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MARGINALITY APPROACH TO SHAPLEY VALUE IN GAMES
WITH EXTERNALITIES

Oskar Skibski , Tomasz P. Michalak and Michael Wooldridge1

One of the long-debated issues in coalitional game theory is how to extend the
Shapley value to games with externalities. In particular, when externalities occur, a
direct translation of Shapley’s axioms does not imply a unique value. In this paper
we study the marginality approach to this problem, based on the idea of an α-
parametrized definition of the marginal contribution, where α is a vector of weights
associated with an agent joining/leaving a coalition. We prove that all values that
satisfy the direct translation of Shapley’s axioms can be obtained using the marginal-
ity approach. Moreover, we show that every such value can be uniquely derived us-
ing marginality approach by choosing appropriate weights α. Next, we analyze how
properties of a value translate to the requirements on the definition of the marginal
contribution (i.e. weights α). Building upon this analysis, we show that under certain
conditions, two other axiomatizations of the Shapley value (i.e., Young’s marginality
axiomatization and Myerson’s axiomatization based on the concept of balanced con-
tributions), translated to games with externalities using the proper definition of the
α-parametrized marginal contribution, are equivalent to Shapley’s axiomatization.

Keywords: Shapley value, partition function games, axiomatization.

1. INTRODUCTION

Fair division of surplus achieved via cooperation is one of the fundamental con-
cerns of coalitional game theory. It is relevant to a wide range of economic and
social situations, from sharing the cost of a local wastewater treatment plant,
through dividing the annual profit of a joint venture enterprise, to determin-
ing power in voting bodies. Assuming that the coalition of all the players (i.e.
the grand coalition) forms, Shapley [17] proposed a unique division scheme that
meets the following four axioms: Efficiency—all payoff is distributed among the
players, Null Player—a player with no influence on payoffs receives nothing,
Symmetry—symmetric players obtain the same payoff, and Additivity—i.e. that
the division scheme is additive. However, this remarkable result, now called the
Shapley value, holds only when one cooperative arrangement does not impose
externalities on other arrangements. Such an assumption is clearly untenable in
many practical economic situations of interest. For example, on the oligopolistic
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market, joint R&D projects increase the competitive edge of cooperating com-
panies. Similarly, the extent of pollution reduction achieved by an international
treaty depends not only on its signatories but also on similar agreements among
non-participants. Extending the Shapley value to all such settings has been a
subject of ongoing debate in the literature for more than forty years. This is also
the focus of our paper.

A natural requirement for a fair division scheme is that it remunerates the
players of a coalitional game taking into account their contribution to the surplus
generated via cooperation. Indeed, in Shapley’s axiomatization, the Null-Player
Axiom requires that no share be allocated to players with zero contribution
to any possible coalition that could be created in the coalitional game. The key
issue, then, is how such contribution should be measured. Although not explicitly,
Shapley’s Null-Player Axiom relies on the concept of marginal contribution, one
of the fundamental notions in economic theory.

In the cooperative-game context, the marginal contribution of a player to a
coalition is the difference between the value of this coalition with and without
the player. It can be also understood as a loss incurred by the remaining players
should the player leave a given coalition. Considering this latter intuition, the
Shapley value is defined as the average marginal contribution of a player, taken
over all possible ways to dissolve the grand coalition by removing players one after
the other in a queue (i.e. permutation) until the empty coalition is obtained.1

In any given permutation, the marginal contribution of a particular player is
assigned deterministically as it does not play a role in what a player does after
leaving a coalition. This is, however, not the case in games with externalities,
where the definition of the marginal contribution becomes much more intricate.

When externalities are present, the value of the coalition that a player has left
may be influenced by which coalition, if any, this player subsequently joins. In
other words, the choice of action after leaving a coalition may result in different
values of the player’s marginal contribution to it. A way to account for all such
values is to assume that a player can choose to join different coalitions with
different probabilities—we will denote the set of such probabilities (or weights)
by α. Then, in games with externalities, the sequential dissolution of the grand
coalition according to a given permutation of players can be viewed as a stochastic
and not deterministic process.2 The marginal contribution of a player is then
the difference between the value of the coalition with the player and the expected
value of this coalition when the player has left.

In games with externalities, not only the definition of the marginal contribu-
tion but also the axiomatization of the value becomes more involved, and it can
be easily shown that the standard translation of Shapley’s four axioms to games
with externalities is not sufficient to obtain a unique value. A number of methods

1Note that typically the intuition behind the Shapley value is presented as a process of join-
ing coalitions. We adopt a reverse convention as more convenient for games with externalities.

2An interesting recent model of coalition formation as a stochastic process, though with no
externalities, can be found in [5].
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have been developed in the literature to address this issue. Some, such as [16] and
[9], managed to obtain uniqueness via modification of some of Shapley’s original
axioms. Other contributors added new axioms (and sometimes dropped some of
the original ones) driving increasingly further away from Shapley’s axiomatiza-
tion. For instance, Grabisch and Funaki used Markovian and Ergodic Axiom and
modified Symmetry and the Null-Player Axiom [7]. Yet another method was to
build extensions to games with externalities relying on alternative axiomatiza-
tions of the original Shapley value, such as Myerson’s [13] balanced-contribution
axiomatization or Young’s [19] monotonicity axiomatization.

In all of the above methods, agents can be remunerated based on their marginal
contribution parametrized with α. To date, the most general result in this spirit
was obtained for the third method, where Fujinaka [6] proved that, for any α,
Young’s monotonicity axiomatization, parametrized with α, guarantees a unique
value. However, no such study for Shapley’s original axiomatization exists in the
literature.

Therefore, in this paper, we focus on the first method, that is, we study how
Shapley’s original axiomatization can be adapted to games with externalities
using marginal contribution parametrized with α-weigths. We will refer to such
an approach as to the “marginality approach”.

We begin by proving that, for every value of α, Shapley’s original axioms
of Efficiency, Symmetry, Additivity and the α-parametrized Null-Player Axiom
yield a unique extension of the Shapley value to games with externalities. We
will refer to this value as to α-value. The results by [16, 9, 18], focusing on three
particular sets of weights α, can be considered as special cases of this general
theorem. Furthermore, this theorem is a counterpart of Fujinaka’s [6] result for
Young’s axiomatixation. We then extend the analysis of marginality approach
as follows.

A fundamental question arising with respect to α-value is: which values—either
among those already proposed in the literature or any new potential ones—can
be defined as an α-value? As the key result of our work, we prove the marginality
approach encompasses all values that satisfy Shapley’s original axiomatization
and exactly those.

Next, we analyze how properties of an α-value translate into properties of
weights α. In particular, we focus on the axioms of Weak Monotonicity, Strong
Monotonicity, Strong Symmetry, and the Strong Null-Player Axiom.

Weak (Strong) Monotonicity states that if we increase the value of a coalition
containing a player, the payoff of this player will not decrease (will increase). We
prove that α-value satisfies Weak (Strong) Monotonicity if and only if weights α
are non-negative (positive).

The next axiom, Strong Symmetry, requires that the value of any coalition
has a symmetric influence not only on the payoffs of its members but also on the
payoffs of all non-members. We prove that α-value satisfies Strong Symmetry if
and only if weights α are such that the permutation in which players leave the
grand coalition does not affect the probability that a given coalition structure is
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eventually created. We say that weights α satisfying this condition are interlace
resistant. As a corollary to this result we have that the average approach of
translating the Shapley value to games with externalities, proposed by Macho-
Stadler et al. [10], is a subclass of the marginality approach and is equivalent to
the marginality approach used with interlace resistant weights.

The Strong Null-Player Axiom states that a player who does not have an
impact on the values of coalitions in the game does not affect the payoff division—
that is, if we remove a null-player the payoffs from the game will stay the same.
We prove that α-value satisfies the Strong Null-Player Axiom if and only if
weights α are such that the probability of joining a particular coalition depends
only on the other coalitions in the coalition structure and not on the coalition
that is being left. This condition on weights α we call expansion resistance.

Although interlace and expansion resistance conditions seem arbitrary, they
emerge to be key to understanding the relationship between the α-parametrized
Shapley axiomatization and the Myerson axiomatization based on the concept
of balanced contributions extended to games with externalities. In our analysis,
we define a game without a player as the difference between the normal game
and the game constructed of marginal contributions of this player. Building upon
this game, we prove that the α-value satisfies Myerson’s axioms (Efficiency, α-
parametrized Balanced Contributions) if and only if α is interlace and expansion
resistant.

The remainder of this paper is organized as follows. In next section, we in-
troduce necessary definitions and notations. In Section 3, we formally introduce
the marginality approach, prove its generality and show that the α-parametrized
Shapley axiomatization yields a unique value. In Section 4, we analyze properties
of weights α. In Section 5, we discuss relationships between different axiomati-
zations. Related work and conclusions follow.

2. DEFINITIONS

Let N = {1, 2, . . . , n} be a set of players. A coalition, S, is any non-empty subset
of N . A partition, denoted P , is any set of disjoint coalitions whose union is
N . For technical convenience, we will assume that ∅ ∈ P for every partition P .
A pair (S, P ), where P is a partition of N and S ∈ P , is called an embedded
coalition. The set of all partitions and the set of all embedded coalitions over N
are denoted by P(N) and EC(N) or, simply, P and EC, when the set of players
is clear from the context.

A game v (in partition-function form) is given by a function that associates
a real number with every embedded coalition, i.e., v : EC → R. A game has
externalities if values of (some) coalitions depend on the arrangement of outside
agents, that is, for at least one coalition S there exist two partitions P1, P2

containing S such that v(S, P1) 6= v(S, P2). Otherwise, we say that the game is
without externalities. Such games can be represented in characteristic-function
form: v̂ : 2N → R. As is customary in the literature, we assume that the grand



MARGINALITY APPROACH 5

coalition will form (i.e., the coalition N of all players). Then the outcome of
the game (or the value of the game) is a vector that distributes the value of the
grand coalition among players.

In various parts of the paper we will use class of simple games 〈e(S,P )〉(S,P )∈EC :

e(S,P )(S, P ) = 1 and e(S,P )(S̃, P̃ ) = 0 otherwise.

Thus, in a simple game e(S,P ) only coalition S in partition P has non-zero payoff.
The set of all permutations of set S will be denoted by Ω(S). As is common in

combinatorics, we identify permutation π ∈ Ω(S) with a corresponding ordering.
Formally, π can be understood as a function that assign positions to players, i.e.,
bijection π : {1, 2, . . . , |S|} → S. We will denote the set of agents that appear in

permutation π after i by Cπi , i.e., Cπi
def
= {π(j) | j > π−1(i)}. The concatenation

of permutations π1, π2 will be denoted π1||π2, e.g., (3, 4, 1)||2||5 = (3, 4, 1, 2, 5)
(for one-element permutation we will omit the brackets).

We use a shorthand notation for set subtraction and set union operations:

N−S
def
= N \ S and S+{i}

def
= S ∪ {i}. Often, we omit brackets and simply write

S+i. For partitions, if P ∈ P(N), then P−i is a partition of players N \i.To model
the partition obtained by the transfer of agent i to coalition T in partition P ,
we introduce the following notation:

τTi (P )
def
= P \ {P (i), T} ∪ {P (i)−i, T+i},

where P (i) denotes i’s coalition in P . Finally, the partition obtained by the

transfer of group players S to a new coalition will be denoted P[S]: P[S]
def
=

{T \ S | T ∈ P} ∪ {S}.
For games without externalities, Shapley [17] famously proved that there exists

only one payoff distribution scheme that satisfies four desirable axioms. We state
them in the general form, i.e. using the notation for games with externalities, so
that their definition will also hold in the remainder of this paper. We will call
them a direct translation of Shapley’s axioms, or simply, Shapley’s axioms:
• Efficiency (the entire available payoff is distributed among agents):

∑
i∈N ϕi(v) =

v(N, {N, ∅}) for every game v;
• Symmetry (payoffs do not depend on the agents’ names): ϕ(f(v)) = f(ϕ)(v)

for every game v and every bijection f : N → N ;3

• Additivity (the sum of payoffs in two separate games equals the payoff in
a combined game): ϕ(β1v1 + β2v2) = β1ϕ(v1) + β2ϕ(v2) for all the games

3Function f is a permutation, but we reserve this word to interpreting a sequence. Formally,

f(S) is an image of S: f(S)
def
= {f(i) | i ∈ S} and a f(S, P ) is defined as follows: f(S, P )

def
=

(f(S), {f(T ) | T ∈ P}). Now, game v and value ϕ are functions, thus f(v) and f(ϕ) are
function compositions: (f(v))(S, P ) = v(f(S, P )) and f(ϕi) = ϕf(i). Intuitively, value of (S, P )
in game f(v) equals the value of an embedded coalition obtained by replacing all players i
from (S, P ) with f(i). For example, if f exchange 1 and 2, then f(v)({1}, {{1}, {2, 3}}) =
v({2}, {{2}, {1, 3}}).
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v1, v2 and scalars β1, β2 ∈ R, (v1 + v2)(S, P )
def
= v1(S, P ) + v2(S, P ) and

(βv)(S, P )
def
= β · v(S, P );4

• Null-Player Axiom (agents that do not have an impact on the value of any
coalition should get nothing): ∀(S,P )∈EC,i∈Sv(S, P )−v(S−i, τ

T
i (P )) = 0⇒

ϕi(v) = 0 for every game v and agent i ∈ N .

The value is defined by the following equation:

Shi(v̂) =
1

|N |!
∑

π∈Ω(N)

v̂(Cπi ∪ {i})− v̂(Cπi ).

Shapley presented the following bargaining process. Assume that players enter
the grand coalition in a random order. As a player enters, he receives a payoff
that equals his marginal contribution to the group of players that he joins (i.e.,
v(S∪{i})−v(S) when i joins coalition S). Now, the Shapley value is the expected
outcome of player’s contributions over all orders (permutations).

Whereas in games with no externalities the marginal contribution of a player in
a given permutation is deterministic, this is not necessarily so when externalities
are present. A general approach to this more complex situation is discussed in
the next section.

3. MARGINALITY APPROACH AND AXIOMS

In this section we study the marginality approach to extending the notion of the
Shapley value to games with externalities. We begin by presenting the origins
of this approach, traces of which can be already found in Bolger [2], and which
have been then subsequently used by a few authors to develop their particular
extensions [16, 9, 18]. Then, in our analysis of the marginality approach, we
first generalize these results from the literature and prove that Shapley’s original
axioms of Efficiency, Symmetry, Additivity and the parametrized Null-Player
Axiom always yield a unique extension to games with externalities. Building
upon this, we introduce our main theorem, that the marginality approach is
universal, i.e. it allows for obtaining all extensions that satisfy Shapley’s axiom
and exactly those. Finally, we propose a bargaining process which evaluates to
such a value.

4This translation of Additivity is consistent with [2, 10, 11, 18]. In the original axiomatiza-
tion, Shapley used a weaker version: ϕ(v1+v2) = ϕ(v1)+ϕ(v2). In games without externalities,
it was enough to imply that the value is linear; thus, the payoff division does not depend on
the unit it is calculated with (i.e., ϕ(βv) = βϕ(v)). However, in games with externalities, the
weaker version of Additivity combined with Shapley’s other three axioms implies that the value
can be scaled, but only by rational numbers (see [10] for details). While we are not aware of
real-life applications in which irrational values of coalitions occur, for consistency with the lit-
erature, we allow irrational numbers in the function domain; thus, we strengthen Additivity by
the linearity condition. However, we retain the name Additivity, as this is a natural translation
of this axiom to games with externalities.
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Let us start by considering the following example of a 3-player game with
externalities, where it is easily visible that Shapley’s original axiomatization
does not imply a unique value.
Example 1 Let N = {1, 2, 3} and let the partition function v be defined as fol-
lows: v({1, 2}, {{1, 2}, {3}, ∅}) = a, v({2}, {{1}, {2}, {3}, ∅}) = b, v({2}, {{1, 3},
{2}, ∅}) = c, and v(S, P ) = 0 for all the remaining embedded coalitions. Now,
let us consider a payoff of player 1 in this game that we will denote ϕ1(v). This
payoff, according to the extensions of the Shapley value to games with external-
ities by Pham do and Norde [16], McQuillin [11], Bolger [2], Macho-Stadler et
al. [10], and Hu and Yang [9], respectively, is as follows:

ϕ1(v) =


1
6 (a− b) in the case of Pham do and Norde
1
6 (a− c) in the case of McQuillin
1
6 (a− b+c

2 ) in the case of Bolger and Macho-Stadler et al.
1
6 (a− 3b+2c

5 ) in the case of Hu and Yang

As can be seen, although each of these extensions satisfies the direct translation
of all four original axioms to games with externalities,5 they yield very different
payoffs.

The main challenge when constructing a value for games with externalities
comes from the fact that it is not straightforward to evaluate the role played by
particular players in a setting where evaluating coalitions can be ambiguous, i.e.,
where embedded coalitions may have different values depending on the partition
they are embedded within. All extensions in the literature, including the ones in
Example 1, are, in fact, methods to address this problem. For instance, Macho-
Stadler et al. proposed to assume that the value of coalition S is its weighted
averaged value over all possible partitions (S, P ). The marginality approach is
a more generic method to tackle this problem. As a matter of fact, we prove
that the average approach by Macho-Stadler et al. is the spacial-case of the
marginality approach.

The marginality approach aims at extending the notion of the Shapley value
with an axiomatization which is as close to the original one as possible. Whereas,
as we have seen in Section 2, the translation of Efficiency, Symmetry and Addi-
tivity to games with externalities is straightforward, this is not entirely so with
the Null-Player Axiom. In the direct (or strict) translation of this axiom, a player
is called a null-player if he never has an impact on the value of any coalition. It
means that all his transfers outside a given coalition should not change the value
of this coalition.
Example 2 In Example 1, player 1 is a null-player in this sense if a = b = c.
This is because, under this assumption, we have that the marginal contribution
of 1 to {1, 2} in {{1, 2}, {3}, ∅} considering the transfer to coalition {3} is 0 as
v({1, 2}, {{1, 2}, {3}, ∅})− v({1}, {{1}, {2, 3}, ∅}) = a− c. Analogously, creating

5See below for discussion on the Null-Player Axiom.
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a new coalition (i.e., transferring to an empty one) also yields no contribution.
Furthermore, it is not difficult to observe that this holds for any other marginal
contribution associated with a transfer of player 1 within any partition as payoffs
before and after such a transfer equal zero.

We will call marginal contributions associated with a given transfer within a
partition (such as those considered in Example 2) elementary marginal contri-
butions.

Now, the marginality approach is based on the observation that, given a parti-
tion, although particular transfers may change the value of the embedded coali-
tion, the overall marginal contribution in this partition may still equal zero. For
instance, let us set b = a+ r and c = a− r in Example 1. Despite the fact that
elementary marginal contributions are non-zero, the overall marginal contribu-
tion is zero, if we assume that both transfers are evaluated equally. It is, then,
a less strict translation of the Null-Player Axiom in which we require that the
overall marginal contribution is zero but not necessarily elementary marginal
contributions.

It immediately follows from the above analysis that to specify the marginal
contribution in the marginality approach, one needs to indicate which transfers
are considered and in which proportion. Although, in theory, any function of ele-
mentary marginal contributions is admissible, affine6 combinations of elementary
marginal contributions are enough to obtain every value that meets Shapley’s
axioms (see Theorem 2 for details):

[mcαi (v)](S, P )
def
=

∑
T∈P−S

αi(S−i, τ
T
i (P ))[v(S, P )− v(S−i, τ

T
i (P ))],

where αi : {(S, P ) ∈ EC | i 6∈ S} → R denotes weights of a given transfer under
the assumptions that:

(a) αi(S, P ) = αf(i)(f(S), f(P )) for every bijection f : N → N and (S, P ) ∈
EC such that i 6∈ S (to satisfy Symmetry); and

(b)
∑
T∈P−S αi(S−i, τ

T
i (P )) = 1 for every (S, P ) ∈ EC such that i ∈ S (for

normalization).

Note that αi(S, P ) is the weight associated with i’s transfer from coalition
S+i that results in partition P . For example, the weight of 1’s transfer from
({1, 2}, {{1, 2}, {3}, ∅}) to {3} is denoted by α1({2}, {{2}, {1, 3}, ∅}). The defini-
tion of marginal contribution based on the weights α will be called α-marginality.7

Now, we define the α version of the Null-Player Axiom (parametrized by
weighting α) as follows:

6Linear combination
∑
αixi is called affine when weights sum up to one:

∑
αi = 1.

7For the generality of the approach, we allow negative weights. However, we show in Sec-
tion 4.2 that negative weights produce non-monotonic values; thus, we believe that they should
not be used. Non-negative weights have a natural interpretation as the probability of transfer
and we will refer to this intuition freely.
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• α-Null-Player Axiom (agents that do not contribute to the value of any
coalition should get nothing): ∀(S,P )∈EC,i∈S [mcαi (v)](S, P ) = 0⇒ ϕi(v) =
0 for every game v and agent i ∈ N .

The theorem below states that Shapley’s α-parametrized axiomatization, that
is, Efficiency, Symmetry, Additivity, and α-Null-Player Axiom, is enough to ob-
tain uniqueness for every α and provides a formula for the value. Defining an
extension of the Shapley value to games with externalities with such strength-
ening constitutes the marginality approach.

Before we proceed, let us introduce an important notion of weights com-

position. Let prαπ (S, P )
def
=

∏
i∈N−S αi(S ∪ C

π
i , P[S∪Cπi ]) for permutations π ∈

Ω(N \ S). Thus, if players N \ S leave the grand coalition in order π and form
partition P \ S, then prαπ (S, P ) is the product of weights associated with these
transfers. For example, for permutation π = (1, 2, 3), we have:
prαπ ({4}, {{4}, {1, 2}, {3}, ∅}) =

= α1({2, 3, 4}, {{2, 3, 4}, {1}, ∅}) · α2({3, 4}, {{3, 4}, {1, 2}}) ·
·α3({4}, {{4}, {1, 2}, {3}, ∅})

Now, we will prove the following theorem:
Theorem 1 There exists a unique value that satisfies Efficiency, Symmetry,
Additivity and α-Null-Player Axiom for every α.8 Moreover, it satisfies the fol-
lowing formula:

(1) ϕαi (v)
def
=

1

|N |!
∑

π∈Ω(N)

∑
P∈P

prαπ (∅, P ) · [v(Cπi ∪{i}, P[Cπi ∪{i}])−v(Cπi , P[Cπi ])].

Proof. First we prove that ϕα satisfies all four axioms. Then, we show that this
is the only such value.
Part 1: We examine the axioms one by one. First, let us consider Efficiency. For
any permutation π and partition P , the elementary marginal contributions add
up to v(N, {N, ∅}); thus:∑
i∈N

ϕαi (v) =
1

|N |!
∑

π∈Ω(N)

∑
P∈P

prαπ (∅, P )
∑
i∈N

[v(Cπi ∪ {i}, P[Cπi ∪{i}])− v(Cπi , P[Cπi ])]

=
1

|N |!
∑

π∈Ω(N)

∑
P∈P

prαπ (∅, P ) · v(N, {N, ∅}) = v(N, {N, ∅}),

where the last transformation comes from the fact that weights of all partitions
sum up to one for every permutation:

∑
P∈P pr

α
π (∅, P ) = 1.

Formula (1) clearly shows that the value satisfies Symmetry and Additivity.
Regarding Symmetry, it does not favor any player, hence permutation of coali-
tions’ values will permute payoffs accordingly. The value is additive as ϕαi (v1+v2)
can be split into two expressions representing ϕαi (v1) and ϕαi (v2).

8Although we assumed a stronger definition of Additivity, our proof is based only on the
weaker version that does not force linearity: ϕ(v1 + v2) = ϕ(v1) + ϕ(v2). Consequently, the
theorem also holds for the weaker version.
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To see that ϕα satisfies the α-Null-Player Axiom let us calculate the weight of
a given elementary marginal contribution v(S, P )− v(S−i, τ

T
i (P )) using formula

(1). A transfer from (S, P ) occurs only in permutations where players from N \S
(and only them) appear before player i. Let us assume that they appear in order
π ∈ Ω(N \ S). Then, regardless of the rest of the permutation, the elementary
marginal contribution under consideration is multiplied by product of weights
prαπ (S, P ). The transfer to coalition T causes this product to be multiplied by
αi(S−i, τ

T
i (P )). Finally, we observe that the permutation and the arrangement

of the remaining players does not have an impact on the value (there are (|S|−1)!
such permutations). This is because, for a given permutation, the sum of products
of remaining transfers over all possible partitions sum up to one. Now, if we
collect all transfers from a given embedded coalition (S, P ) we get the following
formula:

(2) ϕαi (v) =
∑

(S,P )∈EC,i∈S

(|S| − 1)!

|N |!
∑

π∈Ω(N−S)

prαπ (S, P ) · [mcαi (v)](S, P ).

Part 2: Next, we will show that ϕα is the only value which satisfies all four of
Shapley’s original axioms. To this end, let us recall the class of simple games
e(S,P ). This class forms the basis of the game space, i.e., every game can be
defined as a linear combination of games e(S,P ): v =

∑
(S,P )∈EC v(S, P ) · e(S,P ).

Based on Additivity, we have ϕ(v) =
∑

(S,P )∈EC ϕ(v(S, P ) · e(S,P )); thus, it is

enough to prove that the axioms imply a unique value in simple game e(S,P )

(multiplied by a scalar). For this purpose, we will use the reverse induction on
the size of S: we will show that the value of game e(S,P ) can be calculated from the

values of simple games for bigger coalitions: e(S̃,P̃ ) where |S̃| > |S|. Our base case
when |S| = |N | comes from the Efficiency and Symmetry: ϕi(c ·e(N,{N,∅})) = c

|N |
for every i.

First, let (S, P ) be any embedded coalition and assume that i 6∈ S. Let us
consider game ṽ combined from two simple games:

ṽ = c · [αi(S, P ) · e(S+i,τ
S
i (P )) + e(S,P )]

It is easy to observe that agent i’s marginal contribution to (S+i, τ
S
i (P )) equals

zero, as with all other marginal contributions. Thus, from Null-Player Axiom
ϕi(ṽ) = 0 and from Additivity:

(3) ϕi(c · e(S,P )) = −ϕi(c · αi(S, P ) · e(S+i,τ
S
i (P ))),

if i 6∈ S.
Now, let us assume otherwise, i.e., that i ∈ S and |S| < |N | (we already con-

sidered simple game e(N,{N,∅})). We have that v(N, {N, ∅}) = 0. From Efficiency,
we can evaluate the sum of payoffs of agents from S as the opposite number to
the sum of payoffs of outside agents (−

∑
j 6∈S ϕj(c · e(S,P ))). This sum, in turn,
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can be calculated with formula (3). Now, based on Symmetry, all agents from S
divide their joint payoff equally:

ϕi(c · e(S,P )) =
1

|S|
∑
k∈S

ϕk(c · e(S,P )) = − 1

|S|
∑
j 6∈S

ϕj(c · e(S,P ))

=
1

|S|
∑
j 6∈S

ϕj(c · αj(S, P ) · e(S+j ,τ
S
j (P )),

if i ∈ S.

Thus, we provided two recursive equations for ϕi(c · e(S,P )) for both cases: i ∈ S
and i 6∈ S. This concludes our proof.

�
The marginality approach may seem arbitrary, that is, there may exist other

values that satisfy Shapley’s axiomatization but that cannot be uniquely derived
from α-parametrized Shapley’s axiomatization. This is, however, not the case.
The next theorem states that the marginality approach encompasses all values
that satisfy Shapley’s axiomatization and exactly those.

Theorem 2 Value ϕ can be obtained using marginality approach if and only if
it satisfies Efficiency, Symmetry, Additivity and the Null-Player Axiom.

Proof. In the proof of Theorem 1 we showed that every value obtained using
marginality approach satisfies all four axioms. Thus, values that do not satisfy
these axioms cannot be obtained using marginality approach.

Assume that ϕ satisfies all four axioms. We will prove that there exists weight-
ing α such that ϕ satisfies also α-Null-Player Axiom. Based on Theorem 2 this
will conclude the proof, as there exists only one value which satisfies Efficiency,
Symmetry, Additivity and α-Null-Player Axiom. First, let us decompose game v
into linear combination of simple games: v =

∑
(S,P )∈EC v(S, P ) · e(S,P ). Based

on Additivity, we have that:

(4) ϕi(v) =
∑

(S,P )∈EC

v(S, P ) · ϕi(e(S,P )).

Now, let (S̃, P̃ ) ∈ EC be any embedded coalition such that i ∈ S̃. Consider game

ṽ = e(S̃,P̃ ) +
∑
T∈P̃−S̃

e(S̃−i,τ
T
i (P̃ )) (i.e., only (S̃, P̃ ) and embedded coalitions

obtained by transfer of i outside S̃ have non-zero values). Player i is a null-
player in ṽ; thus, from the Null-player Axiom we have that ϕi(ṽ) = 0 and from

Additivity that ϕi(e
(S̃,P̃ )) = −

∑
T∈P̃−S̃

ϕi(e
(S̃−i,τ

T
i (P̃ ))). As (S̃, P̃ ) ∈ EC has

been chosen arbitrarily, it holds for every (S, P ) such that i ∈ S; thus, we can
transform equation (4) as follows:

ϕi(v) =
∑

(S,P )∈EC,i∈S

[v(S, P ) · ϕi(e(S,P )) +
∑

T∈P−S

v(S−i, τ
T
i (P ))ϕi(e

(S−i,τ
T
i (P )))]

=
∑

(S,P )∈EC,i∈S

∑
T∈P−S

−ϕi(e(S−i,τ
T
i (P )))[v(S, P )− v(S−i, τ

T
i (P ))].
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Now, we can define αi(S, P ) = −ϕi(e
(S−i,τ

T
i (P )))

ϕi(e(S,P ))
: these are proper weights, as

they sum up to one for every (S, P ) and—based on Symmetry—are symmetrical
(ϕi(e

(S,P )) = ϕπ(i)(e
(π(S),π(P ))) for every (S, P ) ∈ EC). The last transformation

shows that ϕ satisfies the α-Null-Player Axiom:

ϕi(v) =
∑

(S,P )∈EC,i∈S

ϕi(e
(S,P ))

∑
T∈P−S

αi(S, P )[v(S, P )− v(S−i, τ
T
i (P ))]

=
∑

(S,P )∈EC,i∈S

ϕi(e
(S,P ))[mcαi (v)](S, P ).

�
To gain the intuition how weights α impact the value assigned to a player,

we present the bargaining process that would produce the value as its expected
outcome. To this end, we reverse the process presented by Shapley for the value
for games with no externalities and, additionally, investigate partitions of players
outside the grand coalition. For clarity of presentation, we limit ourselves to
positive weights which can be interpreted as the probability of a transfer to
occur.

Assume that players leave a grand coalition in a random order and divide
themselves into groups outside. In each step, one player departs and, with the
probability given by α, enters an existing group outside, or forms a new group.
As the result of the leave, the player is granted with his elementary marginal
contribution, i.e., with the loss of a coalition he left. Now, the value obtained us-
ing marginality approach with weights α is the expected outcome of the player’s
contribution.9

To date in the literature, there have been proposed five particular weights α,
that is, definitions of marginal contributions ([2, 16, 10, 9, 18]. We will discuss all
of them in Section 6, but to illustrate marginality approach we will now present
weights considered by Macho-Stadler et al.:

αMSt
i (S, P ) =

|P (i)−i|
|N | − |S|+ 1

under the convention that |∅| = 1. According to this definition, the effects of
transfers to bigger coalitions are taken with higher weights. Thus, if we look at
the weights α as probabilities, this definition states that a player is more likely
to transfer to a bigger coalition than to a smaller one. Interestingly, this means
that the formation of a given partition in the bargaining process corresponds to
the Chinese restaurant process, known in the field of probability theory.

We have just shown that the marginality approach restricts all payoff division
schemes to those that satisfy Shapley’s axioms, i.e., α-values. In the next sec-

9To include negative weights in this process, one has to assign to players’ transfers weights
instead of probabilities. A composition of such weights for a given permutation will constitute a
weight of the resulting partition. A marginal contribution in a given permutation should be cal-
culated as a sum of all possible elementary marginal contributions multiplied by corresponding
weights.
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tion, we will analyze how some desirable properties of an α-value translate into
properties of weights α.

4. PROPERTIES OF WEIGHTS

In the marginality approach, we concentrate on the weights associated with trans-
fers. It leads to the natural question of how weights will affect the properties of
the resulting value, and what condition have to be met by the weights to obtain
a value with the given properties.

In this section, we provide certain links between properties of an α-value and
the properties of α-weights. We begin by identifying insignificant weights, that
is, weights which do not have an impact on a value. Then, we show how the
axioms of Weak Monotonicity, Strong Monotonicity, Strong Symmetry, and the
Strong Null-Player Axiom translate into properties of significant weights α.

4.1. Significant and Insignificant Weights

If we analyze equation (2) more carefully, we can observe that most weights
appear only in the products of weights and can be arbitrary when those products
evaluate to zero. Moreover, weights of the format αi(∅, ) appear only in marginal
contributions of the form [mcαi (v)]({i}, P ). These marginal contributions always
evaluate to v({i}, P ) and are independent of weights. This leads us to the notion
of significance.
• Significant weights: weight αi(S, P ) is called significant if (S, P ) is non-

empty and probable, that is, if S 6= ∅ and
∑
π∈Ω(N\(S∪{i})) pr

α
π (S+i, τ

S
i (P )) 6=

0.
If we limit ourselves to non-negative weights, then αi(S, P ), such that S 6= ∅, is
significant if and only if there exists a permutation π such that prαπ (S, P ) > 0. In
turn, if all weights are positive, then all αi(S, P ) such that S 6= ∅ are significant.

The following lemma states that only significant weights have an impact on
the value.
Lemma 1 Let α-marginality and α̂-marginality be two definitions of marginal
contribution. Then, α-value and α̂-value differs if and only if there exists an
embedded coalition (S, P ) such that α(S, P ) 6= α̂(S, P ) and both weights are sig-
nificant.
Proof. First, we will prove that insignificant weights do not change the value.
Based on equation (2), weight αi(∅, P ) appears only in the marginal contribution
[mci(v)]({i}, τ∅i (P )) =

∑
T∈P αi(∅, τTi (P ))[v({i}, P ) − v(∅, τTi (P ))] = v({i}, P )

(therefore the particular weights do not matter as long as they sum up to
one). Now, let us consider in which place insignificant weight αi(S, P ) with
S 6= ∅ appears in equation (2). When we calculate the payoff of player i, weight
αi(S, P ) appears only in marginal contribution [mci(v)](S+i, τ

S
i (P )) preceded

by
∑
π∈Ω(N\(S∪{i})) pr

α
π (S+i, τ

S
i (P )) which equals zero. In the payoff of other

players, αi(S, P ) appears in the sum
∑
π̃∈N\S̃ pr

α
π̃ (S̃, P̃ ), where a given product
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is obtained by the sequence of transfers that transform (N, {N, ∅}) into (S̃, P̃ ).
Thus, αi(S, P ) appears only if all other players from N \ S have transferred
before i (and only them):∑

π̃∈N\S̃

prαπ̃ (S̃, P̃ ) =
∑

π2∈Ω(S\S̃)

∑
π1∈Ω(N\(S∪{i}))

prαπ1||i||π2
(S̃, P̃ ).

Now, for a given permutation of players from S \ S̃: π2 ∈ Ω(S \ S̃), if we extract
the product of last |S| − |S̃| weights from the second sum, we see that the whole
sum is multiplied by

∑
π∈Ω(N\(S∪{i})) pr

α
π (S+i, τ

S
i (P ))·αi(S, P ). This equals zero

regardless of weight αi(S, P ).
Now, we will prove that the significant weight has an impact on the value.

Assume that α1 and α2 differ in at least one significant weight. Let (S, P ) be an
embedded coalition such that αi(S, P ) 6= α̂i(S, P ), both weights are significant
and αi(S̃, P̃ ) = α̂i(S̃, P̃ ) for every (S̃, P̃ ) with S ⊂ S̃. Now, consider simple
game e(S,P ). As prα1

π (S+i, τ
S
i (P )) = prα2

π (S+i, τ
S
i (P )) for every π and, from

weights significance, we have that
∑
π∈Ω(N\(S∪{i})) pr

α
π (S+i, τ

S
i (P )) 6= 0, then

from equation (2) we get ϕαi (v(S,P )) 6= ϕα̂i (v(S,P )).
�

A direct consequence of the above lemma is that we will focus only on signifi-
cant weights.

We conclude this section by discussing how weights associated with elementary
marginal contributions can be looked upon as weights of partitions. To this end,
let (S, P ) ∈ EC such that i 6∈ S and let αi(S, P ) be significant. Then, there
exists π ∈ Ω(N \ (S ∪ {i})) such that prαπ (S+i, τ

S
i (P )) 6= 0. Now, we have that:

(5) αi(S, P ) =
prαπ||i(S, P )

prαπ (S+i, τSi (P ))
,

that is, all significant weights α can be calculated from products prα. Moreover,
if we use equation (5) for different embedded coalitions obtained by the transfer
of i from (S+i, τ

S
i (P )), we get prαπ (S+i, τ

S
i (P )) =

∑
T∈P−S pr

α
π||i(S, τ

T
i (P )) (i.e.,

all products prα for bigger coalitions can be obtained from products for smaller
coalitions). That leads us to an observation that defining values of prαπ (∅, P ) for
every π ∈ Ω(N) and every partition P is equivalent to defining significant weights
α. Based on the conditions imposed on weights α, all weights compositions must
sum up to one (i.e.,

∑
P∈P pr

α
π (∅, P ) = 1 for every π ∈ Ω(N)) and must be

symmetrical (i.e., prαπ1
(∅, π1(P )) = prαπ2

(∅, π2(P )) for every π ∈ Ω(N) and P ∈
P).

This observation, seemingly trivial, allows us to focus on the weights of parti-
tions (that may represent the probability that a given partition will form) instead
of considering elementary transfers. To give an example, Hu and Yang argued
that, independently of a permutation of players, all partitions should be equally

likely to form [9]. Thus, prα
HY

π (∅, P ) = 1
P(N) for every π ∈ Ω(N) and P ∈ P(N).
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That immediately implies weights α: prα
HY

π (S, P ) =
|{R∈P(N):R[S]=P[S]}|

|P(N)| and

αHYi (S, P ) =
|{R∈P(N):R[S]=P[S]}|

|{R∈P(N):R[S∪{i}]=P[S∪{i}]|
.

4.2. Weak and Strong Monotonicity

One of the desirable properties of the division scheme is that, if we increase the
value of a particular coalition, then the payoffs, that is the shares of the grand
coalition value assigned to its members, should not decrease. By the same token,
the shares of non-members should not increase. This property is called (Weak)
Monotonicity. Indeed, the fact that Myerson’s value violates Monotonicity is the
main reason why it was criticized in the literature as unintuitive [10, 3, 11].
Formally, we have the following definition:
• Weak Monotonicity (increase of player’s contributions does not decrease

its payoff): if v1(S+i, τ
S
i (P ))− v1(S, P ) ≥ v2(S+i, τ

S
i (P ))− v2(S, P ) holds

for every (S, P ) ∈ EC, such that i 6∈ S, then ϕi(v1) ≥ ϕi(v2).
This formulation agrees with definitions proposed by Macho-Stadler et al. and
De Clippel and Serrano, and differs from the one by McQuillin. 10

Now, we prove that the necessary and sufficient condition for the Weak Mono-
tonicity to be met by α-value is that weights α are non-negative.
Lemma 2 α-value satisfies Weak Monotonicity if and only if αi(S, P ) ≥ 0 for
every significant weight.
Proof. First, let us transform one more time the formula for α-value:

(6) ϕαi (v) =
∑

(S,P )∈EC,i 6∈S

|S|!
|N |!

∑
π∈Ω(N\S+i)

prαπ||i(S, P )·[v(S+i, τ
S
i (P ))−v(S, P )].

In the formula for ϕαi the coefficient of the marginal contribution v(S+i, τ
S
i (P ))−

v(S, P ) equals |S|!|N |!
∑
π∈Ω(N\S+i)

prαπ||i(S, P ) which is equivalent to

|S|!
|N |!

∑
π∈Ω(N\S+i)

prαπ (S+i, τ
S
i (P )) · αi(S, P ).

If this coefficient is negative, then its increase will decrease the payoff. Thus, α-
value satisfies Weak Monotonicity if and only if all coefficients are non-negative.
If all weights are non-negative then all products of weights are non-negative

10McQuillin in his definition required only that the increase of a coalition’s value causes
no decrease of payoffs of the members. Formally, he defined Weak Monotonicity as follows:
ϕi(e

(S,P )) ≥ 0 if i ∈ S. For linear values, this definition is equivalent to the following one:
if v1(S, P ) ≥ v2(S, P ) holds for every (S, P ) ∈ EC, such that i ∈ S , then ϕi(v1) ≥ ϕi(v2).
Indeed, in games with no externalities, this implies for symmetric values that other players’
payoffs do not increase. However, this is not the case when externalities are present. For exam-
ple, in a simple game e(S,P ) for (S, P ) = ({1}, {{1}, {2}, {3, 4}}) the following payoff scheme
ϕ1(e(S,P )) = ϕ2(e(S,P )) = a and ϕ3(e(S,P )) = ϕ4(e(S,P )) = −a does not violate Symmetry,
nor Weak Monotonicity.
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(thus, the condition is satisfied). In turn, using the reverse induction on |S|, we
get that all significant weights αi(S, P ) must be non-negative: from inductive
assumption, prαπ (S+i, τ

S
i (P )) ≥ 0 for every π ∈ Ω(N \ S+i), thus if the sum

is greater than zero, then (S, P ) is probable and must be non-negative. This
concludes our proof.

�
In Weak Monotonicity, we require that the increase of a player’s contribution

does not result in the decrease of their payoff. This, in particular, means that we
allow for a hypothetical situation where a player’s arbitrary big contributions to
some coalitions, although not negatively affecting his payoff, may not affect his
payoff at all. This would be discouraging for players. To address this issue, we
propose a notion of Strong Monotonicity:
• Strong Monotonicity (increase of player’s contributions increases its pay-

off): if v1(S+i, τ
S
i (P )) − v1(S, P ) ≥ v2(S+i, τ

S
i (P )) − v2(S, P ) holds for

every (S, P ) ∈ EC, such that i 6∈ S and this inequality is strict for at least
one embedded coalition, then ϕi(v1) > ϕi(v2).

Lemma 3 α-value satisfies Strong Monotonicity if and only if αi(S, P ) > 0 for
every significant weight.
Proof. Proof is analogous to the proof of Lemma 2, but here all coefficients must
be positive (otherwise, if v(S+i, τ

S
i (P ))− v(S, P ) has zero coefficients, then the

payoff in game −e(S,P ) does not increase the payoff for player i).
�

The above lemma shows that Strong Monotonicity implies that, in the stochastic
process (which is built upon the α value), every transfer is possible.

Next, we will analyze the axiom of Strong Symmetry.

4.3. Strong Symmetry

Macho-Stadler et al. proposed a strengthening of the axiom of Symmetry called
Strong Symmetry. To look closer into this concept, let us consider simple game
e(S,P ) (where only particular S embedded in P has non-zero value). From Sym-
metry, all players from S have the same payoff. In turn, payoffs of players from
N \S may differ between them. This may seem unfair, as they all have the same
role in this game: they must form specific partition P for S to generate a value.

Let us then consider a bijection (i.e., one-to-one mapping) f : N−S → N−S .
The axiom of Strong Symmetry says that, if f(S,P )(v) is a game obtained by
exchanging the value of (S, P ) and (S, S ∪ f(P \ S)),11 then all the payoffs from
game f(S,P )(v) are the same as the payoffs from game v:
• Strong Symmetry (the value of a coalition affects the payoffs of outside

players symmetrically):

11Formally, [f(S,P )(v)](S, P ) = v(S, S∪f(P \S)), [f(S,P )(v)](S, S∪f(P \S)) = v(S, P ) and

[f(S,P )(v)](S̃, P̃ ) = v(S̃, P̃ ), otherwise. See Symmetry definition for a formal specification of
f(P ).
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– ϕ(f(v)) = f(ϕ)(v) for every game v and bijection f ∈ Ω(N);

– ϕ(f(S,P )(v)) = ϕ(v) for every game v and bijection f ∈ Ω(N \ S);

This definition is equivalent to the condition ϕi(e
(S,P )) = ϕj(e

(S,P )) for every
i, j 6∈ S for linear values.

To translate this axiom to a property of the weight, we introduce the concept
of the interlace resistance.
• Interlace resistance (product of weights should not depend on the order of

corresponding transfers):

prαπ1
(S, P ) = prαπ2

(S, P )

for every (S, P ) such that S 6= ∅ and every π1, π2 ∈ Ω(N−S).
For non-negative weights this condition simplifies to the equivalence of prod-

ucts of two weights.
Lemma 4 If weights α are non-negative, then α is interlace resistance if and
only if it satisfies αi(S, P ) · αj(S+i, τ

S
i (P )) = αj(S, P ) · αi(S+j , τ

S
j (P )) for all

significant weights such that i, j 6∈ S.
Proof. First, we prove that the above condition is necessary. Let (S, P ) be an
embedded coalition such that i, j 6∈ S, S 6= ∅ and (S, P ) is probable (note that, for
non-negative weights, if (S, P ) is probable then (S+i, τ

S
i (P )), (S+j , τ

S
j (P )) and

(S+ij , τ
S
j (τSi (P ))) are also probable). Let π be a permutation of N \ (S ∪ {i, j})

such that prπ(S+ij , τ
S
ij(P )) > 0. Now, let us consider two different extensions of

permutation π: π||j||i, π||i||j ∈ Ω(N−S) (i.e., the first one ends with (j, i), and
the second one with (i, j)). Now, the condition prπ||j||i(S, P ) = prπ||i||j(S, P )
simplifies to αi(S, P ) · αj(S+i, τ

S
i (P )) = αj(S, P ) · αi(S+j , τ

S
j (P )).

Next, we show that this condition is sufficient. This comes from the combi-
natorial fact that every permutation can be obtained from another using only
transpositions of the adjacent elements. More formally, assume that (S, P ) is an
embedded coalition with S 6= ∅ and π1, π2 are some permutations of N−S . We will
prove that both products of weights prαπ1

(S, P ), prαπ2
(S, P ) are equal if the condi-

tion holds. To this end, we observe that if in both products a zero weight appears
then both are equal. If not, without the loss of generality, all weights in prαπ1

(S, P )
are nonzero and significant. Based on the condition αi(S, P ) · αj(S+i, τ

S
i (P )) =

αj(S, P ) · αi(S+j , τ
S
j (P )), transpositions of adjacent players in order π1 do not

change the product of weights. Thus, the proper sequence of transpositions will
yield that prπ1(S, P ) = prπ2(S, P ).

�
The following theorem shows that an α-value satisfies Strong Symmetry if and

only if weights are interlace resistant.
Theorem 3 An α-value satisfies Strong Symmetry if and only if α-marginality
is interlace resistant.
Proof. Assume that α is interlace resistant. We will prove that for every (S, P )
and i, j ∈ N \ S holds ϕi(e

(S,P )) = ϕj(e
(S,P )). This fact, based on Additivity,
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will imply Strong Symmetry. Let πe ∈ Ω(N \ S) be any permutation. Based on
equation (6):

(7) ϕαi (e(S,P )) = −|S|!(|N | − |S|+ 1)!

|N |!
· prαπe(S, P )

do not depend on the player i 6∈ S. Thus, ϕi(e
(S,P )) = ϕj(e

(S,P )).
To prove that Strong Symmetry holds only for interlace resistant weights we

use the reverse induction on the size of S. Of course prπ1(S, P ) = prπ2(S, P ) = 1
when |S| = |N | − 1 for every permutation π1, π2 ∈ Ω(N−S). Let us assume
that this equivalence holds when |S| > k. We will prove that it also holds when
|S| = k. Let π1, π2 ∈ Ω(N \ S) be two permutations, and without the loss of
generality assume i and j are the last players in π1, π2. Now, consider simple game
e(S,P ) in which (S, P ) is the only embedded coalition with non-zero value. Based
on Strong Symmetry, players i and j have equal payoffs: ϕαi (e(S,P )) = ϕαj (e(S,P )).
From equation (6):

ϕαi (e(S,P )) = − |S|!
|N |!

∑
π∈Ω(N\S+i)

prαπ (S+i, τ
S
i (P )) · αi(S, P ).

Based on the inductive assumption, product prαπ (S+i, τ
S
i (P )) does not depend on

the permutation π ∈ Ω(N \S−i), thus ϕαi (e(S,P )) = − (|S|!)(|N |−|S|+1)!
|N |! prαπ1

(S, P ).

Now, ϕαj (e(S,P )) = − (|S|!)(|N |−|S|+1)!
|N |! prαπ2

(S, P ) implies prαπ1
(S, P ) = prαπ2

(S, P ).
�

When we consider the values that satisfy Strong Symmetry, the general for-
mula (2) can be simplified as follows:

(8) ϕαi (v) =
∑

(S,P )∈EC,i∈S

(|S| − 1)!(|N | − |S|)!
|N |!

prα(S, P )[mci(v)](S, P ),

where prα(S, P ) denotes prαπ (S, P ) for any permutation π ∈ Ω(N \ S), as this
product is equal for every permutation. Observe that v(S, P ) appears in the
above formula multiplied by prα(S, P ) and v(S−i, τ

T
i (P ))—by prα(S, P )·αi(S−i, τTi (P )) =

prα(S−i, τ
T
i (P )). Thus, the value of a coalition in a given partition is always

preceded with the probability that a given partition will form. This suggests the
following algorithm for evaluating a fair division in a game with externalities:
• first, we create average game ṽ with no externalities from game v with

externalities. This is done by calculating the value of every coalition as the
average of its values in games with externalities:

ṽ(S) =
∑
P3S

a(S, P ) · v(S, P ),

where
∑
P3S a(S, P ) = 1 for every S;
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• then, we calculate the Shapley value for average game ṽ:

ϕ(v) = Sh(ṽ).

This approach, called the average approach, was introduced by Macho-Stadler
et al. They proved that the value that satisfies Shapley’s axioms can be con-
structed using the average approach if and only if it satisfies Strong Symmetry
(see Theorem 1 in [10]).

In our Theorem 2 we proved that marginality approach can produce every
value that satisfies Shapley’s axiom and Theorem 3 shows that the resulting
value satisfies Strong Symmetry if and only if weights are interlace resistant.
Thus, our two theorems combined with the result from Macho-Stadler et al.
imply that a value can be obtained using the average approach if and only if it
can be obtained using the marginality approach with interlace resistant weights.
Corollary 1 Average approach is equivalent to marginality approach with inter-
lace resistant weights.
Finally, in the next section we consider the Strong Null-Player Axiom.

4.4. Strong Null-Player Axiom

Another axiom proposed by Macho-Stadler et al. is the Strong Null-Player Ax-
iom. Let us consider game v in which i is a null-player in a strict sense, i.e., i
does not have an impact on the game whatsoever. In this case, the Null-Player
Axiom requires that player i has zero payoff: ϕi(v) = 0. But it does not mean
that he has no impact on others’ payoffs. In other words, removing a null-player
from the game may affect payoffs of the remaining players. Such a situation is
infeasible if we rely on the Strong Null-Player Axiom proposed by Macho-Stadler
et al.:
• Strong Null-Player Axiom (null-player does not have an impact on the

payoffs of others): if i is a null-player then ϕj(v) = ϕj(v−i) for every j ∈ N ,

where v−i denotes the game without player i: v−i(S−i, P−i)
def
= v(S, P ) for

every (S, P ) such that i ∈ S.
When i is not a null-player, constructing game v−i can be challenging. This

issue will be discussed in more detail in Section 5. However, the situation is much
simpler when i is a null-player. This is because the value of embedded coalition
(S, P ) ∈ EC(N \ {i}) can be obtained by inserting i to an arbitrary coalition in
partition P . No matter where i was, it would not impact the value of (S, P ).

Let us now analyze the constraints imposed by the Strong Null-Player Axiom
on the values that satisfy Strong Symmetry. To this end, let us introduce the
expansion resistance property.
• Expansion resistance (weight does not depend on the size of S):

αi(S, P ) = αi(S−j , P−j)

for all significant weights such that i 6∈ S and j ∈ S.



20 O.SKIBSKI, T.P.MICHALAK, M.WOOLDRIDGE

In terms of our bargaining process, this intuitive requirement says that the
probability of joining a coalition by a player should depend only on the coalitions
to choose from and not on the coalition that the player is leaving. The following
theorem states that, for values satisfying Strong Symmetry, expansion resistance
is necessary and sufficient to obtain the Strong Null-Player Axiom.
Theorem 4 Let α-value satisfy Strong Symmetry. Then, it satisfies the Strong
Null-Player Axiom if and only if α-marginality is expansion resistant.
Proof. In this proof we consider only α-values that satisfy Strong Symmetry.
We will show that expansion resistance is equivalent to satisfying the Strong
Null-Player Axiom by the sequence of equivalences.
Part 1: expansion resistance⇔ prα(S, P ) = prα(S−i, P−i) for every (S, P ) such
that i ∈ S;
It is clear that expansion resistance implies the condition from the right-hand
side. Also, if expansion resistance is not met, then products of weights must also
differ: if (S, P ) is the smallest coalition such that αj(S, P ) 6= αj(S−i, P−i) then
prα(S+j , τ

S
j (P )) = prα((S−i)+j , τ

S
j (P−i)) and prα(S, P ) 6= prα(S−i, P−i).

Part 2: prα(S, P ) = prα(S−i, P−i)⇔ ϕαj (e(S,P )) = |S|−1
|N | ·ϕ

α
j (e(S−i,P−i)) for i, j ∈

S
This step, which translate weights characteristic to the value property is immedi-

ate from equation (8). Now, let us denote ṽ(S,P ) = e(S,P ) +
∑
T∈P−S e

(S−i,τ
T
i (P )).

Thus, ṽ
(S,P )
−i = e(S−i,P−i).

Part 3: ϕαj (e(S,P )) = |S|−1
|N | ·ϕ

α
j (e(S−i,P−i)) for i, j ∈ S ⇔ ϕαj (ṽ(S,P )) = ϕαj (ṽ

(S,P )
−i ) for j ∈

S and null-player i ∈ S
The right-hand side of the equivalence comes from the Strong Null-Player Ax-
iom applied to game ṽ(S,P ). To prove equivalence, we will transform it using
Additivity:

ϕαj (e(S,P )) +
∑

T∈P−S

ϕαj (e(S−i,τ
T
i (P ))) = ϕαj (e(S−i,P−i)).

But based on Strong Symmetry all payoffs of players outside S−i in e(S−i,τ
T
i (P ))

are equal, thus from Efficiency ϕj(e
(S−i,τ

T
i (P ))) · (|S| − 1) = −ϕi(e(S−i,τ

T
i (P ))) ·

(|N | − |S|+ 1) for every T ∈ P−S . Thus,

ϕj(e
(S−i,P−i)) = ϕj(e

(S,P ))− |N | − |S|+ 1

|S| − 1

∑
T∈P−S

ϕi(e
(S−i,τ

T
i (P )))

= ϕj(e
(S,P )) +

|N | − |S|+ 1

|S| − 1
· ϕi(e(S,P )) =

|N |
|S| − 1

· ϕj(e(S,P )),

where we used Symmetry ϕi(e
(S,P )) = ϕj(e

(S,P )) and the Null-Player Axiom for

equality
∑
T∈P−S ϕi(e

(S−i,τ
T
i (P ))) = −ϕi(e(S,P )).

Part 4: ϕαj (ṽ(S,P )) = ϕαj (ṽ
(S,P )
−i ) for every (S, P ) such that j ∈ S and null-player i ∈

S ⇔ Strong Null-Player Axiom
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Of course the Strong Null-Player Axiom implies the left-hand side. On the other
hand, every game in which i is a null-player can be decomposed in the following
way:

v =
∑

(S,P ),i∈S

v(S, P ) · (e(S,P ) +
∑

T∈P−S

e(S−i,τ
T
i (P ))) =

∑
(S,P ),i∈S

v(S, P ) · ṽ(S,P ).

Thus, again based on Additivity, if value ϕαj (ṽ(S,P )) = ϕαj (ṽ
(S,P )
−i ) holds for every

(S, P ) and j ∈ S, then ϕαj (v) = ϕαj (v−i). That implies also ϕαj (v) = ϕαj (v−i) for
j 6∈ S from Strong Symmetry and concludes our proof.

�

5. RELATIONSHIP WITH YOUNG’S AND MYERSON’S AXIOMATIZATIONS

In this section we will discuss how both Young’s Monotonicity axiomatization
and Myerson’s axiomatization based on the concept of balanced contribution can
be translated to games with externalities.

Young argues that the concept of (Weak) Monotonicity can be restated as
follows: if we consider two games such that in the first game all marginal contri-
butions of a player are not smaller than the corresponding marginal contributions
in the second game (i.e., the difference of vectors of marginal contributions is
non-negative in every coordinate), then the payoff in the former game should
not be smaller than the payoff in the latter game. This yields another property,
called the Marginality Axiom—this says that if marginal contributions are equal,
then the payoffs should also be equal. In other words, payoffs should depend only
on the vector of marginal contributions. Young proved that the Shapley value is
the only value which satisfies Efficiency, Symmetry and Marginality.

In games with externalities, we have to specify which definition of marginal
contribution we assume. That leads to the α-Marginality Axiom:
• α-Marginality Axiom (payoff of a player depends only on his marginal

contributions): mcαi (v1) = mcαi (v2) ⇒ ϕi(v1) = ϕi(v2) for every game
v1, v2 and agent i ∈ N .

Bolger [2] used Young’s axiomatization to derive his value (with an additional
Null-Player Axiom which is, in fact, redundant). Later, De Clippel and Serrano
proved that externality-free value proposed by Pham Do and Norde (initially
introduced using Shapley’s standard axiomatization) can be also derived using
this set of axioms [3]. Finally, Fujinaka provided a general theorem: for every
definition of marginal contribution there exists a unique value which satisfies
the Efficiency, Symmetry and α-Marginality Axioms [6]. For every α, the value
proposed by Fujinaka based on Young’s axiomatization is equal to our value
(derived by Theorem 1). This means that both axiomatizations are equivalent.
Corollary 2 Shapley’s marginality-based axiomatization (Efficiency, Symme-
try, Additivity and α-Null-Player Axiom) is equivalent to Young’s axiomatization
(Efficiency, Symmetry and α-Marginality Axiom). Moreover, both axiomatiza-
tions yield a unique value.
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Next, we will discuss an axiomatization proposed by Myerson [13] that is
based on the concept of Balanced Contributions. We translate this axiom to
games with externalities using our analysis of marginal contributions. It comes
out that not every value obtained using the marginality approach satisfies the
axiom of Balanced Contributions. Therefore, we characterize which values satisfy
Myerson’s concept using the properties of interlace and expansion resistance.

The Balanced Contributions principle guarantees a certain notion of stability.
We say that mutual contributions of players i and j are balanced, if the with-
drawal of player i from the game will result in the same loss to player j, as the
withdrawal of j to i. More formally, ϕi(v) − ϕi(v−j) = ϕj(v) − ϕj(v−i). Thus,
the profit of cooperation is divided equally between players. It is important that
this condition is met, as otherwise a player which gains less may threaten the
other to leave the game. This is why the Balanced Contributions principle is
usually the key piece in the mechanisms that implement the Shapley value (see,
e.g., Perez-Castrillo et al. [15]).

To translate this axiom to games with externalities we need to define how to
calculate a game without a given player. In games without externalities, the value
of a coalition S without a player i is uniquely defined. In games with externalities,
different positions of i in the coalition structure may result in different values of
S. Let us consider the following example:
Example 3 Let us consider game v−1 created from game v in Example 1. We
have that v−1({2}, {{2}, {3}, ∅}) = b if we take value of {2} from {{1}, {2}, {3}, ∅}
and v−1({2}, {{2}, {3}, ∅}) = c if we take value from {{1, 3}, {2}, ∅}.
This resembles the problem with defining the marginal contribution we faced
before. Thus, we take a similar approach: from the value of coalition S ∪ {i}, we
subtract player’s i marginal contribution:

vα−i(S−i, P−i)
def
= v(S, P )−mcαi (S, P )

for every (S, P ) such that i ∈ S.12 Now, different definitions of marginal contri-
butions (i.e. weights α) result in different values of the game without a player.
Therefore, the corresponding axioms of Balanced Contributions will also be dif-
ferent:
• α-Balanced Contributions (profit of cooperation is divided equally between

players): ϕi(v)−ϕi(vα−j) = ϕj(v)−ϕj(vα−i) for every game v and i, j ∈ N .
The principle of Balanced Contributions combined with Efficiency automati-

cally yields a recursive formula for the unique value:

(9) ϕi(v) =
1

|N |
(v(N, {N, ∅})− v({N−i, {N−i, {i}, ∅}) +

∑
j 6=i

ϕi(v
α
−j)).

This comes from the sum of Balanced Contributions equations over all j ∈ N .

12It is worth noting that under this definition of the game without a player α-values that
satisfy Strong Symmetry and the Strong Null-Player Axiom satisfy also the Strong α-Null-
Player Axiom that states that if i is an α-null-player then ϕj(v) = ϕj(v

α
−i).
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For games without externalities, Myerson proved that Efficiency and Balanced
Contributions imply the Shapley value (thus it is equivalent, in particular, to
Shapley’s and Young’s axiomatizations). But as it appears, this is not the case
in games with externalities—some α-values do not meet the corresponding axiom
of Balanced Contributions parametrized with α.

To characterize which values meet Balanced Contributions, we will use the
stronger versions of Symmetry and the Null-Player Axiom from Section 4. To gain
extra intuition behind it, note that if α-value still assigns zero to a null-player
i, even if we remove player j from the game (thus, ϕαi (v−j) = 0), then Balanced
Contributions implies the Strong Null-Player Axiom: ϕαj (v)−ϕαj (v−i) = ϕαi (v)−
ϕαi (v−j) = 0− 0. On the other hand, the axiom of Balanced Contributions asks
for the balance between the contributions of the two players contributions and
ultimately implies Strong Symmetry.
Theorem 5 Shapley’s marginality-based axiomatization (Efficiency, Symmetry,
Additivity and α-Null-Player Axiom) is equivalent to Myerson’s axiomatization
(Efficiency, α-Balanced Contributions) if and only if α is interlace and expansion
resistant.
Proof. Our proof is organized as follows: first we will argue that if α is interlace
and expansion resistant then α-value satisfies α-Balanced Contributions. Then,
we will prove that α-Balanced Contributions implies the Strong Null-Player Ax-
iom and Strong Symmetry. This result combined with Theorems 3 and 4 that link
these axioms with properties of α will conclude the proof. Both parts of the proof
will be based on the linear decomposition of the game v to simple games e(S,P ). If
α-Balanced Contributions is satisfied, then it must work for every simple game.
On the other hand, if α-Balanced Contributions works for every simple game
then based on Additivity it must be satisfied also for every linear combination,
thus every possible game v. Thus, α-value satisfies α-Balanced Contributions if
and only if the following conditions are met:

(a) ϕi(e
(S,P )) − 0 = ϕj(e

(S,P )) − 0 for i, j ∈ S; this condition comes directly
from Symmetry;

(b) ϕi(e
(S,P ))− ϕi(e(S,P−j) · αj(S, P )) = ϕj(e

(S,P ))− 0 for i ∈ S, j 6∈ S;
(c) ϕi(e

(S,P ))−ϕi(e(S,P−j) ·αj(S, P )) = ϕj(e
(S,P ))−ϕj(e(S,P−i) ·αi(S, P )) for

i, j 6∈ S.
The zeros in the equations come from the fact that game e(S,P ) without player
from S is a zero game. A few times in our proofs we will use the following
transformation:

(10) ϕi(e
(S+j ,τ

S
j (P )) · αj(S, P )) = ϕj(e

(S+j ,τ
S
j (P )) · αj(S, P )) = ϕj(e

(S,P )),

for i ∈ S, j 6∈ S, where first transformation comes from Symmetry of players
i and j (both players are in the only embedded coalition with the value), and
second—from the α-Null-Player Axiom.

First, assume α is interlace and expansion resistant (thus, α-value satisfies
Strong Symmetry and the Strong Null-Player Axiom). Consider condition (b).
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From the Strong Null-Player Axiom and Strong Symmetry ϕi(e
(S,P−j)·αj(S, P )) =

|N |
|S| ϕi(e

(S+j ,τ
S
j (P )) ·αj(S, P )) (this comes directly from formula (8)). From equa-

tion (10) this expression equals |N ||S| ϕj(e
(S,P )), thus condition (b) simplifies to

ϕi(e
(S,P )) = − |N |−|S||S| ϕj(e

(S,P )) which comes immediately from Strong Symme-
try.

Now, let us focus on condition (c). Here, ϕi(e
(S,P )) = ϕj(e

(S,P )) (from Strong
Symmetry), thus condition simplifies to ϕi(e

(S,P−j) · αj(S, P )) = ϕj(e
(S,P−i) ·

αi(S, P )). Again, we use the formula (8) to derive ϕi(e
(S,P−j) · αj(S, P )) =

|N |
|S|+1ϕi(e

(S+j ,τ
S
j (P ))·αj(S, P )) = |N |

|S|+1ϕi(e
(S+ij ,τ

S
i (τSj (P )))·αj(S, P )·αi(S+j , τ

S
j (P )))

where the last transformation comes from the α-Null-Player Axiom. From Sym-
metry and the interlace resistant property we can replace all i with j which is
equal to the analogous transformation of the right-hand side of the equation.

Secondly, we will prove that Efficiency and α-Balanced Contributions in-
deed imply Strong Symmetry and the Strong Null-Player Axiom. Let %(v) de-
note the number of players outside S in the smallest coalition with a non-zero
value, i.e., %(v) = max(S,P ):v(S,P )6=0

∑
T∈P,T 6=S |T |. If v is a game of N play-

ers, then
∑
T∈P,T 6=S |T | = |N | − |S|, but as we will consider games of vari-

ous numbers of players, we define this number by the size of partition P . We
will use the induction by %(v). If %(v) = 0 then v = e(N,{N,∅}) and both ax-
ioms are instantly satisfied. Now, assume that Strong Symmetry and the Strong
Null-Player Axiom hold for games with %(v) < k. We will prove that it holds
also for games in which %(v) = k. Let (S, P ) be an embedded coalition such
that

∑
T∈P,T 6=S |T | = k. Then, Balanced Contributions implies ϕi(e

(S,P )) −
ϕi(e

(S,P−j) ·αj(S, P )) = ϕj(e
(S,P )) for i ∈ S, j 6∈ S (condition (b)). As %(e(S,P−j) ·

αj(S, P )) = k−1, then from Strong Symmetry and the Strong Null-Player Axiom

ϕi(e
(S,P−j)) = |N |

|S| ϕi(e
(S+j ,τ

S
j (P ))) and using equation (10) we have ϕi(e

(S,P )) =

− |N |−|S||S| ϕj(e
(S,P )) which implies Strong Symmetry (payoff of player j 6∈ S in

game e(S,P ) is equal for every j).
Now, we will prove that the Strong Null-Player Axiom is also satisfied. Assume

that i is a null-player in a strict sense. As argued in the proof of Theorem 4,
game v can be expressed as a linear combination of games of form ṽ(S,P ) =

e(S,P ) +
∑
T∈P−S e

(S−i,τ
T
i (P )). It is enough to show that for every such game,

ϕj(ṽ
(S,P )) = ϕj(ṽ

(S,P )
−i ) for every j ∈ N . If j ∈ S this follows automatically from

Balanced Contributions

ϕj(ṽ
(S,P ))− ϕj(ṽ(S,P )

−i ) = ϕi(ṽ
(S,P ))− ϕi(ṽ(S,P )

−j ) = 0− 0.

And based on Strong Symmetry, the above is all we need. Specifically, for ev-

ery k 6∈ S, it occurs that ϕk(ṽ(S,P )) = |S|−1
|N |−|S|ϕj(ṽ

(S,P )) and ϕk(ṽ
(S,P )
−i ) =

|S|−1
|N |−|S|ϕj(ṽ

(S,P )
i ), thus ϕk(ṽ(S,P ))− ϕk(ṽ

(S,P )
−i ) = 0. This concludes our proof.

�
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6. THE ANALYSIS OF VARIOUS MARGINALITY DEFINITIONS

In this section, we discuss the existing definitions of marginal contributions (i.e.,
α) in the context of properties analyzed in Section 4. Before proceeding, let us
recall that P (i) denotes the coalition of player i in a partition P .

We start with the externality-free marginality proposed by Pham Do and
Norde [16]:

αfreei (S, P ) =

{
1 if P (i) = {i}
0 otherwise.

In other words, there exists only one transfer—that is forming a new coalition—
with non-zero weight. It is not difficult to notice that αfree is expansion resistant,
because the weight of a transfer from (S, P ) does not depend on S. As far as
the interlace resistance property is concerned, a product of weights will evaluate
to 1 (the only non-zero value) if and only if the corresponding transfers always
create a new coalition. Thus, the order of transfers does not have an impact on
the value. This means that weights αfree are interlace resistant.

Skibski [18] used weights which are dual to the previous ones to derive Mc-
Quillin’s value [11]:

αfulli (S, P ) =

{
1

|P−i|−1 if P (i) 6= {i} or P = {N−i, {i}, ∅}
0 otherwise.

Here, the zero weight is associated with forming a new coalition (unless i leaves
the grand coalition and there are no coalitions to join) and transfers to all
the other coalitions have equal probability. Analogously to the externality-free
marginality, αfull is expansion resistant and also interlace resistant. To see this,
let us consider a product of weights that corresponds to a given sequence of trans-
fers. If any player forms a new coalition, the product evaluates to zero; if not,
the size of the partition does not change and all weights equal 1

|P−i|−1 . Clearly,

in both cases the power of weights does not depend on the order of transfers.
Bolger’s [2] definition of marginality is chronologically the first and perhaps

the simplest:

αBi (S, P ) =
1

|P−i|
.

It is based on an idea that for a given embedded coalition all transfers have the
same weight. All weights are positive and do not depend on the size of S; thus,
they satisfy the expansion resistance. Conversely, the interlace resistance is not
satisfied, as creating a new coalition affects the weights of joining an existing
coalition. For example, if we consider two transfers from coalition {1, 2, 3} em-
bedded in ({1, 2, 3}, {4}, ∅), one of 2 that forms a new coalition, and one of 3 that
joins {4}, we have αB3 ({1, 2}, {{1, 2}, {3, 4}, ∅}) · αB2 ({1}, {{1}, {2}, {3, 4}, ∅}) =
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1
2

1
2 . But if the order were flipped we have αB2 ({1, 3}, {{1, 3}, {2}, {4}, ∅})·αB3 ({1}, {{1}, {2}, {3, 4}, ∅}) =

1
2

1
3 . Thus, prα

B

4||2||3({1}, {{1}, {2}, {3, 4}, ∅}) 6= prα
B

4||3||2({1}, {{1}, {2}, {3, 4}, ∅}).
Another concept, already mentioned in Section 3, was proposed by Macho-

Stadler et al. [10]:

αMS
i (S, P ) =

|P (i)−i|∑
T∈P−S |T |

with the assumption that |∅| = 1. The authors assumed that weight of forming
a new coalition is relatively small, but when such a coalition becomes bigger,
the player is more likely to join it. Here, expansion resistance is satisfied, as S
is not counted in the denominator. Now, consider interlace resistance. We will
prove that indeed αi(S, P ) ·αj(S+i, τ

S
i (P )) = αj(S, P ) ·αi(S+j , τ

S
j (P )) for every

embedded coalition (S, P ) such that i, j 6∈ S (based on Lemma 4 this condition
is sufficient). The product of the denominators (which simply increases by one
after every transfer) appears in the formula on both sides. On the other hand,
the numerator equals (|P (i)| − 1)(|P (j)| − 1) (and (|P (i)| − 1)(|P (i)| − 2) if both
players are in the same coalition) regardless of the order of players.

The last marginality was proposed by Hu and Yang [9] and has been already
mentioned in Section 4.1. It is defined as follows:13

αHYi (S, P ) =
|{R ∈ P(N) : R[S] = P[S]}|

|{R ∈ P(N) : R[S∪{i}] = P[S∪{i}]|

Intuitively, the numerator equals the number of partitions that contain the
same partition of players N \ S. In the denominator, we assume that i has
not left S yet—we count partitions that contain the same partition of players
N \ (S ∪{i}). This marginality is not resistant to expansion, as the size of the S
affects the proportion between the numerator and the denominator. For exam-
ple, αHY3 ({1}, {{1}, {2}, {3}, ∅}) = 3

5 , and αHY3 ({1, 4}, {{1, 4}, {2}, {3}, ∅}) =
10
15 . On the other hand, Hu and Yang’s marginality satisfies interlace resis-
tance: product of two consecutive weights αi(S, P ) · αj(S+i, τ

S
i (P )) simplifies

to |{R∈P(N):R−S=P−S}|
|{R∈P(N):R−(S∪{i,j})=P−(S∪{i,j})}|

regardless of order of i and j (again, we used

Lemma 4).
All the above observations are summarized in Table I. As we can see, most of

the definitions of marginality satisfy our properties of the interlace and expansion
resistance. The only value that meets all four properties—that is Weak and
Strong Monotonicity, Strong Symmetry and the Strong Null-Player Axiom—is
the value proposed by Macho-Stadler et al.

Finally, we address the value proposed by Myerson [12]. It also satisfies Shap-
ley’s axioms and can be derived using the marginality approach. However, My-
erson’s axiomatization based on the concept of carrier is far from the marginal-
ity analysis and results in a complex weights that do not meet any of the

13Note that here N is the set of all players in P . As we consider α for (S−j , P−j) set N
changes.
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non-negative positive interlace resistant expansion resistant
Bolger X X — X
Pham Do & Norde X — X X
Skibski X — X X
Hu & Yang X X X —
Macho-Stadler et al. X X X X

TABLE I

The properties of existing weights in the marginality approach.

four properties. For instance, for N = {1, 2, 3} and an embedded coalition
({1, 2}, {{1, 2}, {3}, ∅}) the weight of transfer of 1 to a new coalitions equals
α1({2}, {{1}, {2}, {3}, ∅}) = 2, while joining player 3: α1({2}, {{1, 3}, {2}, ∅}) =
−1.

7. RELATED WORK

We divide the works on extending the concept of the Shapley value to games with
externalities into three bodies of literature. First, we discuss the marginality-
based axiomatizations of values that satisfy Shapley’s axioms. Next, we present
other axiomatizations that yield values satisfying Shapley’s axioms. Finally, we
briefly address all the values that violate Shapley’s axioms.

First, three works proposed new definitions of marginality and proved unique-
ness based on Shapley’s standard axiomatization [16, 9, 18]. Pham Do and
Norde, and Hu and Yang proposed new values, while Skibski provided a marginal
axiomatization for McQuillin’s value (discussed below). These uniqueness re-
sults are the special cases of our Theorem 1. Some other authors used Young’s
axiomatization—Bolger modified it by adding an additional Null-Player Axiom
to derive his value [2]; and De Clippel and Serrano in their analysis of externality-
free value [3]. These results for Young’s axiomatization were generalized by Fuji-
naka [6]. He was the first to propose a general formula for marginal contribution
as the affine combination of elementary marginal contributions. Fujinaka proved
that Young’s axiomatization parametrized by any weights α implies a unique
value. Our Theorem 1 is the equivalent of Fujinaka’s result but for Shapley’s
axiomatization.

Macho-Stadler, Perez-Castrillo and Wettstein [10] proposed the average ap-
proach that was discussed in detail in Section 4.3, where we showed that it
is equivalent to the marginality approach with interlace resistant weights (see
Corollary 1)14. Using the average approach, the authors provided a value using
Shapley’s axioms together with Strong Symmetry (see Section 4.3) and Similar
Influence. This latter axiom says that, if we exchange the values of two embed-
ded coalitions in which players i and j appear in the first one together and, in

14We note that a one-way proof for positive weights was already presented by Hu and Yang
[9]. More precisely, they proved that every value obtained using average approach with positive
weights can be derived using marginality approach.
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the second one, as singletons, then their payoffs should not change. Although
axiomatization departed from marginality, the authors introduce a definition of
marginal contribution and note that value can be transformed as the weighted
average of player’s marginal contributions.

McQuillin [11] analyzed extending the Shapley value to games with external-
ities combined with Owen generalization [14]. If we specify how the payoffs of
players should be generalized for payoffs of coalition (to this end, McQuillin pro-
vided a Rule of Generalization), then we can treat the payoffs as a game (as all
coalitions have assigned payoffs). McQuillin argued that stability is be reached
when a given payoff is a fixed-point of this process (i.e. if we consider a value
to be a game by itself, then the value computed for such a game should be the
same). McQuillin called this requirement Recursion and proved that combined
with Rules of Generalization, Weak Monotonicity and Shapley’s axioms implies
a unique value.

Myerson was the first to propose a new extension of the Shapley value to games
in a partition-function form. He based his value on the concept of Carrier. We say
that a set C is a carrier if the value of any embedded coalition is determined by
a partition of players from C. Now, Carrier implies that, if C is a carrier, then
the payoff of the grand coalition is divided between players from C. Against
this, Myerson showed that there exists a unique value that satisfies Symmetry,
Additivity and Carrier. As the set of all players, N , is clearly a carrier and, if i
is a null-player, then N \ {i} is also a carrier, we have that Carrier implies both
Efficiency and the Null-Player Axiom. This means that Myerson’s value satisfies
all four of Shapley’s axioms.

Other authors proposed values that are rather far from Shapley’s understand-
ing of fairness.

Albizuri et al. [1] argued that, in a game with externalities, a coalition should
be evaluated by the set of values it has, regardless of which partitions these
values correspond to. The authors combined this principle, called Embedded
Coalition Anonymity, with The Oligarchy Axiom (which can be understood as
the weakened Myerson axiom) and three of Shapley’s original axioms: Efficiency,
Additivity and Symmetry. The resulting value can be derived as the Shapley
value for a game without externalities calculated by assigning to every coalition
an arithmetic average of all its values in games with externalities. Although,
at first, it seems like a special case of the average approach, proposed weights
violates the condition necessary to satisfy the Null-Player Axiom (see Theorem
1 in [10]).

In a stochastic process described by us in Section 3, players leave the grand
coalition one by one. Grabisch and Funaki [7] formulate a different process. They
take as a starting point the partition containing singletons of all players and
consider all possible sequences of mergers which result in the grand coalition.
That said, the contribution of a player is evaluated as the effect that the player
merging with other coalitions makes on their values. If a player enters some
coalition alone, he is rewarded with the whole change of its value, i.e., with
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the marginal contribution; but if he is already a part of a coalition that merges
with another one, Grabisch and Funaki argue that the change of the value of
the coalition they merge with should be divided equally between him and other
members of the coalition. This contradicts the Null-Player Axiom, as a null-
player is rewarded with a payoff even though the coalition without him would
cause the same impact on the merged coalition.

Finally, let us address the concepts proposed by Maskin [4] and Hafalir [8].
Here, the authors discarded the assumption that the grand coalition will form
and proposed to divide the payoff of optimal coalition structure. Maskin studied
the coalition formation process and proposed an axiomatic characterization of a
value expected in this process. Hafalir proposed a mechanism that implements a
unique payoff division and provided axiomatization based on the idea of efficient-
cover. These ideas, although interesting, result in an axiomatization significantly
different to Shapley’s.

8. CONCLUSIONS

We were concerned in this paper with the issue of deriving the value for games
with externalities. We studied the marginality approach to this problem which is
based on Shapley’s axiomatization, where the Null-Player Axiom is strengthened
by assuming that marginal contribution is the affine combination of elementary
marginal contributions, denoted α.

We proved that the marginality approach yields a unique value for every α.
Furthermore, we showed that all values that satisfy the direct translation of Shap-
ley’s axioms can be obtained using the marginality approach. We then studied
various properties of a value and how they translate to the requirements of the
definition of the marginal contribution. In particular, we first focused on Weak
and Strong Monotonicity and showed that an α-value satisfies the first (second)
axioms if and only if significant weights α are non-negative (positive). Then we
analyzed Strong Symmetry and the Strong Null-Player Axiom and proved that
α-value satisfies Strong Symmetry if and only if α-marginality is interlace re-
sistant; and, if α is interlace resistant, it satisfies the Strong Null-Player Axiom
if and only if α-marginality is expansion resistant. Building upon this analysis
we demonstrated that Myerson’s axiomatization for games with externalities is
equivalent to Shapley’s axiomatization if and only if α is interlace and expansion
resistant.

Our work can be extended in various directions. We concentrated on the prop-
erties of Strong Symmetry and the Strong Null-Player Axiom as crucial for My-
erson’s axiomatization, but other links between the axioms met by values and
weights property can be sought. Another interesting question is how big the set of
Strong Monotonic values is that satisfies both Strong Symmetry and the Strong
Null-Player Axiom. To date, there has been only one such solution found. Fur-
thermore, with our intuition based on the stochastic processes, we hint at some
relations between the extension of the Shapley value and the probability theory.
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Can the choice of the suitable value for a given application be driven by the
specific probabilities of merging groups in a given environment? This question is
left for our future work.
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