
Department of Computer Science

EFFICIENT PROBABILISTIC PARAMETER SYNTHESIS FOR
ADAPTIVE SYSTEMS

Taolue Chen
Tingting Han

Marta Kwiatkowska
Hongyang Qu

RR-13-04

Department of Computer Science, University of Oxford

Wolfson Building, Parks Road, Oxford OX1 3QD

Efficient Probabilistic Parameter Synthesis for
Adaptive Systems

Taolue Chen Tingting Han Marta Kwiatkowska Hongyang Qu
Department of Computer Science, University of Oxford, United Kingdom

{firstname.lastname}@cs.ox.ac.uk

Abstract—Probabilistic modelling has proved useful to analyse
performance, reliability and energy usage of distributed or
networked systems. We consider parametric probabilistic models,
in which probabilities are specified as expressions over a set
of parameters, rather than concrete values. We address the
parameter synthesis problem for parametric Markov decision
processes and parametric Markov reward models, which asks for
a valuation for the parameters such that the resulting (concrete)
probabilistic model satisfies a given property. To solve parametric
probabilistic models for quantitative reachability properties, we
propose efficient, robust methods, either based on sampling, for
which we provide two algorithms, Markov chain Monte Carlo
and the cross entropy algorithm, or on swarm intelligence, for
which we adapt the particle swarm algorithm, a nonlinear opti-
misation method from evolutionary computation. We implement
the methods in PRISM and demonstrate the effectiveness of our
approach on several case studies, including adaptive systems and
online model repair.

I. INTRODUCTION

Almost all aspects of our everyday life are enabled or man-
aged by computer systems: from software controllers found in
cars and aeroplanes, through healthcare and manufacturing, to
entertainment and business supported by cloud computing. The
prevalence of such systems, combined with their increasing
complexity, means that effective methods to ensure their
reliability and performance are essential. Model-based analysis
techniques provide an automated way to achieve this.

Probabilistic modelling is a valuable tool for quantifying as-
pects such as failure, reliability and dependability of systems.
Messages transmitted across wireless networks, for example,
may be susceptible to losses and delays, or system components
may be prone to failure, which can be expressed probabilis-
tically. Another source of probabilistic behaviour is the use
of randomisation, for example, to achieve decentralisation
when coordinating distributed systems, to manage workflows,
or to distribute workload. Thus, system models are often
probabilistic in nature, typically represented as variants of
Markov chains, constructed from a formal description in some
high-level modelling language. Then quantitative, probabilistic
verification [26] techniques can be applied to automatically
verify whether a given quantitative property hold for the
model. While conventional formal verification techniques can
establish functional correctness of system models, quantitative
verification can be used to analyse non-functional properties
such as performance or reliability.

Recently, adaptiveness has become increasingly important
in modern software systems, in order to better cope with

rapid changes in their running environment so that certain
correctness properties, as well as performance, can be guar-
anteed. In the literature, several frameworks, e.g., [6], [15],
have been proposed for dynamic management and optimisation
of non-functional requirements of adaptive systems, which
can be achieved through quantitative runtime verification [5].
Although these frameworks are naturally appealing for the
deployment of real-world systems, obtaining “good” values
for the parameters with respect to non-functional requirements
can be time consuming, and impairs system performance.

The problem of finding a good valuation can be formalised
as parameter synthesis. We consider parametric probabilistic
models, where transition probabilities are not fixed, but depend
on a set of parameters, specified as expressions over the
parameters. For example, failure probability may be dependent
on factors such as the number of attempts to send. Then,
given a parametric system model and a quantitative property,
the parameter synthesis problem is to find a good parameter
valuation such that the property is guaranteed to hold in the
model. In this paper, we focus on parametric Markov decision
processes (PMDPs) and parametric Markovian reward models
(PMRMs), which subsume parametric discrete-time Markov
chains (PDTMCs). Note that the parameter synthesis problem
is orthogonal to the verification problem, although they are
closely related to each other. The main usage of parameter
synthesis is in automatically finding parameters contained in
a given range so that the (reachability/reward) property is
guaranteed to be satisfied. The dimensionality of the method
is dependent on the number of parameters to be synthesised,
although the size of the system also plays a part, as it takes
more time for a larger model to calculate the probability.

Traditionally, there are at least two obvious, “exact” ap-
proaches to solve parameter synthesis: (1) reduce to a mathe-
matical programming problem, and (2) encode the problem in
first-order theory of real closed fields, which admits quantifier
elimination. However, although theoretically appealing, the
scalability of these approaches is rather poor. (They usually
only work for up to 10 states, while the problem we are
handling is often of magnitude of at least 100,000 [17].)
Hence, we instead concentrate on developing “inexact” so-
lutions that involve randomised search through the parameter
space, yielding some good parameter values efficiently, rather
than finding all such values.

In this paper, we propose three efficient approaches to solve
the parameter synthesis problem with respect to quantitative

reachability properties in parametric probabilistic models. The
key novelty is that we incorporate techniques from areas such
as Monte Carlo sampling and evolutionary computation to
the setting of quantitative verification, which offer inexact,
randomised, algorithms that perform well in practice. In par-
ticular, our contribution is to show how to adapt two sampling-
based approaches, i.e., Markov chain Monte Carlo (MCMC)
and the cross entropy (CE) method, and a swarm-intelligence
method, i.e., the particle swarm optimisation (PSO), to the
synthesis problem of parametric probabilistic models. Techni-
cally, this adaptation is challenging, since we have to decide:
(1) which optimisation methods are suitable in our setting, and
(2) how to instantiate the general framework (MCMC, CE,
PSO) in our particular case to yield highly efficient solutions.
For instance, regarding (1), many optimisation techniques
(although appealing at a first glance), e.g., McCormick convex
relaxation [31], do not perform well, since the optimisation
problem in parameter synthesis is neither linear nor convex.
Regarding (2), tailoring the definition of Equation (2) in
Section III-A and the random walk to sample the parameter
space was non-trivial for the models considered here.

We implemented all the algorithms based on the PRISM
model checker [27]. The applicability and effectiveness of
the techniques developed here is demonstrated through sev-
eral case studies, drawn from dynamic QoS management of
adaptive systems (cf [6], which could be integrated with our
methods) and model repair. While model checking checks
whether a model M satisfies a property, model repair aims to
provide a new model M′, based on M, which is guaranteed
to satisfy the property when M does not. This idea has
been demonstrated in [3] for probabilistic systems, where
M′ is obtained by adjusting parameters in M. Online model
repair computes M′ when M is executing in order to allow
adaptation to changes in the environment. In this setting, time
efficiency of the model repair procedure is crucial, because
frequent changes in the environment may have invalidated
M′ before it is generated. We propose the use of parameter
synthesis to perform model repair, generalising the approach
of [3] to a larger class of Markovian models and significantly
improving performance.

Related work. The parameter synthesis problem for paramet-
ric probabilistic models has received considerable attention re-
cently. In [13], Daws studied parametric discrete-time Markov
chains for the first time, where a language-theoretic approach
to solve the reachability problem is proposed. In [19], Hahn
et al improved on the approaches in [13], and implemented
them in the tool PARAM [18], which also supports bounded
reachability and reachability rewards. Parametric continuous-
time Markov chains were addressed in [20], where rate ex-
pressions over variables indicate the average speed of state
changes and are expressed using polynomials over the reals.
Furthermore, in [17], Hahn et al extended the approach of
[19] to solve the PCTL synthesis problem for parametric
MDPs, where PCTL formulae with the reachability reward
properties were also considered. The basic technique is to

divide the possible parameter space into hyper-rectangles and
to check whether the PCTL property holds on each of the
Markov processes represented by the hyper-rectangle. As it is
normally impossible to cover the whole parameter space by
hyper-rectangles, some areas remain undecided. All of these
works provide exact, deterministic methods, and differ from
our approach that is based on randomisation and guided search
from AI (evolutionary computation).

Our work is also related to quantitative runtime verification
[5]. [14] [16] have used parametric DTMCs to improve effi-
ciency of runtime verification and software product lines. [6]
employed parametric DTMCs, selecting optimal parameters
using the QoSMOS framework. Regarding the use of Monte
Carlo sampling, our work can be seen as akin to statisti-
cal model checking, which performs approximate verification
based on simulation and techniques from statistics. In partic-
ular, [38] [24] applied the cross-entropy method to optimise
importance sampling parameters. Our work is also related to
[32] [35], where sampling is applied to the verification of
hybrid systems which inspired our work.

II. PRELIMINARIES

Given a finite set S, we write D(S) for the set of probability
distributions over S.

Definition 1: [MDP] A Markov decision process (MDP) is
a tuple M = (S, s0, Act,P, ρ), where
• S is a finite set of states and s0 ∈ S is the initial state;
• Act is a finite set of actions; and
• P : S×Act×S ∈ [0, 1] is a transition probability matrix

where
∑
s′∈S P(s, a, s′) ∈ {0, 1} for any s ∈ S and

a ∈ Act; and
• ρ : S ×Act→ R>0 is a reward function.
For a state s and action a ∈ Act inM, we say a is enabled

at s if
∑
s′∈S P(s, a, s′) = 1. We write δ(s) ⊆ Act for the

set of actions which are enabled at s.
A path in an MDP is of the form π = s0

a0−−→ s1
a1−−→ s2 · · ·

where ai ∈ δ(si) and P(si, ai, si+1) > 0 for each i ≥ 0. We
use π[i] to denote the i-th state on π. Let PathsMs denote the
set of paths in M starting from s. A finite path is a prefix of
an infinite path ending in a state. Let Paths?M be the set of
finite paths. The superscript or subscript M may be omitted
if it is clear from the context. For path π, let rew(π, j) =∑j
i=0 ρ(si, ai) be the accumulated reward along π. Note that,

in the rest of the paper we mainly deal with MDPs without
the reward function. Our techniques can be easily generalised
to those with rewards, and results for reward-based properties
will be shown in one of the case studies.

In order to formally reason about the probabilistic behaviour
of an MDP M, we require the notion of scheduler (aka.
strategy, policy or adversary), which is one possible resolution
of the nondeterministic choices in M. Formally, a scheduler
is a function σ : Paths? → Act such that, in each state s, σ
selects an action in δ(s) based on the finite path ending in s
(the history of choices made so far). A scheduler σ restricts
the behaviour of the MDP to a set of paths Pathsσs ⊆ Pathss,
which induces a probability distribution Prσs over the paths

Pathsσs in a standard way (cf. [2, Chapter 10]). We write ΣM
for the set of schedulers in M.

Properties to be verified against MDPs are usually expressed
in temporal logics, such as PCTL [21] [4] and LTL [11].
Performing verification reduces to the computation of a few
key properties of MDPs, among which the main ones are
the minimum or maximum reachability probabilities, i.e. the
minimum or maximum probability that a path through the
MDP eventually reaches a state in some target set G ⊆ S,
quantified over all possible schedulers:

pmin
M,s(G)= inf

σ∈ΣM
Prσs (♦G) and pmax

M,s(G)= sup
σ∈ΣM

Prσs (♦G) (1)

where ♦G is the event {π | ∃n.π[n] ∈ G}.
It is well known [4] that to achieve the maximum (or

minimum) reachability probabilities memoryless schedulers,
i.e., the schedulers which select the action only depending
on the current state, suffice. Moreover, these probabilities can
be computed by value iteration, an iterative numerical method
which can approximate the values up to some desired accuracy.
In practice, this method is widely used since it scales well to
large MDPs.

A. Parametric MDPs

Let X = {x1, . . . , xm} to be the set of variables (param-
eters), each of which ranges over R. A valuation v over X
is a function v : X → R. In practice, usually each variable
x is associated with a closed interval range(x) = [Lx, Ux].
For instance, if we have a parameter denoting the velocity of
a train, then the range should be [0, 400]. An affine function
over X is of the form f(x) = a ·x+b, for a,b ∈ Rm, where
· denotes the scalar product. Let FV denote the set of affine
functions from X to R. Given f ∈ FV and a valuation v, we
let f〈v〉 := f(v(x1), . . . , v(xm)) denote the value obtained by
replacing each occurrence of xi with v(xi). Let Dist(S) be
the set of all parametric discrete probability distributions over
S, i.e., µ : S → FV .

Formally, a parametric Markov decision process (PMDP)
is a tuple M = (S, s0, Act,P, ρ,X) where S, and s0 are the
same as for MDPs, and X is a set of variables. The transition
matrix P is of the same form as in MDPs, but defined on
parametric distributions.

For any state s, a parametric distribution µ ∈ P(s) is a
vector of affine functions over X , and we usually write µ =
Fs · x + fs, where Fs ∈ Rn×m, and fs ∈ Rm.

Given a PMDPM with parameters in X , we associate with
M a system of constraints K(M) specifying which values of
X are valid. In particular, K(M) consists of:
• Basic constraints. Namely, for each state s and action
a ∈ δ(s), we have that

0 ≤ Fs,a ·x+ fs,a ≤ 1 and 1 · (Fs,a ·x+ fs,a) = 1

Moreover, as discussed above, we have Lx ≤ x ≤ Ux for
each x ∈ X .

• Additional constraints. This is provided by the user to
specify the correlation among the parameters in X .

Each point in K(M) corresponds to a valuation for X . An
MDP is induced from a PMDP and a valuation v by replacing
each x ∈ X by its value in v.

Remark 1: It turns out that our approaches are very general,
in the sense that one does not need to restrict to linear func-
tions for the transition probabilities. However, for simplicity
and also for implementation, we only present our results for
linear (affine) functions.

Problem statement. Assume a given PMDPM. For a parame-
ter space Ξ = K(M) ⊆ Rm, and for each x ∈ Ξ, we obtain an
MDPM〈x〉, and one can compute the optimal (i.e., maximum
or minimum) reachability probability using standard (efficient)
techniques, typically value iteration. Throughout the paper we
write O for the oracle, which, given x, returns the maximum
or minimum reachability probability (cf. (1)) of the associated
MDP.

We are interested in the parameter synthesis problem, which
asks whether there exists some valuation v for the parameters
in M such that the maximum/minimum reachability proba-
bility of M〈v〉 satisfies ./ λ, where ./∈ {≤, <,>,≥} and
λ ∈ [0, 1] is some threshold. Note that we formulate this
in an existential way, i.e., we ask whether there exists some
valuation. Alternatively, one could formulate the problem in
a universal way, i.e., ask whether, for all valuations v for
the parameters in M, the maximum/minimum reachability
probability of M〈v〉 satisfies ./ λ. It is evident that these
two formulations are equivalent.

To solve the parameter synthesis problem, a simple observa-
tion is that one only needs to find the optimal valuation among
the parameter space K(M). For example, there exists some
valuation v such that the maximum reachability probability to
goal states G of M〈v〉 is no greater than λ iff the minimum
over Ξ of the maximum reachability probability of the asso-
ciated MDP is no greater than λ. The general strategy is to
search x ∈ K(M) minimizing pmax

M〈x〉,s(G) where one could
immediately stop if some valuation v is found (not necessarily
the minimum) fulfilling the requirement. Accordingly, if one
is interested in no less than λ, one should search x maximizing
pmax
M〈x〉,s(G) instead. NB., in Section III-A and Section III-B

we assume that the question is to find some valuation such that
the optimal reachability probability is no greater than λ, so we
should find the minimum over Ξ. The dual case (i.e., to find
some valuation such that the optimal reachability probability
is no less than λ) can be handled in a similar way. Both cases
have been implemented, but we only present the former for
brevity.

B. Parametric MRMs

A discrete-time Markov chain (DTMC) D = (S, s0,P, ρ)
can be regarded as an MDP with |Act| = 1. A Markovian
reward model (MRM, i.e., a continuous-time Markov chain
with rewards) [9] is C = (S, s0,P, E, ρ) where (S, s0,P, ρ)
is a DTMC, E : S → R>0 assigns an exit rate to each
state. In MRM, for a timed path π = s0

t0−−→ s1
t1−−→ s2 · · ·

with ti ∈ R≥0 and t =
∑j−1
i=0 ti + t′ with t′ ≤ tk, let

r(π, t) =
∑j−1
i=0 ti · ρ(si) + t′ · ρ(sj) be the accumulated

reward along π up to time t. Similarly to PMDPs, MRMs can
be made parametric, resulting in parametric MRMs (PMRMs)
which are defined as C = (S, s0,P

′, E, ρ,X), where P′ :
S×S → FV . Accordingly, notions for PMDPs in Section II-A
can be adapted for PMRMs without any difficulties. We refer
the reader to [20] for further details.

To verify a (P)MRM, we could apply the uniformisation
technique [1] and reduce to the problem for DTMCs with
rewards [9]. As a result, all the techniques we develop for
PMDPs (of which (P)DTMCs are a special case) can be
applied to PMRMs. In the rest of the paper, weonly present the
results for PMDPs and show a case study which is modelled
by PMRMs in Section IV.

III. PARAMETER SYNTHESIS

A. Sampling Based Approach

In this section, we apply Monte Carlo sampling techniques
to the parameter synthesis problem of PMDPs. The general
rationale of sampling-based methods is to draw samples ac-
cording to a probability distribution. In a nutshell, let p(x) be
the probability density function (pdf) over the support X . We
have to provide a sampling scheme producing a sequence of
samples x1, · · · , xN ∈ X such that, for any measurable subset
Y ⊆ X , we have that

lim
N→∞

∑N
i=1 1Y (xi)

N
=

∫
Y

p(x)dx,

where 1Y is the characteristic function for Y (i.e, 1Y (x) = 1
if x ∈ Y ; and 0 otherwise.)

To apply this general idea to our problem, as the first step we
should provide a probability distribution, sampling according
to which one has a higher chance of getting a sample with
as small value as possible. Note that, here, the support of the
distribution is the parameter space Ξ, which is a polytope. We
define the probability distribution (in terms of pdf) as

p(x) =
1

K
e−βO(x), (2)

where O is the oracle, β is some weighting factor and K is
the normalizing factor. It is not hard to see that the probability
of having a smaller O(x) is exponentially larger than that
of having a larger O(x). (The precise ratio is controlled by
β though.) Hence, if samples are drawn according to the
distribution p, we will have, for instance, for two points a and
b with O(a) � O(b), that a is more likely to be sampled
than b in the long run. However, p is not known a priori: it is
not in a closed form, and even computing p(x) for a given x is
difficult as the normalizing factor K is not known. This is the
main difficulty we have to overcome. Below we propose two
approaches, namely, the Markov chain Monte Carlo (MCMC)
and cross entropy (CE), which turn out to be efficient for our
purpose.

Remark 2: Equation (2) is a technical formula for the
MCMC and CE methods to guide the search of the parameter
space; it is not the hypothesised distribution of the parameters.

Users only specify the range of each parameter (without
a priori knowledge of Equation (2)) and apply one of our
approaches.

MCMC. In this section, we apply the Metropolis-Hastings
algorithm (M-H algorithm, [30] [22]). The general idea of
the M-H algorithm is to generate a series of samples that
are linked in a Markov chain (typically with a continuous
state space), where each sample is correlated only with the
directly preceding sample. At sufficiently long times (when
the equilibrium is reached), the distribution of the generated
samples matches the desired probability distribution. Roughly
speaking, this algorithm proceeds by randomly attempting to
move about the sample space, sometimes accepting the moves
and sometimes remaining in place. Note that the acceptance
ratio α indicates how probable the new proposed sample is
with respect to the current sample, according to the distribution
p. If we attempt to move to a point that is more probable than
the existing point (i.e. a point in a higher-density region of
p), we will always accept the move. However, if we attempt
to move to a less probable point, we will sometimes reject
the move, and the higher the relative drop in probability, the
more likely we are to reject the new point. Thus, we will tend
to stay in (and return large numbers of samples from) high-
density regions of p, while only occasionally visiting low-
density regions.

Algorithm 1: M-H Algorithm
Input: Oracle O, para. space Ξ, prob. threshold λ
Output: Find a good sample or not

1 Choose some initial input x ∈ Ξ;
2 FIND := false; sum := 0;
3 repeat
4 x′ := Generate(x); sum := sum + 1;
5 r := U [0, 1]; /*uniform random number in [0, 1]*/
6 α := e−β(O(x′)−O(x)); /*acceptance ratio*/
7 if α ≥ r; then
8 x := x′;
9 if O(x) ≤ λ then

10 FIND := true;
11 end
12 end
13 until FIND = true or sum ≥ MaxNumSamples;
14 return FIND

The pseudocode of our procedure is presented in Algo-
rithm 1, which is actually a description of the Metropolis
algorithm, a special case of the M-H algorithm. Each iteration
of the sampler generates a new proposal x′ ∈ Ξ from the
current sample x using some proposal scheme. The objective
O(x′) is computed for this proposal. We then compute the
acceptance ratio α := e−β·(O(x′)−O(x)) and accept the pro-
posal randomly, with probability α. Note that if α ≥ 1 then
the proposal is accepted definitely. If the proposal is accepted
then x′ becomes a new sample; otherwise, x remains to be

×

+

1st proposal

α<γ
discard

w
al

k
Initial

sample
walk

2nd proposal

×
3rd ppsl.

2nd ppsl.
×

+
4th ppsl.

5th ppsl.

6th ppsl.

√good
sample

5th ppsl.

Fig. 1. The evolution of Markov chain Monte Carlo

the current sample. In this algorithm, we also set a upper
limit MaxNumSamples on the number of samples being tested
to guarantee the termination of the algorithm. A schematic
illustration of the procedure is given in Figure 1. Below we
discuss some peculiarities of the procedure.

(1) Proposal scheme. To apply the M-H algorithm, we first
should give a probability density Q(x′|x) (the proposed
density or jumping distribution), which suggests a new sample
value x′ given a sample value x. We require the proposed
density to be be symmetric, i.e., Q(x′|x) = Q(x |x′).

In our setting, the sample space is the parameter space Ξ,
which is a polytope. The standard proposal scheme which
samples a normal distribution centered at x with a suitably
adjusted standard deviation (by some covariance matrix) does
not work properly here, simply because the constraint x′ ∈ Ξ
for a newly proposed x′ is very hard to guarantee. Here,
inspired by the work on random walk over a convex body [29],
we use random walk as a mechanism to generate the proposal,
taking advantage that Ξ is convex (actually a polytope), and
thus powerful techniques from convex (linear) programming
can be leveraged.

Technically, in each iteration, we run a random walk to
sample the polytope Ξ. There are many ways to walk randomly
but the two ways with the best bounds on the mixing time
are the hit-and-run and ball walk, see [28] for extensive
exposition. Here we give a brief account.
• Hit-and-run. (1) Choose a line ` through the current point

x ∈ Ξ uniformly at random. (2) Move to a point y chosen
uniformly from Ξ ∩ `.

• Ball walk. (1) Choose y uniformly at random from the
ball of radius δ centered at the current point x. (2) If y
is in the convex set then move to y; if not, try again.

We have implemented both these methods. The experi-
ence shows that there are no essential differences in terms
of efficiency. However, the hit-and-run scheme is easier to
implement as one only needs to solve a linear programming
problem, while the issue of ball walking is that the radius δ is
difficult to select in practice. (In the experiment in Section IV,
we only present results using hit-and-run.)

(2) Weighting factor. Recall that, in Equation (2), we introduce
the parameter β, which deserves some explanation. Essentially,
one intends to direct the search of the sample space Ξ in such
way that points with lower values of O are sampled with an
exponentially higher probability compared to points with a
higher value of the function O. In our experiments, inspired
by [32], we regularly adjust the values of β to ensure that the
ratio of accepted samples vs. rejected samples remains close

to a fixed value (1 in our experiments). In detail, we record the
acceptance ratio during the sampling process based on which
we adapt β in the following way: when the acceptance ratio
is getting higher, we decrease β and vice versa.

Cross-Entropy Method. Recall that, for the sampling based
method, we draw samples according to the probability distribu-
tion p given in Equation (2). In this section, we take a different
approach than the MCMC in Section III-A, namely, the cross-
entropy method (CE), which was introduced by Rubinstein
[33]. This method starts from a family of distributions U and
attempts to find a distribution which is as close to p as possible.
Note that p may not be contained in U , but, on the other
hand, the distributions in U usually have a closed form (normal
distributions for instance) and thus are easier to sample from.
Here closeness of distribution is measured using the standard
Kullback-Liebler divergence (KL divergence), which is defined
as follows.

Definition 2: [Kullback-Liebler divergence] Given two dis-
tributions η1 and η2 over X ,

d(η1, η2) =

∫
X

log

(
η1(x)

η2(x)

)
· η1(x)dx.

We note that KL divergence is not a distance, as it is not sym-
metrical. However, d is always nonnegative and d(η1, η2) = 0
iff η1 = η2. Therefore, d can be useful in assessing how close
two densities are. The KL divergence is also known as the
cross-entropy, hence the name of the method.

The general idea of the CE method is that, at each step, it
generates samples according to the current candidate distribu-
tion from the family U . Then it uses these samples to tilt the
current candidate distribution towards a new candidate. As a
result, the candidate distribution is expected to get closer to
the target distribution. We refer the reader to [34] for details.

To apply the CE method, the first step is to fix a family of
distributions U . For the PMDP synthesis, we use a piecewise-
uniform family. More specifically, we partition the parameter
space Ξ into a set of disjoint measurable cells C1, . . . , Ck,
where Cj (1 ≤ j ≤ k) is bounded and has a finite volume. In
our experiments, each Ci is a polytope as well. This partition
is fixed. The family of distributions U is parameterized by the
individual cell sampling probabilities θ : (z1, · · · , zk) ∈ [0, 1]k

with
∑k
i=1 zi = 1. Here zk denotes the probability that a

point from the cell Ci is sampled. In order to sample from a
given distribution pθ in the family, we choose a cell Ci with
probability zi for each 1 ≤ i ≤ k.

Formally, we define Θ to be a finite set of distributions of
the form (z1, · · · , zk) and U = {pθ | θ ∈ Θ}. The CE method
attempts to choose a distribution pθ from U which minimizes
the KL divergence d(p, pθ). One immediate difficulty is that
p is not given in a closed form, so in general it is infeasible
to compute d(p, pθ). To overcome this difficulty, one typical
way is to achieve the minimization only over the current set
of samples which gives an empirical estimation. Namely, the
CE method proceeds by approximating d(p, pθ) empirically
from samples and adaptively choosing values of θ. Another
issue arising in practice is that it is usually not clear how to

decide Θ before the whole procedure. In our experiments, we
actually generate Θ in the running time, and we only need to
start with Θ which merely contains a (uniform) distribution
θ = (1

k , · · · ,
1
k). This will be made clear later.

Algorithm 2: CE Algorithm
Input: Oracle O, para. space Ξ, prob. threshold λ
Output: Find a good sample or not

1 Choose θ(0) from U ;
2 FIND:= false; h := 0; iter := 0;
3 repeat
4 Draw a fixed number of N samples S = {x1,

· · · ,xN} according to pθ(h); iter := iter + 1;
5 Sort S in ascending order according to O(x1),

· · · ,O(xN);
6 if O(x1) ≤ λ then
7 FIND:=true
8 end
9 Let x0, · · · ,xm be the top m samples (m� N);

10 zj :=
∑m
i=1 1xi∈Cj ·γi∑m

i=1 γi
for each 1 ≤ j ≤ k,

11 where γi = e−βO(xi)

pθ(h)(xi)
; /* tilting*/

12 θ := (z1, · · · , zk);
13 θ(h+ 1) := βθ(h) + (1− β)θ;
14 until FIND or iter ≥ MaxNumIters;
15 return FIND

The pseudocode of our procedure is presented in Algo-
rithm 2, and a schematic illustration of the procedure is given
in Figure 2. There are 12 cells and initially we need to find 3
samples in each cell (this makes it a uniform distribution with
1/12 each). As the procedure goes on, the distribution changes
and more samples need to be found in the center cells. Note
that we limit the number of iterations by MaxNumIters as a
termination condition in case no good sample has been found.
Some explanations are in order.

Tilting. Lines 10–13 are for tilting. In theory, given the
distribution pθ(h) and the samples x1, · · · ,xm, we seek to
minimize the empirical KL distance over these samples, i.e.,

θ(h+ 1) := argminθ

(
− 1

m

m∑
i=1

(
log(pθ(xi))p(xi)

pθ(h)(xi)

))
.

This is standard from the theory of the CE method [34].
To compute this, we write γi = e−βO(xi)

pθ(h)(xi)
which can

be computed easily. Note that, from our definition (cf. (2)),
p(x) = 1

K e
−βO(x), and hence it follows that

θ(h+ 1) = argmaxθ

(
m∑
i=1

γi log(pθ(xi))

)
.

Based on this equation, one can find the optimal θ which
maximises

∑m
i=1 γi log(pθ(xi)) disregarding the constraint

that θ ∈ Θ. Standard method from mathematical analysis

Fig. 2. The evolution of cross entropy

yields that θ = (θ1, · · · , θk) where

θj =

∑m
i=1 1xi∈Cj · γi∑m

i=1 γi

for each 1≤j≤k, and 1 is the characteristic function for xi ∈
Cj . We set Θ to be Θ∪ {θ}. In practice, the tilting is usually
performed gradually by taking θ(h + 1):=βθ(h) + (1 − β)θ
(as we see at line 13), where 0 < β < 1 is a discount factor.

B. SI-Optimisation

In this section, we apply the particle swarm optimisation
(PSO, [25] [36]) to PMDP synthesis problems. The basic idea
of PSO is to simulate the movement of a bird flock or fish
school. Recall that, given a PMDP M with parameters in X ,
we associate with M constraints Ξ = K(M) ∈ Rm as the
search space. Moreover, the oracle function is given by O(·),
which returns the optimal reachability probability for a given
valuation x ∈ Ξ. The PSO algorithm is based on a population
(swarm) of s particles, each of which is associated with a
velocity which indicates where the particle is moving to. The
position (x) and the velocity (v) of each particle are given as
m-dimensional vectors. For each step t ∈ N, the new position
(at (t+ 1)-st step) of the i-th particle (1 ≤ i ≤ s), denoted by
xi(t+ 1), is given as

xi(t+ 1) = xi(t) + vi(t+ 1). (3)

The associated velocity vector is updated accordingly by

vi(t+1) = ι(t)vi(t)+µω1(t)(y
i(t)−xi(t))+νω2(t)(ŷ(t)−xi(t)),

where
• ι(t) is a weighting factor, called inertial;
• µ > 0 and ν > 0 are two parameters called cognition

and social respectively;
• ω1(t) and ω2(t) are two random vectors with each entry

randomly drawn from (0, 1);
• yi(t) is the position of the i-th particle with the best

objective function value so far calculated; and
• ŷ(t) is the particle position with the best objective

function value found so far among all particles. Formally

ŷ(t) = argminz∈{y1(t),··· ,ys(t)}O(z)

Note that the minimisation is taken componentwise.
There might be several z achieving the minimum. In this
situation, we simply select the first one.

Intuitively, we add to the previous velocity vector a ran-
domised combination of (1) the direction to the best position
of the i-th particle, and (2) the direction to the best global
(among all) particle position.

In the PMDP case, since the search (parameter) space is a
polytope which is bounded, we also need to make sure that
the constraints are enforced. Here, we define the operation ξ
as follows and, when applying (3), we define

ξ(xi(t),vi(t+ 1)) = xi(t) + k? · vi(t+ 1)

where k? = min{argmax{k | xi(t) + k · vi(t + 1) ∈ Ξ}, 1}.
Note that as Ξ is a polytope, k? (and hence ξ) can be easily
computed by a reduction to a linear programming problem.

Algorithm 3: Particle Swarm Algorithm
Input: Oracle O, para. space Ξ, prob. threshold λ
Output: Find a good sample or not

1 Choose initial swarm positions x1(0), · · · ,xs(0) and
the initial swarm velocities v1(0), · · · ,vs(0).

2 FIND:= false; t := 0;
3 yi(0) := xi(0) for 1 ≤ i ≤ s;
4 ŷ(1) := ŷ(0) := argminz∈{yi(0)|1≤i≤s}O(z);
5 repeat
6 t := t+ 1;
7 if O(ŷ(t)) ≤ λ then
8 FIND := true;
9 end

10 for i := from 1 to s do
11 xi(t) := ξ(xi(t− 1),vi(t− 1)); /* compute

the current position */
12 end
13 for i := from 1 to s do
14 if O(xi(t)) < O(yi(t)) then
15 yi(t+ 1) := xi(t);
16 if O(yi(t+ 1)) < O(ŷ(t+ 1)) then
17 ŷ(t+ 1) := yi(t+ 1);
18 end
19 end
20 else
21 yi(t+ 1) := yi(t);
22 end
23 end
24 vi(t+ 1) := ι(t)vi(t) + µω1(t)(yi(t)− xi(t)) +

νω2(t)(ŷi(t)− xi(t));
25 until FIND or ||vi(t)|| < ε for all 1 ≤ i ≤ s;
26 return FIND

The pseudocode of our PSO procedure is presented in
Algorithm 3, and a schematic illustration of the procedure is
given in Figure 3. We remark on the stopping criteria of the
procedure. In our case, clearly, if one particle finds a position x
such that O(x) ≤ λ, then we can stop immediately. Otherwise,
to ensure the termination of the procedure, we stop when the
norm of the velocity vector v is smaller than some given ε > 0
for all particles, which is a standard approach for the PSO
algorithm. In our experiments, we typically set ε to be 0.001,
and we apply the 1-norm for vectors.

Fig. 3. The evolution of particle swarm

IV. APPLICATION TO ADAPTIVE SYSTEMS

In this section, we apply the techniques developed in
Section III in the context of dynamic management of (non-
functional) requirements for adaptive systems. We focus on the
framework QoSMOS (QoS Management and Optimisation of
Service-based systems) proposed by Calinescu et al [6], which
is based on probabilistic model checking using PRISM [27].
QoSMOS adopts probabilistic temporal logic (PCTL and CSL)
to formulate a variety of QoS requirements, and can accommo-
date parametric Markovian models (PDTMC, PMDP, PMRM,
etc) as modelling formalisms to determine the reliability and
performance metrics of service-based systems.

QoSMOS augments the standard service-based system ar-
chitecture with a component called autonomic manager. This
component performs monitoring, analysing, planning and exe-
cuting (so called MAPE loop) to achieve continuous adaptation
to meet specified QoS requirements as follows: (1) Monitoring.
This step involves monitoring performance/reliability of the
system and the workload/allocated resource of each system
component. The information is used to build and/or to update
a Markovian model. (2) Analysis. In this step, the model is
employed to analyse the QoS requirements by executing a
probabilistic verification task. The model is parameterised by
the configurable parameters, and this step aims to identify con-
figurations that satisfy the QoS requirements for the system.
(3) Planning. In this step, the analysis results are used to derive
a plan for adapting the configuration, typically by changing
the workflow of the system or by modifying the resources
allocated to individual system components. (4) Execution. In
this step, the adaption plan is implemented.

We remark that the performance of QoSMOS is dominated
by the need to enumerate the candidate parameter sets and
execute a verification task for each. We propose to significantly
improve efficiency by casting the problem as the parameter
synthesis problem for the parameterised Markovian models
adopted in QoSMOS, and solving this using the methods
described in Section III. We have implemented the three
algorithms described in previous sections in PRISM [27]. In
particular, the PSO algorithm was adopted from [37]. The
experiments were carried out on a 64-bit PC with an Intel
Xeon CPU X5660 2.80GHz and 32GB RAM. The models,
properties and implementation can be found at [39].
TeleAsistance. To demonstrate the usefulness of our tech-
niques for adaptive systems, we first consider an example
on which the QoSMOS framework was applied [6]. A re-
mote medical assistance system TeleAssistance is composed
of Alarm Service, Medical Analysis Service and Drug Ser-
vice. When the system is executing, certain reliability and

TABLE I
TELEASISTANCE RESULTS – TIME & #SAMPLES

TeleAsistance (|MD| = 16, |MC | = 102)

method round 1 round 2 round 3 round 4 round 5
time (s) #samples time (s) #samples time (s) #samples time (s) #samples time (s) #samples

MCMC 0.164 23 0.053 28 0.03 16 0.078 57 0.016 14
CE 0.116 5 0.054 12 0.112 51 0.013 9 0.013 9

PSO 0.018 12 0.006 11 0.056 94 0.02 39 0.001 1

performance requirements are continuously monitored, and a
global utility function is formulated based on the quantitative
measurement of these requirements. If the value of the utility
function becomes negative, then a system admin alarm is
triggered and a set of new parameter values is computed to
adapt the system behaviour to meet these requirements. In
this paper, the utility function is based on the following three
requirements:

1) During the life time of the system, an alarm failure
cannot occur with probability higher than 0.13.

2) During the life time of the system, a service failure
cannot occur with probability higher than 0.14.

3) The probability that the number of pending changeDrug
requests exceeds 75% of the request queue capacity in
the long run must be less than 0.2.

The first two requirements are checked on a discrete-time
Markov chain model of the system, while the third is checked
on a continuous-time Markov chain model, and hence we use
PMRMs. The DTMC model has three parameters, a, b and
c, modelling probabilities of various system failures, and the
CTMC model has one parameter, cpu, representing the fraction
of CPU resources on the server allocated to Drug Service.
Interested readers are referred to [6] for more details. The
(simplified) utility function is defined as follows:

utility = (

3∑
1

Ri)− 10 · cpu, (4)

where Ri = 1 if requirement i is satisfied; 0 otherwise.
The QoSMOS framework [6] precomputes all the possible

configurations (parameter valuations) a priori, and, when a
new configuration is needed, it looks up the table of con-
figurations to select a good one. This strategy works well
when the number of configurations is limited. However, it may
result in unacceptably slow response times if the number of
candidate valuations is high. Worse still, the approach becomes
impractical if parameters are continuous variables, which can
take any value in a given range.

To improve efficiency, we apply our approaches to search
for a good configuration “online”. We run each method five
times, and do not take the average as the difference between
different runs may be quite large. It is possible that a good
sample is found in some run in a short time, but no good
samples are found in another run, due to the random nature
of our algorithms. As a result, we list all the results in
Table I to give a fair overview. The size of the model M,
denoted |M|, is the number of states. “time” and #samples
are the time (in seconds) spent and the number of samples

checked before a good sample is found, respectively. For
MCMC and PSO, we set MaxNumSamples = 2000, namely,
the algorithm terminates automatically after 2000 samples are
explored; while for the CE method we pick the smallest integer
such that N × MaxNumIters ≥ 2000 and N is the fixed
number of samples drawn in each iteration. Here, the algorithm
terminates when roughly 2000 samples are explored.

The results are reported in Table I. It is clear that each
method can find a good sample efficiently in this case study.
As each parameter is defined as a bounded real number,
a, b, c, cpu ∈ (0, 1), the QoSMOS framework cannot handle
this situation due to the infinite number of possible parameter
valuations.
Weather service. The second example is a Weather Service,
which is modelled by PMRMs. This example is drawn from
experiment scenarios of the EU project CONNECT [10],
where a weather service server provides weather information,
and a number of clients query this information via a connector
that performs “protocol mapping”. The Weather Service is
continuously monitored, recording the average latency for the
clients. The requirement of the system is that the latency is no
greater than a given threshold, when all clients successfully
obtain weather information from the server without a server
failure. If the latency is above the threshold, a system admin
alarm is triggered and a set of new parameter values is com-
puted to adjust the system behaviour to meet the requirement.

To enhance the reliability of the server, we use error
checking that incorporates redundant data for discovery of and
recovery from errors caused by hardware or software faults [8].
Error checking inevitably degrades the system’s performance
because it requires extra processing time, and this is typically
performed upon every request. However, probabilistic error
checking can be applied to reduce the overhead. In particular,
each access operation will be followed by error checking with
probability r∈[0, 1), instead of certainly (i.e., r=1). The server
is 1-correctable, i.e., the system can recover from a single
error, but fails if two or more errors occur. We suppose that
all requests, as well as the error checking, are atomic and all
delays involved (e.g., arrivals, checks) are exponentially dis-
tributed. Requests are accepted with (exponential distribution)
rate λ and responded to with rate µ; the hardware/software
will fail with rate γ, while the error checking takes place with
rate σ. When taking the error checking into consideration,
with rate r ·µ the server is being error checked, and with rate
(1 − r) · µ the server responds. We also assume the clients
make a request with rate λ′.

In the case study, we fixed λ′ and µ, as λ′ is controlled by

TABLE II
WEATHER SERVICE RESULTS – TIME & #SAMPLES VS. REWARDS THRESHOLD

Weather service (#paras= 4)

#clients |M| l method round 1 round 2 round 3 round 4 round 5
time (s) #samples time (s) #samples time (s) #samples time (s) #samples time (s) #samples

1 23

R≤25.8
MCMC 0.518 2000 0.287 572 0.495 2000 0.335 745 0.543 2000

CE 0.503 1836 0.54 1829 0.487 1825 0.461 1837 0.467 1824
PS 0.049 172 0.059 160 0.05 152 0.05 147 0.054 203

R≤26.8
MCMC 0.17 207 0.1 23 0.222 346 0.187 263 0.171 203

CE 0.528 1625 0.319 582 0.307 528 0.107 70 0.32 530
PS 0.059 165 0.06 169 0.053 129 0.061 111 0.02 11

2 529

R≤29.5
MCMC 1.194 2000 1.129 2000 1.136 2000 1.152 2000 1.124 1975

CE 1.277 1833 1.288 1829 1.268 1832 1.275 1830 1.276 1830
PS 0.154 286 0.128 230 0.129 234 0.093 139 0.215 441

R≤30.5
MCMC 0.106 44 0.203 169 0.282 290 0.234 218 0.569 779

CE 0.575 581 0.612 639 0.611 615 0.969 1097 0.591 598
PS 0.101 169 0.091 146 0.105 179 0.093 153 0.093 137

3 12167

R≤31.5
MCMC 29.339 2000 28.913 2000 29.224 2000 29.467 2000 29.488 2000

CE 34.782 1832 34.96 1828 34.921 1832 34.894 1833 34.936 1836
PS 2.113 141 3.569 240 4.086 278 4.002 272 3.399 230

R≤32.5
MCMC 23.311 1588 6.486 426 2.974 176 9.93 661 1.796 109

CE 34.895 1828 13.249 587 13.113 580 34.988 1830 35.128 1832
PS 3.41 231 2.778 185 2.117 141 2.265 151 3.448 233

4 279841

R≤33
MCMC 1028.822 2000 1030.77 2000 1046.088 2000 1024.239 2000 1027.954 2000

CE 1249.162 1835 1241.261 1836 1240.472 1832 1244.047 1829 1256.268 1833
PS 115.91 223 60.884 118 116.22 227 226.518 433 170.718 328

R≤34
MCMC 375.58 716 579.279 1117 220.751 424 341.109 657 81.194 154

CE 484.189 624 459.773 578 1025.209 1398 1263.933 1836 463.601 585
PS 69.43 134 71.578 139 100.411 187 128.868 244 153.478 296

the clients and µ is restricted by the bandwidth of communica-
tion channels. Parameters λ, r, γ and σ can be adjusted by the
system so the system adaptation can be planned and perfored
in the planning and execution phases. We also assume that
there are n clients sending requests simultaneously.

We apply the three methods to search for a good sample,
i.e., a parameter configuration. The experimental results are
shown in Table II. In this case study, we investigate how the
reward threshold (column l) affects the average running time,
as well as the total number of samples explored. We also vary
the model size by modifying the number of clients, and pick
two reward thresholds for each model. The numbers in bold
indicate that no good samples are found when the algorithm
terminates.

We then compare the three methods. Overall, the PS method
performed the best and was the most stable one, although
occasionally MCMC might beat PS. The MCMC method was
quite dependent on the models and thresholds. If the “good
region” in the sample space was small, then it was likely that it
failed to find one, or took longer time. This is because MCMC
always started in the centre of the sample space and “walked”
towards the good region. The next sample was found based
on the current sample. This is different, however, in the PS
method, where the next sample was determined by the current
swarm. This difference justified the better performance of PS.
As it explored the sample space evenly (in each cell), the CE
method had to spend quite some time in each cell, even if
the cell was not good at all. This increased the overhead and
made the CE method not so efficient. However, we comment
that, if the good region was scattered over the sample space
(which might not be the case in this case study), then the CE
method might have better performance.
Cloud infrastructure. The third example is a three-tier soft-

ware service deployed on a cloud infrastructure [7]. There
are three components of the service, i.e., Web, Application,
and Database, and several instances of each of the three
components are running on different virtual machines, which
are located on three physical servers: Server A, Server B and
Server C. In particular, Server A and Server B are running
two virtual machines respectively, and each virtual machine
supports either Web or Application. Server C is a database
server which has two virtual machines, each of which supports
one database.

We assume that the system is subject to three different
failures: (1) disk failure, which happens with probability pd;
(2) RAID failure, which happens with probability pr; and
(3) memory failure, which happens with probability pm. In
addition, each virtual machine i (1 ≤ i ≤ 6) is suffering from
failures as well, denoted by piv . The model is a PMDP derived
as a parallel composition of all components of the system.

The requirement of the system is that the probability that
eventually the system fails is below some threshold. The
system failures are continuously monitored. If the rate during
a period is above the threshold, a system admin alarm is
triggered and a set of new parameter values is computed to
allow the system to adapt. In this example, the parameters are
pd, pr, pm and piv (1 ≤ i ≤ 6).

In this case study, we fixed a probability threshold and study
how the number of parameters affected the average running
time as well as the total number of samples explored. We
picked 3 parameters (pd, pr and pm) and all 9 parameters be-
cause they were representative of two very different behaviours
of the system. The results are shown in Table III.

In case of 3 parameters, the MCMC method performed the
worst; the CE method performed in a rather unpredictable way,
and the PS method was stable and performed well in general.

TABLE III
CLOUD INFRASTRUCTURE RESULTS – TIME & #SAMPLES VS. #PARAS

Cloud (|M| = 4270168, p ≤ 0.59)

#paras method round 1 round 2 round 3 round 4 round 5
time (s) #samples time (s) #samples time (s) #samples time (s) #samples time (s) #samples

MCMC 5249.3 2000 5422.5 2000 5311.3 2000 5390.6 2000 5359.7 2000
3 CE 8320.2 2048 4183.8 1025 81.6 2 4132.5 1025 8133.5 2048

PS 644.0 212 534.2 175 673.4 230 531.7 174 527.7 171

MCMC 1252.4 336 619.2 159 2921.6 854 1611.1 455 530.9 134
9 CE 77.7 1 78.5 1 75.1 1 64.3 1 74.3 1

PS 116.4 12 155.1 24 107.4 10 157.2 25 489.3 119

The case of 9 parameters surprisingly behaved better than
the case of 3 parameters. This is because with 9 parameters
there was more likelihood (or combination) to have a good
sample. Comparing the three methods, this time the CE was
far superior to the others. This is because the starting cell
lay in the good region, hence the good performance. The PS
method also performed well. The MCMC method started from
the “centre” of the sample space and had to move all the way
to the “corner”, and hence it needed more time.

V. APPLICATION TO ONLINE MODEL REPAIR

In this section, we apply our parameter synthesis to the
online model repair problem, a variant of model repair in [3].
When a probabilistic model M with a set of n controllable
parameters does not satisfy a property φ, model repair gen-
erates a new model M′ from M such that the property
M′ holds on M′ and M′ is the closest model to M. The
distance between M and M′ is measured by the function
g = w1(x′1−x1)2 + · · ·+wn(x′n−xn)2, where wi ∈ R+ and
xi and x′i are the value of the i-th parameter in M and M′
respectively. In other words, the distance can be seen as the
cost of repair, which should be minimised.

For simplicity, we focus on the problem of finding a pa-
rameter valuation in a PMDP such that the weighted distance
is sufficiently small. Therefore, the model repair problem can
be formalised as finding a valuation of parameters satisfying

g〈v〉+ P(v) ≤ b, (5)

where b ∈ R+ is a bound and P(v) is a penalty function
defined as follows: P(v) = 0 ifM′〈v〉 |= φ; and δ otherwise.
The penalty function is used to guide the search of good
valuations by the sampling methods. If a valuation v does
not make M′ satisfy φ, then a penalty, which is a predefined
positive constant value δ (e.g., 10000) is generated. This
way, the sampling methods know it is unlikely to find a
good valuation if they continue to follow the current search
direction. Thus, the oracle O checks if the associated MDP
M′〈v〉 satisfies φ and returns g〈v〉+ P(v) for a given v.

We test this method on the Kaminsky case study first
presented in [3], which is a PMRM model. We use
the same values for the fixed parameters (popularity=3,
guess=150,other legitimate requests=150) as in [3], and
vary the parameter times to request url to generate differ-
ent model sizes. The only controllable parameter is port id,
which is a 16-bit integer, i.e., 1 ≤ port id ≤ 65535. To

our surprise, all three methods found a good sample on the
first trials due to the large region of good samples in the
sample space. For instance, it took about 1.6 seconds to
find a good sample in two trials using particle swarm when
times to request url=10 (14992 states). By contrast, the
time for finding a good sample in [3] was 528 minutes. These
figures suggest that, for this cast study, our technique can
provide a faster solution than [3] does, although we could not
perform an accurate comparison because the implementation
of the technique in [3] was not available.
BRP. To analyse the performance of our online model repair
methods in depth, we study Bounded Retransmission Protocol
(BRP, [23]), a variant of the alternating bit protocol for file
transfer service. This protocol is used in one of Philips’
products. The BRP protocol sends a file in a number of chunks
(i.e., parts of a file), but allows only a bounded number of
retransmissions of each chunk. So, eventual delivery is not
guaranteed and the protocol may abort the file transfer. In
probabilistic verification, we are interested in quantifying the
probability of such abortion. The protocol consists of a sender
S and a receiver R which exchange data via two unreliable
(lossy) channels, K and L. The details of the protocol can be
found in [12].

In our experiment, the protocol is modelled as a PMDP,
where two parameters are introduced for the lossy channels
K and L to denote the probability of successful transmission
of the message, respectively. We assume both probabilities are
0.7. For the property, we are interested in that “eventually
the sender reports a successful transmission with probability
at least p”, which can be encoded as a reachability property.
When this property is violated, both probabilities are subject to
repair by increasing the probability of successful transmission
by pKadd and pLadd respectively, and the repair cost is(
(0.7+pKadd)−0.7

)2
+
(
(0.7+pLadd)−0.7

)2
= p2

Kadd+p2
Ladd.

(6)
To make the sampling-based methods deal with the full

model repair problem, i.e., searching for a point at which the
property is fulfilled and which minimises Equation (6), we
use p2

Kadd + p2
Ladd + P(pKadd, pLadd) ≤ b as the objective

function, where P and b are the same as in Equation (5).
Table IV reports the experimental results for the sampling-

based methods. We tested various bounds b and threshold p

to investigate their impact on effectiveness of our techniques.
Bound 0.0 asked the methods to search for a global minimum

point for Equation (6), and the non-zero bounds told them to
stop when a suboptimal point is found. Table IV shows that
the latter allows the methods to terminate much faster than the
former. For each round, we report the running time, #samples,
and the result (p2

Kadd + p2
Ladd +P(pKadd, pLadd)). The model

size is fixed by letting Max = 4, which represents the number
of retransmissions of a packet.

With bound 0.0, MCMC is slower than the other two due
to the satisfiability check of constraints. For the larger bound,
its performance is improved, and getting close to that of CE
because it tried fewer samples that CE did. In some runs,
MCMC even found a good sample very quickly. Both CE and
PSO are stable regarding finding a good point, but PSO has
better performance than CE, as CE has to check all partitions
during the search.

VI. CONCLUSION

We have considered the parameter synthesis problem for
parametric probabilistic models, which asks for a valuation
for the parameters such that the resulting (concrete) prob-
abilistic model satisfies quantitative reachability properties.
We proposed efficient, robust methods to solve this problem,
based on Markov chain Monte Carlo, on the cross entropy
method, or on the particle swarm optimisation. We demon-
strated the applicability and effectiveness of these methods
by case studies of adaptive systems and online model repair.
with very encouraging results: for instance, we managed to
find a good valuation for a PMDP with 4 million states
and 9 parameters in less than 100 seconds. The experimental
results showed that our methods improved the efficiency of
previous implementations, e.g., [3], by orders of magnitude in
some cases. The time can be further shortened using parallel
computation. Indeed, our techniques have little correlation
to the size of systems or the number of possible parameter
valuations.

The experimental results suggest the following guidelines
for applicability of the three methods. The PS method has
stable performance and always managed to find a good sample.
Since the initial locations of particles are random, it is not
sensitive to the location of the good region. Although, in most
of cases, CE could find a good sample by narrowing down
to the good cell(s), it usually performed well when the initial
cell was near the good region. The MCMC method was quite
dependent on the models and thresholds. If the “good region”
in the sample space was small, then it was likely that it failed
to find one, or took longer time. This is because the MCMC
method always started from the centre of the sample space. It
could quickly find a good sample if the good region was near
the centre. In practice, although no single method performs
well in all classes of systems, we could select a method based
on the system characteristic. As a general guideline, we choose
MCMC if we know a good region can be found near the centre
of the sample space; choose CE if a good region is close to
the cells that are dealt with first; or choose PS in other cases.

Our techniques can be easily integrated into existing frame-
works for adaptive systems, e.g., QosMOS. Essentially, the

second step, i.e., the analysis, can be replaced by our parameter
synthesis procedures, as demonstrated in Section IV.

Future work includes improvements of the current method-
s/implementation by incorporating parallelisation and incre-
mental verification, extension to probabilistic timed automata,
as well as more case studies to identify relative strengths and
weaknesses.

ACKNOWLEDGMENTS

This work is supported by the ERC Advanced Grant VERIWARE,
the FP7 EU project CONNECT-IP, and the EPSRC project LSCITS.

REFERENCES

[1] C. Baier, B. R. Haverkort, H. Hermanns, and J.-P. Katoen. Model-
checking algorithms for continuous-time markov chains. IEEE Trans.
Software Eng., 29(6):524–541, 2003.

[2] C. Baier and J.-P. Katoen. Principles of Model Checking. MIT Press,
2008.

[3] E. Bartocci, R. Grosu, P. Katsaros, C. R. Ramakrishnan, and S. A.
Smolka. Model repair for probabilistic systems. In TACAS, volume
6605 of Lecture Notes in Computer Science, pages 326–340. Springer,
2011.

[4] A. Bianco and L. de Alfaro. Model checking of probabalistic and
nondeterministic systems. In FSTTCS, pages 499–513, 1995.

[5] R. Calinescu, C. Ghezzi, M. Kwiatkowska, and R. Mirandola. Self-
adaptive software needs quantitative verification at runtime. Communi-
cations of the ACM, 55(9):69–77, 2012.

[6] R. Calinescu, L. Grunske, M. Kwiatkowska, R. Mirandola, and G. Tam-
burrelli. Dynamic QoS management and optimisation in service-based
systems. IEEE Transactions on Software Engineering, 37(3):387–409,
2011.

[7] R. Calinescu, K. Johnson, and S. Kikuchi. Compositional reverification
of probabilistic safety properties for large-scale complex it systems.
In Large-Scale Complex IT Systems – Development, Operation and
Management, pages 303–329, 2012.

[8] I.-R. Chen and I.-L. Yen. Analysis of probabilistic error checking
procedures on storage systems. Comput. J., 38(5):348–354, 1995.

[9] L. Cloth, J.-P. Katoen, M. Khattri, and R. Pulungan. Model checking
markov reward models with impulse rewards. In DSN, pages 722–731,
2005.

[10] CONNECT Consortium. Deliverable 6.3 – Experiment scenarios,
prototypes and report - Iteration 2, 2012. http://hal.inria.fr/docs/00/69/
56/39/PDF/CONNECT deliverable D6 3.pdf.

[11] C. Courcoubetis and M. Yannakakis. The complexity of probabilistic
verification. J. ACM, 42(4):857–907, 1995.

[12] P. R. D’Argenio, B. Jeannet, H. E. Jensen, and K. G. Larsen. Reach-
ability analysis of probabilistic systems by successive refinements. In
PAPM-PROBMIV, pages 39–56, 2001.

[13] C. Daws. Symbolic and parametric model checking of discrete-time
Markov chains. In ICTAC, pages 280–294, 2004.

[14] A. Filieri, C. Ghezzi, and G. Tamburrelli. Run-time efficient probabilistic
model checking. In ICSE, pages 341–350, 2011.

[15] A. Filieri, C. Ghezzi, and G. Tamburrelli. A formal approach to adaptive
software: continuous assurance of non-functional requirements. Formal
Aspect of Computing, 24(2):163–186, 2012.

[16] C. Ghezzi and A. Sharifloo. Verifying non-functional properties of
software product lines: Towards an efficient approach using parametric
model checking. In Software Product Line Conference (SPLC), 2011
15th International, pages 170 –174, aug. 2011.

[17] E. M. Hahn, T. Han, and L. Zhang. Synthesis for PCTL in parametric
Markov decision processes. In NASA Formal Methods, pages 146–161,
2011.

[18] E. M. Hahn, H. Hermanns, B. Wachter, and L. Zhang. PARAM: A
model checker for parametric Markov models. In CAV, pages 660–664,
2010.

[19] E. M. Hahn, H. Hermanns, and L. Zhang. Probabilistic reachability for
parametric Markov models. STTT, 13(1):3–19, 2011.

[20] T. Han, J.-P. Katoen, and A. Mereacre. Approximate parameter synthesis
for probabilistic time-bounded reachability. In IEEE Real-Time Systems
Symposium, pages 173–182, 2008.

http://hal.inria.fr/docs/00/69/56/39/PDF/CONNECT_deliverable_D6_3.pdf
http://hal.inria.fr/docs/00/69/56/39/PDF/CONNECT_deliverable_D6_3.pdf

TABLE IV
BRP RESULTS – TIME & #SAMPLES VS. PROB./REPAIR THRESHOLD

BRP
Max ,
|M|

Bounds method round 1 round 2 round 3 round 4 round 5
b p time (s) #samples result time (s) #samples result time (s) #samples result time (s) #samples result time (s) #samples result

3,
110206

0.0

0.7
MCMC 195.5 2000 0.1050 197.9 2000 0.1053 191.1 2000 0.1048 195.1 2000 0.1047 195.4 2000 0.1058

CE 157.4 2330 0.1048 136.1 2326 0.1046 140.6 2331 0.1046 132.5 2330 0.1050 140.6 2337 0.1046
PSO 130.1 2002 0.1047 45.8 2001 0.1046 27.9 1220 0.1046 19.7 864 0.1058 20.7 908 0.1047

0.8
MCMC 202.5 2000 0.1131 198.3 2000 0.1127 197.4 2000 0.1126 191.8 2000 0.1128 192.1 2000 0.1123

CE 164.8 2328 0.1123 142.7 2323 0.1123 142.5 2334 0.1123 143.7 2328 0.1126 144.0 2326 0.1123
PSO 56.6 1855 0.1122 35.3 1487 0.1122 36.8 1555 0.1122 32.1 1353 0.1124 47.4 2001 0.1122

0.9
MCMC 199.1 2000 0.1231 202.0 2000 0.1231 202.4 2000 0.1237 198.0 2000 0.1231 194.3 2000 0.1231

CE 149.7 2319 0.1238 131.1 2318 0.1236 140.1 2322 0.1231 138.8 2327 0.1232 138.1 2326 0.1230
PSO 143.6 1465 0.1232 80.6 955 0.1233 58.8 2001 0.1243 42.9 1910 0.1232 20.6 908 0.1230

0.105 0.7
MCMC 82.2 788 0.1047 84.2 851 0.1047 203.9 2000 0.1053 202.0 2000 0.1051 197.1 2000 0.1052

CE 67.6 603 0.1047 123.4 1886 0.1047 72.4 867 0.1043 76.6 1009 0.1047 93.3 1287 0.1048
PSO 20.1 249 0.1048 102.1 1440 0.1049 119.1 1374 0.1051 25.2 365 0.1048 55.0 734 0.1048

0.115 0.8
MCMC 28.1 249 0.1124 2.0 18 0.1138 4.7 50 0.1139 13.1 132 0.1128 9.2 105 0.1131

CE 65.8 578 0.1127 28.3 327 0.1148 23.5 278 0.1134 29.6 328 0.1146 29.1 328 0.1145
PSO 12.3 104 0.1133 10.0 135 0.1143 8.8 102 0.1127 9.6 145 0.1143 6.7 88 0.1143

0.125 0.9
MCMC 9.6 77 0.1239 21.4 193 0.1245 27.1 287 0.1247 11.7 116 0.1245 20.7 210 0.1240

CE 63.2 560 0.1246 47.5 566 0.1237 69.5 875 0.1235 54.6 665 0.1244 28.8 326 0.1245
PSO 61.6 918 0.1233 3.0 128 0.1240 3.8 163 0.1239 4.1 178 0.1244 6.9 285 0.1247

4,
136244

0.0

0.7
MCMC 295.2 2000 0.0746 294.8 2000 0.0742 294.3 2000 0.0745 288.8 2000 0.0739 286.5 2000 0.0746

CE 242.1 2336 0.0737 214.5 2337 0.0738 216.5 2333 0.0739 220.3 2331 0.0738 230.9 2332 0.0737
PSO 112.4 788 0.0739 81.1 747 0.0737 315.7 2001 0.0737 198.5 1283 0.0738 126.5 782 0.0737

0.8
MCMC 301.0 2000 0.0822 290.2 2000 0.0820 301.6 2000 0.0824 287.1 2000 0.0822 300.5 2000 0.0823

CE 229.8 2322 0.0817 215.8 2329 0.0818 213.2 2332 0.0818 209.9 2323 0.0817 206.5 2329 0.0817
PSO 213.6 1301 0.0817 77.9 788 0.0822 78.9 674 0.0817 114.0 1005 0.0817 211.4 1124 0.0817

0.9
MCMC 304.3 2000 0.0942 295.3 2000 0.0936 310.2 2000 0.0942 291.9 2000 0.0940 286.0 2000 0.0938

CE 229.7 2331 0.0939 209.8 2323 0.0941 212.2 2333 0.0940 220.5 2326 0.0939 209.9 2324 0.0940
PSO 255.1 1684 0.0937 108.9 906 0.0937 187.2 1109 0.0938 212.8 1533 0.0954 227.2 1426 0.0936

0.075 0.7
MCMC 28.2 169 0.0743 217.1 1490 0.0739 65.6 468 0.0742 54.3 363 0.0741 86.0 604 0.0744

CE 62.4 275 0.0747 75.9 597 0.0737 38.1 275 0.0738 68.5 529 0.0739 110.3 964 0.0702
PSO 22.2 138 0.0739 19.4 170 0.0739 20.6 191 0.0748 13.3 115 0.0738 19.0 166 0.0745

0.085 0.8
MCMC 92.2 573 0.0831 61.5 410 0.0840 20.4 135 0.0834 2.7 23 0.0840 5.1 40 0.0845

CE 86.4 509 0.0845 32.1 232 0.0846 77.2 563 0.0820 35.8 267 0.0828 98.3 865 0.0836
PSO 15.6 88 0.0847 10.9 77 0.0843 11.6 124 0.0842 12.9 81 0.0835 9.4 66 0.0841

0.095 0.9
MCMC 28.1 156 0.0944 116.7 770 0.0948 100.7 657 0.0945 141.9 922 0.0941 18.6 148 0.0944

CE 94.8 574 0.0947 113.2 954 0.0948 109.6 861 0.0947 102.8 899 0.0943 45.4 322 0.0943
PSO 14.2 47 0.0947 21.3 236 0.0947 7.3 231 0.0947 4.2 129 0.0940 42.8 1376 0.0947

[21] H. Hansson and B. Jonsson. A logic for reasoning about time and
reliability. Formal Asp. Comput., 6(5):512–535, 1994.

[22] W. K. Hastings. Monte Carlo samping methods using Markov chains
and their applications. Biometrika, pages 97–109, 1970.

[23] L. Helmink, M. P. A. Sellink, and F. W. Vaandrager. Proof-checking a
data link protocol. In TYPES, pages 127–165, 1993.

[24] C. Jégourel, A. Legay, and S. Sedwards. Cross-entropy optimisation of
importance sampling parameters for statistical model checking. In CAV,
pages 327–342, 2012.

[25] J. Kennedy and R. Eberhart. Particle swarm optimization. In IEEE
International Conference on Neural Networks, volume 4, pages 1942–
1948, 1995.

[26] M. Kwiatkowska. Quantitative verification: Models, techniques and
tools. In ESEC/FSE’07, pages 449–458. ACM Press, 2007.

[27] M. Kwiatkowska, G. Norman, and D. Parker. PRISM 4.0: Verification
of probabilistic real-time systems. In CAV’11, 2011.

[28] L. Lovász and R. Kannan. Faster mixing via average conductance. In
STOC, pages 282–287, 1999.

[29] L. Lovász and S. Vempala. Simulated annealing in convex bodies and an
O∗(n4) volume algorithm. J. Comput. Syst. Sci., 72(2):392–417, 2006.

[30] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and
E. Teller. Equation of state calculations by fast computing machines.
Journal of Chemical Physics, 21:1087–1092, 1953.

[31] A. Mitsos, B. Chachuat, and P. I. Barton. Mccormick-based relaxations
of algorithms. SIAM Journal on Optimization, 20(2):573–601, 2009.

[32] T. Nghiem, S. Sankaranarayanan, G. E. Fainekos, F. Ivancic, A. Gupta,
and G. J. Pappas. Monte-carlo techniques for falsification of temporal
properties of non-linear hybrid systems. In HSCC, pages 211–220, 2010.

[33] R. Rubinstein and W. Davidson. The cross-entropy method for combi-
natorial and continuous optimization. Methodology and Computing in
Applied Probability, 1:129–190, 1999.

[34] R. Y. Rubinstein and D. P. Kroese. The Cross-Entropy Method: A Unified

Approach to Combinatorial Optimization, Monte-Carlo Simulation and
Machine Learning. Springer, 2004.

[35] S. Sankaranarayanan and G. E. Fainekos. Falsification of temporal
properties of hybrid systems using the cross-entropy method. In HSCC,
pages 125–134, 2012.

[36] Y. Shi and R. Eberhart. A modified particle swarm optimization. In IEEE
International Conference on Evolutionary Computation, pages 69–73.
IEEE, 1995.

[37] A. I. F. Vaz and L. N. Vicente. A particle swarm pattern search method
for bound constrained global optimization. J. Global Optimization,
39(2):197–219, 2007.

[38] P. Zuliani, C. Baier, and E. M. Clarke. Rare-event verification for
stochastic hybrid systems. In HSCC, pages 217–226, 2012.

[39] http://www.prismmodelchecker.org/subm/ase13synthesis/.

http://www.prismmodelchecker.org/subm/ase13synthesis/

	Introduction
	Preliminaries
	Parametric MDPs
	Parametric MRMs

	Parameter Synthesis
	Sampling Based Approach
	SI-Optimisation

	Application to Adaptive Systems
	Application to Online Model Repair
	Conclusion
	References

