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Abstract

The infinite Ramsey theorem is known to be equivalent to the state-
ment ‘for every set X and natural number n, the n-th Turing jump of
X exists’, over RCA0 due to results of Jockusch [5]. By subjecting the
theory RCA0 augmented by the latter statement to an ordinal analysis,
we give a direct proof of the fact that the infinite Ramsey theorem has
proof-theoretic strength εω. The upper bound is obtained by means of cut
elimination and the lower bound by extending the standard well-ordering
proofs for ACA0. There is a proof of this result due to McAloon [6], using
model-theoretic and combinatorial techniques. According to [6], another
proof appeared in an unpublished paper by Jäger.

1 Introduction

Ramsey’s theorem for infinite sets asserts that for every k ≥ 1 and colouring of
the k-element subsets of N with finitely many colours, there exists an infinite
subset of N all of whose k-element subsets have the same colour [7]. We will
denote the previous statement, when specialised to a fixed k, by RT(k). It is
well known that ACA0 is equivalent to RT(k) for any (outer world) k ≥ 3 [11].
However, the general assertion of Ramsey’s theorem, ∀xRT(x) (abbreviated
henceforth by iRT), is stronger than ACA0.

For b ≥ 1 we write F : [A]n → b to signify that F maps the n-element
subsets of A into the set {0, . . . , b− 1}. X ⊆ A is said to be monochromatic for
F if F is constant on [X]n.

It is known from work of Jockusch [5, Theorem 5.7] that iRT is not provable
in ACA0. More precisely, for every n ≥ 0, there is a recursive F : [N]n+2 → 2
such that the n-th Turing jump of ∅ is recursive in any infinite F -monochromatic
X ⊆ N. On the other hand, it also follows from [5, Theorem 5.6] that for every
recursive F : [N]n → b and n ≥ 0 there exists an F -monochromatic X recursive
in the n-th Turing jump of ∅.

For X,Y ⊆ N and n < ω, let jump(n,X, Y ) abbreviate the formula stating
that Y is the n-th Turing jump of X. By relativising the results of [5], we arrive
at the following theorem (cf. [6]).

Theorem 1. ACA0 +∀n∀X∃Y jump(n,X, Y ) and ACA0 + iRT prove the same
statements.
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By [6], ACA0 + iRT has the same first order consequences as the theory
obtained from PA by iterating the uniform reflection principle arbitrarily often.
This will also follow from Theorem 21, in light of the well-known fact that the
latter theory has proof-theoretic ordinal εω (see [8]). It is also worth mention-
ing that the paper [12] (whose results actually postdate those in the present
paper) contains, among other things, a characterization of the Π0

2 consequences
of ACA0 augmented by the infinite Ramsey theorem.

We fix a primitive recursive ordering � on ω of order type Γ0. For α � Γ0,
let TI(≺ α) denote the scheme of transfinite induction on initial segments of α,
i.e.

∀ξ(∀δ ≺ ξA(δ)→ A(ξ))→ ∀ξ ≺ β̄A(ξ),

for every β ≺ α and every arithmetical formula A(x). Here β̄ denotes the
numeral corresponding to the ordinal β. The proof-theoretic ordinal of a theory
T , is the least α such that T is equivalent to PA + TI(≺ α), in the sense that
they prove the same statements of arithmetic, and this fact can be established
on the basis of PA.

The theory ACA0 + ∀n∀X∃Y jump(n,X, Y ), commonly denoted by ACA′0,
has previously been shown to have proof-theoretic ordinal εω in [6]. The lat-
ter paper uses model-theoretic and combinatorial techniques but also draws on
proof-theoretic results in order to construct an instance of transfinite induc-
tion up to εω that cannot be proven in ACA′0, and thereby indicates that the
strength of the theory is bounded by εω. An unpublished proof using proof-
theoretic means is attributed to Jäger [6]. However, to the authors’ knowl-
edge no proof using cut elimination is available in the published literature.
This paper provides a simple proof-theoretic ordinal analysis of the system
ACA0 + ∀n∀X∃Y jump(n,X, Y ). The upper bound is obtained by means of
cut elimination and the lower bound by extending the standard well-ordering
proofs for ACA0 as in [9]. For the definitions of systems of comprehension,
ordinal notation and other basic definitions we refer the reader to [1, 11]. The
results presented here form part of [1].

2 The semi-formal system ACA∞

Let ACA∞ be the infinitary calculus corresponding to ACA0. Informally, the
system ACA∞ is obtained from ACA0 by replacing the set induction axiom,
i.e. ∀X(0 ∈ X ∧∀x(x ∈ X → x+ 1 ∈ X)→ ∀n n ∈ X), by the infinitary ω-rule.

The language of ACA∞ is the same as that of ACA0 but the notion of a
formula comes enriched with predicators. Formulae and predicators are defined
simultaneously. Literals (atomic or negated atomic formulae) are formulae.
Every set variable is a predicator. If A(x) is a formula without set quantifiers,
i.e. arithmetical, then {x | A(x)} is a predicator. If P is a predicator and t is a
numerical term, then t ∈ P and t /∈ P are formulae. The other formation rules
pertaining to ∧,∨,∀x, ∃x, ∀X,∃X are as usual.
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We will be working in a Tait-style formalisation of the second order arith-
metic. By a sequent Γ we mean a finite set of formulae in the language of second
order arithmetic, L2. Due to the presence of the ω-rule we need only consider
formulae without free numerical variables.
The axioms of the system ACA∞ are

• Γ, L where L is a true literal;

• Γ, s ∈ X, t /∈ X where s and t are terms of the same value.

The rules of ACA∞ are

Γ, Ai for i < 2
(∨i)

Γ, A0 ∨A1

Γ, A0 Γ, A1
(∧)

Γ, A0 ∧A1

Γ, A(n̄) for all n
(ω)

Γ,∀xA(x)

Γ, A(s)
(∃1)

Γ,∃xA(x)

Γ, A(X) X not free in Γ
(∀2)

Γ,∀XA(X)

Γ, A({x | A0(x)})
(∃2)

Γ,∃XA(X)

Γ, A(t)
(Pr1)

Γ, t ∈ {x | A(x)}
Γ,¬A(t)

(Pr2)
Γ, t /∈ {x | A(x)}

Γ, A Γ,¬A
(Cut)

Γ

The rank of a formula A, denoted |A|, is defined as follows.

• |L| = 0, if L is a literal.

• |s ∈ P | = |s /∈ P | = |A(0̄)|+ 1, if P is the predicator {x | A(x)}.

• |A0 ∧A1| = |A0 ∨A1| = max{|A0|, |A1|}+ 1.

• |∀xA(x)| = |∃xA(x)| = |A(x)|+ 1.

• |∀XA(X)| = |∃XA(X)| = max{|A(X)|+ 1, ω}.

For ordinals α, κ ≺ Γ0, we write ACA∞
α

κ Γ to convey that the sequent Γ is
deducible in ACA∞ via a derivation of length � α containing only cuts on
formulae of rank ≺ κ. More precisely, this notion is defined inductively as
follows: If Γ is an axiom of ACA∞ then ACA∞

α

κ Γ holds for any α and κ.

If αi < α and ACA∞
αi
κ Γi hold for all premisses Γi of an ACA∞-inference

with conclusion Γ, then ACA∞
α

κ Γ , provided that in the case of (Cut) the cut-
formulae also have ranks ≺ κ.
ACA∞ corresponds to the system EA∗ in [9] and can be interpreted into the first
level of the semi-formal system of Ramified analysis, RA∗. The fact that ACA∞
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enjoys cut elimination is folklore and the proof involves the standard techniques
of predicative proof theory. For proofs of the following see, for example, [1, 9].

Lemma 2.

1. ACA∞
|A|·2
0

Γ, A,¬A for every arithmetical formula A.

2. If Γ contains an axiom of ACA0, then ACA∞
ω+k

0
Γ for some k < ω.

Theorem 3 (First Cut Elimination Theorem for ACA∞). Let α, β ≺ Γ0 and

k < ω. If ACA∞
α

β+k
Γ , then ACA∞

ωk(α)

β
Γ where ω0(α) = α and ωk+1(α)

= ωωk(α).

Theorem 4 (Second Cut Elimination Theorem for ACA∞). Let ω � α ≺ Γ0.
If ACA∞

α

ω Γ , then ACA∞
εα

0
Γ .

3 An upper bound for ACA0 + iRT

Let T denote the theory ACA0 + ∀n∀X∃Y jump(n,X, Y ). We will obtain an
upper bound on the strength of this theory by a combination of embeddings and
cut elimination theorems. We first embed T into an intermediate theory T ∗.
The semi-formal system T ∗ has the same language as ACA∞. If A is a formula
of T , then we write A∗ to refer to any formula obtained from A by substituting
all number variables by arbitrary closed terms. The system T ∗ has as axioms
all sequences Γ, A∗ such that A is a basic axiom of ACA0 or the set induction
axiom. Moreover, we have the following axioms in T ∗.

• Γ, A,¬A if A is arithmetical.

• Γ, jump(n̄, P, SPn ) for every n and arithmetical predicator P .

In above, SPn is the arithmetical predicator which defines the n-th Turing jump
of P . The predicator SPn is formally defined as follows.

SP0 = {x | ∃u[x = 〈0, u〉 ∧ u ∈ X]},
SPn+1 = {x | ∃u[x = 〈n+ 1, u〉 ∧ ∃v {u}(S

P
n )n(u) = v]},

where 〈., .〉 is a primitive recursive pairing function, {u}Y represents the u-th
partial recursive function with oracle Y , and (Y )n denotes the n-slice of the set
Y , i.e. (Y )n = {y | 〈n, y〉 ∈ Y }. The logical rules of T ∗ are the same as in
ACA∞. The rank of a formula and notation T ∗

α

κ Γ are defined analogously.
From the choice of the axioms of T ∗ and the fact that the rank of a formula is
always strictly less than ω + ω we can derive the following.

Theorem 5 (Embedding Theorem). Suppose T ` B. Then there exist natural
numbers n and m such that T ∗

n

ω+m
B∗ holds for all B∗.
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We now perform partial cut elimination in T ∗. The following reduction
lemma goes through in the standard way.

Lemma 6 (Reduction Lemma). Let n0, n1 < ω and |A| = κ � ω. If T ∗
n0

κ Γ, A

and T ∗
n1

κ ∆,¬A , then T ∗
n0+n1

κ Γ,∆ .

Proof. By induction on the sum n0 + n1. We show the interesting case where
both A and ¬A are active in the derivations and A is derived via the (∀2)-rule.
Suppose A is of the form ∀Y A0(Y ) and we have

(1)
m0

κ Γ, A0(X), [∀Y A0(Y )] m0 < n0
(∀2)

(2)
n0

κ Γ,∀Y A0(Y )

where X is not free in Γ ∪ {∀Y A0(Y )}, and

(3)
m1

κ ∆,¬A0(P ), [∃Y ¬A0(Y )] m1 < n1
(∃2)

(4)
n1

κ ∆,∃Y ¬A0(Y )

where P is an arithmetical predicator. In the above inferences, we write [B] to
emphasise that the formula B may or may not have appeared in the premise of
the original inference. Applying the induction hypothesis to (2) and (3) yields

n0+m1

κ Γ,∆,¬A0(P ) , (5)

and to (1) and (4) yields

m0+n1

κ Γ,∆, A0(X). (6)

It is not hard to show that (6) implies
m0+n1

κ Γ,∆, A0(Q) for any arithmetical
predicator Q and in particular

m0+n1

κ Γ,∆, A0(P ). (7)

Since |A0(P )| ≺ |∀Y A0(Y )| = κ, we may perform a cut on (5) and (7) to

conclude
n0+n1

κ Γ,∆ as required. For full details see [1, §3]. ut

Theorem 7 (Cut Elimination Theorem). If T ∗
n

ω+m+1
Γ for some m,n < ω,

then T ∗
2n

ω+m
Γ .

Proof. By induction on n. If Γ is an axiom, then
0

0
Γ . Otherwise, there are two

cases to consider. Suppose Γ is of the form Γ′, A and we have

ni

ω+m+1
Γ′, Ai i < ω, ni < n

(R)n

ω+m+1
Γ′, A
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where R is any of the rules of T ∗ except the cut rule. By applying the induction

hypothesis to the premise(s) of the above inference we obtain
2ni

ω+m
Γ′, Ai . Re-

applying the rule (R) yields
2n

ω+m
Γ .

If the last inference was a cut, namely,

n0

ω+m+1
Γ, A

n1

ω+m+1
Γ,¬A

(Cut)n

ω+m+1
Γ

where n0, n1 < n and |A| � ω+m, by applying the induction hypothesis to the
premises of the above cut we obtain

2n0

ω+m
Γ, A and

2n1

ω+m
Γ,¬A .

If |A| ≺ ω + m, by a cut on A we derive
2n

ω+m
Γ . Otherwise, the Reduction

Lemma yields
2n0+2n1

ω+m
Γ , thus by monotonicity we obtain the desired result. ut

Corollary 8. For n,m < ω, if T ∗
n

ω+m
Γ , then T ∗

2nm
ω Γ where 2n0 = n and

2nk+1 = 22nk .

Finally, to analyse T we will embed T ∗ into ACA∞ so that we can eliminate
the remaining cuts and read off an upper bound. First we need the following
lemma, which can be verified by induction.

Lemma 9. There are primitive recursive functions f, g such that for each n,

f(n), g(n) < ω and ACA∞
f(n)

g(n)
Γ, jump(n̄, P, SPn ) .

Theorem 10. Let Γ be a finite set of arithmetical formulae and k < ω. Then

T ∗
k

ω Γ implies ACA∞
εk

0
Γ .

Proof. By induction on k. If Γ is an axiom of T ∗ we have the following three
cases to consider. If Γ is the sequent Γ′, A∗ where A is a basic axiom of ACA0 or

the set induction axiom, then we have, by Lemma 2, that ACA∞
ω+k

0
Γ′, A∗ for

some k < ω. If Γ is the sequent Γ′, jump(n̄, P, SPn ) where P is an arithmetical

predicator, Lemma 9 yields ACA∞
f(n)

g(n)
Γ, jump(n̄, P, SPn ) . By applying the

First Cut Elimination theorem for ACA∞ we obtain

ACA∞
ωg(n)(f(n))

0
Γ, jump(n̄, P, SPn ) ,

with ωk defined as in Theorem 3. Since f(n), g(n) < ω, we have ωg(n)(f(n)) ≺
ε0, and hence may deduce ACA∞

ε0

0
Γ, jump(n̄, P, SPn ) . Let Γ be of the form

Γ′, A,¬A with A being arithmetical. As ACA∞
|A|·2
0

Γ, A,¬A holds due to
Lemma 2, monotonicity provides the desired result.

Now suppose Γ is derived by an application of a logical rule in T ∗. If the
last inference is a cut, then we have
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T ∗
k0

ω Γ, A T ∗
k0

ω Γ,¬A
(Cut)

T ∗
k

ω Γ

where k0 < k and A is arithmetical. Applying the induction hypothesis to the

premises of the above cut yields ACA∞
εk0

0
Γ, A and ACA∞

εk0

0
Γ,¬A . Ap-

plying a cut to A, we conclude that ACA∞
εk0

+1

m Γ for m = |A| + 1. Thus

ACA∞
ωm(εk0

+1)

0
Γ and so we may deduce ACA∞

εk

0
Γ .

If Γ is derived via the (∀2)-rule, Γ must be of the form Γ′,∀Y A0(Y ) and we
have

T ∗
k0

ω Γ′, A0(X) X is not free in Γ′ and k0 < k
(∀2)

T ∗
k

ω Γ′,∀Y A0(Y )

Applying the induction hypothesis to the premise of the above inference yields

ACA∞
εk0

0
Γ′, A0(X) . Re-applying (∀2)-rule allows us to deduce ACA∞

εk

0
Γ .

The other cases are similar. ut

Corollary 11. Every arithmetical theorem of T without set variables is deriv-
able in PA + TI(≺ εω).

Proof. Suppose A is an arithmetical sentence and T ` A. By the Embedding
Theorem T ∗

n

ω+m
A holds for some n,m < ω. Cut elimination for T ∗ yields

T ∗
k

ω A holds for some k < ω. By embedding T ∗ into ACA∞ we arrive at

ACA∞
εk

0
A . This means that A is derivable in ACA∞ directly from the axioms

and first order rules, and, moreover, if A is of complexity Π0
n for some n, then

all formulae occurring in this cut-free derivation belong to the same complexity
class. By employing a partial truth predicate for Π0

n-formulae and transfinite
induction up to εk+1, one shows that PA + TI(≺ εω) ` A (cf. [10]). ut

4 A lower bound for ACA0 + iRT

To deduce that εω is also a lower bound for the strength of the theory T , we
will show that T can prove the well-foundedness of all ordinals strictly less than
εω. Our method is to extend the standard well-ordering proofs for ACA0 as for
instance given in [9, Theorem 23.3]. Let us denote by Sp the operator defined
by

Sp(V ) = {α | ∀ξ(ξ ⊂ V → ξ + ωα ⊂ V )},

where ξ ⊂ V abbreviates ∀x(x ≺ ξ → x ∈ V ). For sets X and Y we write X ≤e
Y to convey that ∀x(KX(x) = {e}Y (x)), where KX denotes the characteristic
function of the set X. The aim of the next few lemmata is to establish that in
the theory T finite iterations of the Sp operator can be coded into a single set.
They are easy to verify using the Kleene T -predicate and S-m-n theorem [3].
Detailed proofs can be found in [1, §3]. In the following X(n) denotes the n-th
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Turing jump of X, i.e. the set Y such that jump(n,X, Y ). We also use X ′ and
X ′′ respectively for X(1) and X(2).

Lemma 12. Let A(x, y, z, U) be a ∆0
0-formula (of the language of ACA0) with

all the free variables exhibited and U being a free set variable. Then there exists
a natural number e such that for every X ⊆ N

{n | ∀x∃yA(x, y, n,X)} ≤e X ′′.

Proof. Since for every set X ⊆ N the set {〈x, n〉 : ∃yA(x, y, n,X)} is recursively
enumerable in X (uniformly in X), there exists an index e0 depending only on
the formula A(x, y, z, U) such that for all natural numbers n and sets X ⊆ N,

∀x∃yA(x, y, n,X) iff ∀x〈e0, 〈x, n〉〉 ∈ X ′.

Likewise, there is some d0 such that for all sets Y ⊆ N, {d0}Y is total and

∀x〈e0, 〈x, n〉〉 ∈ Y iff 〈d0, 〈e0, n〉〉 ∈ Y ′ .

It immediately follows from the S-m-n theorem that there is an index e such
that {n | ∀x∃yA(x, y, n,X)} ≤e X ′′. ut

In particular, since Sp(X) is Π0
2 in X we can deduce the following.

Corollary 13. ACA0 proves the existence of a natural number e that satisfies
Sp(X) ≤e X ′′ for all X ⊆ N.

Lemma 14. There is a primitive recursive function ◦ : ω × ω → ω such that
for any sets X, Y , Z, if X ≤e Y and Y ≤f Z, then X ≤e◦f Z.

Lemma 15. There is a primitive recursive function N such that X ′ ≤N(e) Y
′

whenever X ≤e Y .

Corollary 16. There exists a primitive recursive function g such that

Spn(X) ≤g(n) X
(2n),

where Spn is inductively defined as Sp0(X) = X and Spn+1(X) = Sp(Spn(X)).

Proof. We define g by induction on n. Suppose n = 0. Let g(0) be the index of
the identity function. Then Sp0(X) ≤g(0) X holds trivially. For the induction
step suppose n = k + 1. By Corollary 13 there is an e (independent of k) such
that

Sp(k+1)(X) = Sp(Sp(k)(X)) ≤e (Sp(k)(X))(2).

Using the induction hypothesis we may assume Sp(k)(X) ≤g(k) X
(2k). Lemma

15 entails
(Sp(k)(X))(2) ≤N(N(g(k))) (X(2k))(2) = X(2k+2),

and Lemma 14 yields

Spk+1(X) ≤g(k+1) X
(2k+2),

by setting g(k + 1) = e ◦ N(N(g(k))). Since g is primitive recursive we are
done. ut
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Lemma 17. T ` ∀x∀X∃Y A(x,X, Y ), where A is the formula defined by (Y )0 =
X ∧ ∀n < x (Y )n+1 = Sp((Y )n).

Proof. We argue informally within T . Given x and X define

Y = {〈n, z〉 | n ≤ x ∧ {g(n)}X
(2n)

(z) ' 0},

where g is the primitive recursive function given by Corollary 16. It is easy to
see that (Y )0 = X. Moreover, for n ≤ x,

z ∈ (Y )n iff {g(n)}X
(2n)

(z) ' 0.

By Corollary 16 we have (Y )n = Sp(n)(X). Thus Sp(Sp(n)(X)) = Sp((Y )n),
and hence for n < x we can deduce (Y )n+1 = Sp((Y )n) as required. ut

Let Tran(≺) and LO(≺) be abbreviations for formulae stating ≺ is transitive
and a linear order respectively. Fund(α,X) is the formula

Tran(≺) ∧ (Prog≺(X)→ ∀ξ ≺ α (ξ ∈ X)),

where Prog≺(X) = ∀x(∀y(y ≺ x → y ∈ X) → x ∈ X), and TI(α,X) is the
formula

LO(≺) ∧ Fund(α,X).

The following lemma is well known. For a proof see [9, §21, Lemma 1].

Lemma 18. For every set X and α ≺ Γ0,

ACA0 ` Fund(α, Sp(X))→ Fund(ωα, X).

Lemma 19. T ` Fund(ε0, X).

Proof. We argue informally within T . Fund(α,X) is progressive in α, therefore
it suffices to show ∀nFund(ωn(ω), X). By Lemma 17, A(n + 1, X, Y ) holds for
some Y . On the other hand as induction up to ω is available in T for every
set, Fund(ω, (Y )n) holds. Since (Y )n = Sp((Y )n−1), by using Lemma 18 and
an internal induction on n we obtain Fund(ωn(ω), (Y )0). ut

We can now show that T proves the well-foundedness of ordinals strictly less
than εω.

Theorem 20. For each k < ω, T ` Fund(ε̄
k
, X).

Proof. Since k is given externally, in the formal theory T it is named by k̄, the
k-th numeral. Below, for ease of presentation, we shall identify k and k̄. The
proof proceeds by external induction on k. For a fixed k, by internal recursion

on n define αk0 = εk−1 +1 and αkn+1 = ωα
k
n . This time start with Fund(αk0 , (Y )n)

and proceed as in Lemma 19 to derive ∀nFund(αkn, X). Since supn α
k
n = εk we

can deduce Fund(εk, X). ut
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5 Conclusion

We have shown that our upper bound for the proof-theoretic ordinal of the
theory T is indeed the least one. This allows us to determine the proof-theoretic
strength of T , and hence that of the infinite Ramsey theorem.

Theorem 21. The theory ACA0 + iRT, i.e. ACA0 augmented by the infinite
Ramsey theorem, proves the same arithmetical statements as PA + TI(≺ εω).

Proof. Since ACA0 + iRT is equivalent to ACA0 +∀n∀X∃Y jump(n,X, Y ), The-
orem 20 implies ACA0+iRT ` TI(εk̄, X) for every k < ω, and thus ACA0+iRT `
TI(≺ εω). Corollary 11 provides the other direction. ut
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