
Slow abstraction via priority

A.W. Roscoe and P.J. Hopcroft

Oxford University Department of Computer Science,
and Verum Software Technologies BV

Abstract. CSP treats internal τ actions as urgent, so that an infinite
sequence of them is the misbehaviour known as divergence, and states
with them available make no offer that we can rely on. While it has
been possible to formulate a number of forms of abstraction in these
models where the abstracted actions become τs, it has sometimes been
necessary to be careful about the interpretation of τs and divergence. In
this paper, inspired by an industrial problem, we demonstrate how this
range of abstractions can be extended to encompass the offers made by
processes during a run of “slow τs”, namely abstractions of interactions
with an external agent that does not usually respond urgently to an offer,
but always eventually does respond. This extension requires the prioritise
operator recently introduced into CSP and its refinement checker FDR.
We demonstrate its use in the modelling used in Verum’s ASD:Suite.

1 Introduction

Hoare’s CSP [7, 12, 13] treats the actions a process can perform alike, except that
while ordinary visible communications in the alphabet Σ require the agreement
of the external environment to occur, the special action τ does not.

The CSP hiding operator P \ X makes the assumption that the hidden X
actions (now τs) happen as soon as they can. However, hiding is also a means
of abstracting part of the external interface of a process, and this has meant
that in formulating concepts such as LA(P) (lazy abstraction [12]) we have
had to allow for abstracted actions not being urgent. Lazy abstraction assumes
that abstracted events may occur inside LA(P) whenever P can do them, or
may not, but will never happen so fast as to exclude the rest of P ’s interface
and cause divergence. The abstracted user may even behave like STOP and
never do anything. Lazy abstraction has proved a powerful tool for formulating
specifications such as security and fault tolerance. It is used in the CSP models
of embedded systems created by Verum (see Section 6). Hiding corresponds to
eager abstraction, as abstracted actions are always on offer to the process.

Some of Verum’s modelling needed an abstraction that was somewhere be-
tween the two. They needed a model where the owner of A could still delay
the process P , and still did not prevent other users getting to use P , but which
would not refuse events in A for ever. So we might characterise these agents as
non-urgent (as in lazy abstraction) but ultimately compliant. One class of actions
that fits well into this model are ones (like the tock action described in [12, 13])
that represent the regular passage of time.

We characterise slow abstraction SA(P) by looking at limiting behaviour
along infinite execution paths of P . While this abstraction proves impossible
to express directly using CSP operators, we discover a method using priority
for deciding whether SA(P) refines a chosen specification. Beginning with a
background section on CSP and its models, the rest of this paper develops the
above ideas and ends with a case study showing how our methods have been used
in Verum’s ASD:Suite, a tool for creating correct-by-design embedded software.

We make two simplifying assumptions. Firstly we do not consider abstrac-
tions of processes able to terminate (X), avoiding some special cases. Secondly
we only consider the case where the alphabet Σ is finite, though we will feel free
to extend it, for modelling and analytic purposes, to a larger finite set.

2 Background

2.1 CSP and its semantics

CSP is based on instantaneous actions handshaken between a process and its
environment, whether that environment consists of processes it is interacting
with or some notional external observer. It enables the modelling and analysis
of patterns of interaction. The books [7, 12, 13, 15] all provide thorough intro-
ductions to CSP. The main constructs that we will be using in this paper are
set out below.

– The processes STOP , SKIP and div respectively do nothing, terminate
immediately with the signal X and diverge by repeating the internal action
τ . RunA and ChaosA can each perform any sequence of events from A,
but while RunA always offers the environment every member of A, ChaosA

can nondeterministically choose to offer just those members of A it selects,
including none at all.

– a → P prefixes P with the single communication a which belongs to the
set Σ of normal visible communications. Similarly ?x : A→ P(x) offers the
choice A and then behaves accordingly.

– CSP has several choice operators. P � Q and P u Q respectively offer
the environment the first visible events of P and Q , and make an internal
decision via τ actions whether to behave like P or Q .
The asymmetric choice operator P BQ offers the initial visible choices of P
until it performs a τ action and opts to behave like Q . In the cases of P � Q
and P BQ , the subsequent behaviour depends on what initial action occurs.

– P \ X (hiding) behaves like P except that actions in X become τs.
– P [[R]] (renaming) behaves like P except that when P performs an action a,

the new process performs some b that is related to a under the relation R.
– P ‖

A
Q is a parallel operator under which P and Q act independently except

that they have to agree (i.e. synchronise or handshake) on all communications
in A. A number of other parallel operators can be defined in terms of this,
including P ||| Q = P ‖

∅
Q in which no synchronisation happens at all.

Other CSP operators such as P ; Q (sequential composition), P 4 Q (interrupt)
and P Θa Q (throw an exception) do not play a direct role in this paper.

We understand a CSP process in terms of its pattern of externally visible
communications. CSP has several styles of semantics that can be shown to be
appropriately consistent with one another [12, 13]. The two styles that will con-
cern us are operational semantics, in which rules are given that interpret any
closed process term as a labelled transition system (LTS), and behavioural mod-
els, in which processes are identified with sets of observations that might be
made from the outside.

An LTS models a process as a set of states that it moves between via actions
in Στ , where τ cannot be seen or controlled by the environment. There may be
many actions with the same label from a single state, in which case the environ-
ment has no control over which is followed. The best known behavioural models
of CSP are based on the following. Traces are sequences of visible communica-
tions a process can perform. Failures are combinations (s,X) of a finite trace s
and a set of actions that the process can refuse in a stable state reachable on
s. A state is stable if it cannot perform τ . Divergences are traces after which
the process can perform an infinite uninterrupted sequence of τ actions, in other
words diverge. The models are then

– T in which a process is identified with its set of finite traces;
– F in which it is modelled by its (stable) failures and finite traces;
– N in which it is modelled by its sets of failures and divergences, both ex-

tended by all extensions of divergences: it is divergence strict.

Traces, failures and divergences are all observations that can be made of a
process in linear time. As described in [13], there is a range of other models
based on richer forms of linear observation. An example is refusal testing, in
which we record not just one stable refusal at the end of a trace, but have the
option to record one before each event of the trace as well as at the end. Refusal
testing models have long (see [10]) been recognised as being relevant to priority.
However, we show in this paper that (unexpectedly) refusal-testing models are
not always sufficient to encapsulate priority, and that sometimes one needs to
look at the yet more refined models in which the refusal information during
and at the end of traces is replaced by acceptance or ready sets: the actual sets
of events made available from stable states. The latter are sometimes called
acceptance traces models.

2.2 Lazy abstraction

Lazy abstraction LA(P) captures what a process looks like to an observer unable
to see the events A, assuming that there is another user who can, and can accept
or refuse them. See [12] for a full discussion.

The traces of LA(P), like any way of abstracting A, are those of P \ A. As
the abstracted user can at any time refuse or accept events in A, its failures are
those of

(P ‖
A

ChaosA) \ A

whose traces are again correct. We assume that the abstracted user cannot con-
sume so much of P ’s resources as to make it diverge, so we assert that the
abstraction (unlike the above CSP expression) never diverges.

2.3 FDR

FDR[11–13] is a refinement checker between finite-state processes defined in CSP.
First created in the early 1990’s it has been regularly updated since, and indeed
a completely new version FDR3 will be released late in 2013.1

It uses CSPM , namely CSP extended by Haskell-like functional program-
ming. Thus one can define complex networks and data operations succinctly,
and create functions that, given abstract representations of structures or sys-
tems, can automatically generate CSP networks to implement and check them.
The FDR is at the heart of the verification functionality of ASD:Suite [3, 4]: the
tool captures state machine models of proposed embedded systems, and then
builds CSP models of how it will implement these so that they can be checked
for correctness properties. This is only one of several major uses of FDR in
government and industry, almost all of which start by translating some other
notation to CSP.

FDR checks refinements of the form Spec vX Impl , where Spec is a process
representing a specification in one of the standard CSP models X , usually traces,
stable failures or failures-divergences. Impl is a CSP representation of the system
being checked. Typically this sort of check scales better in Impl than Spec, the
latter of which has to be normalised as part of the decision process. FDR supports
a number of techniques for attacking the state explosion problem, including
hierarchical compression. The algorithms underpinning FDR are set out in [12–
14]. A number of recent additions to FDR including priority were summarised
in [1].

3 A priority operator

There have been a number of proposals, for example [5, 8, 9], for the introduction
of priority into CSP. These usually proposed ways in which a process could prefer
one action to another, even though both remained available. An approach like
that would automatically invalidate not only CSP’s existing semantic models,
which would have to be redeveloped to accommodate these preferences, but also
the use of FDR in anything close to its usual form, since FDR supports transition
systems without preferences. However, [13] introduced a priority that does make
sense over ordinary labelled transition systems. The one we discuss here is a
slightly more expressive version of that.

1 The initial release of FDR3 will, functionally, be similar to FDR2.94 except that it
will support multi-core execution of some functions, will have a new GUI, and will
have an integrated type-checker for CSPM . Further functionality is planned for later
versions.

Our operator Pri≤(P) is parameterised by a partial order ≤ on Στ , the set of
action labels. τ is constrained to be maximal in ≤, but not necessarily maximum.
(So there may be visible actions less than τ and ones incomparable to τ , but
not ones greater than τ .) Further, we do not permit non-maximal elements of
Σ to be incomparable to τ . These conditions are both required to preserve the
property that CSP treats the processes P and τ.P (one that can perform a τ
before acting like P) as equivalent.

The operational semantics of Pri≤(·) are easier to understand than its ab-
stract behavioural semantics. They do not, however, fit into the framework de-
scribed as “CSP-like” in [13], because they require negative premises: an action
cannot occur unless all actions of higher priority are impossible. The only oper-
ational rule needed for the new operator is

P x−→ P ′ ∧ ∀ y 6= x .x ≤ y .P 6 y−→ · · ·
Pri≤(P) x−→ Pri≤(P ′)

The fact that τ is maximal means it is never blocked by this rule.
Since the operational semantics for Pri≤(P) fall outside the “CSP-like” class

that guarantees a semantics in every CSP model, it is not a surprise that not
all such models are congruences for it. We cannot expect it to respect a model
that does not tell us which events a process performs happen from stable states,
and whether all Σ-events less than a given event are then refused. The traces
model certainly does not tell us this because its observations are completely
independent of whether the process is stable or not. While failures-based models
would seem to satisfy this requirement – as failures occur in stable states and
tell us what these states refuse – they do not give enough information. Consider
the pair of processes (a → b → STOP)B(a → STOP) and (a → STOP)B(a →
b → STOP). These divergence-free processes have identical failures, but imagine
applying a priority operator to them where a < b. In each case, the a → ·
that appears to the left of B is prevented because τ (necessarily, given our
assumptions, of higher priority than a) is an alternative. So only the other a
is allowed, meaning that the results of the prioritisation are different: one can
perform b and one cannot. We conclude that it is not enough to know information
about stable states only at the ends of traces; we also need to know about
stability and the refusal of high-priority events earlier in traces.

The refusal-testing models do distinguish these two processes, because they
have different behaviours after the refusal of all events other than a, followed
by the action a have both been observed (which is written 〈Σ \ {a}, a〉 in the
notation below). Several variations on the refusal-testing model, and a richer
one in which exact ready or acceptance sets are recorded on the stable states in
a trace, are detailed in Chapters 11 and 12 of [13]. In the simplest of these, the
stable refusal-testing model RT , the behaviours recorded of a process are all of
the form

– 〈X0, a1,X1, . . . ,Xn−1, an ,Xn〉
where n ≥ 0 and each Xi is either a refusal set (subset of Σ) or • (indicating
that no refusal was observed).

The refusal-testing value of a process P can tell us what traces are possible
for Pri≤(P): P can only perform an action a that is not maximal in ≤ when all
greater actions (including τ) are impossible. In other words the trace 〈a1, . . . , an〉
is possible for Pri≤(P) if and only if

〈X0, a1,X1, . . . ,Xn−1, an , •〉

is a refusal-testing behaviour, where Xi is • if ai−1 is maximal, and {a ∈ Σ |
a > ai−1} if not (even if that set is empty so an−1 is less than only τ).

It came as a surprise to us, however (particularly given what one of us wrote
in [13]), to discover that there are cases where the refusal components of refusal-
testing behaviours of Pri≤(P) can not be computed accurately from the corre-
sponding behaviour of P . This is because Pri≤(P) can refuse larger sets than
P : notice that if P offers all visible events, then the prioritised process refuses
all that are not maximal in ≤. Consider the processes

DF1(X) =u{a → DF1(X) | a ∈ X }

DF2(X) =u{?x : A→ DF2(X) | A ⊆ X ,A 6= ∅}

These are equivalent in the refusal-testing models: each has all possible be-
haviours with traces in Σ∗ that never refuse the whole alphabet Σ.

Now consider Q1 = DF1({a, b}) ||| CS and Q2 = DF2({a, b}) ||| CS where
CS = c → CS . Clearly Q1 and Q2 are refusal-testing equivalent. Let ≤ be the
order in which b > c and a is incomparable to each of b and c. We ask the
question: is 〈{c}, a, •〉 a refusal-testing behaviour of Pri≤(Qi)?

When i = 1 the answer is “no”, since whenever Q1 performs the event a the
set of events it offers is precisely {a, c}. It can also offer {b, c}, but in neither
case can it perform a after the refusal of {c}. However, Q2 can choose to offer
{a, b, c}: in this state the priority operator prevents c from being offered to the
outside, meaning that Pri≤(P2) can be in a stable state where a is possible but
c is not: so in this case the answer is “yes”. Thus we need more information than
refusal testing of Qi to calculate the refusal-testing behaviours of Pri≤(Qi).

This example tells us that Pri≤(·) can only be compositional for refusal
testing when the structure of ≤ is such that whenever a and b are incomparable
events in Σ and c < b then also c < a. This is because we could reproduce
an isomorphic example in any such order. It is, however, possible to give a
compositional semantics for refusal testing when there is no such triple. This
means that the order has to take one of two forms:

– A list of sets of equally prioritised events, the first of which contains τ .
– A list of sets of equally prioritised events, the first of which is exactly {τ},

together with a further set of events that are incomparable to the members
of the first two sets in the list and greater than those in the rest.

The priority order used in enforcing maximal progress in timed models does
satisfy the above, but the ≤s we will use in analysing slow abstraction below do
not satisfy it.

These issues disappear for the acceptance traces model FL and its variants,
which are therefore the only CSP models with respect to which our priority
operator can be defined in general. With respect to FL, the semantics of Pri≤(P)
are the behaviours (the Ai being stable acceptances or •):

{〈A0, a1,A1, . . . ,An−1, an ,An〉 | 〈Z0, a1,Z1, . . . ,Zn−1, an ,Zn〉 ∈ P}

where for each i one of the following holds:

– ai is maximal under ≤ and Ai = • (so there is no condition on Zi except
that it exists).

– ai is not maximal under ≤ and Ai = • and Zi is not • and neither does Zi

contain any b > ai .
– Neither Ai nor Zi is •, and Ai = {a ∈ Zi | ¬ ∃ b ∈ Zi .b > a},
– and in each case where Ai−1 6= •, ai ∈ Ai−1.

3.1 FDR implementation of priority

The nature of the operational semantics of Pri≤(·), in particular its use of nega-
tive premises, means that this operator cannot be folded into the supercombina-
tor structures (see [13]) that lie at the heart of FDR’s state machine implemen-
tation. It has therefore been implemented as a stand-alone operator that both
inputs and outputs an LTS.

We decided that the practical version would have an easier-to-use input for-
mat rather than making all users construct a representation of a partial order
with the constraints stated earlier. The implemented version therefore restricts
the orders to ones that can be represented as a list of sets of visible events, where
the first (the events incomparable to τ) may be empty:

prioritise(P,As)

where As = <A0,A1...,An> is a list of subsets of Σ.
These sets of events have lower priority as the index increases, so An are the

ones of lowest priority. Importantly, there is no need for the Ai to cover all the
visible events of P: those not in one of the Ai are incomparable to all other events
including τ and neither exclude nor are excluded by any other.

3.2 Priority and compression

FDR implements a number of operators that take an LTS and attempt to con-
struct a smaller LTS or Generalised LTS (GLTS) with the same semantic value.
A GLTS is like an LTS except that information such as divergence, refusals and
acceptances may be included as explicit annotations to nodes rather than being
deduced only from transitions.

With the exception of strong bisimulation, none of the compressions described
in [14] is guaranteed to preserve the refusal-testing and acceptance traces mod-
els of CSP. In consequence, they cannot be reliably used inside a prioritise
operator.

In part as a remedy for this problem, we have recently implemented the
compression divergence-respecting weak bisimulation as defined in [13]. (This
factors an LTS by the maximum weak bisimulation relation that does not identify
any pair of states, one of which is immediately divergent and the other one not).
This respects all CSP models and has the added advantage that, unlike some
other compressions, it turns an LTS into another LTS rather than a GLTS. We
will report separately on this implementation and weak bisimulation’s place in
the family of CSP compression functions.

4 Slow abstraction

In the introduction we set out, informally, the problem of formulating the correct
abstraction of a process P relative to an unseen user who is assumed to be lazy
but eventually compliant with requests from the process, and who controls some
subset A of P ’s events. We do not want these events to be visible to the external
observer, as represented by our specification, which is expressed in the failures
model F – a choice we will justify shortly. We will assume that P itself is free
from divergence.

The abstracted events do not happen quickly enough for them to exclude
offers of other events being accepted by the process indefinitely. Our model,
therefore, is that the abstracted process has the stable failure (s,X) if and only
if (s,X ∪ A) is a failure of P for some s ′ with s ′ \ A = s. We say it has the
unstable failure (s,X) if and only if P has an infinite behaviour

P = P0
x0−→ P1

x1−→ P2 . . .

where, if u is the necessarily infinite trace consisting of all the non-τ xi , u \ A = s
and there is some k such that (i) xi ∈ A ∪ {τ} for i > k , (ii) sufficient of the Pi

are stable, an issue we will discuss below, and (iii) all but finitely many of these
stable Pi refuse X . In other words it ultimately performs an infinite number of
A events from stable states, all of which refuse X . We characterise the second
sort as unstable failures because the abstraction is turning A actions into a sort
of slow internal action, meaning that the refusals are occurring over a series of
states linked by these actions.

The stable failure case, of course, corresponds to the regular definition of
P \ A over F . The unstable case comes when the trace s in P \ A is followed
by an infinite sequence of events in {τ} ∪A. Infinitely many of these must be in
A because P is divergence-free.

Our idea that the abstracted user is lazy has to be made a little more specific
here. It should not be too hard to see that this is closely related to the question
of how many of the A actions in the trace above happen from stable states. Since
P is divergence-free, it will always reach a stable state if left alone and so it is
reasonable (though perhaps debatable if long finite sequences of τs can occur) to
describe an A action that occurs from an unstable state as eager: our imaginary
user has performed it before P ’s available τs had completed.

If all of these stable states, beyond a certain point, refuse X then we want
(s,X) to be a failure of our abstraction.

– If all but finitely many of the As were eager, then it would neither make sense
to describe our user as lazy, nor to detect any infinite pattern of refusals from
the sequence of states: refusals will only happen from stable Pi . We assume
that our user is too lazy for this to happen.

– If we insisted that all As happened in stable states, then this is quite a
strong assumption about the user. States of P reachable only using eager
occurrences of A would not be reached at all.

– The remaining two possibilities are that we insist (i) that only finitely many
As are eager or (ii) less restrictively, that an infinite number of them are not
eager. Each of these is a reasonable view, but we adopt (i) in part because
we have a solution to the problem of automating it in FDR, but not (ii). So
what we are saying is that the abstracted A-user is eventually sufficiently
lazy not to take an event from an unstable state. The difference between (i)
and (ii) shows up in the process

Q = (a → a → Q)B ((a → a → Q) � b → STOP)

If we abstract {a} under assumption (i) then the result cannot refuse {b}
on 〈〉. However, under (ii) it can, because it would consider the behaviour in
which every odd-numbered a occurs from Q ’s unstable initial state.

If an infinite, non-divergent behaviour of P has only finitely many visible
actions outside A, and satisfies (i) we will call it ∗A-stable. We will spend much
of this paper analysing such behaviours. For the process Q defined above, only
finitely many as can occur from the initial state in a ∗A-stable behaviour.

An unstable failure only manifests itself over an infinite behaviour of P ,
which means that it would not make sense to ask what the process did after it.
It would not, therefore, make sense to try to work out how our abstraction looks
in a refusal-testing model. That is why in considering this type of abstraction we
consider only failures specifications, given that for traces specifications we can
just use Spec vT P \ A.

The value of SA(P) is then the union of both its stable and unstable failures,
paired with the traces of P \ A. This a member of F , the “stable” failures model.

We have thus characterised what the behaviours of our new abstraction are,
and so know what it means for it to refine some failures specification. This,
however, gives us no clue about how to check properties of them in FDR.

It is interesting to compare LA(P) and SA(P). There is one direct relation
that holds.

Lemma 1. If P is a divergence-free process then LA(P) vF SA(P).

Proof. These two processes have the same set of traces by definition, so all
we must do is show that every failure (stable or unstable) of SA(P) belongs
to LA(P). This is trivially true for the stable ones, which are just those of
P \ A = (P ‖

A
RunA) \ A and RunA w ChaosA.

If (s,X) is an unstable failure of SA(P) then, from definitions above it follows
that there is an infinite series of traces t0 < t1 < t2 < . . . where P has the
failure (ti ,X) for each of them, and ti \ A = s for all i . Any one of them,
combined with the failure (ti � A,A) of ChaosA, yields the (stable) failure (s,X)
in (P ‖

A
ChaosA) \ A.

Consider the process P = a → P � b → a → P . Because P \ {a} can di-
verge, eager abstraction P \ {a} does not make sense. L{a}(P) = b → Chaos{b}
since if the abstracted user stops performing as at any stage then bs are forced
to stop also. S{a}(P), on the other hand, is just Run{b} as the abstracted user
will always eventually perform a, enabling another b if that is necessary.

5 Unstable failures checking via priority

We want to find a way of checking whether Spec vF SA(P). That this holds
for the traces and stable failures of the right-hand side can be established by
checking Spec vF P \ A. We will assume this has been done, meaning that we
want to check that the unstable failures of SA(P) also satisfy Spec. Doing this
on FDR will mean that any counterexample will manifest itself as a divergence,
since this is the only sort of infinite counterexample that FDR can produce.

This tells us immediately that this type of behaviour cannot be checked in
the usual CSP language without priority, since in that language the divergences
of any context F (P) depend only on the traces and divergences of P , not on its
failures.

It also tells us we cannot find a context GA[·] such that GA[P] has the same
failures in F (the stable failures model) as SA(P). It will therefore not be possible
to test that this abstraction refines a failures specification Spec by checking a
refinement with Spec itself on the left-hand side.

We can conclude that checking the unstable failures aspect of Spec vF

SA(P), at least without extending the functionality of FDR, must take the form

LHS (Spec,P ,A) vM RHS (Spec,P ,A)

in which M represents a model sensitive to divergence, and where an operator
such as Pri≤(·) that falls outside traditional CSP is used. We will see later that
we can take LHS (independent of Spec, P and A), to be ChaosΣ , the most
nondeterministic divergence-free process, and M to be failures-divergences.

Before handling general Spec we will first show how to deal with the case
that Spec is the failures specification of deadlock freedom:

DF =u{a → DF | a ∈ Σ}

SA(P) meets this specification provided both the following hold:

– P is deadlock free.
– There is no ∗A-stable behaviour of P such that eventually no action outside

A is ever offered from a stable state.

SA(P) will satisfy this provided (i) P is deadlock free in the usual sense and
(ii) P has no state from which there is an infinite sequence of events in A ∪ {τ}
where all the A’s are from states offering only subsets of A.

Priority can tell us if there is such a sequence starting from P ’s initial state.
Prioritise all events outside A over those in A. Then Pri≤(Q) can perform an
infinite sequence of A events if and only if none of them is offered from the
same state as a higher priority, non-A event in Σ ∪ {τ}. Thus Pri≤(P) \ A has
divergence 〈〉 if and only if P can perform an infinite trace of A events where
none of them is from a state where a non-A event is offered.

Proving divergence freedom of this process does not, however, prove that
SA(P) can never unstably refuse the whole alphabet. If a ∈ A and b 6∈ A then,
for any n, the process SA(NB(n)) can unstably refuse Σ, where

NB(0) = a → NB(0)
NB(n) = (b → STOP) � (a → NB(n − 1)) (n > 0)

is the process that performs an infinite sequence of as with b offered as an
alternative to the first n. Clearly, for n > 0, Pri≤(NB(n)) is equivalent to
b → STOP , so hiding a will leave it divergence free.

We can solve this problem and find the unstable refusal in SA(NB(n)) if we
introduce a second copy of a by renaming it, say to a ′, and make it incomparable
with both a and b in the priority order. So in particular it can happen even when
a is prevented by priority.

Pri≤(NB(n)[[a, a
′
/a, a]]) can now perform any number of a ′ events whatever

the value of n After a trace of n or more a ′ events, this prioritised process
will also be able to perform a, which is excluded in the initial states. Therefore
Pri≤(NB(n)[[a, a

′
/a, a]]) \ {a} can diverge after sufficiently long traces of a ′s.

These divergences simply reflect NB(n)’s ability to perform an infinite trace
of a’s with only finitely many offers of b along the way: by the time a particular
divergence appears there are no further offers available.

The construction Pri≤(NB(n)[[a, a
′
/a, a]]) \ {a} does not in itself represent

the abstraction SA(NB(n)), both because it has the ability to perform a ′ actions,
and because deadlocks in the abstraction have become divergences. It does, how-
ever, show us how to use FDR to check for the abstraction being deadlock free.
This method generalises as follows.

Theorem 1. For the divergence-free process P, the abstraction SA(P) contains
no unstable failure of the form (s, Σ) if and only if ((P [[a, a

′
/a, a | a ∈ A]]) \ A is

divergence free. Here it is immaterial whether a ′ is a single event disjoint from2

αP ∪A or a separate such event for every member a of A.

Note that the process checked here has the same number of states as P : every
state of P is reachable because of the role of a ′, but there is only one state of
this construct for each of P .

We now seek to generalise the above to a method for deciding whether
Spec vF SA(P) for arbitrary divergence-free P and failures specification Spec.
2 αP is the set of events used by P .

Suppose Spec is a specification process that P \ A trace refines. We are trying
to decide if S vF SA(P). We can assume that no event of αSpec belongs to A,
because if there were such events we could rename A to achieve this.

If S is any process such that αS ⊆ αSpec and (〈〉, Σ) 6∈ failures(S), we can
define NR(S) to be the set of those X that are subset minimal with respect to
(〈〉,X) 6∈ failures(S). NR(S) is nonempty because Σ is finite and (〈〉, Σ) 6∈ S .

If S is a process that can deadlock immediately, let NR(S) = ∅.
Choose a new d that is outside αSpec ∪ A. (Note that αP ⊆ αSpec ∪ A

because we are assuming that Spec vT P \ A.) For a set of refusals R 6= ∅, let

T (R) =�
X∈R

d → (?x : X → DS)

and T (∅) = DS , where DS = d → DS . Note that T (R) ‖
αSpec

Q , for Q a process

such that S vT Q , can deadlock if and only if, when one of the sets X ∈ R is
offered to P when it has performed 〈〉, P refuses it. This parallel composition is
therefore deadlock free if no member of R is an initial (stable) refusal of P . Now
let

Test(S) = (?x : S 0 → Test(S/〈x 〉)) � T (NR(S))

For Q such that Spec vT Q , the parallel composition Test(Spec) ‖
αSpec

Q is then

deadlock free if and only if Spec vF Q , given that we know that S vT P : the
composition can deadlock if and only if, after one of its traces s, P can refuse
a set that S does not permit. In understanding this it is crucial to note that
the ds of T (NR(S)), including the one in the initial state of Test(S), can occur
unfettered in the parallel composition because they are not synchronised with Q .
The first d that occurs fixes the present trace as the one after which Test(Spec)
checks to see that a disallowed refusal set (if any) does not appear in Q .

Our construction turns any case where Q fails Spec into a deadlock. It is
very similar to the “watchdog” transformation for the usual failures model set
out in [6]. The main difference is that ours is constructed with no τ actions: the
visible action d replaces τ .

Consider the case where Q is replaced by P . This has the additional events A
which are not synchronised with Test(Spec), so the combination Test(Spec) ‖

αSpec

P can only deadlock in states where P \ A has a stable failure illegal for Spec.
We would similarly like unstable failures of SA(P) to turn into unstable

“deadlocks”, namely unstable refusals of Σ, in SA(Test(Spec) ‖
αSpec

P). This is

confirmed by the following result.

Theorem 2. Under the assumptions above, including the one that P is divergence-
free and Spec vF P \ A, SA(P) has an unstable failure that violates Spec if and
only if SA(Test(Spec) ‖

αSpec
P) has an unstable failure of the form (s, Σ). Fur-

thermore SA(P) wF Spec if and only if

(Pri≤((Test(Spec) ‖
αSpec

(P [[a, a
′
/a, a | a ∈ A]])))) \ A

is divergence-free.

Proof. The second equivalence follows from what we know once we observe
that, since Test never performs any member of A and αSpec ∩ (A ∪ {a ′}) = ∅,

Test(Spec) ‖
αSpec

(P [[a, a
′
/a, a | a ∈ A]]) = (Test(Spec) ‖

αSpec
P)[[a, a

′
/a, a | a ∈ A]]

So we need just to establish the first equivalence. Any unstable failure of
the form (s, Σ) in Test(Spec) ‖

αSpec
P arises from a ∗A-stable behaviour of this

combination such that eventually no action outside A is ever offered, and nec-
essarily where eventually no event, other than members of A and τ , occurs.
Since Test(Spec) has no τ or A actions, there is a point in the infinite behaviour
beyond which this process performs no action, so all the subsequent actions of
the parallel composition are performed by P alone, with Test(Spec) left in some
“terminal” state. Since the resulting unstable refusal is Σ, this terminal state
must be one refusing the unsynchronised d . Therefore the state is one offering
some X such that (s ′,X) 6∈ failures(Spec), where s is the trace up to any point
in the infinite behaviour beyond the one at which Test(Spec) first reaches its
terminal state and s ′ = s \ (A ∪ {d}). It should be clear that from this point
extra events may add to s but will not change s ′.

Since the infinite behaviour witnesses the unstable refusal of Σ in the parallel
combination, we can assume that the infinite tail of states in which all the stable
ones refuse Σ \A starts beyond the point where Test(Spec) reaches its terminal
state. The sequence of corresponding states in P must all refuse the X that
this terminal state is offering. P \ A has by that point performed s ′, recalling
that (s ′,X) 6∈ Spec. P ’s behaviour thus witnesses the unstable failure (s,′X),
meaning that SA(P) does not satisfy Spec.

It should not be difficult to see that the reverse also holds: if there is a ∗A-
stable behaviour of P witnessing an unstable failure (s,X) of SA(P) that violates
Spec, we can assume that X is ⊆-minimal with respect to this. The trace s 〈̂d〉
therefore leads Test(Spec) to a state that offers exactly X . The combination
Test(Spec) ‖

αSpec
P then has a ∗A-stable behaviour in which, after a finite trace

s ′ such that s ′ \ (A ∪ {d}) = s, Test(Spec) permanently offers X and all stable
states of P refuse it, linked only by τ and A actions. This behaviour clearly
witnesses an unstable failure with refusal Σ.

We therefore have a general technique for deciding whether, for divergence-
free P , SA(P) meets an arbitrary failures specification with respect to unstable
failures.

6 Availability checking in Verum’s ASD:Suite

This example inspired the formulation of slow abstraction and the creation of
the decision procedure in terms of priority.

6.1 Background on ASD:Suite

Analytical Software Design (ASD) [3] is a software design automation platform
developed by Verum3 that provides software developers with fully automated
formal verification tools that can be applied to industrial scale designs without
requiring specialised formal methods knowledge of the user. ASD was developed
for industrial use and is being increasingly deployed by customers in a broad
spectrum of domains, such as medical systems, electron microscopes, semi con-
ductor equipment, telecoms and light bulbs. Industrial examples using ASD,
such as the development of a digital pathology scanner, can be found in [4].

ASD is a component-based technology: systems contain both ASD compo-
nents and foreign components. An ASD component is a software component
specified, designed, verified and implemented using ASD and is specified by:

1) An ASD interface model specifying the externally visible behaviour of a
component and

2) an ASD design model specifying its inner working and how it interacts with
other components.

Corresponding CSP models are generated automatically from design and inter-
face models, and the ASD component designs are formally verified using FDR,
though the CSP is not visible to the end user. While design models are complete
and deterministic, interface models are abstract and frequently nondeterministic.

Figure 1 gives an overview of the standard ASD architecture which is based

Component A

Interface B Interface C

Interface A

Sync StimuliSyn
c S

tim
uli

Syn
c R

esp
onse

s

FD

FD FD

Component B Component C

Queue

Sync Responses

Asynchronous

Notifications

Visible Client Stimuli Visible Client Responses and Notifications

Boundary for Component A verification

Fig. 1. ASD architecture.

on the client-server model. Within an ASD model, system behaviour is specified
3 www.verum.com

in terms of stimuli and responses. A stimulus in Component A represents either
a synchronous procedure call initiated from a Client above or an asynchronous
notification event received from its queue. A response in Component A will either
be a response to its Client above or a synchronous procedure call downwards to
Interfaces B or C .

The CSP model generated by ASD not only captures the behaviour in the
models specified by the user, but also reflects the properties of the ASD run-
time environment in which the generated code will be executed. This includes
the externally visible behaviour of the foreign components and ASD components
that form the environment in which the ASD design runs. Clients can initiate
synchronous procedure calls to servers, with servers communicating in the other
direction by return events and non-blocking queues.

The CSP models are verified for errors such as deadlocks, livelocks, interface
non-compliance, illegal behaviour, illegal nondeterminism, data range violations,
and refinement of the design and its interfaces with respect to a given specifica-
tion. In Figure 1, the implemented interface is that Component A must satisfy
is Interface A. As an example, a simplified version of the standard ASD timer
interface specification is defined in Figure 2.

Fig. 2. ASD interface model.

There are 2 canonical states defined in this interface model, namely Inac-
tive and Active. In the Inactive state, this interface offers 2 synchronous pro-
cedure calls to its client represented by the stimuli ITimer.CreateTimer and
ITimer.CancelTimer. If its client calls ITimer.CreateTimer then the interface im-
mediately returns with the synchronous return event ITimer.VoidReply, thereby
passing the thread of control back to its client; the client is now free to carry
on executing its own instructions and the interface is now in state Active. In
state Active, there is a modelling event called IHwClock that represents the in-
ternal clock triggering an asynchronous notification event, ITimerCB.Timeout,
to be put on its client’s queue. This modelling event is hidden from its client
reflecting the fact that the client cannot see the internal workings of the timer
component and therefore doesn’t know when it has occurred. Since the client’s

queue is non-blocking, from its client’s point of view the interface might still be
in Active or have moved to Inactive with a notification being placed on its queue.
The modelling events can also be used to capture a nondeterministic choice over
a range of response sequences that depend on internal behaviour abstracted from
the interface specification. Typically, a user will select whether modelling events
are eager, namely that they will always occur if the system waits long enough
for them, or lazy capturing the case where they nondeterministically might or
might not occur. These correspond to the two main modes of abstraction for
CSP described earlier, which play an important role in formulating ASD’s CSP
specifications.

A design model with its used interface models and appropriate plumbing,
referred to as the complete implementation, is refined against its corresponding
implemented interface specification, which specifies the design’s expected visible
behaviour by its client. In turn, this implemented interface becomes the used
interface when designing and verifying the client component using it. In this
refinement, the communication between the design model and its used interface
models is hidden, since it is not visible to a client in this design. One of the
properties that the complete implementation must satisfy is livelock freedom.
For example, if a design can invoke an infinite cycle of communication with one
or more of its used interfaces without any visible communication being offered to
its client, we say the client is starved: this erroneous behaviour must be flagged
and corrected. Within CSP such behaviour is captured as divergence.

6.2 Benign and malign divergence

There are divergences that arise during the verification of ASD models that are
not regarded as erroneous behaviour in practice due to assumptions of fairness
in the notion of ‘time passing’ at run-time. These are referred to as benign
divergences.

An example of how a benign divergence arises in ASD is with the implemen-
tation of a timer driven polling loop as follows. An ASD component A is designed
to monitor the state of some device by periodically polling it to request its status.
In the event that the returned status is satisfactory, component A merely sets a
timer, the expiry of which will cause the behaviour to be repeated. In the event
that the returned status is not satisfactory, an asynchronous notification is sent
to A’s client and the polling loop terminates. Thus, A is not interested in normal
results; it only communicates visibly to its client if the polled data is abnormal.
Whenever component A is in a state in which it is waiting for the timeout event
to occur, it is also willing to accept client API stimuli, one of which may be
an instruction to stop the polling loop. The design of component A has at least
2 used interfaces, one of them being the Timer interface described above, and
the other being the interface, PolledUC, for the used component whose status is
being polled. This is summarised in Figure 3.

A subset of the behaviour of the design of component A relevant to this
discussion can be summarised by the state transition diagram in Figure 4. The
events prefixed with CLIENT represent the communication that is shared with the

Component A

Timer Interface PolledUC Interface

PolledUC.{Start,Stop,Poll}Tim
er.{

Cre
ate

,C
ance

l}

Tim
er.V

R
Queue

PolledUC.{VR,OK,Fail}

Timer.TimeoutCB

CLIENT.{START,STOP} CLIENT.{VR, ERROR_CB}

Me.Clock Internal modelling event representing the occurrence of the clock timing out.

Fig. 3. Component A and its interfaces.

X

Y

Z

CLIENT.START

Timer.Create

Timer.TimeoutCB

PolledUC.Poll PolledUC.OK

Timer.Create

PolledUC.Fail

CLIENT.ERROR_CB

PolledUC.Stop; VR

PolledUC.Start; VR

CLIENT.VR

CLIENT.VR

Timer.Cancel

PolledUC.Stop; VR

CLIENT.STOP

Fig. 4. Subset of component A’s behaviour.

specification on the left-hand side of the refinement and therefore remains visible;
all the other events become hidden. The labelled states represent the states of
interest for the purposes of describing the divergence in question. All event labels
are prefixed with the component name that shares the communication with the
design. Events with labels ending in CB are asynchronous notification events that
are taken from the design’s queue. The divergence occurs in state Y , where the
system can perform an infinite cycle of hidden events via state Z , repeating the
action of timing out, discovering that the polled component is fine and setting
the timer again.

In the CSP model and at run-time, A could carry on polling device PolledUC
indefinitely. However, at run-time a distinction is made between τ loops where
a client API call is available as an alternative and τ loops that offer no alter-
native and therefore genuinely starve the client. In the former case, the design’s
client is able to intervene and perform a procedure call that breaks this loop.
Provided such a client API stimulus is available, this divergence is not regarded
as an error in the design; it will not diverge at run-time because in the real
environment time passes between creating a new timer and the corresponding
timeout notification event, during which the client is able to perform an API
call. The design is correct under that assumption which can be safely made due
to the implementation of the Timer component. In the example design in the
diagram above, the visible event CLIENT.STOP is available in state Y as an
option for breaking the diverging cycle of τ events. The assumption at run-time
is that the internal clock does not timeout instantaneously, assuming that the
create timer procedure call did not set the timer to 0. It is also assumed that it
will eventually occur. Therefore a client using the timer process can rely on its
occurrence as well as there being some time that passes within which the client
may legitimately communicate with components above it in the stack (i.e. the
client’s client).

For this we use our new slow abstraction for the modelling event Me.Clock
rather than eager or lazy, which would not be correct. Prior to the discover of
this technique, the only option was to place artificial assumptions in for form
of restraints upon the occurrence of such modelling events. This both increased
the state space and carried the risk of missing erroneous behaviours during ver-
ification.

One can describe divergences composed of abstracted events, during which
the slow abstraction makes an offer, as being benign, whereas ones where the
offers end, or which are composed of other hidden events, as being malign and
genuinely erroneous. Our new methods allow this distinction to be made.

The analysis in ASD uses the priority-based techniques described in Section 5.
The set of modelling events M is partitioned into two sets. The first set MSE

comprises the slow eager modelling events that are controlled by the external
used components and are assumed to occur eventually, but not so fast that
their speed starves their client, for example ME.Clock in the timer polling loop
example described above. The second set ML comprises the modelling events

that might or might not occur and are therefore accurately modelled by lazy
abstraction.

If P is the system model with all these modelling events left visible, a diver-
gence in P \ MSE can take three forms:

– The infinite sequence of τs may only contain finitely many hidden MSE

actions. This clearly represents a form of malign divergence.
– There might be infinitely many hidden MSE actions, only finitely many of

which have the alternative of a client API event. This is another form of
malign divergence since there is the possibility of client starvation.

– Finally, infinitely many of the MSE events might have a client API event as
an alternative. As discussed above, this is a benign divergence.

You can think of there being a distinction between “slow τs” formed by hiding
MSE – these give the client time to force an API – and ordinary “fast τs”,
which do not. This is just the view formed by the slow abstraction of the events
mapping to the slow τs after conventional hiding (eager abstraction) of the ones
mapping to the fast ones.

Checking the divergence-freedom of

Pri≤(P [[m,m ′
/m,m | m ∈ MSE]]) \ MSE

gives precisely the check for malign divergence that we want: it does not find
benign ones. If we needed to check more precisely what API offers were made
along sequences of MSE events, we could use the machinery of unstable failures
checking discussed earlier in this paper.

After establishing that all divergences are benign, and if necessary make
correct offers, the rest of the system properties can be checked in the stable
failures model of CSP, as is conventional for checks involving lazy abstraction.
The ASD use of slow abstraction described here corresponds exactly to the case
of checking for deadlock freedom which was the core case earlier.

7 Conclusions

We have explained the CSP priority operator in terms of operational semantics
and shown that, depending on the form of the partial order used, it requires
either CSP’s refusal-testing or acceptance traces model for compositionality.

We have also studied the problem of abstracting an interface that is neither
eager nor is allowed to be completely idle, capturing refusal information from
infinite traces. The reason for studying this alongside priority is that priority
was the key to automating checks of the slow abstraction we developed against
failures specifications.

Our industrial case study was satisfying because this was an example in
which a practical problem inspired the creation of a piece of theory (i.e. slow
abstraction and the priority technique for checking properties of it) that would
not have been discovered without it. Beyond the scope of the present paper,

we have had to bring further fairness considerations into our models to handle
further nuances of the ASD models. That will be the subject of a future paper.

The techniques developed in this paper are applicable wherever one models a
system which has events that, either because of their assumed internal control or
the way they are assumed to be controlled by an unseen external agent, progress
in a measured rather than eager manner. It would be interesting to investigate
the relationship with Schneider’s theory of timewise refinement [15], which shows
how Timed CSP processes can be seen to satisfy untimed specifications: at least
in discretely timed versions of CSP, this appears to be closely related to the slow
abstraction of time. Clock and time signals, in general, appear to be excellent
candidates for this form of abstraction.

References

1. P. Armstrong, M.H. Goldsmith, G. Lowe, J. Ouaknine, H. Palikareva, A.W. Roscoe
and J.B. Worrell, Recent developments in FDR, To appear in the proceedings of
CAV 2012.

2. P. Armstrong, G. Lowe, J. Ouaknine, and A.W. Roscoe, Model checking Timed
CSP, To appear in Proceedings of HOWARD, Easychair.

3. P.J. Hopcroft and G.H. Broadfoot, Combining the box structure development
method and CSP, Electr. Notes Theor. Comput. Sci., 128(6):127-144, 2005.

4. G H. Broadfoot and P.J. Hopcroft, A paradigm shift in software development,
Proceedings of Embedded World Conference 2012, Nuremberg. February 29, 2012.

5. C.J. Fidge, A formal definition of priority in CSP, ACM Transactions on Pro-
gramming Languages and Systems, 15, 4, 1993.

6. M.H. Goldsmith, N. Moffat, A.W. Roscoe, T. Whitworth and M.I. Zakiuddin,
Watchdog transformations for property-oriented model-checking, FME 2003: For-
mal Methods, LNCS 2805, 2003.

7. C.A.R. Hoare, Communicating sequential processes, Prentice Hall, 1985.
8. A.E. Lawrence, CSPP and event priority, Communicating Process Architectures,

59, 2001.
9. G. Lowe, Probabilistic and prioritised models of Timed CSP, Theoretical Computer

Science, 138, 2, 1995.
10. I. Phillips, Refusal testing, Theoretical Computer Science, 50, 3, 1987.
11. A.W. Roscoe, Model checking CSP, in ‘A classical mind: essays in honour of C.A.R.

Hoare’, Prentice Hall, 1994.
12. A.W. Roscoe, The theory and practice of concurrency Prentice Hall, 1997.
13. A.W. Roscoe, Understanding concurrent systems, Springer, 2010.
14. A.W. Roscoe, P.H.B. Gardiner, M.H. Goldsmith, J.R. Hulance, D.M. Jackson

and J.B. Scattergood, Hierarchical compression for model-checking CSP or how
to check 1020 dining philosophers for deadlock, Proceedings of the 1st TACAS,
1995. Springer LNCS 1019.

15. S.A. Schneider, Concurrent and real-time systems: the CSP approach, Wiley, 2000.

