
On Inconsistency-Aware Knowledge and Action Bases:
Semantics and Verification∗

Diego Calvanese, Evgeny Kharlamov, Marco Montali, Ario Santoso, Dmitriy Zheleznyakov
KRDB Research Centre for Knowledge and Data

Free University of Bozen-Bolzano
lastname@inf.unibz.it

Abstract
Description Logic Knowledge and Action Bases
(KABs) have been recently introduced as a mech-
anism that provides a semantically rich represen-
tation of the information on the domain of inter-
est in terms of a DL KB and a set of actions to
change such information over time, possibly intro-
ducing new objects. In this setting, decidability
of verification of sophisticated temporal properties
over KABs, expressed in a variant of first-order µ-
calculus, has been shown. However, the established
framework treats inconsistency in a simplistic way,
by rejecting inconsistent states produced through
action execution. We address this problem by show-
ing how inconsistency handling based on the notion
of repairs can be integrated into KABs, resorting to
inconsistency-tolerant semantics. In this setting, we
establish decidability and complexity of verification.

1 Introduction
Recent work in knowledge representation and databases
has addressed the problem of dealing with the combina-
tion of knowledge, processes and data in the design of com-
plex enterprise systems [Deutsch et al., 2009; Vianu, 2009;
Bagheri Hariri et al., 2012a; Calvanese et al., 2012; Limonad
et al., 2012]. The verification of temporal properties in this set-
ting represents a significant research challenge, since data and
knowledge makes the system infinite-state, and neither finite-
state model checking [Clarke et al., 1999] nor most of the
current techniques for infinite-state model checking [Burkart
et al., 2001] apply to this case.

Along this line, Knowledge and Action Bases (KABs)
[Bagheri Hariri et al., 2012a] have have been recently in-
troduced as a mechanism that provides a semantically rich
representation of the information on the domain of interest in
terms of a Description Logic (DL) KB and a set of actions
to change such information over time, possibly introducing
new objects. In this setting, decidability of verification of
sophisticated temporal properties over KABs, expressed in a
variant of first-order µ-calculus, has been shown.
∗The authors are supported by the EU project ACSI (FP7-ICT-

257593) and Optique (FP7-IP-318338). Kharlamov was also sup-
ported by the ERC grant Webdam, agreement n. 226513.

However, KABs and the majority of approaches dealing
with verification in this complex setting assume a rather
simple treatment of inconsistency resulting as an effect of
action execution: inconsistent states are simply rejected
(see, e.g., [Deutsch et al., 2007; Deutsch et al., 2009;
Bagheri Hariri et al., 2012b]). In general, this is not satis-
factory, since the inconsistency may affect just a small portion
of the entire KB, and should be treated in a more careful way.
Starting from this observation, in this work we leverage on
the research on instance-level evolution of knowledge bases
[Winslett, 1990; Eiter and Gottlob, 1992; Flouris et al., 2008;
Calvanese et al., 2010], and, in particular, on the notion of
knowledge base repair [Lembo et al., 2010], in order to make
KABs inconsistency-aware. In particular, we present a novel
setting that extends KABs by assuming the availability of a
repair service that is able to compute, from an inconsistent
knowledge base resulting from the execution of an action, one
or more repairs, in which the inconsistency has been removed
with a “minimal” modification to the existing knowledge. This
allows us to incorporate, in the temporal verification formal-
ism, the possibility of quantifying over repairs. Notably, our
novel setting is able to deal with both deterministic seman-
tics for repair, in which a single repair is computed from an
inconsistent knowledge base, and non-deterministic ones, by
simultaneously taking into account all possible repairs. We
show how the techniques developed for KABs extend to this
inconsistency-aware setting, preserving both decidability and
complexity results, under the same assumptions required in
KABs for decidability.

We also show how our setting is able to accommodate meta-
level information about the sources of inconsistency at the
intentional level, so as to allow them to be queried when veri-
fying temporal properties of the system. The decidability and
complexity results for verification carry over to this extended
setting as well.

The proofs of all presented theorems are contained in the
appendix.

2 Preliminaries
2.1 DL-LiteA Knowledge Bases
For expressing knowledge bases, we use DL-LiteA [Poggi et
al., 2008; Calvanese et al., 2009]. The syntax of concept and
role expressions in DL-LiteA is as follows

B −→ N | ∃R R −→ P | P−

where N denotes a concept name, P a role name, and P−
an inverse role. A DL-LiteA knowledge base (KB) is a pair
(T,A), where: (i) A is an Abox, i.e., a finite set of ABox
membership assertions of the form N(t1) | P (t1, t2), where
t1, t2 denote individuals (ii) T is a TBox, i.e., T = Tp] Tn]
Tf , with Tp a finite set of positive inclusion assertions of the
form B1 v B2, Tn a finite set of negative inclusion assertions
of the form B1 v ¬B2, and Tf a finite set of functionality
assertions of the form (funct R).

We adopt the standard FOL semantics of DLs based on FOL
interpretations I = (∆I , ·I) such that cI ∈ ∆I , NI ⊆ ∆I ,
and P I ⊆ ∆I ×∆I . The semantics of the construct, of TBox
and ABox assertions, and the notions of satisfaction and of
model are as usual. We also say that A is T -consistent if
(T,A) is satisfiable, i.e., admits at least one model, otherwise
we say A is T -inconsistent.
Queries. As usual (cf. OWL 2 QL), answers to queries are
formed by terms denoting individuals explicitly mentioned in
the ABox. The domain of an ABox A, denoted by ADOM(A),
is the (finite) set of terms appearing in A. A union of conjunc-
tive queries (UCQ) q over a KB (T,A) is a FOL formula of the
form

∨
1≤i≤n ∃~yi.conj i(~x, ~yi) with free variables ~x and exis-

tentially quantified variables ~y1, . . . , ~yn. Each conj i(~x, ~yi) in
q is a conjunction of atoms of the form N(z), P (z, z′), where
N and P respectively denote a concept and a role name oc-
curring in T , and z, z′ are constants in ADOM(A) or variables
in ~x or ~yi, for some i ∈ {1, . . . , n}. The (certain) answers to
q over (T,A) is the set ans (q, T,A) of substitutions σ of the
free variables of q with constants in ADOM(A) such that qσ
evaluates to true in every model of (T,A). If q has no free
variables, then it is called boolean and its certain answers are
either true or false.

We compose UCQs using ECQs, i.e., queries of the query
language EQL-Lite(UCQ) [Calvanese et al., 2007a], which
is the FOL query language whose atoms are UCQs evaluated
according to the certain answer semantics above. An ECQ
over T and A is a possibly open formula of the form

Q := [q] | ¬Q | Q1 ∧Q2 | ∃x.Q

where q is a UCQ. The answer to Q over (T,A), is the set
ANS(Q,T,A) of tuples of constants in ADOM(A) defined
by composing the certain answers ans (q, T,A) of UCQs q
through first-order constructs, and interpreting existential vari-
ables as ranging over ADOM(A).

Finally, we recall that DL-LiteA enjoys the FO rewritability
property, which states that for every UCQ q, ans (q, T,A) =
ans (rew(q), ∅, A), where rew(q) is a UCQ computed by the
reformulation algorithm in [Calvanese et al., 2009]. Notice
that this algorithm can be extended to ECQs [Calvanese et al.,
2007a], and that its effect is to “compile away” the TBox.

2.2 Knowledge and Action Bases
We recall the notion of Knowledge and Action Bases (KABs),
as introduced in [Bagheri Hariri et al., 2012a]. In the follow-
ing, we make use of a countably infinite set C of constant to
denote all possible value in the system. Moreover, we also
make use of a finite set F of functions that represent service
calls, and can be used to inject fresh values into the system.

A KAB is a tuple K = (T,A0,Γ,Π) where T and A0

form the knowledge base (KB), and Γ and Π form the action
base. Intuitively, the KB maintains the information of interest.
It is formed by a fixed DL-LiteA TBox T and an initial T -
consistent DL-LiteA ABox A0. A0 represents the initial state
of the system and, differently from T , it evolves and incorpo-
rates new information from the external world by executing
actions Γ, according to the sequencing established by process
Π. Γ is a finite set actions. An action γ ∈ Γ modifies the cur-
rent ABox A by adding or deleting assertions, thus generating
a new ABox A′. γ is constituted by a signature and an effect
specification. The action signature is constituted by a name
and a list of individual input parameters. Such parameters
need to be instantiated with individuals for the execution of
the action. Given a substitution θ for the input parameters, we
denote by γθ the instantiated action with the actual parame-
ters coming from θ. The effect specification consists of a set
{e1, . . . , en} of effects, which take place simultaneously. An
effect ei has the form [q+

i] ∧ Q−i A′i, where: (i) q+
i is an

UCQ, and Q−i is an arbitrary ECQ whose free variables occur
all among the free variables of q+

i ; (ii) A′i is a set of facts
(over the alphabet of T) which include as terms: individuals
in A0, free variables of q+

i , and Skolem terms f(~x) having as
arguments free variables ~x of q+

i . The process Π is a finite set
of condition/action rules. A condition/action rule π ∈ Π is
an expression of the form Q 7→ γ, where γ is an action in Γ
and Q is an ECQ over T , whose free variables are exactly the
parameters of γ. The rule expresses that, for each tuple σ for
which condition Q holds, the action γ with actual parameters
σ can be executed.
Example 2.1. K = (T,A0,Γ,Π) is a KAB defined as follows:
(i) T = {C v ¬D}, (ii) A0 = {C(a)}, (iii) Γ = {γ1, γ2} with
γ1() : {C(x) D(x), C(x)} and γ2(p) : {C(p) G(f(p))},
(iv) Π = {true 7→ γ1, C(y) 7→ γ2(y)}.

3 Verification of Standard KABs
We are interested in verifying temporal/dynamic properties
over KABs. To this aim, we fix a countably infinite set C of
individual constants (also called values), which act as standard
names, and finite set of distinguished constants C0 ⊂ C. Then,
we define the execution semantics of a KAB in terms of a
possibly infinite-state transition system. More specifically, we
consider transition systems of the form (C, T,Σ, s0, abox ,⇒),
where: (i) T is a TBox; (ii) Σ is a set of states; (iii) s0 ∈ Σ is
the initial state; (iv) abox is a function that, given a state s ∈ Σ,
returns an ABox associated to s, which has as individuals
values of C and conforms to T ; (v)⇒ ⊆ Σ× Σ is a transition
relation between pairs of states.

The standard execution semantics for a KAB K =
(T,A0,Γ,Π) is obtained starting from A0 by nondetermin-
istically applying every executable action with corresponding
legal parameters, and considering each possible value returned
by applying the involved service calls. Notice that this is
radically different from [Bagheri Hariri et al., 2012a], where
service calls are not evaluated when constructing the transition
system. The executability of an action with fixed parameters
does not only depend on the process Π, but also on the T -
consistency of the ABox produced by the application of the

action: if the resulting ABox is T -inconsistent, the action is
considered as non executable with the chosen parameters.

We consider deterministic services, i.e., services that re-
turn always the same value when called with the same in-
put parameters. Nondeterministic services can be seamlessly
added without affecting our technical results. To ensure that
services behave deterministically, we recast the approach
in [Bagheri Hariri et al., 2012b] to the semantic setting of
KABs, keeping track, in the states of the transition system
generated by K, of all the service call results accumulated
so far. To do so, we introduce the set of (Skolem terms rep-
resenting) service calls as SC = {f(v1, . . . , vn) | f/n ∈
F and {v1, . . . , vn} ⊆ C}, and define a service call map as a
partial function m : SC→ C.

A state of the transition system generated by K is a pair
〈A,m〉, where A is an ABox and m is a service call map.
Let γ(p1, . . . , pr) : {e1, . . . , ek} be an action in Γ with pa-
rameters p1, . . . , pr, and ei = [q+

i] ∧ Q−i Ei. Let σ be a
substitution for p1, . . . , pr with values taken from C. We say
that σ is legal for γ in state 〈A,m〉 if there exists a condition-
action ruleQ 7→ γ in Π such that 〈p1, . . . , pr〉σ ∈ ANS(Q,A).
We denote with DO(T,A, γσ) the set of facts obtained by eval-
uating the effects of action γ with parameters σ on ABox A,
i.e.:

DO(T,A, γσ) =
⋃

[q+
i]∧Q−i Ei in γ

⋃
ρ∈ANS(([q+

i]∧Q−i)σ,T,A)

Eiσρ

The returned set is the union of the results of applying the
effects specifications in γ, where the result of each effect
specification [q+

i]∧Q−i Ei is, in turn, the set of facts Eiσρ
obtained from Eiσ grounded on all the assignments ρ that
satisfy the query [q+

i] ∧Q−i over A.
Note that DO() generates facts that use values from the

domain C, but also Skolem terms, which model service calls.
For any such set of facts E, we denote with CALLS(E) the
set of calls it contains, and with EVALS(T,A, γσ) the set of
substitutions that replace all service calls in DO(T,A, γσ)
with values in C:
EVALS(T,A, γσ) = {θ | θ is a total function

θ : CALLS(DO(T,A, γσ))→ C}.
Each substitution in EVALS(T,A, γσ) models the simultane-
ous evaluation of all service calls, returning results arbitrarily
chosen from C.
Example 3.1. Consider our running example (Ex. 2.1). Starting
from A0, the execution of γ1 would produce A′ = {D(a), C(a)},
which is T -inconsistent. Thus, the execution of γ1 is not allowed
in A0. The execution of γ2 with legal parameter a instead pro-
duces A′′ = {G(c)} when the service call f(a) returns c. A′′ is
T -consistent, and γ2(a) is therefore executable in A0.

Given a KAB K = (T,A0,Γ,Π), we employ DO() and
EVALS() to define a transition relation EXECK connecting two
states through the application of an action with parameter
assignment. In particular, given an action with parameter
assignment γσ, we have 〈〈A,m〉, γσ, 〈A′,m′〉〉 ∈ EXECK if
the following holds: (i) σ is a legal parameter assignment
for γ in state 〈A,m〉, according to Π; (ii) there exists θ ∈
EVALS(T,A, γσ) such that θ and m agree on the common
values in their domains (so as to realize the deterministic

service semantics); (iii)A′ = DO(T,A, γσ)θ; (iv)m′ = m∪θ
(i.e., the history of issued service calls is updated).
Standard transition system. The standard transition sys-
tem ΥS

K for KAB K = (T,A0,Γ,Π) is a (possibly infinite-
state) transition system (C, T,Σ, s0, abox ,⇒) where: (i) s0 =
〈A0, ∅〉; (ii) abox (〈A,m〉) = A; (iii) Σ and⇒ are defined by
simultaneous induction as the smallest sets satisfying the fol-
lowing properties: (i) s0 ∈ Σ; (ii) if 〈A,m〉 ∈ Σ , then for
all actions γ in Γ, for all substitutions σ for the parameters
of γ and for all 〈A′,m′〉 such that A′ is T -consistent and
〈〈A,m〉, γσ, 〈A′,m′〉〉 ∈ EXECK, we have 〈A′,m′〉 ∈ Σ and
〈A,m〉 ⇒ 〈A′,m′〉. We call S-KAB a KAB interpreted under
the standard execution semantics.
Example 3.2. Consider K of Ex. 2.1 and its standard transition sys-
tem ΥS

K. As discussed in Ex. 3.1, in state s0 = 〈A0, ∅〉 only γ2 is ap-
plicable with parameter a. Since DO(T,A0, γ2(a)) = {G(f(a))},
ΥS
K contains infinitely many successors for s0, each of the form
〈{G(x)}, {f(a) 7→ x}〉, where x is arbitrarily substituted with a
specific value picked from C.

Verification Formalism. To specify sophisticated temporal
properties over KABs, we resort to the first-order variant of µ-
calculus [Stirling, 2001; Park, 1976] defined in [Bagheri Hariri
et al., 2012a]. This variant, here called µLEQL

A , exploits EQL
to query the states, and supports a particular form of first-
order quantification across states: quantification ranges over
the individuals explicitly present in the current active domain,
and can be arbitrarily referred to in later states of the systems.
Formally, µLEQL

A is defined as follows:

Φ := Q | ¬Φ | Φ1 ∧ Φ2 | ∃x.Φ | 〈−〉Φ | Z | µZ.Φ
where Q is a possibly open EQL query that can make use
of the distinguished constants in C0, and Z is a second order
predicate variable (of arity 0). We make use of the following
abbreviations: ∀x.Φ = ¬(∃x.¬Φ), Φ1∨Φ2 = ¬(¬Φ1∧¬Φ2),
[−]Φ = ¬〈−〉¬Φ, and νZ.Φ = ¬µZ.¬Φ[Z/¬Z].

The semantics of µLEQL
A formulae is defined over transition

systems 〈C, T,Σ, s0, abox ,⇒〉. Since µLEQL
A contains formu-

lae with both individual and predicate free variables, given
a transition system Υ, we introduce an individual variable
valuation v, i.e., a mapping from individual variables x to C,
and a predicate variable valuation V , i.e., a mapping from the
predicate variables Z to a subset of Σ. All the language primi-
tives follow the standard µ-calculus semantics, apart from the
two listed below [Bagheri Hariri et al., 2012a]:

(Q)Υ
v,V = {s ∈ Σ | ANS(Qv, T, abox(s)) = true}

(∃x.Φ)Υ
v,V = {s ∈ Σ | ∃d.d ∈ ADOM(abox(s)) and s ∈ (Φ)Υ

v[x/d],V
}

Here, Qv stands for the query obtained from Q by substituting
its free variables according to v. When Φ is a closed formula,
(Φ)Υ

v,V does not depend on v or V , and we denote the extension
of Φ simply by (Φ)Υ . A closed formula Φ holds in a state
s ∈ Σ if s ∈ (Φ)Υ . We call model checking verifying whether
s0 ∈ (Φ)Υ , and we write in this case Υ |= Φ.
Decidability of verification. We are interested in studying
the verification of µLEQL

A properties over S-KABs. We can
easily recast the undecidability result in [Bagheri Hariri et al.,
2012a] to the case of S-KABs, obtaining that verification is

undecidable even for the very simple temporal reachability
property µZ.(N(a)∨〈−〉Z), with N atomic concept and a ∈ C.

Despite this undecidability result, we can isolate an in-
teresting class of KABs that enjoys verifiability of arbitrary
µLEQL

A properties through finite-state abstraction. This class
is based on a semantic restriction named run-boundedness
[Bagheri Hariri et al., 2012b]. Given an S-KAB K, a run
τ = s0s1 · · · of ΥS

K is bounded if there exists a finite bound
b s.t.

∣∣⋃
s state of τ ADOM(abox (s))

∣∣ < b. We say that K is run-
bounded if there exists a bound b s.t. every run τ in ΥS

K is
bounded by b.

Theorem 3.3. Verification of µLEQL
A properties over run-

bounded S-KABs is decidable in, and can be reduced to finite-
state model checking of propositional µ-calculus.

The crux of the proof is to show, given a run-bounded S-
KAB K, how to construct an abstract transition system ΘS

K
that satisfies exactly the same µLEQL

A properties as the original
transition system ΥS

K. This is done by introducing a suitable
bisimulation relation, and defining a construction of ΘS

K based
on iteratively “pruning” those branches of ΥS

K that cannot be
distinguished by µLEQL

A properties.
In fact, ΘS

K is of size exponential in the size of the initial
state of the S-KAB K and the bound b. Hence, considering
the complexity of model checking of µ-calculus on finite-state
transition systems [Clarke et al., 1999; Stirling, 2001], we
obtain that verification is in EXPTIME.

4 Repair Semantics for KABs
S-KABs are defined by taking a radical approach in the man-
agement of inconsistency: simply reject actions leading to
T -inconsistent ABoxes. However, an inconsistency could be
caused by a small portion of the ABox, making it desirable
to handle the inconsistency by allowing the application of the
action, taking at the same time care of repairing the resulting
state so as to restore consistency while minimizing the infor-
mation loss. To this aim, we revise the standard execution se-
mantics for KABs so as to manage inconsistency. This is done
taking advantage of the research on instance-level evolution of
knowledge bases [Winslett, 1990; Eiter and Gottlob, 1992;
Flouris et al., 2008; Calvanese et al., 2010], and, in par-
ticular, of the notion of ABox repair, cf. [Bertossi, 2006;
Lembo et al., 2010].

In particular, we assume that in this case the system is
equipped with a repair service that is executed every time
an action changes the content of the ABox. In this light, a
progression step of the KAB is constituted by two sub-steps:
an action step, where an executable action with parameters
is chosen and applied over the current ABox, followed by
a repair step, where the repair service checks whether the
resulting state is T -consistent or not, and, in the negative case,
fixes the content of the ABox resulting from the action step,
by applying its repair strategy.
Repairing ABoxes. We illustrate our approach by considering
two specific forms of repair that have been proposed in the
literature [Eiter and Gottlob, 1992] and are applicable to the
context of DL ontologies [Lembo et al., 2010].

• Given an ABoxA and a TBox T , a bold-repair (b-repair)
of A with T is a maximal T -consistent subset A′ of A.
Clearly, there might be more than one bold-repair for
given A and T . By REP(A, T) we denote the set of all
b-repairs of A with T .
• A certain-repair (c-repair) of A with T is the ABox

defined as follows: A′ = ∩A′′∈REP(A,T)A
′′. That is, a c-

repair of A with T contains only those ABox statements
that occur in every b-repair of A with T .

Notice that, in general, there are (exponentially) many b-
repairs of an ABox A with T , while by definition there is
a single c-repair.
Example 4.1. Continuing Ex. 3.1, consider the T -inconsistent
state 〈A′, ∅〉 obtained by applying γ1() in A0. Its two b-repairs are
REP(A′, T) = {A1, A2} with A1 = {C(a)}, A2 = {D(a)}. Its
c-repair is

⋂
A∈REP(A′,T)A = {C(a)} ∩ {D(a)} = ∅.

4.1 Bold and Certain Repair Transition Systems
We now refine the execution semantics of KABs by construct-
ing a two-layered transition system that reflects the alternation
between the action and the repair steps. In particular, we con-
sider the two cases for which the repair strategy either follows
the bold or certain semantics.

We observe that, if b-repair semantics is applied, then the re-
pair service has, in general, several possibilities to fix an incon-
sistent ABox. Since, a-priori, no information about the repair
service can be assumed beside the repair strategy itself, the
transition system capturing this execution semantics must con-
sider the progression of the system for any computable repair,
modelling the repair step as the result of a non-deterministic
choice taken by the repair service when deciding which among
the possible repairs will be the actually enforced one. This
issue does not occur with c-repair semantics, because its repair
strategy is deterministic.

In order to distinguish whether a state is obtained from an
action or repair step, we introduce a special marker State(rep),
which is an ABox statement with a fresh concept name State
and a fresh constant rep, s.t.: if State(rep) is in the current
state, this means that the state has been produced by an action
step, otherwise by the repair step.

Formally, the b-transition system Υb
K (resp. c-transition sys-

tem Υc
K) for a KAB K = (T,A0,Γ,Π) is a (possibly infinite-

state) transition system (C, T,Σ, s0, abox ,⇒) where:
(1) s0 = 〈A0, ∅〉;
(2) Σ and ⇒ are defined by simultaneous induction as the

smallest sets satisfying the following properties:
(i) s0 ∈ Σ;

(ii) (action step) if 〈A,m〉 ∈ Σ and State(rep) 6∈ A,
then for all actions γ in Γ, for all substitutions
σ for the parameters of γ and for all 〈A′,m′〉
s.t. 〈〈A,m〉, γσ, 〈A′,m′〉〉 ∈ EXECK, let A′′ =
A′ ∪ {State(rep)}, and then 〈A′′,m′〉 ∈ Σ and
〈A,m〉 ⇒ 〈A′′,m′〉;

(iii) (repair step) if 〈A,m〉 ∈ Σ and State(rep) ∈ A,
then for b-repair A′ (resp. c-repair A′) of A −
{State(rep)} with T , we have 〈A′,m〉 ∈ Σ and
〈A,m〉 ⇒ 〈A′,m〉.

We refer to KABs with b-transition (resp. c-transition) system
semantics as b-KAB (resp. c-KAB).

Example 4.2. Under b-repair semantics, the KAB in our run-
ning example looks as follows. Since A′ is T -inconsistent, we have
two bold repairs, A1 and A2, which in turn give rise to two runs:
〈A0, ∅〉 ⇒ 〈A′r, ∅〉 ⇒ 〈A1, ∅〉 and 〈A0, ∅〉 ⇒ 〈A′r, ∅〉 ⇒ 〈A2, ∅〉,
whereA′r = {A′∪{STATE(REP)}. Since instead γ1 does not lead to
any inconsistency, for every candidate successor A′′ = {G(x)}
with m = {(f(a) 7→ x)} (see Ex. 3.2), we have 〈A0, ∅〉 ⇒
〈A′′ ∪ {STATE(REP)},m〉 ⇒ 〈A′′,m〉, reflecting that in this case
the repair service just maintains the resulting ABox unaltered.

4.2 Verification Under Repair Semantics
We observe that the alternation between an action and a repair
step makes EQL queries meaningless for the intermediate
states produced as a result of action steps, because the resulting
ABox could be in fact T -inconsistent (see, e.g., state 〈A′r, ∅〉
in Ex. 4.2). In fact, such intermediate states are needed just
to capture the dynamic structure that reflects the behaviour of
the system. E.g., state 〈A′r, ∅〉 in Ex. 4.2 has two successor
states, attesting that the repair service with bold semantics will
produce one between two possible repairs.

In this light, we introduce the inconsistency-tolerant tempo-
ral logic µLIT

A , which is a fragment of µLEQL
A defined as:

Φ := Q | ¬Φ | Φ1∧Φ2 | ∃x.Φ | 〈−〉[−]Φ | [−][−]Φ | Z | µZ.Φ

Beside the standard abbreviations introduced for µLEQL
A , we

also make use of the following: 〈−〉〈−〉Φ = ¬[−][−]¬Φ, and
[−]〈−〉Φ = ¬〈−〉[−]¬Φ. This logic can be used to express in-
teresting properties over b- and c-KABs, exploiting different
combinations of the 〈−〉 and [−] next-state operators so as to
quantify over the possible action steps and corresponding re-
pair steps, ensuring at the same time that only the T -consistent
states produced by the repair steps are queried. For exam-
ple, µZ.(Φ ∨ 〈−〉〈−〉Z) models the “optimistic” reachability
of Φ, stating that there exists a sequence of action and repair
steps, s.t. Φ eventually holds. Conversely, µZ.(Φ ∨ 〈−〉[−]Z)
models the “robust” reachability of Φ, stating the existence
of a sequence of action steps leading to Φ independently
from the behaviour of the repair service. This patterns can
be nested into more complex properties that express require-
ments about the acceptable progressions of the system, tak-
ing into account data and repairs. E.g., νZ.(∀x.Stud(x) →
µY.(Grad(x) ∨ 〈−〉[−]Y)) ∧ [−][−]Z states that, for every stu-
dent x encountered in any state of the system, it is possible to
“robustly” reach a state where x becomes graduated.

Since for a given ABox there exist finitely many b-repairs,
and one c-repair, the technique used to prove decidability of
properties for run-bounded S-KABs can be extended to deal
with b- and c-KABs as well.

Theorem 4.3. Verification of µLIT
A properties over run-

bounded b-KABs and c-KABs is decidable.

The precise relationship between b-KABs and c-KABs re-
mains to be investigated.

5 Extended Repair Semantic for KABs
B-KABs and c-KABs provide an inconsistency-handling se-
mantics to KABs. However, despite dealing with possible re-
pairs when some action step produces a T -inconsistent ABox,

they do not explicitly track whether a repair has been actu-
ally enforced, nor do they provide finer-grained insights about
which TBox assertions were involved in the inconsistency. We
extend the repair execution semantics of so as to equip the
transition system with this additional information.

While DL-LiteA does not allow, in general, to uniquely
extract from a T -inconsistent ABox a set of individuals that are
responsible for the inconsistency [Calvanese et al., 2007b], its
separability property [Calvanese et al., 2007b] guarantees that
inconsistency arises because a single negative TBox assertion
is violated. More specifically, a T -inconsistency involves
the violation of either a functionality assertion or negative
inclusion in T . Since DL-LiteA obeys to the restriction that no
functional role can be specialized, the first case can be detected
by just considering the ABox and the functionality assertion
alone. Contrariwise, the second requires also to take into
account the positive inclusion assertions (since disjointness
propagates downward to the subclasses). Thanks to the FO
rewritability of ontology satisfiability in DL-LiteA [Calvanese
et al., 2007b], check can be done by constructing a FOL
boolean query that corresponds to the considered functional or
negative inclusion assertion, and that can be directly evaluated
over the ABox, considered as a database of facts.

Following [Calvanese et al., 2007b], given a func-
tionality assertion (funct R), we construct the query
qfunsat((funct R)) = ∃x, x1, x2.η(R, x, x1) ∧ η(R, x, x2) ∧
x1 6= x2, where η(R, x, y) = P (x, y) if R = P , and
η(R, x, y) = P (y, x) if R = P−. Given a negative
concept inclusion B1 v ¬B2 and a set of positive inclu-
sions Tp, we construct the query qnunsat(B1 v ¬B2, Tp) =
rew(Tp,∃x.γ(B1, x) ∧ γ(B2, x)), where γ(B, x) = N(x)
if B = N , γ(B, x) = P (x,) if B = ∃P , and γ(B, x) =
P (, x) ifB = ∃P−. Similarly, given a negative role inclusion
R1 v ¬R2, we construct the query qnunsat(R1 v ¬R2, Tp) =
rew(Tp,∃x1, x2.η(R1, x1, x2) ∧ η(R2, x1, x2)).

5.1 Extended Repair Transition System
With this machinery at hand, given a KB (T,A) we can now
compute the set of TBox assertions in T that are actually
violated by A. To do so, we assume wlog that C0 contains one
distinguished constant per TBox assertion in T , and introduce
a function LABEL, that, given a TBox assertion, returns the
corresponding constant. We then define the set VIOL(A, T) of
constants labeling TBox assertions in T violated by A, as:

{d ∈ ∆ | ∃t ∈ Tf s.t. d = LABEL(t) and A |= qfunsat(t)} ∪
{d ∈ ∆ | ∃t ∈ Tn s.t. d = LABEL(t) and A |= qnunsat(t, Tp)}
Example 5.1. Consider K in Ex. 2.1, with T = {C v ¬D},
and A′ = {D(a), C(a)} in Ex. 3.1. Assume that LABEL(C v
¬D) = `. We have φ = qnunsat(C v ¬D, ∅) = ∃x.C(x) ∧
D(x). Since A′ |= φ, we obtain VIOL(A′, T) = {`}.

We now employ this information assuming that the repair
service decorates the states it produces with information about
which TBox functional and negative inclusion assertions have
been involved in the repair. This is done with a fresh concept
Viol that keeps track of the labels of violated TBox assertions.

Formally, we define the eb-transition system Υeb
K (resp. ec-

transition system Υec
K) for KAB K = (T,A0,Γ,Π) as a (pos-

sibly infinite-state) transition system (C, T,Σ, s0, abox ,⇒)

constructed starting from Υb
K (resp. Υc

K) by refining the repair
step as follows: if 〈A,m〉 ∈ Σ and State(rep) ∈ A, then
for b-repair A′ (resp. c-repair A′) of A− {State(rep)} with
T , we have 〈A′v,m〉 ∈ Σ and 〈A,m〉 ⇒ 〈A′v,m〉, where
A′v = A′ ∪ {Viol(d) | d ∈ VIOL(A′, T)}.

5.2 Verification Under Extended Repair Semantics
Thanks to the insertion of information about violated TBox
assertions in their transition systems, eb-KABs and ec-KABs
support the verification of µLIT

A properties that mix dynamic
requirements with queries over the instance-level information
and over the meta-level information related to inconsistency.
Notice that such properties can indirectly refer to specific
TBox assertions, thanks to the fact that their labels belong to
the set of distinguished constants C0. Examples of formulae
focused on the presence of violations in the system are:
• νZ.(¬∃l.Viol(l))∧[−][−]Z says that no state of the system

is manipulated by the repair service;
• νZ.(∀l.Viol(l) → (µY.νW.¬Viol(l) ∧ [−][−]W ∨
〈−〉[−]Y) ∧ [−][−]Z says that, in all states, whenever a
TBox assertion a is violated, independently from the ap-
plied repairs there exists a run that reaches a state starting
from which a will never be violated anymore.

Since the TBox assertions are finitely many and fixed for a
given KAB, the key decidability result of Theorem 4.3 can be
seamlessly carried over these extended repair semantics.

Theorem 5.2. Verification of µLIT
A properties over run-

bounded eb-KABs and ec-KABs is decidable.

5.3 From Standard to Extended Repair KABs
It is clear that extended repair KABs are richer than repair
KABs. We now show that eb- and ec-KABs are also richer
than S-KABs, thanks to the fact that information about the vio-
lated TBox assertions is explicitly tracked in all states resulting
from a repair step. In particular, verification of µLEQL

A proper-
ties over a KAB K under standard semantics can be recast as
a corresponding verification problem over K interpreted either
under extended bold or extended certain repair semantics. The
intuition behind the reduction is that a property holds over Υs

K
if that property holds in the portion of the Υeb

K (or Υec
K) where

no TBox assertion is violated. The absence of violation can
be checked over T -consistent states by issuing the EQL query
¬∃x.[Viol(x)]. Technically, we define a translation function
τ that transforms an arbitrary µLEQL

A property Φ into a µLIT
A

property Φ′ = τ(Φ). The translation τ(Φ) is inductively de-
fined by recurring over the structure of Φ and substituting each
occurrence of 〈−〉Ψ with 〈−〉〈−〉((¬∃x.Viol(x)) ∧ τ(Ψ)), and
each occurrence of [−]Ψ with [−]〈−〉((¬∃x.Viol(x))→ τ(Ψ)).
Observe that, in τ , the choice of 〈−〉 for the nested operator can
be substituted by [−], because for T -consistent states produced
by an action step, the repair step simply copy the resulting
state, generating a unique successor even in the eb-semantics.

Theorem 5.3. Given a KAB K and a µLEQL
A property Φ,

Υs
K |= Φ iff Υeb

K |= τ(Φ) iff Υec
K |= τ(Φ).

The correctness of this result can be directly obtained by
considering the semantics of µLEQL

A and µLIT
A , and the con-

struction of the transition systems under the three semantics.

6 Weakly Acyclic KABs
So far, all the decidability results here presented have relied
on the assumption that the considered KAB is state-bounded.
As pointed out in [Bagheri Hariri et al., 2012b], run bounded-
ness is a semantic condition that is undecidable to check. In
[Bagheri Hariri et al., 2012b], a sufficient, syntactic condition
borrowed from weak acyclicity in data exchange [Fagin et al.,
2005] has been proposed to actually check whether the KAB
under study is run bounded and, in turn, verifiable.

Intuitively, given a KAB K, this test constructs a depen-
dency graph tracking how the action effect specifications of
K transport values from one state to the next one. To track all
the actual dependencies, every involved query is first rewrit-
ten considering the positive inclusion assertions of the TBox.
Two types of dependencies are tracked: copy of values and
usage of values as parameters of a service call. K is said to be
weakly acyclic if there is no cyclic chain of dependencies of
the second kind. The presence of such a cycle could produce
an infinite chain of fresh values generation through service
calls.

The crux of the proof showing that weakly acyclicity en-
sures run boundedness is based on the notion of positive dom-
inant, which creates a simplified version of the KAB that,
from the execution point of view, obeys to three key proper-
ties. First, its execution consists of a single run that closely
resembles the chase of a set of tuple-generating dependencies,
which terminates under the assumption of weak acyclicity [Fa-
gin et al., 2005], guaranteeing that the positive dominant is
indeed run-bounded. Second, it considers only the positive
inclusion assertions of the TBox, therefore producing always
the same behaviour independently from which execution se-
mantics is chosen, among the ones discussed in this paper.
Third, for every run contained in each of the transition systems
generated under the standard, bold repair, certain repair, and
their extended versions, the values accumulated along the run
are “bounded” by the ones contained in the unique run of the
positive dominant. This makes it possible to directly carry run-
boundedness from the positive dominant to the original KAB,
independently from which execution semantics is considered.
Theorem 6.1. Given a weakly acyclic KAB K, we have that
Υs
K, Υb

K, Υc
K, Υeb

K , Υec
K are all run-bounded.

Theorem 6.1 shows that weak acyclicity is an effective
method to check verifiability of KABs under all inconsistency-
aware semantics considered in this paper.

7 Conclusion
We have approached the problem of inconsistency handling
in Knowledge and Action Bases, by resorting to an approach
based on ABox repairs. An orthogonal approach to the one
taken is to maintain ABoxes that are inconsistent with the
TBox as states of the transition system, and rely, both for the
progression mechanism and for answering queries used in
verification, on consistent query answering [Bertossi, 2006;
Lembo et al., 2010]. Notably, we are able to show that the
decidability and complexity results established for the repair-
based approaches carry over also to this setting. It remains
open to investigate the relationship between these orthogonal
approaches to dealing with inconsistency in KABs.

References
[Bagheri Hariri et al., 2012a] Babak Bagheri Hariri, Diego

Calvanese, Giuseppe De Giacomo, Riccardo De Masellis,
Marco Montali, and Paolo Felli. Verification of description
logic Knowledge and Action Bases. In Proc. of ECAI 2012,
pages 103–108, 2012.

[Bagheri Hariri et al., 2012b] Babak Bagheri Hariri, Diego
Calvanese, Giuseppe De Giacomo, Alin Deutsch, and
Marco Montali. Verification of relational data-centric dy-
namic systems with external services. CoRR Technical
Report arXiv:1203.0024, arXiv.org e-Print archive, 2012.
Available at http://arxiv.org/abs/1203.0024.

[Bertossi, 2006] Leopoldo E. Bertossi. Consistent query an-
swering in databases. SIGMOD Record, 35(2):68–76, 2006.

[Burkart et al., 2001] O. Burkart, D. Caucal, F. Moller, and
B. Steffen. Verification of infinite structures. In Handbook
of Process Algebra. Elsevier Science, 2001.

[Calvanese et al., 2007a] Diego Calvanese, Giuseppe De Gi-
acomo, Domenico Lembo, Maurizio Lenzerini, and Ric-
cardo Rosati. EQL-Lite: Effective first-order query pro-
cessing in description logics. In Proc. of IJCAI 2007, pages
274–279, 2007.

[Calvanese et al., 2007b] Diego Calvanese, Giuseppe De Gi-
acomo, Domenico Lembo, Maurizio Lenzerini, and Ric-
cardo Rosati. Tractable reasoning and efficient query an-
swering in description logics: The DL-Lite family. J. of
Automated Reasoning, 39(3):385–429, 2007.

[Calvanese et al., 2009] Diego Calvanese, Giuseppe De Gia-
como, Domenico Lembo, Maurizio Lenzerini, Antonella
Poggi, Mariano Rodrı́guez-Muro, and Riccardo Rosati. On-
tologies and databases: The DL-Lite approach. In Sergio
Tessaris and Enrico Franconi, editors, RW 2009 Tutorial
Lectures, volume 5689 of LNCS, pages 255–356. Springer,
2009.

[Calvanese et al., 2010] Diego Calvanese, Evgeny Khar-
lamov, Werner Nutt, and Dmitriy Zheleznyakov. Evolution
of DL-Lite knowledge bases. In Proc. of ISWC 2010, vol-
ume 6496 of LNCS, pages 112–128. Springer, 2010.

[Calvanese et al., 2012] Diego Calvanese, Giuseppe De Gia-
como, Domenico Lembo, Marco Montali, and Ario Santoso.
Ontology-based governance of data-aware processes. In
Proc. of RR 2012, volume 7497 of LNCS, pages 25–41.
Springer, 2012.

[Clarke et al., 1999] Edmund M. Clarke, Orna Grumberg,
and Doron A. Peled. Model checking. The MIT Press,
Cambridge, MA, USA, 1999.

[Deutsch et al., 2007] Alin Deutsch, Liying Sui, and Victor
Vianu. Specification and verification of data-driven web ap-
plications. J. of Computer and System Sciences, 73(3):442–
474, 2007.

[Deutsch et al., 2009] Alin Deutsch, Richard Hull, Fabio Pa-
trizi, and Victor Vianu. Automatic verification of data-
centric business processes. In Proc. of ICDT 2009, pages
252–267, 2009.

[Eiter and Gottlob, 1992] Thomas Eiter and Georg Gottlob.
On the complexity of propositional knowledge base revi-
sion, updates and counterfactuals. Artificial Intelligence,
57:227–270, 1992.

[Emerson, 1997] E. Allen Emerson. Model checking and the
Mu-calculus. In Proc. of DIMACS, 1997.

[Fagin et al., 2005] Ronald Fagin, Phokion G. Kolaitis,
Renée J. Miller, and Lucian Popa. Data exchange: Seman-
tics and query answering. Theoretical Computer Science,
336(1):89–124, 2005.

[Flouris et al., 2008] Giorgos Flouris, Dimitris Manakanatas,
Haridimos Kondylakis, Dimitris Plexousakis, and Grigoris
Antoniou. Ontology change: Classification and survey.
Knowledge Engineering Review, 23(2):117–152, 2008.

[Lembo et al., 2010] Domenico Lembo, Maurizio Lenzerini,
Riccardo Rosati, Marco Ruzzi, and Domenico Fabio Savo.
Inconsistency-tolerant semantics for description logics. In
Proc. of RR 2010, pages 103–117, 2010.

[Limonad et al., 2012] Lior Limonad, Pieter De Leenheer,
Mark Linehan, Rick Hull, and Roman Vaculin. Ontology
of dynamic entities. In Proc. of ER 2012, 2012.

[Park, 1976] David Michael Ritchie Park. Finiteness is Mu-
ineffable. Theoretical Computer Science, 3(2):173–181,
1976.

[Poggi et al., 2008] Antonella Poggi, Domenico Lembo,
Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenz-
erini, and Riccardo Rosati. Linking data to ontologies. J.
on Data Semantics, X:133–173, 2008.

[Stirling, 2001] Colin Stirling. Modal and Temporal Proper-
ties of Processes. Springer, 2001.

[Vianu, 2009] Victor Vianu. Automatic verification of
database-driven systems: a new frontier. In Proc. of
ICDT 2009, pages 1–13, 2009.

[Winslett, 1990] Marianne Winslett. Updating Logical
Databases. Cambridge University Press, 1990.

http://arxiv.org/abs/1203.0024

A Bisimulation and Invariance
We start by introducing the notion of isomorphism between
ABoxes. Two ABoxes A1 and A2 are isomorphic, written
A1 ≡ A2, if there exists a bijection h : S1 → S2, with
ADOM(A1) ∪ C0 ⊆ S1 and ADOM(A2) ∪ C0 ⊆ S2, which is
the identity on C0, and s.t.:

1. for every concept assertion N(d) ∈ A1, N(h(d)) ∈ A2;
2. for every role assertion P (d1, d2) ∈ A1,
N(h(d1), h(d2)) ∈ A2;

3. for every concept assertion N(d) ∈ A2, N(h−1(d)) ∈
A1;

4. for every role assertion P (d1, d2) ∈ A2,
N(h−1(d1), h−1(d2)) ∈ A1.

We write A1 ≡h A2 to make h explicit. Furthermore, with
a slight abuse of notation, we write A2 = h(A1), and A1 =
h−1(A2), when there exists a bijection h : S1 → S2, with
ADOM(A1)∪C0 ⊆ S1 and ADOM(A2)∪C0 ⊆ S2, s.t. A1 ≡h
A2.

It is easy to see that isomorphism implies the following
results.
Lemma A.1. Consider two knowledge bases (T,A1) and
(T,A2), s.t. there exists a bijection h with A2 = h(A1). For
every EQL query q, we have 〈d1, . . . , dn〉 ∈ ANS(q, T,A1) iff
〈h(d1), . . . , h(dn)〉 ∈ ANS(h(q), T, h(A1)).

Proof. Trivial, by recalling the notion of first-order rewritabil-
ity of EQL queries, and the fact that first-order logic cannot
distinguish between isomorphic structures.

We now recast the notion of history preserving bisimu-
lation as defined in [Bagheri Hariri et al., 2012b] in the
context of KABs. Let Υ1 = (C1, T,Σ1, s0, abox 1,⇒1) and
Υ1 = (C2, T,Σ2, s0, abox 2,⇒2) be transition systems, with
abox (s0) ⊆ C0 ⊆ C1 ∩ C2. Let H be the set of partial bi-
jections between C1 and C2, which are the identity over C0.
A history preserving bisimulation between Υ1 and Υ2 is a
relation B ⊆ Σ1 ×H × Σ2 such that 〈s1, h, s2〉 ∈ B implies
that:

1. h is a partial bijection between C1 and C2, s.t. h fixes C0
and abox 1(s1) ≡h abox 2(s2);

2. for each s′1, if s1 ⇒1 s
′
1 then there is an s′2 with s2 ⇒2 s

′
2

and a bijection h′ that extends h, such that 〈s′1, h′, s′2〉 ∈
B.

3. for each s′2, if s2 ⇒2 s
′
2 then there is an s′1 with s1 ⇒1 s

′
1

and a bijection h′ that extends h, such that 〈s′1, h′, s′2〉 ∈
B.

A state s1 ∈ Σ1 is history preserving bisimilar to s2 ∈ Σ2

wrt a partial bijection h, written s1 ≈h s2, if there exists a
history preserving bisimulation B between Υ1 and Υ2 such
that 〈s1, h, s2〉 ∈ B. A state s1 ∈ Σ1 is history preserving
bisimilar to s2 ∈ Σ2, written s1 ≈ s2, if there exists a partial
bijection h and a history preserving bisimulation B between
Υ1 and Υ2 such that 〈s1, h, s2〉 ∈ B. A transition system
Υ1 is history preserving bisimilar to Υ2, written Υ1 ≈ Υ2,
if there exists a partial bijection h0 and a history preserving
bisimulation B between Υ1 and Υ2 such that 〈s01, h0, s02〉 ∈
B.

The following fundamental results connects history preserv-
ing bisimulation and the logic µLEQL

A :

Theorem A.2. Consider two transition systems Υ1 and Υ2

such that Υ1 ≈ Υ2. For every µLEQL
A closed formula Φ, we

have: Υ1 |= Φ if and only if Υ2 |= Φ.

Proof. The proof follows from that of Theorem 3.1 in
[Bagheri Hariri et al., 2012b], noticing that, by Lemma A.1,
isomorphism indeed preserves certain answers.

B Standard KABs
B.1 Proof of Theorem 3.3
In principle, decidability can be obtained by taking advan-
tage from first-order rewritability of DL-LiteA, and translating
a KAB into a corresponding Data-Centric Dynamic System
[Bagheri Hariri et al., 2012b]. However, in order to make
the proof adaptable to the inconsistency-aware semantics dis-
cussed in the paper, we reconstruct the proof contained in
[Bagheri Hariri et al., 2012b] over KABs. We first discuss
the intuition behind the proof, and then focus on the technical
development.

Given a run-bounded S-KAB K, the crux of the proof is
to show how to construct an abstract transition system ΘS

K
that satisfies exactly the same µLEQL

A properties of the original
transition system ΥS

K. To do so, a first observation is that
the only source of infiniteness in ΥS

K is the infinite branching
arising when a service call is issued for the first time. In this
case, given a state s = 〈A,m〉 in ΥS

K, for every executable
action with legal parameters ασ, s contains an infinite number
of successor states, each one corresponding to an assignment
of all the newly introduced service calls to values in C, s.t. the
resulting state does not violate any axiom of T .

One can see these successors as variations of a finite
set of structures, each one expressing an isomorphic type
(called equality commitment) constructed over the set of facts
E = DO(T,A, ασ) and the map m, by fixing the set of equal-
ities and inequalities between the service calls that must be
issued, and the service calls and values contained in E, m and
C0. Each structure can be concretized into a successor state by
evaluating the service calls so as to satisfy the equalities and
inequalities induced by the equality commitment (this also
guarantees that the evaluation agrees with m). Two concretiza-
tions of the same structure are isomorphic, i.e., they contain
the same ABox and service call map modulo renaming of the
newly introduced values.

We now observe that EQL-queries do not distinguish iso-
morphic ABoxes. In particular, consider two ABoxes A1 and
A2, and a bijection h that induces an isomorphism between
A1 and A2. Now consider an EQL query q s.t. the constants
used in q appear in h, and let h(q) be the query obtained by
replacing such constants through the application of h. It is
easy to see that the certain answers of q over A1 are exactly
the same of h(q) over A2, modulo renaming of the values
via h. The key consequence of this property is that, given a
state s of ΥS

K, µLEQL
A is not able to distinguish successors of s

that concretize E by satisfying the same equality commitment.
Therefore, all such successors can be collapsed into a unique
representative successor, without affecting the satisfaction of
a closed µLEQL

A property Φ asked in the initial state of the
system.

By inductively applying this pruning, we can construct a
finite-state transition system ΘS

Φ. Since the active domain of
ΘS

Φ is finite, by quantifier elimination we can then transform Φ
into a corresponding propositional µ-calculus property φ, and
reduce verification of Φ over ΥS

K as standard model checking
of φ over ΘS

K, which is indeed decidable [Emerson, 1997].
Equality commitments. Given a set S ⊆ SC ∪ C containing
individuals and service calls, an equality commitment over
S is a partition H of S s.t. every cell of H contains at most
one element d ∈ C. Given an element e ∈ S, we use [e]H
do denote the cell e belongs to. With a slight abuse of no-
tation, we say that e ∈ H if e ∈ S. Now consider a KAB
K = (T,A0,Γ,Π), a state 〈A,m〉, and an action α ∈ Γ with
parameters σ, s.t. ασ is legal in 〈A,m〉 according to Π. Let
H(T, 〈A,m〉, ασ) be the set of equality commitments Hi con-
structed over ADOM(C0) ∪ ADOM(A) ∪ DOM(m) ∪ IM(m) ∪
ADOM(DO(T,A, ασ)) that agrees with m, i.e., for every as-
signment (f → d) in m, [f]Hi = [d]Hi . Intuitively, the
elements of H are equality commitments that fix the equiv-
alence class to which every new service call, introduced by
DO(T,A, ασ), belongs to.

We say that EVALS(T,A, ασ) respects an equality commit-
ment H ∈ H(T, 〈A,m〉, ασ) if, for every pair of assignments
(f1 → d1), (f2 → d2) in EVALS(T,A, ασ), d1 = d2 iff f1

and f2 belong to the same cell P of H , and d1 = d2 = d iff d
belongs to P .
Pruning. Given a KAB K = (T,A0,Γ,Π), we refine the
definition of EXECK so as to create a parsimonious version
that minimally covers, state-by-state, the various equality com-
mitments.

In particular, we define a transition relation P-EXECK as
follows. For every 〈〈A,m〉, ασ, 〈A′,m′〉〉 ∈ EXECK, fix θ =
m′ \m and H ∈ H(T, 〈A,m〉, ασ) s.t. θ respects H . Then
there exists only one θp = EVALS(T,A, ασ) s.t. θp respects
H and, given, Ap = DO(T,A, ασ)θp and m′ = m ∪ θp,
〈〈A,m〉, ασ, 〈Ap,mp〉〉 ∈ P-EXECK. Intuitively, P-EXECK
“prunes” EXECK by collapsing into a unique representative
tuple all transitions that are associated to a given starting state
and action with parameters, and that respect the same equality
commitment.

Starting from P-EXECK, we define a pruning ΘS
K of the

transition system under standard semantics ΥS
K as a transition

system constructed following the standard semantics, but by
using P-EXECK in place of EXECK to inductively construct the
set of states and transitions. In general, there exist infinitely
many prunings, whose difference relies in the particular choice
for the representatives when constructing P-EXECK. However,
we show that all such prunings are history-preserving bisimilar
to the original transition system ΘK. The following lemma is
a key result in this direction, and intuitively shows that bisimu-
lation does not distinguish different progressions that fix, step-
by-step, the same equality commitments. In the lemma, for the
sake of readability, given a service call map m and a function
h : C → C defined over all values contained in m1 (consid-
ering both the service call parameters and their results), we
write m2 = f(m1) to denote the service call map constructed
as follows: for every assignment (f(d1, . . . , dn)→ d) in m1,
we have (f(h(d1), . . . , h(dn))→ h(d)) in m2.

Lemma B.1. Let K be a S-KAB with transition system ΥS
K,

and let ΘS
K be a pruning of ΥS

K. Consider a state 〈A,m〉 of
ΥS
K and a state 〈Ap,mp〉 of ΘS

K. If there exists a bijection
h s.t. Ap = h(A) and mp = h(m) (or, equivalently, m =
h−1(mp)), then 〈A,m〉 ≈h 〈Ap,mp〉.

Proof. Let K = (T,A0,Γ,Π), ΥS
K = (C, T,Σ, s0, abox ,⇒),

and ΘS
K = (C, T,Σp, s0, abox ,⇒p). To prove the lemma,

we show that, for every state 〈A′,m′〉 s.t. 〈A,m〉 ⇒
〈A′,m′〉, there exists a state 〈A′p,m′p〉 and a bijection h′ s.t.:
1. 〈Ap,mp〉 ⇒p 〈A′p,m′p〉; 2. h′ extends h; 3. A′p = h′(A′);
4. m′p = h′(m′). By definition of ΥS

K , if 〈A,m〉 ⇒ 〈A′,m′〉,
then there exists an action α ∈ Γ with parameters σ s.t. σ
is legal in 〈A,m〉 according to Π, and θ ∈ EVALS(T,A, ασ)
s.t. θ agrees with m, A′ = DO(T,A, ασ)θ, and m′ = m ∪ θ.
From this information, we can extract the equality commit-
ment H ∈ H(T, 〈A,m〉, ασ) s.t. θ respects H .

Since Ap = h(A), from Lemma A.1 we know that the
certain answers computed over A are the same, modulo re-
naming through h, to those computed over Ap. Further-
more, since σ maps parameters of α to values in ADOM(A),
we can construct σp mapping parameters of α to values in
ADOM(Ap), so as (x → d) in σ implies (x → h(d)) in
σp. By hypothesis, we also know that mp = h(m). As
a consequence, we have that σp is legal in 〈Ap,mp〉 ac-
cording to Π, and that H(T, 〈Ap,mp〉, ασp) contains the
same equality commitments in H(T, 〈A,m〉, ασ) up to re-
naming of individuals through h. Now pick commitment
Hp ∈ H(T, 〈Ap,mp〉, ασp) so that Hp corresponds to H up
to renaming of individuals through h.

By definition of pruning, we know that there exists a unique
θp that respects Hp (and, in turn, agrees with mp) s.t., given
A′p = DO(T,Ap, ασp)θp and m′p = mp ∪ θp, we have
〈Ap,mp〉 ⇒p 〈A′p,m′p〉. Since Hp corresponds to H up
to renaming of individuals through h, θ respects H , and
θp respects Hp, we can lift h to an extended bijection h′

s.t. θp = h(θ). By construction, this means that A′p = h′(A′),
and that m′p = h′(m′), hence the claim is proven.

The other direction can be proven in the symmetric way.

Lemma B.2. For every S-KAB K with transition system ΥS
K

and every pruning ΘS
K of ΥS

K, we have ΘS
K ≈ ΥS

K.

Proof. Immediate consequence of Lemma B.1, by noticing
that the initial states of ΥS

K and ΘS
K are the same, and can

be therefore connected through the identity bijection between
their active domains.

Proof of Theorem 3.3. Given a run-bounded KAB K, we
observe that each pruning ΘS

K of ΥS
K is finite-state. On the one

hand, thanks to run-boundedness each run consists of a finite
number of states. On the other hand, thanks to the definition
of pruning, each state has only finitely many successors. In
fact, given a state of ΘS

K, there are only finitely many equality
commitments that can be created by considering all possible
actions with parameters. This implies that the entire active
domain ADOM(ΘS

K) of ΘS
K is finite as well. By Lemma B.2

and Theorem A.2, we know that ΘS
K is a faithful abstraction of

ΥS
K, i.e., for every µLEQL

A formula Φ, ΥS
K |= Φ iff ΘS

K |= Φ.

Taking advantage from the finiteness of ADOM(ΘS
K), by quan-

tifier elimination we can construct a propositional µ-calculus
property φ s.t. ΘS

K |= Φ iff ΘS
K |= φ. The proof completes by

observing that verifying whether ΘS
K |= φ amounts to stan-

dard model checking of propositional µ-calculus over finite-
state transition systems, which is indeed decidable [Emerson,
1997].

C KABs Under Repair Semantics
We open this section by observing that the repair service does
not distinguish between isomorphic ABoxes.

Lemma C.1. Consider two knowledge bases (T,A1) and
(T,A2), s.t. there exists a bijection h with A2 = h(A1). Then
for every ABox Ar1 s.t. Ar1 ∈ REP(A1, T), we have h(Ar2) ∈
REP(A2, T), and for every ABox Ar2 s.t. Ar2 ∈ REP(A2, T),
we have h−1(Ar2) ∈ REP(A1, T).

Proof. Trivial, by recalling the notion of first-order rewritabil-
ity of ontology satisfiability in DL-LiteA, and the fact that
first-order logic cannot distinguish between isomorphic struc-
tures.

C.1 Proof of Theorem 4.3
Given a K, we introduce the pruning ΘK of the transition
system under repair semantics (denoted by Υb

K for the bold
semantics, and Υc

K for the certain semantics), as the transition
system constructed following one between the two repair se-
mantics, but by relying on the transition relation P-EXECK (as
defined in Section B.1) in place of EXECK. Differently from
the standard case, to show that ΘK ≈ Υb

K (ΘK ≈ Υc
K resp.)

we have to deal with the action and repair step. In particular,
we reconstruct Lemma B.1 in this two-steps setting.

Lemma C.2. Let K be a b-KAB (c-KAB respectively) with
transition system Υb

K (Υc
K resp.), and let ΘK be a pruning of

Υb
K (Υc

K resp.). Consider a state 〈A,m〉 of Υb
K (Υc

K resp.),
and a state 〈Ap,mp〉 of ΘK. If there exists a bijection h
s.t. Ap = h(A) and mp = h(m) (or, equivalently, m =
h−1(mp)), then 〈A,m〉 ≈h 〈Ap,mp〉.

Proof. Let K = (T,A0,Γ,Π), Υb
K = (C, T,Σ, s0, abox ,⇒)

(resp., Υc
K = (C, T,Σ, s0, abox ,⇒)), and ΘK =

(C, T,Σp, s0, abox ,⇒p). To prove the lemma, we show that,
for every state 〈A′,m′〉 s.t. 〈A,m〉 ⇒ 〈A′,m′〉, there ex-
ists a state 〈A′p,m′p〉 and a bijection h′ s.t.: 1. 〈Ap,mp〉 ⇒p

〈A′p,m′p〉; 2. h′ extends h; 3. A′p = h′(A′); 4. m′p = h′(m′).
To show the claim, we have to separately discuss the case in
which State(rep) 6∈ A, and the case in which State(rep) ∈
A. The first case is equivalent for Υb

K and Υc
K, whereas the

second case is different, since the two semantics diverge when
it comes to the repair step (b-KABs nondeterministically pro-
duce one among the possible repairs, while c-KABs construct
a unique repair corresponding to the intersection of possible
repairs).
Base case: trivial, because the transition system and its prun-
ing start from the same intial state 〈A0, ∅〉.
Case 1 (action step): State(rep) 6∈ A. First of all, we
observe that rep is a distinguished constant of C0, hence

h(rep) = rep. Since A ≡h Ap, State(rep) 6∈ Ap. The
claim can be then proven exactly in the same way as done for
Lemma B.1, noticing however that each ABox A′ s.t. A⇒ A′

contains State(rep), making the induction hypothesis for case
1 inapplicable, and the one for case 2 applicable.
Case 2 (repair step) - bold semantics: State(rep) ∈ A. By
hypothesis, Ap = h(A), and since h(rep), State(rep) ∈ Ap
as well. Notice that h is syntactically applied over the ABoxes
A and Ap without involving the TBox T , and therefore it can
be applied also when such ABoxes are T -inconsistent. On the
one hand, by construction of the transition system under the
bold repair semantics, we therefore know that:

1. for every s′ s.t. 〈A,m〉 ⇒ s′, we have s′ = 〈A′,m〉,
with A′ ∈ REP(A− {State(rep)}, T);

2. for every s′p s.t. 〈Ap,mp〉 ⇒p s′p, we have s′p =
〈A′p,mp〉 = 〈A′p, h(m)〉, with A′p ∈ REP(Ap −
{State(rep)}, T).

On the other hand, since Ap = h(A), from Lemma C.1
we get that for every A′′ ∈ REP(A − {State(rep)}, T),
h(A′′) ∈ REP(Ap − {State(rep)}, T). We therefore obtain
that, for every state 〈A′,m〉 s.t. 〈A,m〉 ⇒ 〈A′,m〉, we have
〈Ap,mp〉 ⇒p 〈h(A′),mp〉 = 〈h(A′), h(m)〉.

Finally, notice that, by construction A′ and A′p do not con-
tain State(rep). The claim is therefore proven by inductively
applying Case 1 over A′, A′p, and h.

The other direction can be proven in the symmetric way.
Case 2 (repair step) - certain semantics: State(rep) ∈ A.
By hypothesis, Ap = h(A), and since h(rep), State(rep) ∈
Ap as well. Notice that h is syntactically applied over
the ABoxes A and Ap without involving the TBox T , and
therefore it can be applied also when such ABoxes are T -
inconsistent. On the one hand, by construction of the transition
system under the certain repair semantics, we therefore know
that:

1. there exists exactly one s′ = 〈A′,m〉 s.t. 〈A,m〉 ⇒ s′,
where A′ =

⋂
Ar∈REP(A−{State(rep)},T)A

r;
2. there exists exactly one s′p = 〈A′p,mp〉 =
〈A′p, h(m)〉 s.t. 〈Ap,mp〉 ⇒p s′p, where A′p =⋂
Ar

p∈REP(Ap−{State(rep)},T)A
r
p.

On the other hand, since Ap = h(A), from Lemma C.1
we get that Ar ∈ REP(A − {State(rep)}, T) iff
h(Ar) ∈ REP(Ap − {State(rep)}, T). As a con-
sequence, A′p =

⋂
Ar∈REP(A−{State(rep)},T) h(Ar) =

h(
⋂
Ar∈REP(A−{State(rep)},T)A

r) = h(A′). Finally, notice
that, by construction A′ and A′p do not contain State(rep).
The claim is therefore proven by inductively applying Case 1
over A′, A′p, and h.

With Lemma C.2 at hand, we can easily reconstruct the
proof of Theorem 3.3 (given in Section B.1) for b- and c-
KABs. Since µLIT

A is a fragment of µLEQL
A , we get the result.

D KABs under Extended Repair Semantics
D.1 Proof of Theorem 5.2
Given an eb-KAB (ec-KAB respectively) K, we introduce
the pruning ΘK of the transition system Υeb

K (Υec
K resp.), as

the transition system constructed following the extended bold
(extended certain, resp.) repair semantics, but by relying on
the transition relation P-EXECK (as defined in Section B.1) in
place of EXECK. To prove ΘK ≈ Υeb

K (ΘK ≈ Υec
K resp.), one

can follow step by step the line of reasoning of Section C.1,
taking into consideration the fact that Viol concept assertions
are inserted into the ABoxes produced by a repair step. It
can be easily noticed that such assertions do not introduce
any additional complication. Remember, in fact, that given
an ABox A, these assertions are produced by computing the
set VIOL(A, T), which is in turn produced by issuing a series
of closed first-order queries over A, considered as a database
of facts. Consequently, given two ABoxes A and Ap and a
bijection h s.t. Ap = h(A), VIOL(A, T) = VIOL(h(A), T) =
VIOL(Ap, T).

E Weakly Acyclic KABs
Weakly acyclic KABs are inspired by weakly acyclic tuple-
generating dependencies in data exchange [Fagin et al., 2005].
As in data exchange, in our setting weak acyclicity is a prop-
erty defined over a dependency graph, constructed from the
KAB’s specification. In particular, the dependency graph cap-
tures the transfer of individuals from one state to the next
state, differentiating between the case of copy, and the case of
service calls. In fact, the latter case leads to possibly introduce
fresh values into the system. The dependency graph is defined
as a variation of the definitions given in [Bagheri Hariri et al.,
2012b] and [Bagheri Hariri et al., 2012a].

Given a KAB K = (T,A0,Γ,Π), we define its dependency
graph G = 〈V,E〉 as follows:

1. Nodes are defined starting from T . More specifically,
we have one node 〈N, 1〉 ∈ V for each concept N in
T , and two nodes 〈P, 1〉, 〈P, 2〉 ∈ V for every role P in
T (reflecting the fact that roles are binary relations, i.e.,
have two components).

2. Edges are defined starting from the effect specifications
in Γ. We discuss the case of two concept assertions, but
In particular:
(a) an ordinary edge 〈N1, 1〉 → 〈N2, 1〉 is contained in

E if there exists an action γ ∈ Γ, an effect specifi-
cation

[q+] ∧Q− A′

in γ, and a variable or parameter x s.t. N1(x) ap-
pears in rew(q+, T) (i.e., in the perfect rewriting of
q+ w.r.t. T), and N2(x) appears in A′ (similarly for
nodes corresponding to role assertions).

(b) a special edge 〈N1, 1〉
∗−→ 〈N2, 1〉 is contained in E

if there exists an action γ ∈ Γ, an effect specification

[q+] ∧Q− A′

in γ, and a variable or parameter x s.t. N1(x)
appears in rew(q+, T), and N2(f(. . . , x, . . .)) ap-
pears in A′ (similarly for nodes corresponding to
role assertions).

A KAB K is weakly acyclic if its dependency graph has no
cycle going through a special edge.

E.1 Proof of Theorem 6.1
To prove the theorem, we resort to the approach discussed
in [Bagheri Hariri et al., 2012b] and [Bagheri Hariri et al.,
2012a], adapting it so as to deal with inconsistency. More
specifically, the main steps to prove the results are as follows:

1. Given a KAB K, we introduce its consistent approximant
Kp and positive dominant K+, which incrementally sim-
plify K while maintaining the same dependency graph.

2. We show that when K is weakly acyclic, then it is run-
bounded.

3. We show that K+ “dominates” Kp under all semantics
discussed in the paper, i.e., the active domain of the
transition system for K is always contained in the active
domain of the transition system for K+.

4. We do the same for K w.r.t. Kp, thus transferring the
weak acyclicity property from K+ to K.

Technically, given a KAB K = (T,A0,Γ,Π), we define the
consistent approximant Kp of K as a KAB = (Tp, A

p
0,Γ

p,Π),
where Ap0 and Γp are obtained as follows:
• Ap0 = A0∪{Viol(d) | ∃t ∈ Tn∪Tf s.t. d = LABEL(t)};

i.e., Ap0 saturates A0 with all possible violations of nega-
tive inclusion and functionality assertions in T .
• For every action α(p1, . . . , pn) : {e1, . . . , em} ∈ Γ we

have α(p1, . . . , pn) : {ev, e1, . . . , em} ∈ Γp, where
ev = Viol(x) {Viol(x)} copies all Viol assertions.

Notice that the TBox of the consistent approximant is con-
stituted by the positive inclusion assertions of the original
TBox.

Starting from the consistent approximant, we define the
positive dominant K+ of K as a KAB = (Tp, A

p
0,Γ

+,Π+),
where Γ+ and Π+ are obtained as follows:
• For each action α(p1, . . . , pn) : {e1, . . . , em} ∈ Γp we

have α+() : {e+
1 , . . . , e

+
m} ∈ Γ+ where, given ei =

[q+
i] ∧Q− A′i, we have e+

i = [q+
i] A′i.

• For each condition-action rule Q 7→ α(p1, . . . , pn) ∈ Π,
we have true 7→ α+() ∈ Π+.

It is easy to show that the dependency graphs ofK,Kp andK+

coincide, and therefore K is weakly acyclic iff Kp is weakly
acyclic iff K+ is weakly acyclic.

Theorem E.1. Given KAB K, if K is weakly acyclic then its
positive dominant K+ is run-bounded.

Proof. By compiling away the TBox of K+ exploiting the
first-order rewritability of DL-LiteA, the obtained KAB exactly
corresponds to the notion of positive approximant defined for
relational Data-Centric Dynamic Systems in [Bagheri Hariri
et al., 2012b]. The proof is then directly obtained from the
proof of Theorem 4.7 in [Bagheri Hariri et al., 2012b].

To show that Theorem E.1 extends to the KAB itself under
each of the semantics considered in this paper, we first in-
troduce the notion of dominance between transition systems.
Technically, a transition system Υ1 is dominated by Υ2 if, for
every run τ1 in Υ1 there exists a run τ2 in Υ2 s.t. for all pairs
of states τ1(i) and τ2(i), we have abox (τ1(i)) ⊆ abox (τ2(i)).
By definition, we consequently have that if Υ2 is run-bounded,
then Υ1 is run-bounded as well. This shows that, to prove
run-boundedness of a transition system, it is sufficient to prove

that such a transition system is dominated by a run-bounded
transition system.

With this machinery at hand, we are now able to prove the
following two key lemmas, which respectively show that for
any semantics considered in this paper, the consistent approxi-
mant is dominated by the positive dominant, and dominates
the original KAB.

Lemma E.2. For any KAB K, we have that:
1. Υs

Kp is dominated by Υs
K+ ;

2. Υb
Kp is dominated by Υb

K+ ;
3. Υc

Kp is dominated by Υc
K+ ;

4. Υeb
Kp is dominated by Υeb

K+ ;
5. Υec

Kp is dominated by Υec
K+ .

Proof. We discuss claim 1 and claims 2-5 separately.
Each claim can be obtained by proving the following stronger
claim: for every run τ in Υs

Kp (resp., Υb
Kp , Υc

Kp , Υeb
Kp ,

Υec
Kp), there exists a run τ+ in Υs

K+ (resp., Υb
K+ , Υc

K+ ,
Υeb
K+ , Υec

K+) s.t. for all pairs of state τ(i) = 〈Ai,mi〉 and
τ+(i) = 〈A+

i ,m
+
i 〉, we have:

1. Ai ⊆ A+
i ;

2. m+
i extends mi;

3. for the mappings mentioned in m+
i but not in mi, m+

i
“agrees” with the maps contained in the suffix of τ(i),
i.e.,

m+
i |Ci

= (
⋃
j>i

mj)|Ci

where Ci = DOM(m+
i) ∩

⋃
j>i DOM(mj).

Claim 1. Thanks to the first-order rewritability of DL-LiteA,
Kp and K+ can be correspondingly represented as a Data-
Centric Dynamic System in the sense of [Bagheri Hariri et al.,
2012b]. The proof is then directly obtained from the proof of
Lemma 4.1 in [Bagheri Hariri et al., 2012b].
Claim 2-5. The claims can be easily shown by observing that
Kp and K+ never produce an ABox that is Tp-inconsistent,
since they only consider positive inclusion assertions. Conse-
quently, under each of the repair semantics, the repair service
does not affect the current ABox: it simply generates a unique
successor that contains the same ABox and service call map
produced by the previous action step. This shows that Υb

Kp =
Υc
Kp = Υeb

Kp = Υec
Kp and that Υb

K+ = Υc
K+ = Υeb

K+ = Υec
K+ .

To get the claims, given the current state 〈A,m〉 in Υb
Kp , we

specifically discuss the case in which State(rep) 6∈ A, and
the case in which State(rep) ∈ A:
(base case) Trivial, because the initial states of Υb

Kp and Υb
K+

coincide (they are both equal to 〈Ap0, ∅〉).
(case 1 - action step) Since it cannot be the case that the state

produced after an action step is Tp-inconsistent, then the
proof exactly follows the one for Claim 1.

(case 2 - repair step) Consider τ(i) = 〈A,m〉 and τ+(i) =
〈A+,m+〉 s.t.: 1. State(rep) ∈ A and State(rep) ∈
A+; 2. A and A+ satisfy condition 1; 3. m and m+

satisfy conditions 2 and 3. Since A and A+ are
Tp-consistent, then there is a unique successor 〈A −

{State(rep)},m〉 of τ(i) in Υb
Kp , and a unique succes-

sor 〈A+ − {State(rep)},m+〉 of τ+(i) in Υb
K+ . It is

trivial to see that these successors satisfy the three condi-
tions of the claim above.

Lemma E.3. For any KAB K, we have that:
1. Υs

K is dominated by Υs
Kp ;

2. Υb
K is dominated by Υb

Kp ;
3. Υc

K is dominated by Υc
Kp ;

4. Υeb
K is dominated by Υeb

Kp ;
5. Υec

K is dominated by Υec
Kp .

Proof. We discuss each claim separately, by referring to the
three inductive conditions defined in the stronger claim of the
proof of Lemma E.2.
Case 1. Trivial, because Υs

K is a fragment of Υs
Kp : it does not

contain the portions of Υs
Kp that are generated starting from a

T -inconsistent (but always Tp-consistent) ABox.
Case 2. The base case is trivial, because the initial state
of Υb

K is 〈A0, ∅〉, the initial state of Υb
Kp is 〈Ap0, ∅〉, and by

construction A0 ⊆ Ap0.
The inductive case for an action step can be proven exactly

in the same way discussed in the proof of Lemma E.2 - Claim
1.

We then focus on the inductive case for a repair step. Con-
sider τ(i) = 〈A,m〉 in Υb

K and τp(i) = 〈Ap,mp〉 in Υb
Kp ,

s.t. conditions 1, 2 and 3 hold. By construction, we know that:
• every successor of 〈A,m〉 in Υb

K has the form 〈A′,m〉,
where A′ ∈ REP(A− State(rep), T);
• 〈Ap,mp〉 has a unique successor 〈Ap −
{State(rep)},mp〉 in Υb

Kp .
Since the service call maps do not change, the successors
continue to obey to conditions 2 and 3. Furthermore, by
definition of REP(), we know that A′ ⊆ A and, by hypothesis,
that A ⊆ Ap. Consequently, A′ ⊆ Ap, and therefore also
condition 1 is satisfied.
Case 3. The base case and the inductive case for an ac-
tion step are as in Case 2. We then focus on the inductive
case for a repair step. Consider τ(i) = 〈A,m〉 in Υb

K and
τp(i) = 〈Ap,mp〉 in Υb

Kp , s.t. conditions 1, 2 and 3 hold. By
construction, we know that:
• 〈A,m〉 has a unique successor 〈A′,m〉 in Υb

K, where
A′ =

⋂
Ar∈REP(A−{State(rep)},T)A

r;
• 〈Ap,mp〉 has a unique successor 〈Ap −
{State(rep)},mp〉 in Υb

Kp .
Since the service call maps do not change, the successors
continue to obey to conditions 2 and 3. Furthermore, by
definition we have A′ ⊆ A and, by hypothesis, we know
that A ⊆ Ap. Consequently, A′ ⊆ Ap, and therefore also
condition 1 is satisfied.
Case 4. This case is directly obtained from Case 2, and from
the observation that, by construction, each ABox of the con-
sistent approximant contains all the possible Viol assertions,
since they are asserted in the initial state, and copied by means
of a specific effect contained in each of its actions. Therefore,
after a repair step, it is guaranteed that the ABox obtained in
Υeb
K is a subset of the corresponding ABox in Υeb

Kp .

Case 5. This case is directly obtained from Case 3 and the
observation done for Case 4.

The proof of Theorem 4.3 is finally obtained by combin-
ing Theorem E.1 and the composition of Lemma E.3 with
Lemma E.2, thanks to transitivity of domination.

F KABs with Consistent Query Answering
As mentioned in the conclusion of the paper, an orthogonal ap-
proach to manage inconsistency would be to make the KAB it-
self inconsistency-tolerant. More specifically, we can conceive
a KAB that admits inconsistent ABoxes, and that replaces
the standard query answering service with an inconsistency-
tolerant querying service, able to extract meaningful answers
even in presence of inconsistent information.

In the following, we rely for this purpose on the standard
notion of consistent query answering in databases [Bertossi,
2006], which has been extended to the knowledge base setting
in [Lembo et al., 2010]. More specifically, we introduce the
following query answering service, which corresponds to the
notion of AR-consistent entailment in [Lembo et al., 2010]
(Definition 3).

Given an UCQ q, the consistent-query answer to q over
(T,A) is the set cqa (q, T,A) of substitutions σ of the free
variables of q with constants in ADOM(A) s.t., for every repair
Ar ∈ REP(A, T), qσ evaluates to true in every model of
(T,Ar). Observe that, when A is T -consistent, the consistent-
query answers coincide with the certain answers.

Like for certain answers, we extend the notion of consistent-
query answer to ECQ as follows: given an ECQ Q,
the consistent-query answer to Q over (T,A), is the set
CQA(Q,T,A) of tuples of constants in ADOM(A) defined
by composing the consistent-query answers cqa (q, T,A) of
UCQs q through first-order constructs, and interpreting exis-
tential variables as ranging over ADOM(A).

F.1 Inconsistency-tolerant KABs
We introduce the inconsistency-tolerant semantics for KABs
as the variation of the standard semantics where:
• all queries are answered using consistent-query answer-

ing instead of certain answers (i.e., by replacing every
ANS(Q,T,A) with CQA(Q,T,A));
• an action with parameters is applied even if the resulting

ABox is T -inconsistent (in fact, consistent-query answer-
ing makes it possible to query such an inconsistent ABox
in a meaningful way).

We call it-KAB a KAB interpreted under the inconsistency-
tolerant semantics. Given an it-KAB K, we denote with Υit

K
the transition system describing its execution semantics.

In order to specify temporal/dynamic properties over it-
KABs, also the µLEQL

A logic must be adapted, making it able
to query even T -inconsistent ABoxes in a meaningful way. In
particular, we introduce the logic µLCQA

A that is syntactically
equivalent to µLEQL

A , but redefines the semantics of local EQL
queries Q as follows:

(Q)Υ
v,V = {s ∈ Σ | CQA(Qv, T, abox (s)) = true}

F.2 Verification of Inconsistency-Tolerant KABs
In this Section, we show that the decidability results presented
for the repair semantics seamlessly apply to it-KABs as well.
Lemma F.1. Consider two knowledge bases (T,A1) and
(T,A2), s.t. there exists a bijection h with A2 = h(A1). For
every EQL query q, we have 〈d1, . . . , dn〉 ∈ CQA(q, T,A1) iff
〈h(d1), . . . , h(dn)〉 ∈ CQA(h(q), T, h(A1)).

Proof. This result is a direct consequence of the combination
of Lemmas A.1 and C.1.

Theorem F.2. Verification of µLCQA
A properties over run-

bounded it-KABs is decidable.

Proof. By inspecting the proofs of Theorem 3.3 (given in Ap-
pendix B.1), we observe that the possibility of constructing
a faithful finite-state abstraction for a run-bounded KAB de-
pends on the fact that its execution semantics produce bisimilar
runs starting from isomorphic states. This key property, in
turn, relies on the fact that the query answering service does
not distinguish between isomorphic states. Since this holds
for consistent-query answers as well (see Lemma F.1), we can
follow, step-by-step, the same proof given in Appendix B.1.

Theorem F.3. Given a weakly acyclic KAB K, we have that
Υit
K is run-bounded.

Proof. Consider the consistent approximant Kp of K. From
Lemma E.2, we know that Υs

Kp is dominated by Υs
K+ . By

inspecting the proof of this claim, which in turn refers to the
proof of Lemma 4.1 in [Bagheri Hariri et al., 2012b], we
know that this is the case because, state by state, the answers
extracted by Kp are contained in the ones extracted by K+.

We now observe that, by definition, given a
TBox T , an ABox A and an EQL query Q,
CQA(Q,T,A) ⊆ CQA(Q,Tp, A) = ANS(Q,Tp, A).
The equality CQA(Q,Tp, A) = ANS(Q,Tp, A) holds because
every ABox is consistent with Tp, and the only repair of a
consistent ABox is the ABox itself.

Consequently, we can apply the same line of reasoning
used in the proof of Lemma 4.1 in [Bagheri Hariri et al.,
2012b], showing that Υit

K is dominated by Υs
Kp . By applying

Lemma E.2 and transitivity of domination, this in turn implies
that Υit

K is dominated by Υs
K+ . By recalling Theorem E.1 we

finally get the result.

	Introduction
	Preliminaries
	DL-LiteA Knowledge Bases
	Knowledge and Action Bases

	Verification of Standard KABs
	Repair Semantics for KABs
	Bold and Certain Repair Transition Systems
	Verification Under Repair Semantics

	Extended Repair Semantic for KABs
	Extended Repair Transition System
	Verification Under Extended Repair Semantics
	From Standard to Extended Repair KABs

	Weakly Acyclic KABs
	Conclusion
	Bisimulation and Invariance
	Standard KABs
	Proof of Theorem 3.3

	KABs Under Repair Semantics
	Proof of Theorem 4.3

	KABs under Extended Repair Semantics
	Proof of Theorem 5.2

	Weakly Acyclic KABs
	Proof of Theorem 6.1

	KABs with Consistent Query Answering
	Inconsistency-tolerant KABs
	Verification of Inconsistency-Tolerant KABs

