
Department of Computer Science

CS-RR-13-07

Department of Computer Science, University of Oxford
Wolfson Building, Parks Road, Oxford, OX1 3QD

Coalition Structure Generation
with the Graphic Processor Unit

Krzysztof Pawłowski*, Karol Kurach*,
Tomasz Michalak, Talal Rahwan

* Both Krzysztof Pawłowski and Karol Kurach are the main authors of this paper.

Coalition Structure Generation with the Graphic Processor
Unit

Krzysztof Pawłowski1∗, Karol Kurach1∗, Tomasz Michalak2,1, Talal Rahwan3

1 Institute of Informatics, University of Warsaw, Poland
2 Department of Computer Science, University of Oxford, UK

3 School of Electronics and Computer Science, University of Southampton, UK
∗ Both Krzysztof Pawłowski and Karol Kurach are the main authors of this paper.

Abstract

Coalition Structure Generation—the problem of finding the optimal set of coalitions—
has received considerable attention in recent AI literature. The fastest exact algorithm
to solve this problem is IDP-IP∗, due to Rahwan et al. (2012). This algorithm is a hy-
brid of two previous algorithms, namely IDP and IP. As such, it is desirable to speed
up IDP as this will, in turn, improve upon the state-of-the-art. In this paper, we present
IDPG—the first coalition structure generation algorithm based on the Graphics Pro-
cessing Unit (GPU). This follows a promising, new algorithm design paradigm that
can provide significant speed ups. We show that IDPG is faster than IDP by two orders
of magnitude.

1. Introduction

Coalitional games have been studied in various areas of artificial intelligence and multi-
agent systems [3, 11, 16]. By cooperating, agents are often able to enhance their perfor-
mance and achieve tasks otherwise unachievable. It is applicable both in cases where
agents are cooperative (i.e., they maximize the social welfare) as well as cases where
they are selfish (i.e., each agent maximizes its own reward, regardless of the conse-
quences on others). Coalition formation techniques can be used, for example, to im-
prove the surveillance of an area using autonomous sensors [7], or reduce the un-
certainty that green-energy generators have about their own production [4], or allow
buyers to obtain cheaper prices through bulk purchasing [8].

In general, the effectiveness of a coalition can be influenced by other co-existing
coalitions. Such settings are known as partition function games [9]. On the other hand,
in characteristic function games (CFGs), a coalition’s effectiveness depends solely on
the identities of its members. This assumption simplifies the research questions signif-
icantly, and holds in many realistic settings [4, 7, 21, 19]. Thus, as common practice in
the literature, we focus in this paper on characteristic function games (CFGs).

Generally speaking, there are settings where merging any two coalitions is always
beneficial. In such settings, all the agents should work together in one big coalition.
There are other settings, however, where there are coordination and/or communication

1

costs that often increase with the size of the coalition. In such settings, the agents
may find it more profitable to partition themselves into multiple, disjoint coalitions.
Such a partition is called a coalition structure, and the problem of identifying the best
such partition is known as the coalition structure generation problem. Many algorithms
have recently been developed to solve this problem, some of which use the classical
representation of CFGs, e.g., [10, 17, 13], while others are tailored for certain classes
or alternative representations of CFGs, e.g., [3, 22, 16, 2, 23]. We focus on the former
type of algorithms and, in particular, those that are exact. In this context, the state-of-
the-art algorithm is IDP-IP∗, due to Rahwan et al. (2012). As the name suggests, this
algorithm is a hybrid of two previous algorithms, namely IDP [14] and IP [15]. While
IP, given n agents, runs in O(nn) time, combining it with IDP reduces the complexity
to O(3n). Furthermore, the hybrid has been tested against several problem instances,
and has been shown to be faster, in practice, than both its constituent parts. Based on
all the above, any improvements to IDP will naturally result in improvements to the
state-of-the-art.

Against this background, in this paper we set to develop a faster version of IDP
following a promising, new algorithm design paradigm that builds upon Graphics Pro-
cessing Units (GPUs). In more detail, a GPU is a piece of hardware (consisting of
multiple computational entities, or “cores”, just like a standard CPU) designed mainly
for rendering 3D computer graphics. It differs from a standard CPU, though, in that
the number of “cores” is larger, while the speed per core is lower. Importantly, how-
ever, the total computational power on a GPU (when talking all cores into consider-
ation) is more than that of a CPU. This, people have realised, meant that almost any
algorithm can run faster on a GPU than a CPU, provided that this algorithm can be
efficiently parallelised. Such capabilities gave rise to a new line of research known as
GPGPU (General Purpose Computing on the GPU), which studies the science of over-
coming the challenges imposed by the transition from traditional CPUs to GPUs. To
date, this remains a green field, with many areas yet to be explored, and many widely-
used algorithms waiting to be redesigned for GPUs. This line of research spreads over
different fields such as artificial intelligence [5, 12], computational biology [6], linear
algebra [20], signal processing [25], among others. Speedups of one or even two orders
of magnitude are widely reported. Another appealing feature for using GPUs is that its
advantage (in terms of total computationl power) over CPUs has been growing in recent
years [1]. While high-performance alternatives to GPU exist, such as super-computing
clusters and field-programmable gate arrays (FPGAs), these are much more expensive
at similar performance levels compared to GPUs.

We bring to the attention of the Computational Coalition Formation community
some of the desiderata that can significantly enhance the performance when developing
GPU algorithms:1

• Minimize the number of synchronization points, i.e., the points in the algo-
rithm to which all cores must arrive before the algorithm can proceed. The prob-

1We will be using some standard terms commonly use in research on GPU, and in the documentations of
NVIDIA—the world’s leading GPU developer: http://docs.nvidia.com

2

lem with synchronization points is that they cause delays. This happens when
some cores arrive to a synchronization point before others, which means they
have to remain idle while waiting for the others. This is inevitable in practice
even when the cores have identical computational power, especially if the num-
ber of cores is in the hundreds as is the case with GPU (since one core can cause
all others to wait).

• Minimize the number of “global memory” accesses. In a nutshell, a GPU
contains a centralised global memory that can be shared by different threads. It
is by far the largest on a GPU, meaning it is the only option when storing large
amounts of data (e.g., the characteristic function table with 2n values). However,
global memory is slow. Thus, when designing GPU algorithms, one should try
and keep global memory accesses to a minimum.

• Maximize the number of threads that are scheduled at the same time. In other
words, when breaking the optimization problem into smaller subproblems that
are each solved by a separate thread, one might consider it optimal to have as
many threads as there are cores on the GPU. However, this will result in an
inefficiency due to memory latency. In particular, whenever a thread needs to
access global memory, the core that is executing it would remain idle. This is
precisely why it is more efficient to have as many threads on a single core as
possible; it allows the core to switch to a thread while another is waiting to be
granted memory access. This optimization is known as latency hiding.

• Minimize the number of instruction per “branch”. This is due to the way
GPUs operate. Basically, cores on a GPU are divided into groups; one group
on every “streaming multiprocessor”. Whenever cores in the same groups hap-
pen to be executing the same line of code simultaneously, the GPU can take
advantage of this and speed up the execution.2 Based on this, when designing
GPU-based algorithms, one should try and have as few instructions as possi-
ble in “branches”, which in the GPU context mean blocks of code, execution
of which depends on conditional instruction such as the “if” instruction. This
optimization is known as reducing warp divergence.

Against this background, our contributions in this paper can be summarised as follows:

• We develop IDPG—the reformulation of IDP for GPUs. This is the first GPU-
based algorithm for coalition structure generation.

• We prove that the number of synchronization points in IDPG is optimal, i.e., it
is not possible to parallelize IDP with a fewer number of points. We then prove
a certain property of IDP, and exploit it when reducing global memory access in
IDPG.

2This is due to hardware specifications of GPUs, which are beyond the scope of this paper. More can be
found in NVIDIA’s “CUDA C Best Practice Guide”, http://docs.nvidia.com

3

• We evaluate our algorithm experimentally, and show that it outperforms IDP by
two orders of magnitude.

The remainder of the paper is organized as follows. Section 2 provides the neces-
sary background. Section 3 presents IDPG. Section 4 presents empirical evaluations.
Finally, Section 5 concludes the paper and outlines future directions.

2. Background

In this section we formally state the coalition structure generation problem, and
then describe IDP since we will build on it later on in the paper.

Let A = {a1, . . . , an} denote the set of n agents. We focus on characteristic func-
tion games, where the efficiency of any coalition, C ⊆ A, is represented by a numer-
ical value, known as the value of C, and denoted by v(C). Formally, v : 2A → R.
Now, let ΠA be the set of possible coalition structures (i.e., partitions over A) and,
for any coalition structure CS , let V (CS) denote the value of CS , where: V (CS) =∑

C∈CS v(C). Furthermore, let CS∗ denote an optimal coalition structure. That is,
CS∗ ∈ arg maxCS∈ΠA V (CS). The coalition structure generation problem is then the
problem of finding CS∗.

Now, we turn our attention to IDP. To help the reader understand how it works,
we need to first explain a preliminary version, called DP [24]. To this end, we will
refer to any set of disjoint coalitions as a “partition”, denoted P . Only when such a
partition contains all agent will we ever use the term “coalition structure”. Now, for
any coalition C ⊆ A, let ΠC be the set of possible partitions of C, where a partition
P = {P1, · · · , P|P |} ∈ ΠC is a set of disjoint coalitions of which the union equals C.
In the same way that we defined the value of a coalition structure, we now define the
value of a partition. Formally, let V (P) be the value of partition P , where V (P) =∑

Pi∈P v(Pi). Now, let f(C) be the value of the optimal partition of C, i.e., f(C) =
maxP∈ΠC V (P). Then, DP is based on the following recursive formula:

f(C)=

v(C) if |C| = 1

max
{
v(C) , max{C′,C′′}∈ΠC

(
f(C ′) + f(C ′′)

)}
otherwise

In other words, for any coalition C, if we know the optimal partition of every strict
subset of C, then we can easily (relatively speaking) find an optimal partition of C:
Instead of examining all partitions in PC , it suffices to examine only those containing
exactly two coalitions (i.e., examine every {C ′, C ′′} ∈ ΠC as in the equation above)
and then find the one that maximises V (C ′) + V (C ′′), denoted {C∗, C∗∗}. Once we
have identified {C∗, C∗∗}, the optimal partition of C can be found straight away; it is
the union of the optimal partitions of C∗ and C∗∗, unless v(C) > f(C∗) + f(C∗∗), in
which case it is {C}.

Based on the above idea, DP iterates over all the coalitions of size 1, and then over
all those of size 2, and then size 3, and so on until size n. For every such coalition
C, it computes f(C) using the above equation. So, to summarise, let us call every

4

partition containing exactly two coalitions a “split”. Then, DP works by evaluating
every possible split of every possible coalition, starting with the coalitions of size 2,
then moving to those of size 3, and so on until n.

Moving back to IDP, Rahwan and Jennings (2008b) showed that certain splits can
safely be skipped without losing the guarantee of finding an optimal coalition structure.
In particular, they showed that it is sufficient to evaluate the splits that involve splitting
some coalition of size c into two coalitions of sizes c′ and c′′, where (c′, c′′) is in:

dep(c) =
{

(c′, c′′) ∈ N2 : (c′ ≥ c′′) ∨ (c′ + c′′ = n) ∨ (c′ ≤ n − c′ − c′′)
}

Based on this, for any given coalition C such that |C| = c, IDP only evaluates the
splits in ΠC that involve splitting C into two coalitions of sizes c′ and c′, where
(c′, c′′) ∈ dep(c). We chose the notation dep as it indicates the dependencies be-
tween different coalition sizes. Rahwan and Jennings proved that dep(c) = ∅ for all
c ∈

[⌊
2n
3

⌋
+ 1, n− 1

]
. However, the link between the value of c and the elements in

dep(c) was not formalised for cases where c ≤
⌊

2n
3

⌋
.

3. IDPG

In this section, we present IDPG—a parallelised version of IDP, designed to meet
the desiderata outlined in the introduction. To simplify notation, we will denote by
c, c′, c′′ the cardinalities (i.e., sizes) of coalitions C,C ′, C ′′, respectively. Furthermore,
the problem of evaluating every {C ′, C ′′} ∈ ΠC : (c′, c′′) ∈ dep(c) for a given C will
be called the “subproblem of C”, or simply a “subproblem” when there is no risk of
confusion.

The section is divided as follows.

• Section 3.1 focuses on minimizing the number of synchronization points. In par-
ticular, we show how IDP’s operations can be paralellized with dn/2e − 1 syn-
chronization points. We then prove the correctness of the proposed synchroniza-
tion scheme, and prove it is optimal, that is, it is not possible to parallelize the
operation of IDP with a number of synchronization points lower than dn/2e− 1.

• Section 3.2 presents focuses on the other desired properties that we set earlier in
the introduction, and presents the relevant pseudo codes.

3.1. Handling Synchronization Points

In order to parallelise IDP, we need to analyze the dependencies between the dif-
ferent subproblems. Here, our aim is to group the subproblems into “stages” that are
solved sequentially (i.e., all subproblems in stage 1 are solved first, then all of those
in stage 2, then stage 3 and so on). We aim to do this in such a way that guarantees
every subproblem is solved before any of its dependents (i.e., every subproblem de-
pends solely on subproblems belonging to earlier stages). This way, the dependencies

5

between subproblems are reduced to dependencies between stages. With this, subprob-
lems within the same stage can be computed in parallel without any need for synchro-
nization. To be more precise, synchronization would be needed between stages, but not
within a stage.

To this end, observe that the definition of dep(c) implies the following :

(c′, c′′) ∈ dep(c) iff

1 ≤ c′ ≤ n− 1 and
c′ + c′′ = c and
c ≤

⌊
2n
3

⌋
or c = n and⌈

c
2

⌉
≤ c′ ≤ n− c or c = n

(1)

Based on this, we will show how to group subproblems into stages so as to minimize
the number of synchronization points. Specifically, in our algorithm, determining the
stage of a given subproblem depends solely on the size of the coalition whose splits are
evaluated in that subproblem. More formally, the subproblem of coalition C : |C| = c
is assigned to stage l(c), which is computed as follows:

l(c) =

c− 1 if 1 ≤ c ≤

⌊
n+1

2

⌋
n− c if

⌈
n
2

⌉
+ 1 ≤ c ≤

⌊
2n
3

⌋
0 if

⌈
2n+1

3

⌉
≤ c ≤ n− 1⌈

n
2

⌉
if c = n

(2)

To prove that the above assignment of subproblems to stages is correct, we need
to prove that, whenever a subproblem depends on another, the former will always be
assigned to an earlier stage compared to the latter. In order to do so, it is sufficient to
prove the following theorem:

Theorem 1. For any c = 1, . . . , n, and for any (c′, c′′) ∈ dep(c), the following holds:(
l(c′) < l(c)

)
and

(
l(c′′) < l(c)

)
(3)

Proof. Since (c′, c′′) is in dep(c), then from (1) ...x
We will prove that (3) holds for each

Case 1: c = n.

From l definition (Equation 2):

l(c) =
⌈n

2

⌉
But

∀s6=nl(s) <
⌈n

2

⌉
And

c′ < c and c′′ < c

6

Thus
l(c′) < l(c) and l(c′′) < l(c)

�

Case 2: c ≤
⌊

2n
3

⌋
and c ≤

⌊
n+1

2

⌋
.

From l definition (Equation 2) we have:

l(c) = c− 1

And since c′, c′′ < c ≤ n+1
2 also:

l(c′) = c′ − 1 and l(c′′) = c′′ − 1

Thus:
l(c′) < l(c) and l(c′′) < l(c)

�

Case 3 (c′): c ≤
⌊

2n
3

⌋
and

⌈
n
2

⌉
+ 1 ≤ c ≤

⌊
2n
3

⌋
.

From the definition of l (Equation 2) we have:

l(c) = n− c

From c′ ≤ n− c (Equation 1) and
⌈
n
2

⌉
+ 1 ≤ c (case):

c′ ≤
⌊n

2

⌋
− 1 =

⌈
n− 2

2

⌉
≤
⌊
n + 1

2

⌋
Thus from the definition of l (Equation 2):

l(c′) = c′ − 1

Again from c′ ≤ n− c (Equation 1) and above:

l(c′) < n− c

But we already established that l(c) = n− c, thus:

l(c′) < l(c)

�

Case 3 (c′′): c ≤
⌊

2n
3

⌋
and

⌈
n
2

⌉
+ 1 ≤ c ≤

⌊
2n
3

⌋
.

Starting from
⌈
c
2

⌉
≤ c′ (Equation 1):

−c′ ≤ −
⌈ c

2

⌉
7

c− c′ ≤ c−
⌈ c

2

⌉
c′′ ≤

⌊ c
2

⌋
≤
⌊n

2

⌋
≤
⌊
n + 1

2

⌋
From the definition of l (Equation 2) and above:

l(c′′) = c′′ − 1 <
⌊ c

2

⌋
≤ c

2

From the assumption c ≤
⌊

2n
3

⌋
:

l(c′′) <

⌊
2n
3

⌋
2
≤ n

3

From the same assumption:

−
⌊

2n

3

⌋
≤ −c

n−
⌊

2n

3

⌋
≤ n− c⌈n

3

⌉
≤ l(c)

Thus l(c′′) < n
3 while

⌈
n
3

⌉
≤ l(c). This yields:

l(c′′) < l(c)

�

Our synchronization scheme divides the computation into
⌈
n
2

⌉
+1 stages. However,

the first one contains subproblems for coalitions of size 1. This means the algorithm
starts from stage 2. Based on this, our synchronization scheme requires exactly

⌈
n
2

⌉
−1

synchronization points. Next, we prove that this synchronization scheme is optimal,
i.e., IDP cannot be parallelized with a number synchronization points smaller than⌈
n
2

⌉
− 1.

Theorem 2. There exists no parallelization scheme that requires less than
⌈
n
2

⌉
− 1

synchronization points.

Proof. Let Dep be a function that maps a subproblem into a set of its dependants. That
is, let: (C ′, C ′′) ∈ Dep(C) iff IDP evaluates a split of C into (C ′, C ′′). Furthermore,
let be a binary relation on P (A) such that:

C D iff (C,D \ C) ∈ Dep(D)

To prove that at least k synchronization are needed it is sufficient to construct a (k+1)-
element sequence of C0, C1, ..., Ck such that:

∀i={1,...,k}Ci−1 Ci and computation for Ci−1 is needed (4)

8

Input: f , n
Output: f
Copy f from host to the device ;1

for s← 2 to n do2

if s > dn/2e and s 6= n then3

continue;4

// Call the GPU code, see algorithm 25

spawn
(
n
s

)
threads on GPU with params (f , n, s) s′ ← n− s + 1 ;6

if ¬(2n < 3s′ and s′ < n) and s 6= n then7

// Run another stage in parallel.8

spawn
(
n
s′

)
extra threads with params (f , n, s′)9

waits for all threads to finish10

end11

Copy f from the device to host;12

Algorithm 1: HOST CODE THAT MANAGES THE GPU CODE

We construct such a
⌈
n
2

⌉
-element sequence:

{a1, a2} {a1, a2, a3} ... {a1, ..., adn
2 e} A

Condition (4) is met because we have:

∀i={1,...,k}(Ci−1, Ci \ Ci−1) ∈ Dep(Ci) ,

which follows directly from the definition of dep (see Equation 1). This concludes the
proof that there exists a (k + 1)-element sequence of coalitions that satisfies (4). Since
every element of the sequence requires a computation and needs to be in separate stage
(because it depends on the previous element in the sequence), it is not possible to design
an algorithm with fewer than

⌈
n
2

⌉
− 1 synchronization points. Thus, IDPG is optimal

in the number of required synchronization points.

3.2. Handling Other Design Requirements

One of the innovations of IDPG over IDP is how the splits are evaluated. As stated
in desiderata, minimizing global memory access if of utmost performance and trans-
lates to direct performance gain. The number of executed instructions that do not ac-
cess global memory is less important. To this end, IDPG checks every possible split of
subproblems it analyzes. However, only the necessary cause slow memory access. To
keep an overhead small, enumeration using fast bitmask operations (as described by
Francesco etc) is used. For each potential split, IDPG strives to keep the number of the
execution cost as small as possible. In general, it checks conditions developed by IDP
to see if a given split is needed. As it turns out, some checks can be avoided altogether,
due to the following result.

Theorem 3. All splits of coalitions of size c, where |c| ≤ n
2 , need to be evaluated.

9

Input: f , n, s
Output: f
// Every thread has unique index ∈ [0, . . . ,

(
n
s

)
− 1]1

id← index of current thread;2

if id <
(
n
s

)
then3

C ← (id + 1)-th k-element subset of A;4

// For CheckSplit definition, see algorithms 3 and 45

C = {C ′|C ′ ⊂ C and CheckSplit(n,C ′, C)}6

x←max{f [C ′] + f [C \ C ′] : C ′ ∈ C} ;7

f [C]←max(f [C], x);8

end9

Algorithm 2: CODE THAT IS RUN ON THE GPU

Input: n, C ′, C where C ′ ⊂ C and |C| ≤ n
2

Output: True iff split (C ′, C \ C ′) should be evaluated
return |C ′| ≥ 1/2 ∗ |C| and |C| = n;1

Algorithm 3: CHECKSPLIT CONDITION (SMALL)

Proof. Recall how eq. 1 specifies when a split is needed. IDPG iterates efficiently over
all the potential splits that meet cases 1-3 of the aforementioned equation. The only
thing left to prove is that the condition c′ ≤ n− c holds, thus that the split is necessary.
The assumptions in this case are:

• c ≤ n
2 and

• c′ + c′′ = c and

• 1 ≤ c′ ≤ c− 1.

•
⌈
c
2

⌉
≤ c′.

By transforming the above inequalities we get:

−n

2
≤ −c

c′ ≤ c ≤ n

2
= n− n

2

And then by substituting the right side of former for −n
2 in latter we get the desired:

c′ ≤ n− c

Thus, for coalitions of sizes at most n
2 , above check can be safely avoided – we just

proved that the condition is always met and therefore cannot lead to a reduced numer
of global memory accesses.

10

Input: n, C ′, C where C ′ ⊂ C and |C| > n
2

Output: True iff split (C ′, C \ C ′) should be evaluated
return |C ′| ≥ 1/2 ∗ |C| and (|C ′| ≤ n− |C| or |C| = n);1

Algorithm 4: CHECKSPLIT CONDITION (LARGE)

4. Performance Evaluation

In this section, we benchmark IDPG against IDP to evaluate the effectiveness of using
GPUs. We perform our experiments on a PC machine equipped with Intel Pentium
G620 (2.60GHz) CPU, 4GB of RAM and the NVIDIA GeForce GTX 660 GPU with
960 cores and 2GB of on-board memory. Our implementation of IDP does not involve
any paralellisation, and so it only utilizes a single CPU core.

Given different numbers of agents, Figure 1 shows on a log scale the total run time
of both IDP and IDPG (measured in clock time), while Figure 2 shows the ratio between
the two running times. As can be seen, IDPG is significantly faster than IDP. This speed
up increases with the number of agents, and reaches two orders of magnitude (110
times faster to be more precise) as soon as the number of agents reaches 28. This is
despite the fact that our implementation of IDP is highly optimized. In fact, it is more
optimized than Rahwan et al.’s own implementation of IDP. For example, given 27
agents, our implementation took 7.5 hours, while theirs took 2.5 days on a processor
with almost identical computational capabilities compared to ours [15].

5. Conclusions

Graphics Processing Units (GPUs) promise speedups of several orders of magni-
tude, but demand re-designing existing algorithms to meet certain requirements im-
posed by the GPU framework. We bring those challenges to the attention of the Com-
putational Coalition Formation community, and develop IDPG—the first GPU-based
coalition structure generation algorithm. Our algorithm is a GPU-based reformulation
of a previous, important algorithm called IDP. We prove a certain property of that
previous algorithm, and show how this property can be useful when reducing global
memory access. Furthermore, we prove that our algorithm minimizes the number of
synchronization points—a property desired in GPU algorithms. Finally, we test our
GPU version against the original one, and show that ours is faster by two orders of
magnitude. The community can benefit from the open-source implementation, which
is made publicly available3.

Future directions include developing GPU versions of other coalition structure gen-
eration algorithm, such as, IDP-IP∗.

3For the IDPG implementation developed part of this research, see: https://github.com/idpg/idpg

11

21 22 23 24 25 26 27 28

1e
−

03
1e

−
01

1e
+

01
1e

+
03

1e
+

05

n −− number of agents

T
im

e
(s

ec
on

ds
, l

og
sc

al
e)

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

GPU
CPU

Figure 1: Running time (measured in seconds) of IDP and IDPG given different numbers of agents. Results
are plotted on a log scale.

●
●

●

●

●

●

●

●

21 22 23 24 25 26 27 28

20
40

60
80

10
0

n −− number of agents

S
pe

ed
up

 (
C

P
U

 ti
m

e
/ G

P
U

 ti
m

e)

Figure 2: The speed up of IDPG over IDP, represented as the ratio between the run time of both algorithms
given different numbers of agents.

References

[1] Manish Arora. The Architecture and Evolution of CPU-GPU Systems for Gen-
eral Purpose Computing. Research survey, Department of Computer Science and
Engineering, University of California, San Diego, 2012.

[2] Haris Aziz and Bart de Keijzer. Complexity of coalition structure generation.
In AAMAS ’11: Tenth International Joint Conference on Autonomous Agents and
Multi-Agent Systems, pages 191–198, 2011.

[3] Yoram Bachrach and Jeffrey S. Rosenschein. Coalitional skill games. In AA-

12

MAS’08: Seventh International Conference on Autonomous Agents and Multi-Agent
Systems, pages 1023–1030, 2008.

[4] E.Y. Bitar, E. Baeyens, P.P. Khargonekar, K. Poolla, and P. Varaiya. Optimal shar-
ing of quantity risk for a coalition of wind power producers facing nodal prices. In
Proceedings 31st IEEE American Control Conference, 2012.

[5] A. Bleiweiss. Gpu accelerated pathfinding. In Proceedings of the 23rd ACM SIG-
GRAPH/EUROGRAPHICS symposium on Graphics hardware, pages 65–74. Euro-
graphics Association, 2008.

[6] Z. Du, Z. Yin, and D.A. Bader. A tile-based parallel viterbi algorithm for biological
sequence alignment on gpu with cuda. In Parallel & Distributed Processing, Work-
shops and Phd Forum (IPDPSW), 2010 IEEE International Symposium on, pages
1–8. IEEE, 2010.

[7] Robin Glinton, Paul Scerri, and Katia Sycara. Agent-based sensor coalition forma-
tion. In Proceedings of the International Conference on Information Fusion, number
CMU-RI-TR-, July 2008.

[8] Cuihong Li, Katia Sycara, and Alan Scheller-Wolf. Combinatorial coalition for-
mation for multi-item group-buying with heterogeneous customers. Decis. Support
Syst., 49(1):1–13, April 2010.

[9] William Lucas and Robert Thrall. n-person games in partition function form.
Naval Research Logistic Quarterly, pages 281–298, 1963.

[10] Tomasz Michalak, Jacek Sroka, Talal Rahwan, Michael Wooldridge, Peter
McBurney, and Nicholas R. Jennings. A Distributed Algorithm for Anytime Coali-
tion Structure Generation. In AAMAS ’10: Proceedings of the Ninth International
Joint Conference on Autonomous Agents and Multi-Agent Systems, pages 1007–
1014, 2010.

[11] Naoki Ohta, Vincent Conitzer, Ryo Ichimura, Yuko Sakurai, Atsushi Iwasaki,
and Makoto Yokoo. Coalition structure generation utilizing compact characteristic
function representations. In CP’09: 15th International Conference on Principles
and Practice of Constraint Programming, pages 623–638, 2009.

[12] J. Pan, C. Lauterbach, and D. Manocha. g-planner: Real-time motion planning
and global navigation using gpus. In AAAI Conference on Artificial Intelligence,
pages 1245–1251, 2010.

[13] Talal Rahwan and Nicholas R. Jennings. Coalition structure generation: Dynamic
programming meets anytime optimisation. In AAAI’08: Twenty Third AAAI Confer-
ence on Artificial Intelligence, pages 156–161, 2008.

[14] Talal Rahwan and Nicholas R. Jennings. An improved dynamic programming al-
gorithm for coalition structure generation. In AAMAS’08: Seventh International
Conference on Autonomous Agents and Multi-Agent Systems, pages 1417–1420,
2008.

13

[15] Talal Rahwan, Sarvapali D. Ramchurn, Andrea Giovannucci, and Nicholas R.
Jennings. An anytime algorithm for optimal coalition structure generation. Journal
of Artificial Intelligence Research (JAIR), 34:521–567, 2009.

[16] Talal Rahwan, Tomasz P. Michalak, Edith Elkind, Piotr Faliszewski, Jacek Sroka,
Michael Wooldridge, and Nicholas R. Jennings. Constrained coalition formation.
In Twenty Fifth AAAI Conference on Artificial Intelligence (AAAI), pages 719–725,
2011.

[17] Talal Rahwan, Tomasz P. Michalak, and Nicholas R. Jennings. Minimum search
to establish worst-case guarantees in coalition structure generation. In IJCAI’11:
Twenty Second International Joint Conference on Artificial Intelligence, pages 338–
343, 2011.

[18] Talal Rahwan, Tomasz Michalak, and Nicholas R. Jennings. A hybrid algorithm
for coalition structure generation. In Twenty Sixth Conference on Artificial Intelli-
gence (AAAI-12), Toronto, Canada, 2012.

[19] T. W. Sandholm and V. R. Lesser. Coalitions among computationally bounded
agents. Artificial Intelligence, 94(1):99–137, 1997.

[20] S. Tomov, J. Dongarra, and M. Baboulin. Towards dense linear algebra for hybrid
gpu accelerated manycore systems. Parallel Computing, 36(5):232–240, 2010.

[21] M. Tsvetovat, K. P. Sycara, Y. Chen, and J. Ying. Customer coalitions in the
electronic marketplace. In Proceedings of the Fourth International Conference on
Autonomous Agents (AA-01), pages 263–264, 2000.

[22] Suguru Ueda, Atsushi Iwasaki, Makoto Yokoo, Marius Calin Silaghi, Katsutoshi
Hirayama, and Toshihiro Matsui. Coalition structure generation based on distributed
constraint optimization. In Twenty Fourth AAAI Conference on Artificial Intelligence
(AAAI), pages 197–203, 2010.

[23] Suguru Ueda, Makoto Kitaki, Atsushi Iwasaki, and Makoto Yokoo. Concise char-
acteristic function representations in coalitional games based on agent types. In
IJCAI’11: Twenty Second International Joint Conference on Artificial Intelligence,
pages 393–399, 2011.

[24] D. Yun Yeh. A dynamic programming approach to the complete set partitioning
problem. BIT Numerical Mathematics, 26(4):467–474, 1986.

[25] K. Zhang and J.U. Kang. Real-time 4d signal processing and visualization using
graphics processing unit on a regular nonlinear-k fourier-domain oct system. Optics
express, 18(11):11772–11784, 2010.

14

