
mapping J that maps every basic concept B′ to a subset of ∆ by defining J(B′) =
{dB | αB(vB′) = true}. Intuitively, J(B′) consists of all the test individuals dB that
ended up in B′ by way of their αB . Note that due to the construction we have that
J(B′) ⊆ J(B′′) whenever B′ v B′′ ∈ T .

We now define an interpretation I ′ by setting AI
′
= J(A) for every atomic con-

cept A and P I
′
= J(∃P) × J(∃P−) for every atomic role P . That is, P I

′
is the

Cartesian product of the sets to which J maps the expressions for the domain and range
of P . Clearly, in this way we have that (∃P)I

′
= J(∃P) and (∃P−)I

′
= J(∃P−).

This shows that I ′ is a model of T such that AI
′ 6= ∅ and P I

′ 6= ∅ for all atomic A
and P . ut

Note that the proof above shows as a byproduct that a fully satisfiable TBox can be
fully satisfied by a finite model.

If T is a DL-LiteFR-TBox, we say that an atomic role P is functional if T contains
(funct P) or (funct P−). We say that P has a subrole if P or P− occurs on the right-
hand side of some role inclusion.

Lemma 6. Let T be a DL-LiteR-TBox and F a set of functionality assertions. Suppose
that no functional role in T ∪ F has a subrole. Then T ∪ F is fully satisfiable if T is
fully satisfiable.

Proof. Let I ′ be an intepretation that fully satisfies T . LetD be the set of elements of∆
that are in the interpretation of some atomic concept or role. Without loss of generality
we can assume that D is at most countable and that ∆ \D has at least countably many
elements. Then there exist countably many sets D1, D2, . . . ⊆ ∆ such that (i) every set
Di, i ∈ N, has the same cardinality as D and (ii) the Di are mutually disjoint.

For every i ∈ N, let mi : D → Di be a bijection. We use the mi to extend the
interpretations of atomic concepts fromD to the union of theDi. Technically, we define
a new interpretation I by letting AI =

⋃
i∈Nmi(A

I′) for every atomic concept A. The
definition of the role interpretations needs some preparation. For every atomic role P ,
let δ′P = (∃P)I

′
be the domain of P with respect to I ′ and ρ′P = (∃P−)I

′
be the

range. We define δP =
⋃
i∈Nmi(δ

′
P) and, similarly, ρP =

⋃
i∈Nmi(ρ

′
P). Note that

due to our construction both δP and ρP are countably infinite.
Now, if P is functional, then let P I be the graph of an arbitrary bijective function

from δP to ρP . Otherwise, let P I = δP × ρP . Clearly, by construction we have that
(∃P)I = δP and (∃P−)I = ρP . Hence, I satisfies all concept inclusions of T and all
functionality assertions.

Moreover, if R v R′ is a role inclusion in T , we have that δ′R ⊆ δ′R′ and ρ′R ⊆ ρ′R′ ,
which implies that δR ⊆ δR′ and ρR ⊆ ρR′ . Hence, RI ⊆ R′

I , since R′ is not
functional and therefore R′I is the Cartesian product of δR′ and ρR′ . This shows that I
is a model of T ∪ F . ut

Recall that in a DL-LiteFR TBox, there can be no role inclusions with a functional
role on the right hand side. In addition, we assume that TBoxes do not contain disjoint-
ness axioms for roles. Thus, the preceding lemma is applicable.

Theorem 7. Let T be a DL-LiteFR TBox. Then T is fully satisfiable if and only if ν(T)
is fully satisfiable over VT .

Since satisfiability of a set of propositional Horn clauses can be checked in linear
time, checking full satisfiablity can be done in time quadratic in the size of the clause
set. In [2], polynomiality of concept satisfiablity in DL-LiteFR has been proved using
the Chase technique. The techniques used for showing Theorem 7 above provide an
alternative proof.

5 Conclusion

To the best of our knowledge, our paper presents the first work on updates for DL
TBoxes. We tried to understand what are the natural requirements for such updates
and proposed two principles: Satisfiability Preservation and Protection. On the basis
of these principles, we examined the well-known semantics for updates poposed by
Winslett, which has already been applied by Poggi et al. [19] to ABox updates. The
approach turned out to be unintuitive and moreover, the TBox languages of the DL-Lite
family are not closed under such updates. As an alternative, we examined two formula-
based approaches to update semantics: WIDTIO and the Product Approach. The former
one leads to an inappropriate loss of knowledge, while for the latter update results are
not expressible in DL-Lite. As a consequence, we proposed a new semantics for TBox
updates, Bold Semantics, that satisfies both our principles. We showed that TBoxes
resulting from updates under our semantics can be computed in polynomial time for
DL-LiteFR. Moreover, we exhibited a tight connection between update computation
and reasoning with propositional Horn formulas. This connection can be used as the
starting point for the design of efficient update algorithms and it provides additional
insight as to why TBox reasoning can be solved in polynomial time for DL-LiteFR.

Acknowledgements

The authors are supported by the EU project Ontorule (ICT-231875). The third author
is also supported by the European Research Council grant Webdam (under FP7), agree-
ment n. 226513.

References

1. Borgida, A., Brachman, R.J.: Conceptual modeling with description logics. [18] chapter 10
349–372

2. Calvanese, D., De Giacomo, G., Lembo, D., Lenzerini, M., Rosati, R.: Tractable reasoning
and efficient query answering in description logics: The DL-Lite family. J. of Automated
Reasoning 39(3) (2007) 385–429

3. Artale, A., Calvanese, D., Kontchakov, R., Zakharyaschev, M.: The DL-Lite family and
relations. J. of Artificial Intelligence Research 36 (2009) 1–69

4. Möller, R., Haarslev, V.: Description logic systems. [18] chapter 8 282–305
5. Haarslev, V., Möller, R.: On the scalability of description logic instance retrieval. J. of

Automated Reasoning 41(2) (2008) 99–142
6. Calvanese, D., De Giacomo, G., Lenzerini, M.: Conjunctive query containment and answer-

ing under description logics constraints. ACM Trans. on Computational Logic 9(3) (2008)
22.1–22.31

7. Flouris, G., Manakanatas, D., Kondylakis, H., Plexousakis, D., Antoniou, G.: Ontology
change: Classification and survey. Knowledge Engineering Review 23(2) (2008) 117–152

8. Katsuno, H., Mendelzon, A.: On the difference between updating a knowledge base and
revising it. In: Proc. of the 2nd Int. Conf. on the Principles of Knowledge Representation
and Reasoning (KR’91). (1991) 387–394

9. Qi, G., Du, J.: Model-based revision operators for terminologies in description logics. In:
Proc. of the 21st Int. Joint Conf. on Artificial Intelligence (IJCAI 2009). (2009) 891–897

10. Flouris, G.: On belief change in ontology evolution. AI Communications—The Eur. J. on
Artificial Intelligence 19(4) (2006)

11. Eiter, T., Gottlob, G.: On the complexity of propositional knowledge base revision, updates
and counterfactuals. Artificial Intelligence 57 (1992) 227–270

12. De Giacomo, G., Lenzerini, M., Poggi, A., Rosati, R.: On instance-level update and erasure
in description logic ontologies. J. of Logic and Computation, Special Issue on Ontology
Dynamics 19(5) (2009) 745–770

13. Liu, H., Lutz, C., Milicic, M., Wolter, F.: Updating description logic ABoxes. In: Proc. of the
10th Int. Conf. on the Principles of Knowledge Representation and Reasoning (KR 2006).
(2006) 46–56

14. Abiteboul, S., Grahne, G.: Update semantics for incomplete databases. In: Proc. of the 11th
Int. Conf. on Very Large Data Bases (VLDB’85). (1985)

15. Ginsberg, M.L., Smith, D.E.: Reasoning about action I: A possible worlds approach. Tech-
nical Report KSL-86-65, Knowledge Systems, AI Laboratory (1987)

16. Winslett, M.: A model-based approach to updating databases with incomplete information.
ACM Trans. on Database Systems 13(2) (1988) 167–196

17. Winslett, M.: Updating Logical Databases. Cambridge University Press (1990)
18. Baader, F., Calvanese, D., McGuinness, D., Nardi, D., Patel-Schneider, P.F., eds.: The De-

scription Logic Handbook: Theory, Implementation and Applications. Cambridge University
Press (2003)

19. De Giacomo, G., Lenzerini, M., Poggi, A., Rosati, R.: On the update of description logic
ontologies at the instance level. In: Proc. of the 21st Nat. Conf. on Artificial Intelligence
(AAAI 2006). (2006) 1271–1276

