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Abstract

The article shows a simple way of calibrating the strength of the theory of positive induction,
ID∗

1. Crucially the proof exploits the equivalence of Σ1
1 dependent choice and ω-model reflection

for Π1
2 formulae over ACA0. Unbeknown to the authors, D. Probst had already determined the

proof-theoretic strength of ID∗
1 in [13].

1 Introduction

Theories of inductive definitions have always played an important role in mathematical logic. The
first order theories of iterated inductive definitions, IDn, and several of its subsystems have been
intensively studied by proof theorists (see [12, 3, 1, 6]). In its much weaker subtheories ÎDn, only
the fixed-point property of inductive definitions is asserted. The theory ID∗1 lies between ÎD1 and
ID1. It is a restricted version of ID1 in that the scheme for proof by induction on the inductively
defined predicates is only permitted for formulae in which the predicates for the inductively defined
sets occur positively. Feferman in [6] attributes this theory to H. Friedman [8]. ID∗1 and its evident
iterations ID∗n were considered by Feferman [6] and studied by Cantini [4], giving upper bounds for
their proof-theoretic ordinals. However, the upper bound obtained for the strength of ID∗n exceeded
that of ÎDn. The exact strength of ID∗n remained unknown until quite recently. The authors of
the present paper determined the proof-theoretic strengths of the theories ID∗n in 2007. Recently,
however, they learned that D. Probst had done this earlier in [13]. The proof given here, though,
uses a methodology differing from [13]. It makes use of the concept of ω-model reflection. As this
method provides a very transparent proof and can also be used to determine the strength of other
subsystems of ID1 we considered it worthwhile publishing.

2 The theory of positive induction, ID∗1

For any language L let LP be L augmented by a unary predicate P . For convenience we shall write
A(u, P+) to emphasise that all occurrences of the predicate P in the formula A(u, P ) are positive
and that at most the variable u occurs free in it. The language of ID∗1 is the same as that of ID1,
i.e. it comprises the language of primitive recursive arithmetic, L0, and for each P -positive formula
A(x, P+) of LP

0 , it has a unary predicate symbol IA. The predicates IA will be referred to as the
inductive predicates.

Definition 1. The axioms of ID∗1 are those of PRA plus the following:
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∀u[A(u, IA)→ IA(u)](IA.1)
∀u[A(u, F )→ F (u)]→ ∀u[u ∈ IA → F (u)](IA.2)
F (0) ∧ ∀u[F (u)→ F (u + 1)]→ ∀uF (u)(IND+

N )

for all formulae A(u, P+) of LP
PRA and all formulae F (u) of the language of ID∗1 in which inductive

predicates occur only positively.
The general induction scheme for induction on the natural numbers for arbitrary formulae of

the language of ID∗1 will be denoted by INDN.

Caveat: Usually the theory ID∗1 (cf. [6]) is identified with what we denoted by ID∗1 + INDN
above.

3 Interpreting ID∗1 in Σ1
1-DC0

Definition 2. The Σ1
1-DC (Dependent Choice) scheme is

∀x∀X∃Y B(x, X, Y )→ ∀U∃Z[(Z)0 = U ∧ ∀xB(x, (Z)x, (Z)x+1)]

for Σ1
1 formulae B. Here by (Z)x we mean the x-th section of the set Z i.e. (Z)x = {y|〈x, y〉 ∈

Z}, where 〈., .〉 is some primitive recursive pairing function. The system Σ1
1-DC0 is defined to be

ACA0 + Σ1
1-DC. The proof-theoretic ordinal of Σ1

1-DC0 was determined to be ϕω0 in [5].

We define an interpretation from the language of ID∗1 into the language of Σ1
1-DC0 by letting

(IA(t))∗ := ∀X[∀u(A(u, X)→ u ∈ X)→ t ∈ X]

and leaving everything else unchanged.

Definition 3. We use the usual hierarchy of Π1
k and Σ1

k for formulae of second order arithmetic. A
formula is said to be essentially Π1

1 if it belongs to the smallest collection of formulae which contains
all arithmetical formulae and is closed under ∧, ∨, ∃x, ∀x and ∀X.

Lemma 4. for formulae A(x, P+), B(x, P+) ∈ LP
0 we have

(i) (IA(t))∗ is Π1
1

(ii) (A(x, IB))∗ is essentially Π1
1.

Proof. (i) is obvious by looking at the definition of the translation and (ii) becomes clear by the
fact that IB occurs positively in A. ut

Definition 5. The Σ1
1-AC (Axiom of Choice) scheme is

∀u∃XA(u, X)→ ∃Y ∀uA(u, (Y )u)

for Σ1
1 formulae A. The system Σ1

1-AC0 is defined to be ACA0 + Σ1
1-AC.

Lemma 6. For any essentially Π1
1 formula G we can find a Π1

1 formula G′ with the same free
variables such that
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(i) Σ1
1-AC0 G′ → G

(ii) ACA0 G→ G′

Proof. G′ is defined inductively as follows:

• If G is atomic or negated atomic then we define G′ ≡ G.

• If G is of the form A0 ∨ A1 and we have that A′0 ≡ ∀X0B0(X0) and A′1 ≡ ∀X1B1(X1) then
we define G′ to be ∀X[B0((X)0) ∨B1((X)1)]. Similarly if G is of the form A0 ∧A1 define G′

to be ∀X[B0((X)0) ∧B1((X)1)].

• If G is of the form ∀uB(u) and we have that B′(u) ≡ ∀XB0(X, u), then we define G′ to be
∀X∀uB0(X, u).

• If G is of the form ∀XB(X) and we have that B′(X) ≡ ∀Y B0(X, Y ), then we define G′ to be
∀XB0((X)0, (X)1).

• If G is of the form ∃uB(u) and we have that B′(u) ≡ ∀XB0(u, X), then we define G′ to be
∀X∃uB0(u, (X)u). In this case ACA0 ` ∃uB′(u)→ G′ and Σ1

1-AC0 ` G′ → ∃uB′(u).

It is clear from the definition above that G′ satisfies our requirements. ut

Lemma 7. For A(x, P+) ∈ LP
0 we have

ACA0 ∀x[A(x, I∗A)→ I∗A(x)] .

Proof. Assume (1) A(x, I∗A) and (2) ∀u(A(u, X) → u ∈ X) for an arbitrary set X. We need
to show x ∈ X. Observe that we have ∀u(I∗A(u) → u ∈ X) and therefore since A is positive
A(u, I∗A) → A(u, X) holds for every u. Now from (1) we have A(x, X) and so with (2) we can
derive x ∈ X.
Note that the proof does not use the whole strength of ACA0; in fact it can be carried out in pure
second order logic. ut

Lemma 8. Σ1
1-DC0 proves induction on N for essentially Π1

1 formulae.

Proof. It has been shown [15, Theorem VIII.5.12] that Π1
1 transfinite induction (Π1

1-TI) and the
scheme Σ1

1-DC are equivalent over ACA0. Since Π1
1-TI implies induction along the natural numbers

for Π1
1 formulae we are done. ut

Definition 9 (Simpson [15]). A countable coded ω-model is a set M of natural numbers, viewed
as encoding a structure for the language of second order arithmetic

(N, M, +, ·, 0, 1, <)

with the sections of M forming the universe of sets, i.e. M = {(M)n : n ∈ N}. This definition can
be made within RCA0 (see [15, VII.2.1]).

We shall write M |= A if (N, M, +, ·, 0, 1, <) |= A whenever A is a formula of second order
arithmetic with parameters in M. We also write X ∈M instead of ∃i (M)i = X.

Theorem 10 (Simpson [14]). The following are equivalent over ACA0:
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(i) Σ1
1-DC

(ii) ω-model reflection for Π1
2 formulae, i.e. if C(X1, . . . , Xk) is a Π1

2-formula with all set param-
eters exhibited and C(X1, . . . , Xk) holds then there exists a countable coded ω-model of ACA0

such that X1, . . . , Xk ∈M and M |= C(X1, . . . , Xk).

Proof. See [14] or [15, Theorem VIII.5.12]. ut

Lemma 11. If A(x, P+) ∈ LP
0 then Σ1

1-DC0 proves

∀x[A(x, F )→ F (x)]→ ∀x[I∗A(x)→ F (x)]

for all essentially Π1
1 formulae F (x).

Proof. For a contradiction assume

∀x[A(x, F )→ F (x)],(1)
I∗A(n0) ∧ ¬F (n0)(2)

for some n0. Let G(x) := A(x, F ) which is essentially Π1
1. Let G′(x) and F ′(x) be the corresponding

formulae provided by Lemma 6. Then we have

∀x[G′(x)→ F ′(x)] and(3)
¬F ′(n0).(4)

Using Π1
2 ω-model reflection (Theorem 10) there exists a countable coded ω-model M of ACA0

such that

M |= ∀x[G′(x)→ F ′(x)] and(5)
M |= ¬F ′(n0).(6)

Lemma 6(ii) implies

M |= ∀x[A(x, F ′)→ G′(x)].(7)

Using this together with (5) yields

M |= ∀x[A(x, F ′)→ F ′(x)].(8)

Now define Z = {u : M |= F ′(u)}. Since the formula M |= F ′(u) is arithmetic, Z exists by
arithmetical comprehension. As a result of (8) we have

∀x[A(x, Z)→ x ∈ Z](9)

and hence I∗A ⊆ Z. Thus by (2) n0 ∈ Z, and so

M |= F ′(n0).(10)

(6) and (10) are contradictory. ut

Theorem 12.
ID∗1 D ⇒ Σ1

1-DC0 D∗
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Proof. Lemma 7 and 11 show that (IA.1)∗ and (IA.2)∗ respectively are provable in Σ1
1-DC0. More-

over if IA occurs positively in A(x, IB) then, by Lemma 4, (A(x, IB))∗ is essentially Π1
1 and therefore

by Lemma 8, Σ1
1-DC0 contains the induction scheme for it. ut

Corollary 13. |ID∗1| = ϕω0 and |ID∗1 + INDN| = ϕε00.

Proof. Since |Σ1
1-DC0| = ϕω0 (see [5]) the embedding in Theorem 12 shows that |ID∗1| ≤ ϕω0.

Likewise Theorem 12 shows that ID∗1 + INDN can be embedded into Σ1
1-DC0 plus full induction on

natural numbers. As the latter theory is known to have proof-theoretic ordinal ϕε00 (cf. [7]), we
arrive at |ID∗1 + INDN| ≤ ϕε00. ϕω0 ≤ |ID∗1| and ϕε00 ≤ |ID∗1 + INDN| are well known results. For
the sake of references, the first inequality follows for example from [11] Corollary 8 and the second
inequality follows from [4]. ut

Prospectus: The method of ω-model reflection has been extended in [2] to give exact bounds
for the theories ID∗n. It can also be employed to analyze stronger fragments of ID1. For instance the
fragment which arises by requiring the formulae A(u, P+) to be Π0

1 and the formulae F in (IA.2) to
be ∆0

0 in inductive predicates has been used in [10] to find an upper bound for a theory of truth E
in [9]. Here one utilizes the connection with Π1

3 ω-model reflection to carry out an argument akin
to Lemma 11.
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