
The automated verification of timewise
refinement (Draft)

A.W. Roscoe,

Oxford University Department of Computer Science, Bill.Roscoe@cs.ox.ac.uk

Abstract. While Hoare’s CSP models reactive systems without assign-
ing an exact time to events, Timed CSP records the exact times as non-
negative reals. Timed CSP therefore provides a more exact semantics of
systems, but it still makes sense to ask whether a timed process satisfies
an untimed specification. Indeed the question of whether such specifica-
tions are satisfied often reduces to the timing details of the implemen-
tation. Schneider showed how this could be understood at an abstract
level via the concept of timewise refinement. The recent implementation
of Timed CSP in the CSP refinement checker FDR (using Ouaknine’s
theory of digitisation) has at last provided the framework for automating
timewise refinement. In this paper we show how to do this, discovering
that it is subtle because of the need to reconcile infinite behaviours with
finite ones

1 Introduction

Hoare’s process algebra CSP [5, 11, 12] provides a framework for describing sys-
tems patterns of actions representing communications. It provides operators that
allows the description of implementations, typically consisting of parallel net-
works whose parts communicate by handshaking on their own action. It also
provides the means – including representations of nondeterminism, deadlock,
and other pathologies – for creating specifications.

The semantics of CSP in its original form cared about the order in which
actions happen, but not their exact times. The author and Mike Reed [8] intro-
duced an alternative view of the same notation, with the addition of the timed
constant process WAIT t that terminates successfully after t time units.

Substantial theories have been developed for both the untimed and timed
versions of CSP including abstract models and operational semantics. In the
timed models one records more details than in the untimed ones, and so one
would expect to have mappings which forget this extra detail and therefore cast
any system modelled in timed theories to values in corresponding untimed ones.

Timed systems may be expected to meet specifications which restrict the
times at which events happen, as well as ones that do not. In the latter case the
correctness of the system may well depend on timing details within a system
even though the specification is untimed.1 For such cases we would need the
1 A good example of this is provided by the level crossing described in [3, 11], where

the untimed specification that the gate is down when a train passes by it is only

detail of Timed CSP to create a model that establishes the specification, and
then to have a way of testing it against an untimed specification.

For untimed trace, or safety, specifications, there can be no doubt what this
means since there can be no doubt how to extract an untimed trace from a timed
behaviour: simply extract the sequence of events that occur in it.

Beyond traces, most used untimed models for CSP are failures and failures-
divergences. Each of these depends, in the usual operational formulation, on the
dual ideas of divergence (an unbroken infinite series of internal τ actions and
stability (reaching a state where no τ action is possible). While it is possible
to build timed models that capture this information such as the timed failures-
stability model [9], it is far from clear that this provides the most useful link
between Timed CSP the untimed failures model.

One argument for this is that divergence is a much less dangerous and difficult
phenomenon in the timed world than it is in the untimed one. On the “no-Zeno”
assumption that only finitely many events happen in a finite time, divergence
can only occur over an infinite interval, during which we can see the offers that
the process makes in a way that makes no sense over untimed models. Whereas
refusal sets only appear in the untimed models when they become permanent
through stability, in the timed models there is no choice but to record what is
refused at every instant – event when a τ will later become enabled from the
current state.

Schneider [15, 16] therefore described the timewise refinement relation be-
tween the failures model of untimed CSP and the timed failures model, in which
events are given times from the non-negative real numbers, and we record what
was (observed to have been) refused at each moment of time. PSF vTF Q2 if all
of the untimed traces that can be extracted from Q are permissible for P , and
furthermore whenever Q can perform the untimed trace s and from some time
beyond the end of s always refuse the whole of the set X of visible actions, then
(s,X) is a failure of P .

Thanks to Ouaknine’s work on digitisation [6, 7], it has become possible to es-
tablish results about (continuous) Timed CSP processes3 by proving them about
a version of Timed CSP formulated over discrete time, which in turn is equiv-
alent to proving analogous results about a tock -CSP translation of the discrete
version. tock -CSP [11] is ordinary “untimed” CSP but with the special event
tock interpreted as the regular passage of time. This translation was described
in [6], and its implementation in the FDR refinement checker in [1].

That made it straightforward to check untimed trace properties of Timed
CSP processes on FDR: all one had to do was to check untimed trace refinement
of the untimed specification P by Q \ {tock} for the timed implementation Q .
In other words we can simply hide the special time event.

met because, inter alia, of the relationship of the speed of trains to the timing
characteristics of the physical gate.

2 This notation is borrowed from [16].
3 These results are restricted to processes in which all programmer- and

implementation-created delays are of integer length: integer Timed CSP.

The situation is not so simple for failures, since the permanent refusal of a set
of events in a tock -time process necessarily involves an infinite series of tocks and
quite possibly states that vary throughout time. In particular Q \ {tock} will
have no stable failures at all, since no discrete Timed CSP process ever refuses
tock . Therefore the inclusion of Timed CSP in FDR did not in itself solve the
problem of automating the question of timewise refinement.

Timed CSP’s semantics have the property known as maximal progress, mean-
ing that a process cannot do nothing when a τ action is possible. In the transla-
tion to tock -CSP this translates to the statement that no tock action can happen
when a τ is possible. Another way of saying the same thing is that τ must have
priority over tock .

For this and other reasons a priority operator has been implemented in FDR,
as proposed in [12]. We shall see in the present paper that priority also provides
the solution to the problem of characterising timewise refinement, using a similar
idea to that used to solve a problem of abstraction in [13]. Specifically, we will
find that way to map a Timed CSP process to a value that can be compared
against an untimed failures specification is to use the slow abstraction defined in
that paper.

This, in the present case, has the effect of turning any refusal (as opposed
to trace) counter-example to a failures refinement into a divergence that can be
detected by FDR.

The rest of this paper is organised as follows. In the next (background) sec-
tion we recall the essential details of CSP, Timed CSP and their models, giving
the formal definition of timewise refinement. In Section 4 we shown how slow
abstraction of {tock} provides an accurate characterisation of timewise refine-
ment for the discrete interpretation of Timed CSP, with digitisation extending
this result to the continuous interpretation.

In this paper we make the assumption that the underlying alphabet of actions
Σ is finite. This is necessary because of the way we check timewise refinement
later, and is common to [13]. Since FDR can only handle finite alphabets, this
is therefore no restriction at all at that level.

2 Background

2.1 CSP and its semantics

In this section we give an overview of untimed CSP and its models, as relevant
to the present paper. Far more extensive presentations can be found in [5, 11,
12]. CSP is based on instantaneous actions handshaken between a process and
its environment, whether that environment consists of processes it is interacting
with or some notional external observer. It enables the modelling and analysis of
patterns of interaction. The books [5, 11, 12, 16] all provide thorough introduc-
tions to CSP. The main constructs that we will be using in this paper are set
out below.

– The processes STOP , SKIP and div respectively do nothing, terminate
immediately with the signal X and diverge by repeating the internal action
τ . RunA and ChaosA can each perform any sequence of events from A,
but while RunA always offers the environment every member of A, ChaosA

can nondeterministically choose to offer just those members of A it selects,
including none at all.

– a → P prefixes P with the single communication a which belongs to the
set Σ of normal visible communications. Similarly ?x : A→ P(x) offers the
choice A and then behaves accordingly.

– CSP has several choice operators. P � Q and P u Q respectively offer the
environment the first visible events of P and Q , make an internal decision
via τ actions whether to behave like P or Q .
The asymmetric choice operator P BQ offers the initial visible choices of P
until it performs a τ action and opts to behave like Q . In the cases of P � Q
and P BQ , the subsequent behaviour depends on what initial action occurs.

– P \ X (hiding) behaves like P except that all actions in X become (internal
and invisible) τs.

– P [[R]] (renaming) behaves like P except that whenever P performs an action
a, the renamed process must perform some b that is related to a under the
relation R.

– P ‖
A

Q is a parallel operator under which P and Q act independently except

that they have to agree (i.e. synchronise or handshake) on all communications
in A. A number of other parallel operators can be defined in terms of this,
including P ||| Q = P ‖

∅
Q in which no synchronisation happens at all.

– P ; Q behaves like P until it terminates successfully, and then like Q .

There are also other operators such as P 4 Q (interrupt) and P Θa Q (throwing
an exception) that do not play a direct role in this paper.

It is always asserted that the meaning, or semantics, of a CSP process is
the pattern of externally visible communication it exhibits. As shown in [11,
12], CSP has several styles of semantics, that can be shown to be appropriately
consistent with one another. The two styles that will concern us are operational
semantics, in which rules are given that interpret any closed process term as a
labelled transition system (LTS), and behavioural models, in which processes are
identified with sets of observations that might be made from the outside.

An LTS models a process as a set of states that it moves between via actions
in Στ , where τ cannot be seen or controlled by the environment. There may be
many actions with the same label a single state, in which case the environment
has has no control over which is followed. The best known behavioural models
of CSP are based on the following types of observation. Traces are sequences of
visible communications a process can perform. Failures are combinations (s,X)
of a finite trace s and a set of actions that the process can refuse in a stable
state reachable on s. A state is stable if it cannot perform τ . Divergences are
traces after which the process can perform an infinite uninterrupted sequence of
τ actions, in other words diverge. The models are then

– T in which a process is identified with its set of finite traces;
– F in which it is modelled by its (stable) failures and finite traces;
– N in which it is modelled by its sets of failures and divergences, both ex-

tended by all extensions of divergences: it is divergence strict.

2.2 Timed CSP and its semantics

For thorough presentations of Timed CSP and its models, the reader should
study [16, 8, 9].

Timed CSP has the same operators as CSP, plus a single constant with
explicit time: WAIT t where t is a non-negative number. This terminates with X
t time after it is started. More operators such as timeout and timed interrupt can
be defined in terms of the basic ones. The difference between the interpretation
of operators in CSP and Timed CSP is that in the latter we are precise about
when communications happen and become available, while remaining faithful to
the understanding contained in the untimed interpretation. So, for example the
process a → P still offers the event a until it occurs. P then starts some fixed
time (representing the time it takes the process to recover from, or perhaps
complete, a) before P starts. And P � Q still offers the choice of the initial
(visible) events of P and Q until one of them performs one. Thinking about this
makes it clear that P and Q evolve in time – perhaps performing their own τ
events – side by side until one of them has an action accepted, allowing the other
to be turned off.

Untimed CSP carries the assumption that an unstable state – one in which a
τ action is enabled – cannot persist, with a τ or some other action definitely hap-
pening quickly. In Timed CSP this has to be quantified, leading to the concept
of maximal progress: when a τ is enabled, some action must happen immediately.
This simple and seemingly straightforward translation of intuition has a major
effect on the semantic models that are available for Timed CSP.

In forming a semantics for Timed CSP it is clear that we have to attach times
to the events that happen, since otherwise we would not be making distinctions
that we evidently want to make. We assume the No Zeno principle that no
process can perform infinitely many events (whether visible or invisible) in a
finite time, but do allow a sequence of events all to happen at the same time.
The main operator that constrains available models is hiding: in P \ X no X
event can be offered by P for more than zero time, for otherwise the process with
X hidden would violate the principle of maximal process. It turns out that this
means that we need to know what a timed process refuses at every moment of
time, with the refusal at the time t of an event corresponding to what is refused
instantaneously after the last event at t .

The combination of the principle of maximal progress and the need to make
models compositional under the CSP hiding operator (which turns visible actions
into τs that are forced before time passes) makes the range of models for Timed
CSP more restricted than for untimed. It is necessary to record the set of events
refused at every point in a behaviour where time advances. Divergence is a
much reduced issue, since thanks to the no-Zeno assumption any divergence

is necessarily spread over infinite time – which when we are modelling time
simplifies things greatly. In fact divergence will not be considered in the models
we use in this paper.

In the case of continuous time this means that we have to record refusals as
a subset of Σ × R+ to accompany traces which attach a time in R+ (the non-
negative real numbers) to each event, where the times increase, not necessarily
strictly, through the trace. In fact, timed refusals are unions of sets of the form
X × [t1, t2) where 0 ≤ t1 < t2 <∞ –refusal tokens. [t1, t2) is a half-open interval
that contains t1, all x with t1 < x < t2 but not t2. This corresponds to the idea
that if an event happens at time t then the refusal recorded at that time is the
set of events refused at the same time after the event. So in a → P , there will
be behaviours in which a occurs at time 1, all events other than a are refused
in the interval [0, 1) and, on the assumption that the event a takes time δ to
complete, all events including a are refused in the interval [1, 1 + δ).

So the Timed Failures model (FT) representation of a process consists of
pairs of the form (t ,ℵ) (timed failures), where t us such a timed trace, and ℵ
is such a timed refusal. First introduced in [8], There have been a number of
variants of this model over the years. The author analysed these in [14] and in
this paper adopts the same version of FT , namely one

– Where causality is permitted within a single instant: for example one can
have the timed trace 〈(a, 1), (b, 1)〉 but not the timed trace 〈(b, 1), (a, 1)〉.

– Where timed traces (as recorded) are finite (i.e. have only finitely many
timed events) but where timed refusals can extend through all time, though
they are finitary in the sense that they are the union of a countable set of
refusal tokens X × [t1, t2) where the number of t1s less than any fixed t ∈ R+

is finite.
– Where unfolding recursion takes no time, but only time guarded recursions

in which no recursive call can be made before some δ > 0 are permitted. The
latter is to ensure that no process has a Zeno behaviour in which infinitely
many actions can occur in a finite time.

Timed failures can be extended, if we wish, by an analogue of the divergence
information used in N . However, rather than record that a particular timed
failure (s,ℵ) is divergent (i.e. is accompanied by an infinite series of τs) we
record the smallest time after the end of s (or ∞ if there is none) after which,
when observing (s,ℵ), we can be sure it must have become stable (i.e. no further
τ will be enabled if no further visible event occurs. So the Timed Failures Stability
Model FST represents a process as a set of triples (s,ℵ, t) where (s,ℵ) is one of
its timed failures and t is the unique stability time associated with this.

Just as it is easy to extract the untimed traces of a process by deleting the
times from timed traces, it is possible to extract natural values in the untimed
models F and N from a process’s representation in FST . Untimed divergences
come from timed triples (s, ∅,∞) by deleting the times in s to get untime(s).
Stable failures from triples (s,ℵ, t) with t < ∞: the latter gives the untimed
failure whose trace is untime(s) and which refuses {a | ∃ t ′.(a, t ′) ∈ ℵ ∧ t ′ ≥ t}.

In other words, anything that is refused after the time when the process must
have become stable becomes part of the untimed refusal set.

So, for any Timed CSP process, we have a way of constructing values in
each of the canonical untimed models. In each case this will refine the value you
could have calculated by mapping the syntax into untimed CSP (i.e. mapping
each WAIT t component to SKIP). This substantiates the statement that the
timed semantics is consistent with the untimed one, but the refinement might
well be strict since modelling at the timed level can give us certainty about how
nondeterminism in the untimed model will be resolved.

For example, consider ((a → P) � (WAIT 1; a → Q)) \ {a} (where WAIT 1
could be replaced by any process whose untimed semantics has just the traces
{〈〉, 〈X〉} and which always terminates on the empty trace after a non-zero time).
The untimed semantics will identify this with P \ {a} u Q \ {a} since they can-
not tell that the τ resulting from the hiding of the left-hand a will always happen
at time 0, with the a resolving the choice and excluding Q from doing anything
before it starts. So in this case we get proper refinement. While the above ap-
proach is arguably the most natural way of linking timed and untimed theories
from the perspective of the untimed theory, it misses out on two important things
from the point of view of the timed models.

– Firstly, it ignores the most natural Timed CSP model FT : divergence and
stability play no essential role in the semantics of Timed CSP as they do in
the untimed version.

– Secondly, it ignores the fact that we can easily observe permanent refusal
of a set of events X without stability: if no member of X is accepted in
the states that appear between an infinite series of τ events, necessarily
taking an infinite time, then we can reasonably equate this with untimed
(i.e. permanent) refusal.

The natural way of extracting failures from timed failures, recalling that our
version of FT permits refusals that extend over an infinite period, is to map
(s,ℵ) to (s ′,X), where X is the largest X such that there is t ≥ end(s) with
X × [t ,∞) ⊆ ℵ. We will call this function from FT to sets of failures Ψ . This
gets the FT value of STOP just right, though applying it to the same value with
µ p.WAIT 1; p in mind gives (of course) the untimed semantics of STOP which
is nothing like that in any standard untimed model of µ p.WAIT 1; p.

What we have to accept is that, for processes that untimed CSP regards
as divergent, the above mapping calculates something that is different from –
and for some purposes superior to – the results calculated directly in the un-
timed models. After all µ p.SKIP ; p (the untimed analogue of µ p.WAIT 1; p)
will, from the perspective of the external user, sit there failing to accept any
communication offered to it, just like STOP .

The range of Ψ is precisely the sets of failures that can occur in N and
smaller than the set of those that occur in F because every untimed trace s ′ of
the underlying process P has (s ′, ∅) in Ψ(P): if s is any timed trace that maps
to s ′ then certainly (s, ∅) = (s, ∅× [end(s),∞)) is in P . In other words, Ψ maps
FT to the sets of failures of divergence-free processes.

Timewise refinement, as defined by Schneider, is a relation between untimed
specifications Spec, generally expressed as divergence-free CSP processes and
certainly members of the range of Ψ , and Timed CSP processes P :

SpecSF vTF P ⇔ Spec v Ψ(P)

where v is reverse containment over sets of failures.
We will see some examples to illustrate this definition later in this paper.

3 Digitisation and discrete time

FDR, as documented in [10, 12, 1] is a model checker for untimed CSP, whose
algorithms manipulate discrete representations of discrete state machines.The
key to verifying Timed CSP on it has been the theory of digitisation, in which
the notation is re-interpreted over a discrete time domain (the natural numbers
N) and results proved to establish links between the semantics of a process over
the two domains.

This restricts attention to integer Timed CSP, where all WAIT t processes
have t ∈ N, with these the only delays introduced by a process as opposed to
its environment. In the continuous semantics of this language, events can still
happen at any time in R+, but in the discrete semantics they only happen at
members of N. Corresponding to FT there is a discrete timed failures model
FDT in which there is a single refusal set following the zero or more events that
happen at each integer time. There are a number of possible representations of
this model, but we follow [14]: the extra event tock (which allows us to count
the present time, and has no analogue in the continuous model) represents the
regular passage of time, with all events between each pair of tocks being consid-
ered to happen at the same time as the preceding tock . (Events preceding the
first tock happen at time 0.) There is a refusal set before each tock in each such
trace. Traces are infinite but contain only finitely many non-tock events.

The theory of digitisation was introduced by Henzinger, Manna and Pnueli
in [4] as a way of proving properties about continuous systems (specifically, timed
automata) by analysing discrete approximations. It was adapted for Timed CSP
by Ouaknine [6, 7] who showed that one can prove certain properties of systems
over the continuous model FT by demonstrating analogous properties of the
same process’s discrete semantics over FDT. In particular he showed that every
integer Timed CSP program has the property of being closed under digitisation,
meaning that if (s,ℵ) is in its FT representation, then so is [(s,ℵ)]ε for each
0 < ε ≤ 1: this transforms each event and end-point of a refusal token X ×[t1, t2)
to itself is an integer, and to one of the two surrounding integers otherwise:

– t1 is btc, where btc is the largest integer no greater than t .
– For ε < 1, tε = btc for if frac(t) < ε and dte otherwise, where frac(t) = t−btc

and dte is the smallest integer no less than t .

Such integer behaviours map naturally to those recorded in FDT and are
in fact members of the process’s semantics in that model. It follows that if,

whenever the continuous time semantics of a process have a timed failure (s,ℵ)
that violates some specification S , there is some ε such that [(s,ℵ)]ε also fails
it, then we can determine whether an integer Timed CSP process satisfies S by
considering only the discrete semantics.

A good example is provided by timewise refinement: if P fails to be a timewise
refinement of the untimed specification S , this can only be because Ψ(P) contains
a failure not in S , or in other words there is a timed failure of the form (s,X ×
[t ,∞)) for some s, t ≥ end(s) and X such that (untime(s),X) 6∈ S .

The digitisation property set out above implies that, in fact for any ε, [(s,X×
[t ,∞)]ε is an integer behaviour that Ψ maps to (untime(s),X). It follows that
SSF vTF P if and only the same thing holds when judged over the discrete time
semantics.

As set out in [6, 12], the discrete time semantics for Timed CSP can be
calculated by systematically translating the Timed CSP language to tock -CSP,
namely the usual CSP language with the addition of the special event tock
representing the regular passage of time4. This translation has been automated
in both FDR2 [1] and prototypes of FDR3. The essence of this that any process
syntax contained within a Timed(et){...} section is automatically translated
into the corresponding tock -CSP processes, using the event timer et, namely a
mapping from events to the integer times taken to complete them.

The maximal progress property of Timed CSP is implemented by prioritising
internal τ actions over tock . In other words, tock actions can only occur from
stable states of the standard CSP operational semantics of the tock -CSP process.

This uses the priority operator Pri≤(P) specified in [13, 12], and now imple-
mented as prioritise(P,As) in which P is a process and As a list of disjoint
sets of events. head(As) consists of the events whose priority is equivalent to τ ,
which successive sets having lower priority. The operational semantics is that if
the priority of event x is higher than that of event y , then y cannot occur from
a state where P has x available. Events not in the union of As have no place in
the priority order: they neither prevent and nor are they prevented by others.
In the “blackboard” version Pri≤(P), ≤ represents a partial order on Σ ∪ {τ}
with some restrictions on the position of τ that are discussed in [13], and which
are automatically satisfied by this machine readable version.

4 Slow abstraction

The idea of slow abstraction was introduced in [13]. SA(P) represents how P
appears to a user who can see the complement of A, on the assumption that
events in that set are controlled by a user who habitually delays them, but not
permanently. Thus the process is not prevented in making its offers outside A,
but equally it is never permanently blocked by the abstracted user.

To consider SA(P) we assume (as with lazy abstraction) that P is divergence-
free. It differs from P \ A in that as well as recording the refusals P makes when
4 In fact this translation is to an extended version of tock -CSP since some Timed CSP

operators need new untimed operators as their analogues.

it can refuse the whole of A (so P \ A is stable), we also look at the series of sets
it can refuse prior to it accepting each member of A in an infinite sequence of
these. If all of these refuse a set X , then P will obviously not accept any member
of X along the sequence.

This makes sense in the context of slow abstraction because we can suppose
that all but finitely many A events happen from stable states, the abstracted
user having waited for the divergence-free process to complete all its urgent τs
before performing the next member of A.

Because such an unstable refusal can only happen at the end of an observed
behaviour, and necessarily each finite trace of P \ A is followed either a stable
or unstable refusal in SA(P), we identify it with a set of failures which always
corresponds to the failures of a member of the failures divergence model N .

Slow abstraction was introduced and studied in [13], and in particular a
technique was introduced for deciding using FDR whether a failures specification
Spec is refined by SA(P). When an unstable failure of the latter violates Spec,
this necessarily takes an infinite number of steps, and so the only way that FDR
can detect this is as a divergence. This means that SA(P) cannot be realised
directly in the language of FDR, but rather we have to check the refinement
somewhat obliquely. We will introduce it below for the case relevant to the
present paper, namely when A = {tock} and P is the tock -CSP translation of
an integer Timed CSP implementation under the timed-priority model which
ensures that all tocks happen from stable states.

For such a process, P \ {tock} is never stable since no Timed CSP process
ever refuses tock . In fact it should not be too hard to see that S{tock}(P) consists
of exactly the failures Ψ(P) used in determining timewise refinement, so in fact
the statements Spec v S{tock}(P) and SpecSF vTF P are equivalent.

The method for deciding this is best introduced in two stages. Consider the
process

(Pri≤((P [[tock , tock ′
/tock , tock]])) \ {tock})

where ≤ prioritises every event other than the new event tock ′ over tock ; tock ′

is incomparable with all. In this, the τs created by hiding tock can only happen
from states of P in which only tock is possible. On the other hand, every state
of P is reachable thanks to tock ′. Therefore the above process can diverge if and
only if P has a state which has an infinite behaviour consisting of a mixture of
τs and tocks, the latter from states offering just tock .

This is exactly equivalent to P being a timewise refinement of the deadlock
free specification

DF =u{a → DF | a ∈ Σ \ {tock , tock ′}}

We therefore know how to solve our problem for this specific Spec.
Following [13], we can generalise this to arbitrary Spec with the combination

of the trace check Spec vT P \ {tock} and checking the combination of P and
a testing process Test(Spec) against the unstable deadlock specification above.
Test(Spec) is constructed as follows.

If S is any process such that αS ⊆ αSpec and (〈〉, Σ) 6∈ failures(S), we can
define NR(S) to be the set of those X that are subset minimal with respect to
(〈〉,X) 6∈ failures(S). NR(S) is nonempty because Σ is finite and (〈〉, Σ) 6∈ S .

If S is a process that can deadlock immediately, let NR(S) = ∅.
Choose a new event d that is outside αSpec ∪{tock , tock ′}. (Note that αP ⊆

αSpec ∪ {tock , tock ′} because we are assuming that Spec vT P \ {tock , tock ′}.)
For a set of refusals R 6= ∅, let

T (R) =�
X∈R

d → (?x : X → DS)

and T (∅) = DS , where DS = d → DS . Note that T (R) ‖
αSpec

Q , for Q a process

such that S vT Q , can deadlock if and only if, when one of the sets X ∈ R is
offered to P when it has performed 〈〉, P refuses it. This parallel composition is
therefore deadlock free if no member of R is an initial (stable) refusal of P . Now
let

Test(S) = (?x : S 0 → Test(S/〈x 〉)) � T (NR(S))

For Q such that Spec vT Q , the parallel composition Test(Spec) ‖
αSpec

Q is then

deadlock free if and only if Spec vF Q , given that we know that S vT P : the
composition can deadlock if and only if, after one of its traces s, P can refuse
a set that S does not permit. In understanding this it is crucial to note that
the ds of T (NR(S)), including the one in the initial state of Test(S), can occur
unfettered in the parallel composition because they are not synchronised with Q .
The first d that occurs fixes the present trace as the one after which Test(Spec)
checks to see that a disallowed refusal set (if any) does not appear in Q .

Our construction turns any case where Q fails Spec into a deadlock. It is
very similar to the “watchdog” transformation for the usual failures model set
out in [2]. The main difference is that ours is constructed with no τ actions: the
visible action d replaces τ .

Consider the case where Q is replaced by P . This has the additional event
tock which is not synchronised with Test(Spec), so the combination Test(Spec) ‖

αSpec

P can only deadlock in states where P \ {tock} has a stable failure illegal for
Spec. In fact this never happens for us because, as remarked above, P \ {tock}
is never stable.

We would like unstable failures of S{tock}(P) to turn into unstable “dead-
locks”, namely unstable refusals of Σ, in S{tock}(Test(Spec) ‖

αSpec
P). This is

confirmed by the following result, the proof of which is essentially the same as
that about general SA(P) in [13], when we take into account that in our case
P \ {tock} is never stable.

Theorem 1. Under our assumptions, including Spec vT P \ {tock}, S{tock}(P)
has an unstable failure that violates Spec if and only if S{tock}(Test(Spec) ‖

αSpec

P) has an unstable failure of the form (s, Σ). Furthermore S{tock}(P) wF Spec
if and only if

(Pri≤((Test(Spec) ‖
αSpec

(P [[tock , tock ′
/tock , tock]])))) \ {tock}

is divergence-free.

When combined with our earlier observation that, thanks to a digitisation
argument, proving timewise refinement of a Spec for the tock -CSP translation
P ′ of an integer Timed CSP process P also proves for P , the above result gives
us a way of deciding questions of timewise refinement on FDR.

5 Examples

The above methods have proved both effective and efficient in the examples we
have experimented with to date. A variety of CSP files is included with version
of this paper posted on the author’s web site. These include Timed CSP versions
of the Alternating Bit and Sliding Window Protocols, which are naturally shown
to give timewise refinements of the untimed buffer specification. These files use
the same versions of these protocols used in example files published with [1],
but whereas the specifications proved of the original versions were inevitably
parameterised by timing details, the new versions show how to establish untimed
correctness in a form requiring no timing details.

This has the efficiency advantage that there is no need to experiment with
different timing parameters when verifying a timed system, and in many cases
the absence of timing in the specification reduces the overall number of states
visited for a given implementation P . However the need to use divergence check-
ing places extra demands on FDR which are always likely to impose moderate
restrictions on the size and speed of the check.5

Consider the following machine-readable Timed CSP description of a token
ring:

datatype Packet = Full.(Nodes,Nodes,Data) | Empty

channel ring:Nodes.Packet
channel input,output:Nodes.Nodes.Data
succ(n) = (n+1)%N

5 At the time of writing (May 2013) the author has the choice of using FDR2 or a
prototype FDR3. In FDR2 the data structures used make relatively small (say 8M or
less checks) typically almost as fast as checks for finitary properties, but slow down
substantially beyond that. FDR3’s checking for divergence is more efficient than
FDR2’s and less limited, but presently operates essentially sequentially, whereas
traces and stable failures checking use parallelism across multi-core devices. This
situation is likely to improve, but parallel checking of divergence properties is always
likely to be more difficult and less efficient than the parallelism available for checking
finitary properties.

allone(X) = 1

Timed(allone){
Token(k,Empty) = input.k?dest?x -> Token(k,Full.(k,dest,x))

[] (WAIT(1);ring.succ(k).Empty -> NoToken(k))

Token(k,Full.(f,t,x)) = if t==k then
output.k.f.x -> ring.succ(k).Empty -> NoToken(k)
else ring.succ(k).Full.(f,t,x) -> NoToken(k)

NoToken(k) = ring.k?p -> Token(k,p)

Alpha(k) = {|ring.k,ring.succ(k),input.k,output.k|}

init(k) = if k < Tokens then Token(k,Empty) else NoToken(k)

RING = (|| k:Nodes @[Alpha(k)]init(k))\{|ring|}
}

This sets up an N-place circular ring with Tokens tokens that rotate around it,
carrying messages between the nodes. We might ask the question of whether it
acts as a buffer between each ordered pair of nodes. An untimed specification
which expresses this for fixed nodes i and j is

Buff(i,j,<>) = input.i?k?x -> if j==k then Buff(i,j,<x>)
else Buff(i,j,<>)

Buff(i,j,xs^<x>) = output.j.i.x -> Buff(i,j,xs)
[] if #xs == Tokens-1 then STOP
else (STOP |~|

input.i?k?y -> if j==k then Buff(i,j,<y>^xs^<x>)
else Buff(i,j,xs^x>))

This has as its alphabet all inputs at node i and the outputs at j that come
from i.

The right way to judge our ring against this is to hide all other outputs
and lazily abstract all other inputs. This corresponds to the assumption that
users accept all outputs from the ring eagerly, and can arbitrarily decide what
messages other than those considered by the specification.

The main complication in checking timewise refinement they way we are
advocating is the need to need to transform the untimed specification into the
corresponding testing process. In our case this is

Test(i,j,<>) = [] x:Data @ d -> input.i.j.x -> DS
[] (|~| k:Nodes, x:Data @ if k==j then

input.i.j.x -> Test(i,j,<x>)
else input.i.k.x -> Test(i,j,<>))

Test(i,j,xs^<y>) = d -> output.j.i.y -> DS
[] output.j.i.y -> Test(i,j,xs)
[] #xs < Tokens-1 & (|~| k:Nodes @ if k==j then

input.i.j?x -> Test(i,j,<x>^xs^<y>)
else input.i.k?x -> Test(i,j,xs^<y>))

Fortunately this process is automatable and could be implemented as prim-
itive in a future version of FDR.

The ring fails this specification because the other nodes might repeatedly fill
every token (in the lazy abstraction) before it reaches node i. In other words
it fails the aspect of the failures specification that the ring, when there is no
message in transport from i to j, it must eventually accept an input at i. The
error shows up as a divergence in FDR, whose debugger decomposes this into the
Test process constantly offering node i an input, and each of a cycle of states
of the token ring refusing that input.

This can be repaired by adjusting the tokens that pass around so that upon
being emptied they do not immediately gain the ability to transport another
message. Rather, successive tokens gain this ability when they reach one of the
nodes, where the node with this property rotates. Thus no node can indefinitely
be denied the ability to accept a message from its user.

The versions of the ring with and without this added control can be found
amongst the files available with this paper. The version with does satisfy the
requirement under timewise refinement.

The modified ring, in common with the original one set out above, only makes
input offers to each user for a single unit of time each time an empty token passes.
This illustrates the fact that satisfying a specification formulated in terms of
timewise refinement does not imply that offers the specification requires must
be made permanently beyond some point; rather that they must be made at an
infinite number of times beyond some point. The implementation is allowed to
make progress (in our case via the tokens circulating) and changing the set of
events offered.

6 Conclusions

We have given a practical and theoretically sound way of checking timewise
refinement in FDR. It proved to be straightforward to link the usual relation be-
tween specifications and continuous Timed CSP, to a tractable relation between
the same specification and the tock -CSP process corresponding to the continuous
one.

Testing this requires both a renaming and hiding trick which converts illegal
unstable failures into divergences, and the conversion of the specification into a
suitable watchdog process.

We have demonstrated that this approach works for a range of examples, and
hope that others find it useful. To enable this it would be helpful if functionality
were added to FDR to create a Test(Spec) process automatically from each Spec.

Acknowledgements

This work was inspired by my collaboration with Philippa Hopcroft of Verum
as reported in [13]. Verum funded the implementation of priority in FDR

References

1. P. Armstrong, G. Lowe, J. Ouaknine, and A.W. Roscoe, Model checking Timed
CSP, To appear in Proceedings of HOWARD, Easychair.

2. M.H. Goldsmith, N. Moffat, A.W. Roscoe, T. Whitworth and M.I. Zakiuddin,
Watchdog transformations for property-oriented model-checking, FME 2003: For-
mal Methods, LNCS 2805, 2003.

3. C.L. Heitmeyer, B.G. Labaw and R.D. Jeffords, A benchmark for comparing dif-
ferent approaches for specifying and verifying real-time systems, DTIC, 1993.

4. T.A. Henzinger, Z. Manna, and A. Pnueli, What good are digital clocks? In Pro-
ceedings of the Nineteenth International Colloquium on Automata, Languages, and
Programming (ICALP 92), volume 623, pages 545-558. Springer LNCS, 1992.

5. C.A.R. Hoare, Communicating sequential processes, Prentice Hall, 1985.
6. J. Ouaknine, Discrete analysis of continuous behaviour in real-time concurrent

systems, Oxford University D.Phil thesis, 2001.
7. J. Ouaknine, Digitisation and full abstraction for dense-time model checking,

TACAS Springer LNCS, 2002.
8. G.M. Reed and A.W. Roscoe, A timed model for communicating sequential pro-

cesses, Theoretical Computer Science 58, 249-261, 1988.
9. G.M. Reed and A.W. Roscoe, The timed failures-stability model for CSP, Theo-

retical Computer Science 211, 85-127, 1999.
10. A.W. Roscoe, Model checking CSP, in ‘A classical mind: essays in honour of C.A.R.

Hoare’, Prentice Hall, 1994.
11. A.W. Roscoe, The theory and practice of concurrency Prentice Hall, 1997.
12. A.W. Roscoe, Understanding concurrent systems, Springer, 2010.
13. A.W. Roscoe and P.J. Hopcroft, Slow abstraction through priority, To appear in

Festschrift proceedings for He Jifeng, ICTAC 2013.
14. A.W. Roscoe, and Huang Jian Checking noninterference in Timed CSP, FAC, 25,

pp 1-33, 2013.
15. S.A. Schneider, Timewise refinement for communicating processes, Science of Com-

puter Programming, 28, pp 43–90, 1997.
16. S.A. Schneider, Concurrent and real-time systems: the CSP approach, Wiley, 2000.

