
Maximum Entropy Modelling
sgp@clg.ox.ac.uk

Some preliminaries: the ‘expectation’ for a (discrete random) vari-
able X, written E(X), is the sum of each possible value for X,
weighted by the probability of that value occurring:

E(X) =
∑

x x ∗ P (X = x)

The textbook example is the expectation for a dice: each of
the possible values 1-6 for X is equally likely, i.e. P (X = 2) =
1/6, P (X = 6) = 1/6, etc. So the expectation for X is:

1 ∗ P (X = 1) + 2 ∗ P (X = 2) + ... + 6 ∗ P (X = 6)
1/6 + 2/6 + 3/6 + 4/6 + 5/6 + 6/6 = 21/6 = 3.5

You can think of expectation as a kind of average expected value.

1

Entropy
Remember some things about logarithms:

loga x = y ↔ x = ay

loga xy = loga x + loga y; loga
x
y
= loga x− loga y

loga 1 = 0 so loga
1
x
= −loga x

If there are N events all equally probable, then the number of bits
needed to decide which one you have is log2

1
N

= −log2N .

The 1
N

comes from the probability of each event.

The log is because if there are N events then you need a series of
binary (yes/no) choices to recognise each member. E.g. if there
are two objects you need one choice. If there are 3 or 4 you need
at most two choices, 5-8 at most three choices, etc. The number
of choices for N will be the number of times you need to multiply
2 by itself to get N, or alternatively, the number of times you have
to divide N (in the worst case) into two sets of objects until you
get a set containing just the one you want. So remembering the
definition of a log the number of choices you need is log2N .

2

Now if we have a random variable X, which can take any number
x1...xn of values, possibly with differing probabilities, we can define
the entropy of X, usually written H(X), as:

H(X) = −
n∑

i=1

p(xi) log2 p(xi)

The term log2 p(xi) is motivated by the same reasoning as above -
the number of bits you need to select that event - except that since
there are values of X with different probabilities we won’t uniformly
have 1

|X| but a different fraction for each value, its probability.

We also have to weight the number of binary choices by the same
probability (because we want more highly probable values to need
fewer choices) which gives us the first p(xi). The sum

∑
is there

so we take into account each value x of X. The minus sign is there
so that we end up with a positive number (because the log of a
probability between 0 and 1 will be a negative number).

3

Conditional Entropy
You can think of the entropy of some probability distribution as a
measure of how predictable it is. High entropy = low predictability.

Sometimes we need to deal with conditional entropy: i.e. the
entropy of Y given that X is known:

H(Y | X) =
∑

x∈X p(x)H(Y | X = x)

H(Y | X) = −
∑

x∈X p(x)
∑

y∈Y p(y | x)log p(y | x)

H(Y | X) = −
∑

x∈X,y∈Y p(x)p(y | x)log p(y | x)

4

An example
We have some events: the, cat, sat, on, the, mat. Assume these
words are all equally likely, although this will not be true in prac-
tice. We will have a variable X which can take two values, 1 if a
word contains a ‘t’ and 0 otherwise. Clearly P(X=1) = 5/6, and
P(X=0)=1/6 Now the expectation of X, E(X), with respect to
our event space is:

E(X) =
∑

x

x ∗ P (X = x)

= 0*1/6 + 1*5/6 = 5/6.

The entropy of this distribution is:

H(X) = −
n∑

i=1

p(xi) log2 p(xi)

H(X) = −((1/6∗log21/6)+(5/6∗log25/6)) = −(−0.43+−0.22) = 0.65

5

Now take X to have values 1 if a word contains an ‘e’, 2 if a word
contains an ‘a’, and 3 otherwise (note that these are mutually
exclusive events). Now the probabilities and expectation will be:

P (X = 1) = 2/6, P (X = 2) = 3/6, P (X = 3) = 1/6,

E(X) = 1 ∗ 2/6 + 2 ∗ 3/6 + 3 ∗ 1/6 = 11/6 = 1.83,

and the entropy will be:

H(X) = −((2/6 ∗ log22/6) + (3/6 ∗ log23/6) + (1/6 ∗ log21/6)

= -(-0.52 + -0.5 + -0.43) = 1.45

6

Naive Bayes Classifiers
Now consider if we have some event space, and features like those
above, and we wish to build a classifier which given new events will
assign them to the appropriate class. In the so-called ‘naive bayes’
approach, to do this we choose a set of features that we suspect
are good indicators of the presence of the category. We want to
calculate, for each category, its conditional probability given the
features present. By Bayes’ Theorem:

P (Cat | Feat1, ..., F eatn) =
P (Feat1...F eatn | Cat) ∗ P (Cat)

P (Feat1...F eatn)

Since the features are the same for each different category given
a particular event, the denominator is constant and we can ignore
it. Now the numerator is equivalent to the joint probability of the
category and the features:

P (F1, . . . , Fn, C)

By the chain rule, this is equivalent to:

P (F1 | F2, . . . , Fn, C) ∗ P (F2 | F3, . . . , Fn, C) . . . P (Fn | C) ∗ P (C)

7

Now if we assume that every feature is independent of every other
feature (the ‘naive’ part), this will be equivalent to:

P (F1 | C) ∗ P (F2 | C) . . . P (Fn | C) ∗ P (C)

We can now estimate P(C) for each C by counting the relative
frequency of C in the training corpus, and estimate P (F | C) as
|F,C|
|C| , making sure that we smooth appropriately to avoid having

zero probabilities.

Given a new event with a set of N features, we want to find the
most likely category with respect to those features, i.e.

MaxCat[P (Cat)
n∏

i=1

P (Feati | Cat)]

8

Non-independent features
Usually the assumption that the features are independent of each
other are safe. But sometimes it isn’t: one case that arises fre-
quently in practice is where features are automatically generated.

An example might be a classifier for guessing the part of speech of
unknown words. Features like ‘begins with uppercase’ etc. usually
combined with information about prefixes and suffixes: pre-, -ing,
etc. Typically these (for English) would be of length 1-4:

1 -s, a-, 2 un-, -ed, 3 pre-, -ing, 4 anti-, -ment, etc.

These are generated automatically and so in training we will get
features like -ing, -ng, and -g. But these are not completely inde-
pendent: any word that has suffix -ing will also have -ng and -g.
This can lead to incorrect classifications

9

Maximum Entropy
* need to combine information from different sources, possibly
with complex overlapping dependencies.

* produce an overall probability distribution which reflects train-
ing data, but which makes no further assumptions about inter-
dependencies.

* therefore we must find the distribution which has maximum
entropy with respect to the training sample.

If A is the set of possible classes/labels, and B the set of possible
features, then we want to find the conditional distribution p that
gives the largest value for:

H(A | B) = −
∑

a∈A,b∈B

p(b)p(a | b) log p(a | b)

Note that this requires us to look at every combination of features
and classes: for some values of b we can make estimates of p(b)
from the training data, but for others we cannot. We want the
final distribution to be consistent with the observed estimates, and
to be ‘evenly spread’ where we have no evidence.

10

Feature representation
In the ME framework we usually represent features as ‘indicator
functions’: functions from events to {0,1}.

f1 = if word ends in t and is N then 1, else 0.
f2 = if word ends in t and is V then 1, else 0.
...
f2 = if word is preceded by ‘the’ and is V then 1, else 0.
etc.

Now the requirement that the final distribution is consistent with
the observed evidence can be stated in terms of the expectation
of a feature: Epfj = Ep̃fj , where Epfj is the expectation of the

feature in the distribution or model we are computing, and Ep̃fj

is the expectation we observed in the training set. We require our
conditional distribution to be consistent with these constraints,
and to maximise:

H(A | B) = −
∑

a∈A,b∈B p̃(b)p(a | b) log p(a | b)

- where p̃(b) is the empirical probability from the training set (we
can’t estimate from things we haven’t seen).

11

Max Ent distribution
So of all the distributions that satisfy Epfj = Ep̃fj for every feature
j, we want the one that maximises the entropy. It can be shown
(I won’t: see Berger ref) that there is a unique distribution, call it
p∗, that satisfies these constraints, and it is of the form:

p∗(a | b) = 1
Z(b)

∏k
j=1 α

fj(a,b)
j

k is the number of features, and Z(b) is a normalising factor to
make sure that we get a genuine probability distribution, i.e.

Z(b) =
∑

a

∏k
j=1 α

fj(a,b)
j

The αj are weighting factors, and there is one for each feature. In
probspeak, they are the ‘parameters’ for the ‘model’ p(a | b).

12

What does this formula mean?
Our features all have 0 or 1 as their value. So this means that
if some feature j does not apply to x, its value will be 0. In this

case the value of α
fj(a,b)
j will be 1, since anything to the power of

0 is 1. If the value of the feature is 1, then the value of α
fj(a,b)
j

will just be the value of αj, again because any quantity q to the

power of 1 is just q. So the expression
∏k

j=1 α
fj(a,b)
j will just be

the product of the weights of the features that apply to (a,b).

Since the weights themselves are only indirectly related to our
initial probability estimates (they derive from the ‘iterative scaling’
method described later) we must make sure that the value we
get can be interpreted as a probability distribution, and so we
scale it with the normalising factor Z(b). Z(b) is just the sum

of the values of the expression
∏k

j=1 α
fj(a,b)
j for all values of a:

Z =
∑

a

∏k
j=1 α

fj(a,b)
j

13

Log linear models
ME models are often called ‘log linear’ models. Looking back again
at the definition of logarithms, we can see that this is because when
we take the logarithm of both sides of the equation defining p*
we get:

log p∗(x) = −log Z +
∑k

i=1 fi(x)log αi

Again the fact that the values of fi will be 0 or 1 means that only
those features that apply will get counted, and log p∗(x) will be
a linear combination∗ of the logs of the weights (and the scaling
factor). As usual with anything to do with probabilities, implemen-
tations use logarithms rather than the original numbers to avoid
computational floating point limitations.

∗Linear combination? A linear combination is a sum of the ele-
ments from some set with constant coefficients placed in front
of each. E.g. 2x + 3y + z is a linear combination of x, y, z.

14

Exponential form
There is an alternative formulation of a max ent distribution which
is often used:

p(a | b) = e

∑
i
λifi(a,b)

Z(b)

Original: p(a | b) =

∏
i
α

fi(a,b)

i

Z(b)

p(a | b) = e
log(

∏
i
α

fi(x)

i
)

Z(b)
because elogf = f

p(a | b) = e

∑
i
log(α

fi(a,b)

i
)

Z(b)

p(a | b) = e

∑
i
fi(a,b)log(αi)

Z(b)
since log xk = k.logx

p(a | b) = e

∑
i
λifi(a,b)

Z(b)

where λi = log(αi)

15

Generalised Iterative Scaling
How do we determine the right values for the weights, αj? The
original GIS algorithm requires that the sum of the feature val-
ues for each possible event x (=(a,b)) should be equal to some
constant C:

∀x.
∑k

i=1 fi(x) = C

Define C to be the biggest possible value for
∑k

i=1 fi(x). Then
define a new ‘correction’ feature, fk+1 such that:

∀x. fk+1(x) = C −
∑k

i=1 fi(x)

Although we need C, it turns out that we do not need the correc-
tion feature (which would be the only feature with a value other
than 0 or 1).

1. There is a version of the algorithm called Improved Iterative
Scaling which does not need the correction feature (Della Pietra
ref)

2. Curran and Clark (see ref) gave a proof that even Generalised
Iterative Scaling does not need the feature: the scaling proce-
dure will still converge, and the resulting model is not significantly
different to one computed with the feature.

16

Iterative scaling: Initialisation
The training set will be a set of samples of the form:

{〈ClassLabel1,Context1〉...〈ClassLabelN ,ContextN〉}.
Several different features might apply to the Context: the Class-
Label will be something like ‘N’, or ‘V’, depending on the task.

First compute the empirical expectation of each feature from
the training set. Remembering the definition of expectation

this will be: EP̃fi =
∑

x P̃ (x)fi(x) where P̃ is the empirical

probability. In this case, the expression will be equivalent to:

EP̃fi = 1
N

∑N
j=1 fi(xj) where N is the size of the training sam-

ple, because of the fact that the ME features return either 0 or
1. So this is the average number of times a feature fires in the
training data.

Now calculate C = maxxj

∑k
i=1 fi(xj) , i.e. C is the largest number

of features that fire for some member of the training set.

Then set initial values for each α0
i as some number, say 1. (0 if

you are doing the log version.)

17

Main Loop
Repeat until convergence:

α
(n+1)
i = αn

i (
EP̃ fi
EPnfi

)
1
C

or the log version:

α
(n+1)
i = αn

i + 1
C log

EP̃ fi
EPnfi

‘Convergence’ here can be interpreted to mean either ‘after some
fixed number of iterations’ or ‘when the change in successive values
falls below some threshold’.

We saw the formula for the empirical expectation on the previous
slide. The tricky thing is the computation of the model expecta-

tion: En
Pfi =

∑
x P n(x)fi(x) , where P n(x) = 1

Z

∏k
j=1(α

n)fj(x) .

18

Approximating the model expectation

Unlike the empirical expectation, the model expectation requires a
summation over the probabilities for all possible feature-class pairs,
but we only have estimates for those we have seen. We have to
approximate, and for this we look at the empirical probabilities of
the features (in the usual sense) and the conditional probability of
the class label given the other features from the current iteration.

Enfi ≈
N∑

j=1

P̃ (bj)
∑

a

P n(a | bj)fi(a, bj)

What does this formula say?
∑N

j=1 P̃ (bj) sums over the empirical

probability of each feature, i.e. the relative frequency of that
feature in the training data, multiplied by the sum, for each class

label a, of the value of the term P n(a | bj)fi(a, bj) . P n(a | bj) is

the conditional probability of the class label a given feature b and
is computed in the same way as P ∗ given earlier.

19

So each time round the loop we change the weights a little.

Note that only the items in the training sample for which the fea-
ture is ‘active’, i.e. gives value 1, will contribute to the summation.
The complexity of each iteration is therefore going to be no worse
than:

|training data| * |class-labels| * |avge-active-features|

but of course, for a problem with a large training set, a large num-
ber of labels (e.g. POS tagging) and a large number of features
this may still be quite slow. In general some 100s of iterations
may be needed.

Maximum Entropy modelling is one of the most widely used tech-
niques in Computational Linguistics. It has been used to build POS
taggers, chunkers, and parsers, and is also used as a classifier for
disambiguation (distinguishing good from bad parses), document
classification, and many other tasks. An extremely good introduc-
tion to the technique and some applications of it can be found in
Ratnaparkhi’s PhD thesis, to be found at:

http://www.inf.ed.ac.uk/resources/nlp/local doc/mxpost thesis.
pdf

20

References

A maximum entropy approach to natural language processing
Adam Berger, Stephen Della Pietra, and Vincent Della Pietra
Computational Linguistics, (22-1), March 1996;

S. Della Pietra, V. Della Pietra, and J. Lafferty. Inducing fea-
tures of random fields. IEEE Transactions on pattern analysis and
machine intelligence, 19(4), 380-393, April, 1997

James R. Curran and Stephen Clark, 2003, Investigating GIS and
Smoothing for Maximum Entropy Taggers, EACL, pp91-98,
http://acl.ldc.upenn.edu/E/E03/E03-1071.pdf.

A. Ratnaparkhi 1996 A maximum entropy model for POS tagging,
ACL proceedings,
http://acl.ldc.upenn.edu/W/W96/W96-0213.pdf

C. Manning and F Schütze: Foundations of Statistical NLP, Sec-
tion 16.2, NB the version in the book is buggy. The corrected
version is at:
http://nlp.stanford.edu/fsnlp/class/fsnlp-new-maxent.pdf

Raymond Lau’s thesis motivates the model expectation approxi-
mation: http://www.raylau.com/SMThesis.pdf

21

Class Exercise
to be handed in to Comlab reception
by Friday of week 5

Read the section (16.2) on Maximum Entropy Modelling in Man-
ning and Schütze’s Foundations of Statistical Natural Language
Processing. Note that there is an amended version of this available
at:

http://nlp.stanford.edu/fsnlp/class/fsnlp-new-maxent.pdf

Look at their small document classification example and try to do
as many of the associated exercises 16.7 - 16.10 as you have time
for.

