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Abstract

Algorithm Portfolios [6, 5] have attracted significant attention in Artifi-
cial Intelligence research, due to their ability to exploit the complemen-
tary strengths that often exist among different algorithms. In this arti-
cle, we address the following natural question: How do we measure the
contribution that an algorithm makes to a portfolio of algorithms? We
show that the solution proposed in the literature to answer this question
is inadequate. We then propose the use of the Shapley value—a well-
known concept in cooperative game theory—and show that it provides
the correct answer. We discuss the potential impact and insights that
the use of this measure could bring to the community.

1 Introduction

One of the main questions that are addressed in Artificial Intelligence research
is how to develop new algorithms to solve various problems. When dealing with
any such problem, a general trend in the literature is to focus on certain charac-
teristics that exist in some instances of that problem. In so doing, it is usually
possible to develop a new algorithm aimed at exploiting those characteristics,
thus outperforming other algorithms whenever the problem instance happens to
exhibit those characteristics. By repeating this algorithm-development process
over several years, we end up with a set of algorithms that have (at least some-
times) complementary strengths. As a result, a new trend has emerged in recent
years; instead of developing new algorithms, the aim is to develop what is known
as an Algorithm Portfolio [6, 5], which is basically a collection of existing, com-
plementary algorithms (often referred to as components). Then, given a problem
instance, a portfolio either selects a single algorithm to solve it, or runs multiple
algorithms (either in parallel on multiple processors, or interleaved on a single
processor according to some schedule). An algorithm portfolio is particularly
useful when solving a set of diverse problem instances, where no single algorithm
dominates the others for all instances. One success story from this line of re-
search is the development of SATzilla [12]—the Portfolio-based solver for the
Boolean satisfiability problem (SAT), which has earned its developers several gold
medals in the SAT competitions. Other successful portfolios for SAT include 3S

[7] and ppfolio [10].
For problems (such as SAT) were multiple algorithms, and multiple algo-
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rithm portfolios, are available, the following natural question arises: what is the
current state of the art (SOTA) for solving that problem? One way to answer
this question is to compare individual algorithms, and then select the best one
based on some criteria (e.g., run time, or number of instances solved). Another
comparison that one can make is between different algorithm portfolios, to find
out the best available portfolio. The very reason for holding the SAT compe-
tition, for example, is to carry out the two aforementioned comparisons in a
standardized fashion.

Xu et al. [13] highlighted the need for a third comparison in order to provide
a complete answer to the aforementioned question. This comparison is between
individual algorithms based on their contributions towards successful portfolios.
For instance, an algorithm that focuses on hard but rare instances might not
stand out when compared against other algorithms given a wide variety of in-
stances. When included into a portfolio, such an algorithm might contribute
significantly towards the portfolio’s success, but might not receive the recogni-
tion it deserves, unless it is compared against other components in the portfolio,
based on the contribution that each has made.

To carry out the aforementioned (third) comparison, one needs to first be able
to answer the following, seemingly-easy question: what is the contribution that
a particular algorithm has made to the outcome of an algorithm portfolio? An
accurate answer would clearly provide valuable information that can be beneficial
in various ways. For instance, it can provide a better understanding of the
synergistic effect that results from combining different algorithms. It can also
provide a basis based on which the algorithms in the portfolio can be modified,
e.g., by removing the one(s) that contributed the least, or keeping the one(s)
that contributed the most.

In this article, we show that the only attempt to measure the contribution
of an algorithm to a portfolio, due to Xu et al. [13], is inadequate (see Section 3
for more details). Motivated by this observation, we propose an adequate mea-
sure by borrowing concepts from cooperative game theory—a branch of micro-
economics that studies the interactions among different “players” in scenarios
where cooperation is possible through binding agreements. One of the main
questions addressed in this area of research is how to divide the reward from
cooperation among players so as to meet certain desirable criteria. One such
criterion is fairness: how well does each player’s reward reflect its contribution?
To date, the best known answer to this question is the Shapely value [11]. This
solution concept, now one of the fundamental results in cooperative game the-
ory, specifies how the contribution that each player has made should be measured
when those players cooperate.1 In subsequent sections, we will present a formal
definition of the Shapley value, and explain of the intuition behind it.

We propose to model “portfolios” of algorithms as “coalitions” in a coopera-
tive game, where each “player” represents an algorithm, and the improvement in
performance is represented as the “reward” attained when those players “coop-
erate”. By drawing parallels between algorithm portfolios and cooperative game

1This solution concept is named after Lloyd Shapley—the 2012 Nobel Prize winner who
proposed this concept in 1953.
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theory, we obtain an accurate measure of the contribution that each algorithm
has made to improvement in performance; this measure is the Shapley value.

The remainder of this article is structured as follows. Section 2 is intended to
make the reader familiar with some necessary concepts from cooperative game
theory. Section 3 highlights the shortcomings of the existing approach for mea-
suring the contribution of an algorithm to a portfolio. Section 4 presents the
Shapley value-based approach in detail, and outlines its advantages. Section 5
discusses the potential impact that this approach could have on the community.
Finally, Section 6 outlines some potential future directions.

2 Preliminaries

In this section, we briefly introduce some necessary definitions and concepts from
cooperative game theory.

A characteristic function game, G, is given by a pair (P, v), where P =
{p1, . . . , pn} is a finite set consisting of n players, and v : 2P → R is a char-
acteristic function that maps each subset (or coalition) of players, C ⊆ P , to
a real number, v(C). This number is referred to as the value of coalition C,
which typically represents the reward that can be attained by the members of
C when they work together and coordinate their activities. In this context, the
terms “payoff” or “utility” are often used in the literature instead of the term
“reward”.

A coalition structure, CS ⊆ 2P , is a partition of the set of players, i.e., it is
a set of disjoint and exhaustive coalitions. We will denote the set of all possible
coalition structures as CSP .

An outcome of a game is a pair, (CS,x), where CS ∈ CSP is a coalition
structure, and x = (x1, . . . , xn) is a payoff vector, which specifies how the value
of each coalition C ∈ CS is distributed among its members. More specifically,
xi is the payoff of player pi in CS, such that xi ≥ 0 for all i = 1, . . . , n, and∑

pi∈C xi = v(C) for all C ∈ CS. In other words, an outcome specifies, for every
player, the coalition to which it belongs (i.e., the players with which it cooperates
and coordinates its activities), and the reward that this player receives from such
cooperation.

A solution concept specifies the set of outcomes that meet certain criteria.
One desirable criterion that is often sought after is fairness—how well does
each player’s payoff reflect the contribution that this player has made to its
coalition. Here, the main question is how to measure this contribution, i.e., how
to measure the extra utility that the player’s membership brings to its coalition.
In this context, the Shapley value [11] is the best-known solution concept (to
date) that aims at capturing this notion of fairness in cooperative game theory.
We postpone the description of how the Shapley Value is computed to Section 4.

3 Limitations of the Existing Measure

Xu et al. [13] were the first to highlight the importance of measuring the contri-
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butions that individual algorithms make towards the outcome of an algorithm
portfolio. They argue that the algorithm’s contribution should be measured as
the algorithm’s marginal contribution to the portfolio—the difference between
the portfolio’s performance including the algorithm and the portfolio’s perfor-
mance excluding it. This measure was later on used by Amadini, Gabbrielli, and
Mauro [1] to evaluate the contributions of algorithms to portfolios that solve
constraint satisfaction problems (CSPs).

Next, we will show that the above method is not an adequate measure
of contributions. We will show this by analysing a sample cooperative game,
G = (P, v), where the set of players is P = {p1, . . . , p4}, and the characteristic
function—the function that associates a value to every possible coalition—is v,
defined as follows:

v({p1}) = 80 v({p1, p2}) = 110 v({p1, p2, p3}) = 180 v(P ) = 200
v({p2}) = 80 v({p1, p3}) = 130 v({p1, p2, p4}) = 180
v({p3}) = 90 v({p1, p4}) = 120 v({p1, p3, p4}) = 170
v({p4}) = 90 v({p2, p3}) = 130 v({p2, p3, p4}) = 170

v({p2, p4}) = 120
v({p3, p4}) = 110

The interpretation of this game from our algorithm portfolio perspective is
as follows. Each “player” in the game represents an algorithm, and the set of
players, P , represents the algorithm portfolio. The “value” of a coalition (i.e.,
a subset of algorithms), C ⊆ P , represents some performance measure of the
portfolio that consists of the members of C. For instance, v({p2, p3}) could
represent the number of instances that can be solved by a portfolio consisting of
algorithms p2 and p3.

As can be seen, if the grand coalition (i.e., the biggest possible coalition,
P ) forms, then the payoff would be 200 units of utility. Let us determine how
many of these 200 units resulted from the membership of, say, p1 in P . One
way to do this is by using the method proposed by Xu et al. [13], which is to
compare the payoff of P (which is 200) with the payoff of P \ {p1} (which is
170). The conclusion drawn from this conclusion, according to Xu et al. , is
that the membership of p1 in P brings an extra 30 units of utility. Following
a similar approach, we conclude that players p2, p3, p4 bring an extra 30, 20, 20
units of utility by being members of P , respectively. This implies that the total
utility of P is the sum of utilities brought by each member, i.e., 30 + 30 +
20 + 20 = 100. However, this contradicts what we know about v(P ) being
equal to 200. The reason behind this contradiction is that, when computing the
contribution of pi as per the aforementioned approach, it was implicitly assumed
that pi was the last player to join P . More specifically, when computing how
much p1 has contributed towards the 200 units attained by P , we compared it
against the utility attained by P \ {p1}, and concluded that p1’s contribution is:
v({p1, p2, p3, p4}) − v({p2, p3, p4}) = 200 − 170 = 30. This implies that, before
p1 has joined P , the players p2, p3, p4 were already in P , and so P was already
capable of attaining 170 units. In this case, indeed having p1 join P would only
bring an extra 30 units of utility. By following the same approach for every
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player, we are basically assuming that every one of the four players has joined P
last, which is simply an impossible joining order (this is because, by definition,
only one player can join last). Next, we show how this problem can be tackled,
by considering only joining orders that are possible.

4 Shapley Value-based Approach

To better quantify the extra utility that the membership of pi brings to v(P ), we
use the Shapley value [11]. According to this solution concept, the contribution of
a player to v(P ) is measured while taking into consideration all possible joining
orders. To present the formal definition of the Shapley value, we need some
additional notation. Let ΠP denote the set of all permutations of P , i.e., one-to-
one mappings from P to itself. Basically, every permutation, π ∈ ΠP , represents
a possible joining order, where the first player in π is the first to join P , the
second in π is the second to join P , and so on. For instance, π = 〈p3, p4, p1, p2〉
represents the joining order where p3 joins first, followed by p4, then p1 then
p2. Now, for any arbitrary permutation, π ∈ ΠP , let Cπi denote the coalition
consisting of all predecessors of pi in π. More formally, if we denote by π(pi) the
location of pi in π, then Cπi = {pj ∈ P : π(pj) < π(pi)}. Now, we are ready to
introduce the notion of marginal contribution from a game theoretic perspective.
Basically, the marginal contribution of a player pi is defined with respect to a
permutation π in a game G = (P, v) as follows:

∆G
π (pi) = v(Cπi ∪ {pi})− v(Cπi )

In other words, according to a given joining order, π, the marginal con-
tribution of pi is the extra utility that pi brings when it joins the players
that precede it in π. Clearly, the marginal contribution of pi is influenced by
the joining order. For instance, given π = 〈p3, p4, p1, p2〉, we have ∆G

π (p1) =
v({p1, p3, p4}) − v({p3, p4}) = 60. On the other hand, given π = 〈p3, p1, p2, p4〉,
we have ∆G

π (p1) = v({p1, p3})− v({p3}) = 40.
Having introduced the notion of marginal contribution, we can now introduce

the Shapley value. Basically, it is the solution concept based on which the payoff
of a player pi is the average marginal contribution over all possible joining orders.
Formally:

Definition 1 Given a characteristic function game G = (P, v), the Shapley
value of a player2 pi ∈ P is denoted by φi(G) and is given by

φi(G) =
1

n!

∑
π∈ΠP

∆G
π (pi). (1)

Computing the Shapley value of a given player is hard. This is because of
the need to consider all possible joining orders, which are n! in total (given n

2Observe that if we compute the payoff vector, x, according to the Shapley value, then xi

(i.e., the payoff of player pi in x) is referred to as the “Shapley value of pi”.

5



players). This computation can be made a little easier based on the following
observation: For any permutation, π, and any player, pi, the marginal contri-
bution of pi depends solely on the identities (and not the order) of the players
that appear before pi, and those that appear after it, in π. For instance, the
marginal contribution of p1 is the same in: 〈p3, p4, p1, p2〉 and 〈p4, p3, p1, p2〉. For
all such similar permutations, it suffices to compute the marginal contribution
once, and multiply it by the number of those permutations. Formally, the fol-
lowing alternative formula can be used instead of (1) to compute the Shapley
value of pi:

φi(G) =
∑

C⊆P\{pi}

|C|! (|P | − |C| − 1)!

|P |!
(
v(C ∪ {pi})− v(C)

)
(2)

This formula requires considering all subsets of P \ {pi}, which are 2n−1 in
total. While this number is significantly smaller than n!—the number of permu-
tations to be considered when using (1)—this number is still exponential in n,
i.e., the Shapley value is still hard to compute given a large number of players.
Fortunately, it is possible to approximate the Shapley value by sampling from
those 2n−1 subsets, instead of considering them all. Such an approximation of-
ten yields values that are sufficiently close to the actual Shapley value (see, e.g.,
[2]). It is also possible to bound the estimation error when using sampling-based
methods [8]. One can also speed up those methods by parallelizing. Specifically,
when estimating the Shapley value of a player pi ∈ P , multiple processors can
each simultaneously sample from the space of possible subsets of P \ {pi}, and
can compute the marginal contribution of pi to each sample. Then, each proces-
sor returns the average of all the marginal contributions that it has computed.
Finally, the averages returned by different processors can all be aggregated in a
straightforward manner to obtain the estimated Shapley value.

The Shapley value has many attractive properties. In what follows, we list
four of them.

(1) Efficiency: all the profit earned by the players in P is distributed among
them. Formally, given a characteristic function game G = (P, v), we have:∑

pi∈P φi(G) = v(P );

(2) Dummy player: The Shapley value does not allocate any payoffs to
dummy players, i.e., players who do not contribute to any coalition. For-
mally, given a characteristic function gameG = (P, v), if v(C) = v(C∪{pi})
for every C ⊆ A, then φi(G) = 0;

(3) Symmetry: Given a characteristic function game G = (P, v), we say that
players pi and pj are symmetric in G if v(C ∪{pi}) = v(C ∪{pj}) for every
C ⊆ A \ {pi, pj}. The Shapley value of symmetric players is equal;

(4) Additivity: Finally, consider a group of players P that is involved in two
coalitional games G′ and G′′, i.e., G′ = (P, v′), G′′ = (P, v′′). The sum of G′

and G′′ is a coalitional game G+ = G′ +G′′ given by G+ = (P, v+), where
for every coalition C ⊆ A we have v+(C) = v′(C) + v′′(C). The Shapley
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value of a player pi in G+ is the sum of its Shapley values in G′ and G′′.
This property implies the linearity of the Shapley value; if the character-
istic function is multiplied by a constant, the Shapley values will simply
be scaled by that constant. In other words, multiplying the performance
measure by a constant does not affect the ranking of algorithms.

Interestingly, the Shapley value is the only payoff division scheme that has
all of the above four properties [11]. In other words, if we view properties (1)–
(4) as axioms, then these axioms characterize the Shapley value. This means
that, unless the Shapley value is used, one has to sacrifice at least one of these
important properties.

5 Discussion

Commenting on scoring schemes in SAT competitions, Gelder et al. [4] say:

“the major impact of being ranked among the best solvers is beneficial
both for academic and industrial competitors. As a consequence, the
scoring scheme of the competition needed some more formal basis.”

This statement emphasizes the importance of using the Shapley value, as it
specifies a principled way for measuring the contribution that an algorithm has
made to a portfolio of algorithms.

One of the advantages of using the Shapley value is that it can be used with
any performance measure. For example, the performance of a portfolio can be
measured by the number of benchmarks it solves, or the CPU time required to
solve a given benchmark, or some combination of the two. Here, one can use
actual values, or predicted ones.

By obtaining a ranking of different algorithms in a portfolio (based on their
contributions), it may be possible to iteratively modify the composition of the
portfolio in a principled manner, e.g., by removing the k least contributing al-
gorithms and/or keeping the k′ most contributing ones (a similar algorithm was
developed for feature selection, see [3]). Another possibility for using the Shapley-
based ranking is to adjust any portfolio in which algorithms are interleaved on
a single processor. In particular, it is possible to adjust the time slices in the
portfolio schedule such that algorithms with greater contributions are allocated
greater time.

Incorporating a Shapley value-based scoring scheme in competitions (e.g.,
the SAT competition) may encourage researchers to develop algorithms that
are not necessarily the best on their own, but are capable of complementing
other existing algorithms. This could be done, for instance, by focusing on
rare but hard problem instances, without having to worry about whether the
algorithm would receive the recognition it deserves from the community. One
way to implement this scoring scheme is as follows: Once the winning portfolios
are determined in the competition, it is possible to compute the Shapley value
for each algorithm, and award the one that contributed the most. Another way
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to implement this scheme is to propose a new category in the SAT competition,
where all participating algorithms are combined into one big portfolio. The
organizers could agree in advance on how this portfolio manages its components,
and may provide a detailed description online to be available for participants in
advance. The results could even encourage the design of new benchmarks to be
used in the competition.

6 Future Work

For future work, we would like to run experiments on various instances of the
SAT problem, where the Shapley value is used to measure the contributions of
algorithms to existing portfolios. We will analyse the resulting rankings, in the
hope to obtain a better understanding of the complementarity between different
algorithms. We will also analyse the corresponding cooperative game, e.g., to
determine whether it is monotonic, submodular, subadditive, etc. This could
help identify the most efficient way for approximating the Shapley value. It is
also interesting to evaluate how the approximated contributions converge to the
actual ones over the runtime of a sampling-based method, e.g., to quantify the
number of samples needed before obtaining satisfactory error bounds.

References

[1] Amadini, R.; Gabbrielli, M.; and Mauro, J. 2013. An empirical evaluation of
portfolios approaches for solving csps. In Gomes, C., and Sellmann, M., eds.,
Integration of AI and OR Techniques in Constraint Programming for Combi-
natorial Optimization Problems, volume 7874 of Lecture Notes in Computer
Science. Springer Berlin Heidelberg. 316–324.
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