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Abstract

The larger project broached here is to look at the generally Π1
2 sentence

“ if X is well ordered then f(X) is well ordered”, where f is a standard
proof theoretic function from ordinals to ordinals. It has turned out that
a statement of this form is often equivalent to the existence of count-
able coded ω-models for a particular theory Tf whose consistency can
be proved by means of a cut elimination theorem in infinitary logic which
crucially involves the function f . To illustrate this theme, we prove in this
paper that the statement “ if X is well ordered then εX is well ordered” is
equivalent to ACA+

0 . This was first proved by Marcone and Montalban
[7] using recursion-theoretic and combinatorial methods. The proof given
here is principally proof-theoretic, the main techniques being Schütte’s
method of proof search (deduction chains) [11] and cut elimination for a
(small) fragment of Lω1,ω.

1 Introduction

This paper will be concerned with a particular Π1
2 statement of the form

WOP(f) : ∀X [WO(X)→WO(f(X))] (1)

where f is a standard proof theoretic function from ordinals to ordinals and
WO(X) stands for ‘X is a well ordering’. There are by now several examples
of functions f where the statement WOP(f) has turned out to be equivalent
to one of the theories of reverse mathematics over a weak base theory (usually
RCA0). The first example is due to Girard [4].

Theorem 1.1. (Girard 1987) Over RCA0 the following are equivalent:

(i) Arithmetic Comprehension

(ii) ∀X [WO(X)→WO(2X)].
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Recently two new results appeared in preprints [7, 3].

Theorem 1.2. (Marcone,Montalbán 2007) Over RCA0 the following are equiv-
alent:

(i) ACA+
0

(ii) ∀X [WO(X)→WO(εX)].

Theorem 1.3. (Friedman,Montalbán,Weiermann 2007) Over RCA0 the fol-
lowing are equivalent:

(i) ATR0

(ii) ∀X [WO(X)→WO(ϕX0)].

Here ACA+
0 denotes the theory ACA0 augmented by an axiom asserting

that for any set X the ω-th jump in X exists; ATR0 asserts the existence of
sets constructed by transfinite iterations of arithmetical comprehension; α 7→ εα
denotes the usual ε function while ϕ stands for the two-place Veblen function
familiar from predicative proof theory (cf. [11]). More detailed descriptions
of ACA+

0 and the function X 7→ εX will be given shortly. Definitions of the
familiar subsystems of reverse mathematics can be found in [13].

The proofs of Theorems 1.2 and 1.3 use rather sophisticated recursion-
theoretic results about linear orderings and are quite combinatorial. The proof
of Theorem 1.2 builds on a theorem by Hirst while the proof of Theorem 1.3
employs a result of Steel’s [15] about descending sequences of degrees which
states that if Q ⊆ Pow(ω) × Pow(ω) is arithmetic, then there is no sequence
{An | n ∈ ω} such that (a) for every n, An+1 is the unique set such that
Q(An, An+1), (2) for every n, A′n+1 ≤T An.

For a proof theorist, Theorems 1.2 and 1.3 bear a striking resemblance to cut
elimination theorems for infinitary logics. This prompted the second author of
this paper to look for proof-theoretic ways of obtaining these results. The hope
was that this would also unearth a common pattern behind them and possibly
lead to more results of this kind. To start this project we shall give a new
proof of Theorem 1.2 in this article. It is principally proof-theoretic, the main
techniques being Schütte’s method of proof search (deduction chains) [11] for
proving the completeness theorem and cut elimination for a (small) fragment of
Lω1,ω. The general pattern, of which this paper provides a first example, is that
a statement WOP(f) is often equivalent to a familiar cut elimination theorem
for an infinitary logic which in turn is equivalent to the assertion that every set
is contained in an ω-model of a certain theory Tf . The generality of this theme
and the proof technology will be further substantiated in [10]. [10] utilizes well
known cut elimination results from predicative proof theory (ramified analysis)
to give a proof-theoretic treatment of Theorem 1.3.
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2 The ordering εX

Via simple coding procedures, countable well-orderings and functions on them
can be expressed in the language of second order arithmetic, L2. Variables
X,Y, Z, . . . are supposed to range over subsets of N. Using an elementary injec-
tive pairing function 〈, 〉 (e.g. 〈n,m〉 := (n+m)2 +n+1), every set X encodes a
sequence of sets (X)i, where (X)i := {m | 〈i,m〉 ∈ X}. We also adopt from [13,
II.2] the method of encoding finite sequences (n0, . . . , nk−1) of natural numbers
as single numbers 〈n0, . . . , nk1〉.

Ordinal representation systems for the ordinals below ε0 (i.e. the first ordinal
α such that ωα = α) as well as stronger ones closed under the function α 7→ εα
can be found in many books on proof theory (cf. [11, 8, 4]). Here we require a
generalized version of εα where α is replaced by an arbitrary well-ordering.

Definition 2.1. A structure X = (X,<
X

) is a well-ordering (abbrev. WO(X))
if <

X
is a linear ordering of X (the field of <

X
) and every non-empty subset U

of X has a <
X

-least element.
The ordering <εX and its field |εX| are inductively defined as follows:

1. 0 ∈ |εX|.

2. εu ∈ |εX| for every u ∈ X, where εu := 〈0, u〉.

3. If α1, . . . , αn ∈ |εX|, n > 1 and αn ≤εX . . . ≤εX α1, then

ωα1 + . . .+ ωαn ∈ |εX|

where ωα1 + . . .+ ωαn := 〈1, 〈α1, . . . , αn〉〉.

4. If α ∈ |εX| and α is not of the form εu, then ωα ∈ |εX|, where ωα := 〈1, α〉.

5. 0 <εX εu for all u ∈ X.

6. 0 <εX ωα1 + . . .+ ωαn for all ωα1 + . . .+ ωαn ∈ |εX|.

7. εu <εX εv if u, v ∈ X and u <
X
v.

8. If ωα1 +. . .+ωαn ∈ |εX|, u ∈ X and α1 <εX εu then ωα1 +. . .+ωαn <εX εu.

9. If ωα1 + . . . + ωαn ∈ |εX|, u ∈ X, and εu <εX α1 or εu = α1, then
εu <εX ωα1 + . . .+ ωαn .

10. If ωα1 + . . .+ ωαn , ωβ1 + . . .+ ωβm ∈ |εX|, then

ωα1 + . . .+ ωαn <εX ωβ1 + . . .+ ωβm iff

n < m ∧ ∀i ≤ n αi = βi or

∃i ≤ min(n,m)[αi <εX βi ∧ ∀j < i αj = βj ].

Definition 2.2. Let εX = 〈|εX|, <εX〉.
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It is an empirical fact that ordinal representation systems emerging in proof
theory are always elementary recursive and their basic properties are provable
in weak fragments of arithmetic like elementary arithmetic. Sommer has in-
vestigated the question of complexity of ordinal representation systems in [14].
His case studies revealed that with regard to measures considered in complex-
ity theory ordinal representation systems involved in ordinal analyses emerge
at a rather low level. It appears that they are always ∆0-representable and
that computations on ordinals in actual proof-theoretic ordinal analyses can be
handled in the theory I∆0 + Ω1, where Ω1 is the assertion that the function
x 7→ xlog2(x) is total.

Lemma 2.3. (RCA0)

(i) If X is a linear ordering then so is εX.

(ii) εX is elementary recursive in X.

3 The theory ACA+
0

Definition 3.1. ACA+
0 is ACA0 plus the axiom

(ω-jump) ∀X ∃Y [(Y )0 = X ∧ ∀n (Y )n+1 = TJ((Y )n)]

where TJ(Z) denotes the usual Turing jump of Z (see [13]). The Y above is
unique and will be denoted by ω-jump(X).

Remark 3.2. ACA+
0 is sufficiently strong for the development of some in-

teresting countable combinatorics. The Auslander/Ellis theorem of topological
dynamics is provable in ACA+

0 as is Hindman’s Theorem (cf. [13, X.3]). The
latter says that if the natural numbers are coloured with finitely many colours
then there exists an infinite set X such that all finite sums of elements of X
have the same colour.

We also note that ACA+
0 is a theory that bears interesting connections to

the bar rule and parameter free bar induction [9].

ACA+
0 can be characterized in terms of ω-models. This requires a definition.

Definition 3.3. Let T be a theory in the language of second order arithmetic,
L2. A countable coded ω-model of T is a set W ⊆ N, viewed as encoding the
L2-model

M = (N,S,∈,+, ·, 0, 1, <)

with S = {(W )n | n ∈ N} such that M |= T .
This definition can be made in RCA0 (see [13, Definition VII.2]).
We write X ∈W if ∃n X = (W )n.

Lemma 3.4. (RCA0) The axiom ω-jump is equivalent to the statement

“ Every set is contained in a countable coded ω-model of ACA”

where ACA stands for arithmetic comprehension.
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Proof: For “⇐” fix a set X and pick a countable coded ω model M =
(N,S,∈,+, ·, 0, 1, <) of ACA0 with X ∈ S and S = {(W )n | n ∈ N} for some
W . Now let

Z = {〈n,m〉 |M |= ∃Y [(Y )0 = X ∧ ∀i < n (Y )i+1 = TJ((Y )i) ∧ m ∈ (Y )n]}.

Z is a set by arithmetic comprehension. Since M is an ω-model of ACA0 it
follows that Z = ω-jump(X).

For “⇒” let X be an arbitrary set. Let Z = ω-jump(X) and put

S = {U | ∃n U ≤
T

(Z)n}.

Here U ≤
T
V expresses that U is Turing reducible to V . One easily shows that

(N,S,∈,+, ·, 0, 1, <) is a model of ACA0 and, moreover, that S can be coded
as a single set W . ut

4 Main Theorem

The main result we want to prove is the following.

Theorem 4.1. RCA0 + ∀X [WO(X) → WO(εX)] proves that every set is
contained in a countable coded ω-model of ACA.

A central ingredient of the proof will be a method of proof search (deduction
chains) pioneered by Schütte [11]. This method also been adapted to infinitary
logics at various places, e.g. [8, 6].

4.1 Deduction chains in ω-logic

Definition 4.2.

(i) Let U0, U1, U2, . . . be an enumeration of the free set variables of L2. For a

closed term t, let t
N

be its numerical value.

(ii) Henceforth a sequent will be a finite set of L2-formulas without free num-
ber variables.

(iii) A sequent Γ is axiomatic if it satisfies at least one of the following con-
ditions:

1. Γ contains a true literal, i.e. a true formula of either formR(t1, . . . , tn)
or ¬R(t1, . . . , tn), where R is a predicate symbol for a primitive re-
cursive relation and t1, . . . , tn are closed terms.

2. Γ contains formulas s ∈ U and t /∈ U for some set variable U and
terms s, t with s

N
= t

N
.

(iv) A sequent is reducible or a redex if it is not axiomatic and contains a
formula which is not a literal.
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Definition 4.3. For Q ⊆ N define

DQ(n) =

{
n̄ ∈ U0 if n ∈ Q
n̄ /∈ U0 otherwise

For the proof of Theorem 4.1 it is convenient to have a finite axiomatization
of arithmetic comprehension.

Lemma 4.4. ACA0 can be axiomatized via a single Π1
2 sentence ∀X C(X).

Proof: [13, Lemma VIII.1.5]. ut

Definition 4.5. Let Q ⊆ N. A Q-deduction chain is a finite string

Γ0,Γ1, . . . ,Γk

of sequents Γi constructed according to the following rules:

(i) Γ0 = ¬DQ(0),¬C(U0).

(ii) Γi is not axiomatic for i < k.

(iii) If i < k and Γi is not reducible then

Γi+1 = Γi,¬DQ(i+ 1),¬C(Ui+1).

(iv) Every reducible Γi with i < k is of the form

Γ′i, E,Γ
′′
i

where E is not a literal and Γ′i contains only literals. E is said to be the
redex of Γi.

Let i < k and Γi be reducible. Γi+1 is obtained from Γi = Γ′i, E,Γ
′′
i as

follows:

1. If E ≡ E0 ∨ E1 then

Γi+1 = Γ′i, E0, E1,Γ
′′
i ,¬DQ(i+ 1),¬C(Ui+1).

2. If E ≡ E0 ∧ E1 then

Γi+1 = Γ′i, Ej ,Γ
′′
i ,¬DQ(i+ 1),¬C(Ui+1)

where j = 0 or j = 1.

3. If E ≡ ∃xF (x) then

Γi+1 = Γ′i, F (m̄),Γ′′i ,¬DQ(i+ 1),¬C(Ui+1), E

where m is the first number such that F (m̄) does not occur in
Γ0, . . . ,Γi.
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4. If E ≡ ∀xF (x) then

Γi+1 = Γ′i, F (m̄),Γ′′i ,¬DQ(i+ 1),¬C(Ui+1)

for some m.

5. If E ≡ ∃X F (X) then

Γi+1 = Γ′i, F (Um),Γ′′i ,¬DQ(i+ 1),¬C(Ui+1), E

where m is the first number such that F (Um) does not occur in
Γ0, . . . ,Γi.

6. If E ≡ ∀X F (X) then

Γi+1 = Γ′i, F (Um),Γ′′i ,¬DQ(i+ 1),¬C(Ui+1)

where m is the first number such that m 6= i + 1 and Um does not
occur in Γi.

The set of Q-deduction chains forms a tree DQ labeled with strings of se-
quents. We will now consider two cases.

Case I: DQ is not well-founded. Then DQ contains an infinite path P. Now
define a set M via

(M)i = {t
N
| t /∈ Ui occurs in P}.

Set M = (N; {(M)i | i ∈ N},+, ·, 0, 1, <).

Claim: Under the assignment Ui 7→ (M)i we have

F ∈ P ⇒ M |= ¬F (2)

The Claim implies that M is an ω-model of ACA. Also note that (M)0 = Q,
thus Q is in M. The proof of (2) follows by induction on F using Lemma 4.6
below. The upshot of the foregoing is that we can prove Theorem 4.1 under the
assumption that DQ is ill-founded for all sets Q ⊆ N.

Lemma 4.6. Let Q be an arbitrary subset of N and DQ be the corresponding
deduction tree. Moreover, suppose DQ is not well-founded. Then DQ has an
infinite path P. P has the following properties:

1. P does not contain literals which are true in N.

2. P does not contain formulas s ∈ Ui and t /∈ Ui for constant terms s and t
such that sN = tN.

3. If P contains E0 ∨ E1 then P contains E0 and E1.

4. If P contains E0 ∧ E1 then P contains E0 or E1.

5. If P contains ∃xF (x) then P contains F (n) for all natural numbers n.
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6. If P contains ∀xF (x) then P contains F (n) for some natural number n.

7. If P contains ∃XF (X) then P contains F (Um) for all natural numbers m.

8. If P contains ∀XF (X) then P contains F (Um) for some natural number
m.

9. P contains ¬C(Um) for all natural numbers m.

10. P contains ¬DQ(m) for all natural numbers m.

Proof: Standard. ut

The remainder of the paper will be devoted to ruling out the possibility that
DQ is well-founded. This is the place were cut elimination for an infinitary
calculus ACA∞ enters the stage.

4.2 The infinitary calculus ACA∞

In the main, the system ACA∞ is obtained from ACA0 by adding the ω-
rule. The language of ACA∞ is the same as that of ACA0 but the notion of
formula comes enriched with set terms. Formulas and set terms are defined
simultaneously. Literals are formulas. Every set variable is a set term. If A(x)
is a formula without set quantifiers (i.e. arithmetic) then {x | A(x)} is a set
term. If P is a set term and t is a numerical term then t ∈ P and t /∈ P are
formulas. The other formation rules pertaining to ∧,∨,∀x, ∃x, ∀X,∃X are as
per usual.

We will be working in a Tait-style formalization of the second order arith-
metic. Due to the ω-rule there is no need for formulas with free numerical
variables. Thus all sequents below are assumed to consist of formulas without
free numerical variables.

Axioms of ACA∞

(i) Γ, L where L is a true literal

(ii) Γ, s ∈ U, t /∈ U where s
N

= t
N

Rules of ACA∞

Rules for (∧), (∨) and (Cut) as per usual.

(ω)
Γ, F (n̄) for all n

Γ,∀xF (x)
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(∃1)
Γ, F (t)

Γ,∃xF (x)

(∀2)
Γ, F (P ) for all set terms P

Γ,∀XF (X)

(∃2)
Γ, F (P )

Γ,∃XF (X)
where P is set term.

(ST1)
Γ, A(t)

Γ, t ∈ P where P is the set term {x | A(x)}.

(ST2)
Γ,¬A(t)

Γ, t /∈ P where P is the set term {x | A(x)}.

Definition 4.7 (Cut rank in ACA∞). The cut-rank of a formula A, denoted
|A| is defined as follows:

1. |L| = 0 for literals L. |s ∈ P | = |s /∈ P | = |A(0)| + 1 if P is a set term
{x | A(x)}.

2. |B0 ∧B1| = |B0 ∨B1| = max(|B0|, |B1|) + 1

3. |∀xB(x)| = |∃xB(x)| = |B(x)|+ 1

4. |∀XA(X)| = |∃XA(X)| = ω if A(X) is arithmetic.

5. |∀XF (X)| = |∃XF (X)| = |F (X)|+ 1 if F (X) is not arithmetic.

Definition 4.8. We use the notation ACA∞
α

ρ Γ to convey that the sequent
Γ is deducible in ACA∞ via a derivation of length ≤ α containing only cuts of
degree < ρ.

One easily shows that ACA∞ includes ACA, i.e. ACA0 plus the full
induction scheme.

Lemma 4.9.

ACA0 Γ ⇒ ACA∞
ω+n

ω+k
Γ

for some k, n < ω.

4.3 Cut-elimination for ACA∞

The following cut elimination theorems can be viewed as folklore. ACA∞ is
related to the system EA∗ in [11], Part C. The cut elimination theorems below
can be gleaned from [11, Theorem 22.13 and Theorem 22.8]. Full details can be
found in [1].
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Theorem 4.10 (Cut-elimination I). Let α ≥ ω.

ACA∞
α

ω+n+1
Γ ⇒ ACA∞

ωα

ω+n
Γ

Theorem 4.11 (Cut-elimination II).

ACA∞
α

ω Γ ⇒ ACA∞
εα

0
Γ

4.4 The variant ACAQ
∞

For any fixed Q ⊆ N we will look at a variant of ACAQ
∞ of ACA∞ which arises

by adding the basic diagram of Q. More precisely, ACAQ
∞ results from ACA∞

by adding the axioms

1. Γ, s ∈ U0 if s
N ∈ Q.

2. Γ, s /∈ U0 if s
N
/∈ Q.

Theorems 4.10 and 4.11 hold for ACAQ
∞ as well.

4.5 Finalizing the proof of the main Theorem

Recall that we have proved that there exists a countable coded ω-model of
ACA0 containing Q providing DQ is ill-founded, i.e. if DQ contains an infinite
path. To finish the proof of the main Theorem 4.1 let us assume that DQ is well-
founded. We aim at deriving a contradiction from this. DQ can then be viewed
as a deduction with hidden cuts involving formulas of the shape ¬C(Ui+1)

and ¬DQ(i+ 1). Note that ACAQ
∞

ω

ω C(Ui) and ACAQ
∞

0

0
DQ(i) . Thus any

transition
Γi+1

Γi

in DQ can be viewed as a combination of three inferences in ACAQ
∞, the first

one being a logical inferences and the other two being cuts.
By interspersingDQ with cuts and adding two cuts with cut formulas ¬C(U0)

and ¬DQ(0) at the bottom we obtain a derivation D∗Q in ACAQ
∞ of the empty

sequent. The cut formulas of D∗Q have at most rank ω. Hence ACAQ
∞

α

ω+1
∅

for an ordinal α which corresponds to the Kleene-Brouwer ordering of the tree
D∗Q. Using Cut Elimination I and II for ACAQ

∞ we obtain a cut-free proof of
length εωα of ∅. But this is impossible because the conclusion of any other rule
is always nonempty.

As Cut Elimination I and II (Theorems 4.10, 4.11) can be formalized and
proved in ACA0 and the latter system is contained in RCA0 +∀X [WO(X)→
WO(εX)] by Theorem 1.1, this concludes the proof of Theorem 4.1. There are
different ways of formalizing infinite deductions in theories like PA. We just
mention [12] and [2].
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5 Finishing the proof of Theorem 1.2

One direction of Theorem 1.2 follows from Theorem 4.1 read in conjunction with
Lemma 3.4. It remains to show that ACA+

0 proves ∀X [WO(X) →WO(εX)].
Arguing in ACA+

0 assume that WO(X) holds. For a contradiction suppose
there is an infinite εX-descending sequence I. By Lemma 3.4 pick a countable
coded ω-model M of ACA0 which contains X and I. However, using transfi-
nite induction on X one can show that transfinite induction on εX holds in M.
Basically this can be proved by viewing the proof [11, Theorem 21.4] as taking
place in M. Since I is in M we arrive at a contradiction. ut

6 Prospectus

In [10] the theme of this paper will be extended to more challenging scenarios.
Theorem 1.3 and extensions will be proved by proof-theoretic methods, utilizing
cut elimination for systems of ramified analysis.
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