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Abstract
The closure ordinal of a formula of modal µ-calculus µXφ is the least ordinal κ, if it exists, such that

the denotation of the formula and the κ-th iteration of the monotone operator induced by φ coincide
across all transition systems (finite and infinite). It is known that for every α < ω2 there is a formula φ of
modal logic such that µXφ has closure ordinal α [3]. We prove that the closure ordinals arising from the
alternation-free fragment of modal µ-calculus (the syntactic class capturing Σ2 ∩Π2) are bounded by ω2 .
In this logic satisfaction can be characterised in terms of the existence of tableaux, trees generated by
systematically breaking down formulæ into their constituents according to the semantics of the calculus.
To obtain optimal upper bounds we utilise the connection between closure ordinals of formulæ and
embedded order-types of the corresponding tableaux.

1 Introduction
Modal µ-calculus is often referred to as the “mother of all temporal logics”. Indeed the majority of temporal
logics, including LTL (Linear Time Logic), CTL (Computational Tree Logic) and their various extensions,
can be easily interpreted and analysed in µ-calculus making the study of this logic of high interest in the
research community. The defining feature of the modal µ-calculus is the expression of fixpoints. In this
calculus the syntax of modal logic is extended with least and greatest fixpoint quantifiers (µ and ν) that bind
propositional variables. The formulæ µXφ and νXφ are interpreted respectively as the least and greatest
fixpoints of the monotone operator induced by φ. In analogy to the hierarchies defined in second order logic,
one can alternate the fixpoint quantifiers to define a hierarchy of formulæ. Although we have a relatively
good understanding of least and greatest fixpoints, when nested their meaning and behaviour is easily lost.
As a result many fundamental properties of this calculus have remained unanswered even after decades of
attention from logicians and computer scientists.

An interesting open problem for µ-calculus is that of closure ordinals, the number of iterations required
for a fixpoint to close across all structures. Given an arbitrary formula, its closure ordinal may not exist,
such as in the case of µX ◻X. On the other hand mere syntactic analysis suggests that the fixpoint iterations
in this context cannot exhaust the power of ordinals beyond certain levels. Hence one may ask the following
question.

For which ordinals α is there a formula of modal µ-calculus with closure ordinal α?

In the case of finite ordinals the formulæ µX . (◇X ∧◻n�)∨◻�, which express that all paths in a model
of the formula have length at most n, are guaranteed to close across all structures after n iterations. By
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expressing the existence of arbitrarily long finite paths, through the formula µX . ◇ X ∨ ◻� for example,
transfinite closure ordinals are obtained. In fact it is known that for every α < ω2 there is a formula φ of
modal logic such that µXφ has closure ordinal α [3].

In this paper we establish optimal upper bounds on closure ordinals, showing that no formula of
the alternation-free fragment can have a closure ordinal equal or greater than ω2, even if iterations of
all quantifiers occurring in the formula are taken into account. We begin with a syntactic analysis on a
fragment of the Σ1-formulæ in section 2. This study, despite applying only to operators induced by particular
formulæ of modal logic, provides the motivation for the general solution. The main result of the paper is
given in section 3 and consists of a semantic analysis of the problem by means of tableaux constructions.
We present a strong characterisation of closure ordinals in terms of order-types of tableaux for formulæ
without genuine dependencies between their alternating fixpoint quantifiers. This correspondence will
prove sufficient to bound closure ordinals of these formulæ by their logical complexity.

1.1 Syntax and semantics of modal µ-formulæ
Let Var be an infinite set of propositional variables and Prop an infinite set of propositional constants. The
set of µ-formulæ is defined inductively as follows.

φ ∶= p ∣ p̄ ∣ X ∣ φ ∧ φ ∣ φ ∨ φ ∣ ◻φ ∣ ◇φ ∣ µX φ ∣ νX φ

where p ∈ Prop and X ∈ Var. Also define � ∶= p ∧ p̄ and ⊺ ∶= p ∨ p̄ for some propositional constant p. A
variable X in φ is called a µ-variable (respectively, ν-variable) if the quantifier µX (resp. νX) occurs in φ.
We assume that all quantifiers occur uniquely. This can be achieved through implicit α-conversion.

A transition system is a tuple T = (S ,→, λ) where (S ,→) is a directed graph and λ∶ S → P(Prop)
is an assignment of propositional constants to states. Given a transition system T = (S ,→, λ) and an
valuation V∶Var → P(S) of free variables, the set of states satisfying a formula φ, denoted by ∣∣φ∣∣T

V
, is

defined inductively as follows.

∣∣p∣∣T
V
= {x ∈ S ∶ p ∈ λ(x)}

∣∣p̄∣∣T
V
= {x ∈ S ∶ p /∈ λ(x)}

∣∣X∣∣T
V
= V(X)

∣∣φ ∧ ψ∣∣T
V
= ∣∣φ∣∣T

V
∩∣∣ψ∣∣T

V

∣∣φ ∨ ψ∣∣T
V
= ∣∣φ∣∣T

V
∪ ∣∣ψ∣∣T

V

∣∣◻φ∣∣T
V
= {x ∈ S ∶ ∀y(x → y⇒ y ∈ ∣∣φ∣∣T

V
)}

∣∣◇φ∣∣T
V
= {x ∈ S ∶ ∃y(x → y ∧ y ∈ ∣∣φ∣∣T

V
)}

∣∣µXφ(X)∣∣T
V
= ⋂{U ⊆ S ∶ ∣∣φ∣∣T

V[X↦U] ⊆ U}
∣∣νXφ(X)∣∣T

V
= ⋃{U ⊆ S ∶ U ⊆ ∣∣φ∣∣T

V[X↦S]}

In the above V[X ↦ U] is the valuation that maps X into U and agrees with V on all other variables.
Note that a formula φ gives rise to a function fφ ∶ P(S) → P(S) given by U ↦ {x ∈ S ∶ x ∈ ∣∣φ(X)∣∣T

V[X↦U]}.
As fφ is a monotone function on the powerset lattice ⟨P(S), ⊆⟩, by the Knaster-Tarski Theorem its least
(and greatest) fixpoint exists, and is equal to the least prefixed point (resp. greatest postfixed point) of fφ ,
the set ∣∣µXφ∣∣T

V
(resp. ∣∣νXφ∣∣T

V
).

1.2 Alternation-free fragment
The alternation of fixpoint quantifiers is the major source of potency, and a fundamental measure of logical
strength in the study of fragments of µ-calculus. The number of genuine alternations between least and
greatest fixpoint quantifiers is called the depth of the formula. Bradfield [1] showed that there are modal
fixpoint properties which require arbitrarily large depth, and hence the modal µ-calculus alternation
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hierarchy is strict. Formally, the Niwiński hierarchy is defined as follows. A formula φ is in the classes Π0
and Σ0 if it contains no fixpoint quantifiers, i.e. it is a formula of modal logic. The class Σn+1 (Πn+1) is the
closure of Σn ∪Πn under the following rules.

• If φ,ψ ∈ Σn+1 (Πn+1), then φ ∧ ψ, φ ∨ ψ,◻φ,◇φ ∈ Σn+1 (Πn+1).

• If φ ∈ Σn+1 (Πn+1), then µXφ ∈ Σn+1 (νXφ ∈ Πn+1).

• If φ,ψ ∈ Σn+1 (Πn+1), then φ(ψ) ∈ Σn+1 (Πn+1), provided the free variables of ψ do not become
bound by quantifiers in φ.

In comparison the alternation-free fragment of the modal µ-calculus is the class of formulæ with no
real dependencies between alternating fixpoint quantifiers. This fragment is the closure of Σ1 ∪Π1 under
Boolean and modal operators and substitutions that preserve the alternation depth. Despite the restrictions
imposed, this class of properties still forms a remarkably expressive fragment encompassing the majority
of logics used in the verification of systems. It is known that this class coincides with the collection of all
formulæ semantically equivalent to both a Σ2-formula and a Π2-formula [5]. Moreover, this fragment is
the limit of the weak index hierarchy as introduced in [6]; thus, the languages defined by alternation-free
formulæ are also referred to as weakly definable languages.

1.3 Trees
A tree is a pair t = (V ,→) with a distinguished node ρt such that (V ,→) is a connected directed graph,
there are no transitions into ρt and for every v ∈ V ∖ {ρt} there is exactly one v0 ∈ V such that v0 → v. The
node ρt is referred to as the root of the tree and any node without outgoing transitions is called a leaf. For a
tree t and a node v in t, we write t↾v to denote the sub-tree rooted at v. If there is no cause for confusion we
identify a tree with its domain. Tree t0 = (V0 ,→0) is a pruning of t = (V ,→) if V0 ⊆ V ,→0=→ ∩V 2

0 and if
u → v ∉ V0 then {w ∈ V0 ∶ u →0 w} = ∅.

A path through a tree t = (V ,→) is an enumerable set P ⊆ V such that ρt ∈ P, if v0 → v ∈ P then v0 ∈ P,
and for every v ∈ P either v is a leaf or there exists exactly one u ∈ V such that v → u and u ∈ P. For a path
P given by a sequence ρt = v0 → v1 → v2 → . . . → vn → . . ., we write P(n) to denote vn . For nodes u, v ∈ t
we write u <t v (resp. u ≤t v) if for some path P through t and i < j (resp. i ≤ j), P(i) = u and P( j) = v.

A tree transition system (TTS) is a transition system T = (S ,→, λ) for which (S ,→) is a tree. We say a
TTS T satisfies φ, written T ⊧ φ, if ρT ∈ ∣∣φ∣∣TV . In this case T is amodel of φ and φ is satisfiable. Note that
modal µ-calculus has the tree model property, namely every satisfiable formula has a model which is a TTS
(see e.g. [2]).

1.4 Closure ordinals
The definition of semantics for µ-formulæ can be generalised to also take into account approximations to
fixpoint variables. For each formula φ, set of bound variablesX occurring in φ and ordinal α, we define a set
∣∣φα ∣∣T

V
by induction on α. Let T = (S ,→, λ) be a transition system andV a valuation on T . For every α, define

∣∣pα ∣∣T
V
= ∣∣p∣∣T

V

∣∣p̄α ∣∣T
V
= ∣∣p̄∣∣T

V

∣∣Zα ∣∣T
V
= V(Z)

∣∣(φ ∧ ψ)α ∣∣T
V
= ∣∣φα ∣∣T

V
∩ ∣∣ψα ∣∣T

V

∣∣(φ ∨ ψ)α ∣∣T
V
= ∣∣φα ∣∣T

V
∪ ∣∣ψα ∣∣T

V

∣∣(◻φ)α ∣∣T
V
= {x ∈ S ∶ ∀y(x → y⇒ y ∈ ∣∣φα ∣∣T

V
)}

∣∣(◇φ)α ∣∣T
V
= {x ∈ S ∶ ∃y(x → y ∧ y ∈ ∣∣φα ∣∣T

V
)}
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∣∣(µXφ)α ∣∣T
V
=
⎧⎪⎪⎨⎪⎪⎩

⋃γ<α ∣∣φ[µXφ/X]γ ∣∣TV , if X ∈ X ,
∣∣µXφα ∣∣T

V
, otherwise.

∣∣(νXφ)α ∣∣T
V
=
⎧⎪⎪⎨⎪⎪⎩

⋂γ<α ∣∣φ[νXφ/X]γ ∣∣TV , if X ∈ X ,
∣∣νXφα ∣∣T

V
, otherwise.

For every formula φ there exists an ordinal κ such that ∣∣φ∣∣T
V
= ∣∣φκ ∣∣T

V
= ∣∣φκ+1∣∣T

V
. The least such κ is

called the closure ordinal of φ with respect to T and X and is denoted COT ,X (φ). Note that a formula may
have different closure ordinals depending on the transition system on which it is evaluated as well as the
particular collection of variables analysed. For example the formula µX ◻ X is satisfied by all well-founded
trees; its closure ordinal with respect to {X} in each case is the order-type of the tree.

Definition 1.1 (Closure Ordinal) The closure ordinal of a closed formula φ with respect to a non-empty
set X of variables, denoted by COX (φ), is the ordinal supT COT ,X (φ), if this ordinal exists.

2 Syntactic analysis

Let Prop ∶= {p̄ ∶ p ∈ Prop} and P1 , P′1 , P2 , P′2 , . . . , Pn , P′n be finite subsets of Prop ∪ Prop. Each such set,
when referred to as a formula, denotes the conjunction of its elements. We say a formula of modal logic is
primary if it is of the form

(P1 ∧ ◻P′1 ∧∇1X) ∨ (P2 ∧ ◻P′2 ∧∇2X) ∨ . . . ∨ (Pn ∧ ◻P′n ∧∇nX) ∨ ◻� (1)

where ∇i ∈ {◇,◻} for each i. Czarnecki’s analysis in [3] establishes that every ordinal below ω2 is the
closure ordinal of the least fixpoint of some primary formula. In this section we establish a strong converse:
if the primary formula given in (1) has closure ordinal α, then α < ω.(n + 1). For the following let ψ denote
the formula in (1) and φ = µXψ.

Lemma 2.1 Fix a transition system T and a valuation V . Suppose κ is a limit ordinal. If x ∈ ∣∣φκ+1∣∣T
V
∖ ∣∣φκ ∣∣T

V
,

then there is no j ≤ n such that x ∈ ∣∣Pj ∧ ◻P′j ∧∇ jφκ ∣∣T
V
and ∇ j = ◇.

Proof Suppose T = (S ,→, λ) and let ∣∣φα ∣∣ abbreviate ∣∣φα ∣∣T
V
. Suppose x ∈ ∣∣φκ+1∣∣ ∖ ∣∣φκ ∣∣. By way of

contradiction suppose also x ∈ ∣∣Pj ∧ ◻P′j ∧ ∇ jφκ ∣∣ and ∇ j = ◇ for some j ≤ n. If {y ∈ S ∶ x → y} = ∅
then x ∈ ∣∣φ1∣∣ ⊆ ∣∣φκ ∣∣ which cannot be, so let x → y be such that y ∈ ∣∣φκ ∣∣. Thus there exists γ < κ such that
y ∈ ∣∣φγ ∣∣, and hence x ∈ ∣∣φγ+1∣∣ ⊆ ∣∣φκ ∣∣ yielding a contradiction. ∎

Corollary 2.2 If ∇i = ◇ for every i ≤ n then the closure ordinal of µXψ exists and is no greater than ω.

Lemma 2.3 Suppose there exist consistent sets of propositions Q1, Q2,. . .,Qk+1 and numbers i1 , i2 , . . . , ik < n
such that Pi j ∧ ◻P′i j ∧∇i jX is a subformula of ψ with Pi j ⊆ Q j and P′i j ⊆ Q j+1 for each j ≤ k. Furthermore,
suppose ∇ik = ◻ and there is no j ≤ n such that Pj ⊆ Qk , P′j ⊆ Qk+1 and ∇ j = ◇. If Qk+1 = Q1, then µXψ
does not have a closure ordinal.

Proof Let λ∶On × {i ∶ i ≤ k + 1} → P(Prop), where On is the class of all ordinals, be defined by
p ∈ λ((α, j)) if and only if p ∈ Q j . Furthermore, let Tα

0 = (Sα0 ,→α
0 , λ) be the TTS where

Sα0 = {(α, j) ∶ 0 < j ≤ k},
→α

0 = {((α, j), (α, j + 1)) ∶ 0 < j < k}.

4



(0, 1) Q1

(0, 2) Q2

⋮

(0, k) Qk

(α + 1, 1) Q1

(α + 1, 2) Q2

⋮

(α + 1, k) Qk

Tα

(α, 1) Q1

(α, 2) Q2

⋮

(α, k) Qk

Tα1 Tα2 Tα i

Figure 1: T0, Tα+1 and Tα (in the case α = supi α i) in the proof of lemma 2.3.

For each countable ordinal α we define a tree Tα as follows. Let T0 = T0
0 and Tα+1 = (Sα+1 ,→α+1 , λ)

where Sα+1 = Sα+10 ∪ Sα and →α+1=→α+1
0 ∪ →α ∪{((α + 1, k), (α, 1))}. If α is a limit ordinal, then Sα =

Sα0 ∪⋃β<α Sβ and→α=→α
0 ∪⋃β<α →β ∪{(α, k), (β, 1)) ∶ β < α}.

Let f be the function κ ↦ k.κ. We will show that for each κ ≤ α and 0 ≤ j < k,

(κ, k − j) ∈ ∣∣φ f (κ)+ j+1∣∣Tα
V
∖ ∣∣φ f (κ)+ j ∣∣Tα

V
(2)

whereby it will be clear that the formula φ does not possess a closure ordinal. The argument proceeds by
transfinite induction on κ ≤ α with an auxiliary induction on j < k. If j ≠ 0 then (2) follows from the fact
that (κ, k −( j− 1)) is the unique successor of (κ, k − j) and the definition of λ. Thus suppose j = 0, whence
three sub-cases manifest:

• κ = 0. Then f (κ) = 0 and (κ, k) is a leaf of Tα , so (2) trivially holds.

• κ = κ′ + 1. By the definition of Tα , (κ, k) has a unique successor, namely (κ′ , 1), whence (2) follows
from the induction hypothesis

• κ limit. The successors of (κ, k − j) in this case are the nodes (γ, 1) for γ < κ. By the induction
hypothesis we know (γ, 1) ∈ ∣∣φ f (γ+1)∣∣Tα

V
∖ ∣∣φ f (γ)+k−1∣∣Tα

V
for each γ < κ. Notice that ∣∣φ f (κ)∣∣Tα

V
=

⋃γ<κ ∣∣φ f (γ)∣∣Tα
V
. Since Pik ⊆ Qk , P′ik ⊆ Q1 and ∇ik = ◻, it follows that (κ, k) ∈ ∣∣φ f (κ)+1∣∣Tα

V
. If, however,

(κ, k) ∈ ∣∣φ f (κ)∣∣Tα
V
, then (κ, k) ∈ ∣∣φ f (γ)+k ∣∣Tα

V
for some γ < κ. But then (γ, 1) ∈ ∣∣φ f (γ)+k−1∣∣Tα

V
by the

assumption on φ.

Proposition 2.4 The closure ordinal of φ is strictly less than ω2.

Proof Let α be the closure ordinal of φ and suppose α ≥ ω2. Fix N ≥ 2∣φ∣+1 where ∣φ∣ denotes the number
of symbols occurring in φ. Let T be a TTS such that for every i ≤ N , ∣∣φω . i ∣∣T

V
is a proper subset of ∣∣φω . i+1∣∣T

V
.

Then there exists a path P through T , mN < mN−1 < ⋯ < m0 < ω and a function f ∶ω × ω → ω such that for
every i ≤ N and j < m i −m i+1, f (i , j) ≤ n and

P(m i − j) ∈ ∣∣Pf (i , j) ∧ ◻P′f (i , j) ∧∇ f (i , j)φω . i+ j ∣∣T
V
∖ ∣∣φω . i+ j ∣∣T

V
.
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Define for each j < ω, Q j = λT(P( j)) ∪ {p̄ ∶ p ∉ λT(P( j))}. For some i0 < i1 ≤ N it must be the case that

Qm i0
∩ Propφ = Qm i1

∩ Propφ

where Propφ = ⋃i≤n(Pi ∪ P′i ). The sequence Qm i1
, . . . , Qm i0

therefore fulfils the hypothesis of lemma 2.3
whence, contrary to our assumption, φ does not have a closure ordinal. ∎

The above analysis can also be applied to formulæ of the form

(ψ1 ∧∇1X) ∨ (ψ2 ∧∇2X) ∨ . . . ∨ (ψn ∧∇nX) ∨ ◻� (3)

where ψ1 , . . . ,ψn are closed formulæ of modal logic. Replacing literals with arbitrary modal formulæ in
each disjunct alters the “proposition paths” that can occur. Therefore, in order to find a repetition as in the
proof of proposition 2.4, one will need to look at larger segments of a suitable model. As such a proof would
be technically cumbersome, in the next section we will employ a semantic analysis which will include (3)
and extend the bounds to formulæ of the alternation-free fragment of µ-calculus.

3 Semantic analysis
For the remainder of the paper, formulæ are assumed to be closed and guarded unless otherwise stated.
A formula φ is guarded if in every subformula σZ .ψ of φ, every occurrence of the bound variable Z in ψ
appears within the scope of a modal operator. The restriction to the guarded fragment is not significant as
every formula is equivalent to one in guarded form (see e.g. [7]). Moreover, by following the approach of
[4] it is possible to carry out the analysis below for unguarded formulæ.1

Upper-case Greek letters such as Γ and ∆ denote sequents, finite sets of formulæ. ◻Γ abbreviates the
set {◻φ ∶ φ ∈ Γ} and◇Γ is defined analogously. We write Γ, φ for Γ ∪ {φ}, and Γ, ∆ to denote Γ ∪ ∆. The
Fischer-Ladner closure of a formula φ, denoted by FL(φ), is the smallest set such that

• φ ∈ FL(φ),

• if ψ0 ○ ψ1 ∈ FL(φ) where ○ ∈ {∨,∧} then ψ0 ,ψ1 ∈ FL(φ),

• if ∇ψ ∈ FL(φ) where ∇ ∈ {◇,◻} then ψ ∈ FL(φ),

• if σXψ ∈ FL(φ) where σ ∈ {µ, ν} then ψ[σXψ/X] ∈ FL(φ).

Note that ∣FL(φ)∣ ≤ ∣φ∣ where ∣φ∣ denotes the number of symbols occurring in φ. For a sequent Γ we set
FL(Γ) = ⋃γ∈Γ FL(γ).

3.1 Tableaux
Definition 3.1 Given a TTS T and a sequent Γ, a pre-tableau for (T , Γ) is a tree t = (V ,→) together with
functions τt ∶ t → T and λt ∶ t → P(FL(Γ)) such that the following conditions are satisfied.

• τt(ρt) = ρT and λt(ρt) = Γ.

• If v ∈ t is a leaf then λt(v) = ◻Ξ, Θ where Θ ⊆ Prop ∪ Prop, and either Ξ = ∅ or τt(v) is a leaf of T .

• If τt(u) = τt(v) then either u ≤t v or v ≤t u.

• For every v ∈ t, λt(v) ∩ Prop ⊆ λT(τt(v)) ⊆ {p ∈ Prop ∶ p̄ ∉ λt(v)}.
1We would like to thank the anonymous referee for drawing our attention to [4].
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• For every v0 → v1 ∈ t with τt(v i) = x i and λt(v i) = Γi , one of the following conditions hold.

(∧) x0 = x1 and there are formulæ φ0 , φ1 such that φ0 ∧φ1 ∈ Γ0 and Γ1 = (Γ0 ∖{φ0 ∧φ1})∪{φ0 , φ1}.
The formula φ0 ∧ φ1 is called active at v0 and both φ0 and φ1 residual at v1.

(∨) x0 = x1 and there are formulæ φ0 , φ1 such that φ0 ∨ φ1 ∈ Γ0 and Γ1 = (Γ0 ∖ {φ0 ∨ φ1}) ∪ {φ i}.
The formula φ0 ∨ φ1 is called active at v0 and φ i residual at v1.

(σX) x0 = x1 and there is a formula φ and σ ∈ {µ, ν} such that σXφ ∈ Γ0 and Γ1 = (Γ0 ∖ {σXφ}) ∪
{φ[σXφ/X]}. The formula σXφ is called active at v0 and φ(σXφ) residual at v1.

(mod) x0 →T x1 and Γ0 = ◻Ξ,◇∆, Θ with Θ ⊆ Prop ∪ Prop and Ξ ⊆ Γ1 ⊆ Ξ ∪ ∆. All formulæ in Γ0
are considered active at v0 and all formulæ in Γ1 residual at v1.

In the cases (∧), (∨) and (σX) above, ∣{u ∶ v0 → u}∣ = 1, while in the case of (mod), ⋃v0→u λt(u) =
Ξ ∪ ∆ and {τt(u) ∶ v0 → u} = {y ∶ x0 →T y}.

Remark 3.2 Exactly one of the four conditions (∧), (∨), (σX) and (mod) can apply to a non-leaf node of a
pre-tableau; henceforth we will refer to them as tableaux rules. Note that in a pre-tableau branching only
occurs at a (mod)-rule and may be infinite.

Suppose t is a pre-tableau for (T , Γ) and Ψ = {(ψ i , v i) ∶ i ∈ I} ⊆ FL(Γ) × t where I is an initial segment
of natural numbers. Ψ is called a trace from (ψ, v) if (ψ0 , v0) = (ψ, v) and there exists a path P in t and
natural number n such that for every i ∈ I,

• v i = P(n + i),

• ψ i ∈ λt(v i),

• if v i is a leaf or ψ i ∈ Prop ∪ Prop is active at v i then i + 1 ∉ I,

• if i + 1 ∈ I and ψ i is active at v i then ψ i+1 is an immediate subformula of ψ i that is residual at v i+1,

• if i + 1 ∈ I and ψ i is not active at v i then ψ i+1 = ψ i .

In each infinite trace (i.e. if I is infinite) there exists a variable that appears infinitely often and subsumes
all other infinitely occurring variables. If this unique variable is a µ-variable then the trace is called a µ-trace;
otherwise it is a ν-trace.

Definition 3.3 A pre-tableau for (T , Γ) is a tableau if every infinite trace is a ν-trace.

The following theorem which provides a characterisation of satisfaction in terms of the existence of
tableaux is folklore; see for example [7].

Theorem 3.4 T ⊧ ⋀ Γ if and only if there is a tableau for (T , Γ).

3.2 Order-types of tableaux
Fix a TTS T and a sequent Γ. To each tableau for (T , Γ) and set of µ-variablesX one can assign an order-type
with respect to X in a natural way. The order-type of ψ at a node v, denoted by αψ ,v ,X , is defined recursively
as follows. If there exists a trace Ψ = {(ψ i , v i) ∶ i ∈ I} from (ψ, v) such that for infinitely many i ∈ I, ψ i has
the form µXψ′ for some X ∈ X , or there are no traces Ψ = {(ψ i , v i) ∶ i ∈ I} from (ψ, v) for which ψ i has
the form µXψ′ for some i ∈ I and X ∈ X , then αψ ,v ,X = 0. Otherwise,

• if ψ = µXψ′ is active at v and X ∈ X then αψ ,v ,X = αψ′ ,u ,X + 1 where u is the unique successor of v in
the tableau,
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• if ψ is not of the form µXψ′ for some X ∈ X or not active at v then αψ ,v ,X is the supremum of αψ1 ,v1 ,X
for which there exists a trace Ψ = {(ψ i , v i) ∶ i ∈ I} from (ψ, v).

Definition 3.5 The order-type with respect toX of a tableau t for (T , Γ) is the ordinal sup{αφ ,ρ t ,X ∶ φ ∈ Γ}.
A tableau is an α-tableau with respect to X if its order-type with respect to X is no greater than α.

To establish the connection between the closure ordinal of a formula and order-types of the correspond-
ing tableaux we show that if φ is alternation-free and X a set of µ-variables,

x ∈ ∣∣φα ∣∣T
V
iff there exists an α-tableau for (T↾x , φ) with respect to X .

We will prove the result for X = {X}; the above statement is a direct generalisation of the next lemma.

Lemma 3.6 Suppose ψ(Y) is a formula with at most Y free and X a variable not occurring in ψ. LetX = {X}
and T be a TTS. Then x ∈ ∣∣ψ(µXφ)α ∣∣T

V
if and only if there exists an α-tableau for (T↾x ,ψ(µXφ)) with

respect to X .

Proof By transfinite induction on α. For the base case suppose α = 0. We want to show

x ∈ ∣∣ψ(Z)∣∣T
V[Z↦∅] iff there exists a 0-tableau (T↾x ,ψ(µXφ)).

Notice x ∈ ∣∣ψ(Z)∣∣T
V[Z↦∅] if and only if there is a tableau for (T↾x ,ψ(�)). Consider a tableau for

(T↾x ,ψ(�)). Since � cannot appear in the label of any node, this tableau can be used to create a tableau for
(T↾x ,ψ(µXφ)) in a trivial way: replace � by µXφ at relevant positions. The order-type of the emerging
tableau is 0 as µXφ can never appear in any trace. Conversely, since a tableau of order-type 0 means the
(µX)-rule is never applied, replacing occurrences of µXφ by � in a tableau for (T↾x ,ψ(µXφ)) yields a
tableau for ψ(�).

For the successor case we want to show

x ∈ ∣∣ψ(µXφ)α+1∣∣T
V
iff there exists an (α + 1)-tableau (T↾x ,ψ(µXφ)).

Note that x ∈ ∣∣ψ(µXφ)α+1∣∣T
V
if and only if x ∈ ∣∣(ψ ○φ)(µXφ)α ∣∣T

V
, if and only if there exists an α-tableau

for (T↾x , (ψ○φ)(µXφ)) by the induction hypothesis. Hence it suffices to show how to construct an (α+ 1)-
tableau for (T↾x ,ψ(µXφ)) from an α-tableau for (T↾x ,ψ ○φ(µXφ)) and vice versa. Given an α-tableau t
for (T↾x ,ψ ○ φ(µXφ)), along every path look for the first node v with λt(v) = Γ, φ(µXφ) for some Γ, and
replace all occurrences of φ(µXφ) by µXφ in nodes u ≤t v. The sequent at v has therefore become Γ, µXφ.
Between v and its successors, insert a new node labelled by Γ, φ(µXφ). The added transition is a valid
(µX)-rule so the resulting tableau is readily seen to be a tableau for (T↾x ,ψ(µXφ)). Moreover, all traces
from (µXφ, v) have order-type at most α + 1 and indeed, the tableau for (T↾x ,ψ(µXφ)) has order-type
α + 1. Similarly, by replacing occurrences of µXφ by φ(µXφ) at the relevant nodes in an (α + 1)-tableau for
(T↾x ,ψ(µXφ)) and removing the first application of a (µX)-rule on every trace one obtains an α-tableau
for (T↾x ,ψ ○ φ(µXφ)).

For the limit case suppose x ∈ ∣∣ψ(µXφ)α ∣∣T
V
. Let q be a fresh proposition and Tq a new TTS obtained

by adjusting the labelling so that q holds at all nodes belonging to ∣∣(µXφ)α ∣∣T
V
i.e.

λTq(x) = { λT(x) ∪ {q}, if x ∈ ∣∣(µXφ)α ∣∣T
V
,

λT(x), otherwise.

Since ∣∣ψ(µXφ)α ∣∣T
V
= ∣∣ψ(q)∣∣Tq

V
and ψ(q) is closed, there is a tableau t for (Tq↾x ,ψ(q)) of order-type

0. It is possible that there are nodes of this tableau at which q is active. The key to obtaining a tableau for
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(T↾x ,ψ(µXφ)) lies in replacing the occurrences of q at these nodes by tableaux for µXφ of the relevant
order-type. Suppose λt(v) = ◻Γ,◇∆, Θ, q, τt(v) = y, q is active at v and for no u <t v is q active at u. Let
β < α be such that y ∈ ∣∣(µXφ)β ∣∣T

V
. By the main induction hypothesis there is a β-tableau for (T↾y , µXφ).

We can combine this tableau with the sub-tableau t↾v to obtain a β-tableau tv for (Tq↾y ,◻Γ,◇∆, Θ, µXφ).
Now we replace t↾v by tv in t, substitute each occurrence of q by µXφ in the trace from the root to (q, v)
and repeat the procedure. In the limit a tableau for (T↾x ,ψ(µXφ)) is obtained. Moreover, the order-type
of this tableau can be no greater than α.

The converse direction is equally straight forward. ∎

Corollary 3.7 Suppose φ is a closed formula and X a set of µ-variables occurring in φ. For an arbitrary
TTS T, set αT to be 0 if T /⊧ φ, and otherwise the infimum of the order-types of all possible tableaux for (T , φ)
with respect to X . Then COX (φ) = sup{αT ∶ T a TTS}.

With corollary 3.7 in mind, in order to rule out certain ordinals being closure ordinals we require a
notion of minimality of order-types for tableaux.

Definition 3.8 A tableau t for (T , Γ) isminimal if there are no tableau for (T , Γ) with smaller order-type,
and absolutely minimal if for every node v ∈ t, t↾v is a minimal tableau for (T↾τ t(v) , λt(v)).

Remark 3.9 If T ⊧ φ then a minimal tableau t for (T , φ) exists. Moreover, as T↾τ t(v) ⊧ ⋀ λt(v) for each
v ∈ t, the existence of an absolutely minimal tableau for (T , φ) is also guaranteed.

As a refinement of lemma 3.6 for limit ordinals we have the following.

Proposition 3.10 Suppose φ is a formula with closure ordinal ω.α > 0 with respect to a set X of µ-variables.
Then there exists a TTS T and a minimal tableau for (T ,◻φ) with order-type ω.α with respect to X .

Proof By corollary 3.7, for every β < ω.α there exists a TTS Tβ such that every tableau for (Tβ , φ) has
order-type greater than β. Let T be the TTS obtained by extending the disjoint union of {Tβ ∶ β < ω.α}
by a fresh node ρT whose immediate successors are {ρTβ ∶ β < ω.α}. As T ⊧ ◻φ, there exists a tableau for
(T ,◻φ). Moreover, every minimal tableau for (T ,◻φ) has order-type ω.α with respect to X . ∎

3.3 Closure ordinals for the alternation-free fragment
In this section we determine upper bounds on the closure ordinals of alternation-free formulæ. The analysis
breaks into two parts. First we prove that if an alternation-free formula φ has closure ordinal strictly less
than ω2 with respect to its external µ-variables, then this ordinal is bounded by ω.22

∣φ∣+2
. Although primary

formulæ can yield ordinals arbitrary close to ω2 (from below), in the second part we show that the closure
ordinal of any alternation-free formula is strictly less than ω2.

We need only consider order-types for tableaux with respect to particular classes of µ-variables. Given
a formula φ, a set of variables X of φ is called principal if whenever X ∈ X appears within the scope of a
quantifier σY in φ, also Y ∈ X . Let Xφ denote the largest principal set containing only µ-variables of φ.

An ordinal assignment on a tree t is a function o∶ t → On such that if x , y are nodes in t and x ≤t y
then o(y) ≤ o(x). A tableau t for (T , Γ) induces a natural ordinal assignment on itself, denoted ot , setting
ot(u) = sup{αψ ,u ,XΓ ∶ ψ ∈ λt(u)} for every u ∈ t, where XΓ = ⋃φ∈Γ Xφ . Furthermore, the same tableau
induces an ordinal assignment on T , also denoted ot , by defining ot(x) = sup{ot(u) ∶ u ∈ t ∧ τt(u) = x}
for each x ∈ T . The order-type of a tableau t, denoted o(t), is the ordinal ot(ρt). A tableau is an α-tableau if
its order-type is no greater than α.

Lemma 3.11 If T ⊧ φ is a TTS with an infinite path x1 <T x2 <T ⋯ then there exists k such that for every
Γ ⊆ FL(φ), every absolutely minimal tableau t for (T , Γ) and every l > k, ot(x l) = 0.
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Proof Suppose the contrary, namely for every i there exists Γi ⊆ FL(φ) and absolutely minimal tableau t i
for (T , Γi) such that ot i (x i) > 0. For each m and i, let ∆m

i ⊆ P(FL(φ)) be the collection of sequents that
are associated with xm by t i ,

∆m
i = {∆ ∶ ∃u ∈ t i(τt i (u) = xm ∧ λt i (u) = ∆)}.

For eachm, there exists an infinite set I ⊆ ω with ∆m
i = ∆m

j for every i, j ∈ I. Thus it is possible to define
a sequence (Sm)n∈ω such that for each m,

1. Sm is an infinite set,

2. Sm+1 ⊆ Sm ,

3. for every i, j ∈ Sm , ∆m
i = ∆m

j .

As for each i the tableau t i is absolutely minimal, we have in fact

∀i , j ∈ Sm ot i (xm) = ot j(xm)

for every m. Let f ∶ω → S0 be a strictly increasing function such that f (m) ∈ Sm for every m and set
αm = ot f (m)(xm). Then the sequence (αm)m∈ω is a weakly decreasing sequence of ordinals as

αm+1 = ot f (m+1)(xm+1)
≤ ot f (m+1)(xm), since xm <T xm+1,
= ot f (m)(xm), since Sm+1 ⊆ Sm ,
= αm .

As f (m) ≥ m, we also have that αm = ot f (m)(xm) ≥ ot f (m)(x f (m)) > 0. Thus, the sequence (αm .∣φ∣)m∈ω
forms an infinite, strictly decreasing sequence of ordinals. ∎

Given T , Γ and a non-empty collection S of tableaux for (T , Γ), we define the S-pruning of T to be the
TTS T ′ that alters T by setting, for each propositional constant q not appearing in Γ, q /∈ λT′(x) iff for some
s ∈ S and all y <T x, os(y) > 0. If S is the collection of all absolutely minimal tableaux for (T , Γ), we write
Γ ⋆ T for the S-pruning of T .

Lemma 3.12 (Well-foundedness lemma) If T is a TTS, Γ is a finite set of formulæ all satisfied by T and q
is a propositional constant not occurring in Γ then {x ∈ Γ ⋆ T ∶ q /∈ λΓ⋆T(x)} forms a well-founded initial
sub-tree of T.

Proof Immediate consequence of lemma 3.11. ∎

Thenext three lemmata relate tableaux on Γ⋆T and T . Let T be a TTS, Γ a sequent and q a propositional
constant not occurring in Γ.

Lemma 3.13 If y ∈ T and os(y) ≤ α for every absolutely minimal tableau s for (T , Γ) then the set {x ∈ Γ ⋆ T ∶
q /∈ λΓ⋆T(x) ∧ y ≤T x} forms a well-founded tree of order-type no greater than ∣Γ∣.(1 + α).

Proof By transfinite induction on α. Notice that if τs(u) = y and os(u) > 0 then every trace in s↾u must
pass through a (µX)-rule for which µXφ is active, within the first ∣Γ∣ occurrences of a (mod)-rule. ∎

Lemma 3.14 If {x ∈ Γ ⋆ T ∶ q /∈ λΓ⋆T(x) ∧ y ≤T x} forms a non-empty (well-founded) tree of order-type ω.α
then
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1. for every ∆ ⊆ Γ and every absolutely minimal tableau t for (T , ∆), ot(y) ≤ ω.α,

2. there exists an absolutely minimal tableau s for (T , Γ) such that os(y) = ω.α.

Proof 1 can be proved via transfinite induction, noting that since Γ is a set of guarded formulæ, between
any two applications of the (σY)-rule on the same trace, the (mod)-rule must have been applied.

We prove 2. Suppose, in search of a contradiction, that for every absolutely minimal tableau s for (T , Γ),
os(y) < ω.α. Consider the ordinal

δ = sup{os(y) ∶ s is an absolutely minimal tableau for (T , Γ)}.

By lemma 3.13 it must be the case that δ = ω.α. But then for every β < α there exists an absolutely
minimal tableau s for (T , Γ) such that β < os(y) < δ; contradiction. ∎

For a formula φ ∈ Γ, let φq denote the formula resulting from replacing in φ each X ∈ Xφ by q̄ ∧ X, and
set Γq = {φq ∶ φ ∈ Γ}.

Lemma 3.15 There exists an α-tableau for (T , Γ) iff there is an α-tableau for (Γ ⋆ T , Γq).

Proof Suppose t is an α-tableau for (T , Γ). Then there exists an absolutely minimal tableau t′ for (T , Γ)
with o(t′) ≤ α. An o(t′)-tableau for (Γ⋆T , Γq) can be readily constructed from t′. For the converse, let t be
a tableau for (Γ⋆T , Γq). By the definition of Γq , it follows that if ot(y) > 0 then y ∈ {x ∈ Γ⋆T ∶ q /∈ λΓ⋆T(x)}
whence t can be modified to yield a tableau for (T , Γ) with the same order-type. ∎

Lemma 3.15 together with lemma 3.14 provide immediate upper bounds on the order-types of sub-
tableaux for (Γ ⋆ T , Γq). We can now expand on these properties to obtain a more fine-grained version of
lemma 3.14.

If B is a collection of nodes in a tableau s, ee write v ≤s B if for some u ∈ B, v ≤s u. Let s be an arbitrary
tableau, s0 a pruning of s and suppose A ⊆ s0 is the collection of leaves of s0 that are inner nodes of s.
A filter over (s, s0) is a set B ⊆ A such that for every v ≤s B if {u ∶ v →s u and u ≤s A} is infinite, so is
{u ∶ v →s u and u ≤s B}. An ordinal for the filter B is any α such that for every v ≤s B, if {u ∶ v ≤s u ∈ A} is
infinite then for every β < α there is w ∈ A such that v ≤s w and β ≤ os(w). It follows that for any tableau s
and pruning s0:

Lemma 3.16 If o(s) < α + o(s0) then there is no filter over s with ordinal α + ω.

Lemma 3.17 If every ordinal for every filter over s is bounded by α, then o(s) ≤ α + o(s0).

Proof Both lemmata are proved by transfinite induction on o(s). For the second lemma, notice that for
u ≤s B, if os0(u) = ω.β and for every v > u, os0(v) < ω.β, then for os(u) > α + os0(u) to be the case we
must have os(v) > α + os0(u) for some v ≥s0 u. ∎

We are now ready to prove the core lemma.

Lemma 3.18 Let N = 22∣φ∣+2 . If there is a minimal tableau for (T , φ) of order-type α ∈ [ω.N ,ω2) then there
exits a TTS T̂ and a minimal tableau for (T̂ , φ) with order-type strictly greater than α.

Proof Suppose α = ω.m1 +m2 and q is a constant not appearing in φ. Let T ′ = φ ⋆ T . For each i ≤ m1
define

Fi = {y ∈ T ′ ∶ {x ∈ T ∶ q ∉ λT′(x) ∧ y ≤T x} is a tree of order-type ω.i}.
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Figure 2: Tableaux t and t̂ in the proof of lemma 3.18.

Since there is a minimal tableau for (T , φ) of order-type α ≥ ω.N , the set Fi is non-empty for every
i ≤ N . Moreover, by lemma 3.15 there exists a tableau for (T ′ , φq) with order-type precisely α. Denote this
tableau by t and set F t

i = {v ∈ t ∶ τt(v) ∈ Fi}. For v ∈ F t
i , set

∆i = {∆ ∶ there exists an ω.i-tableau for (T ′↾τ t(v) , ∆q).

Notice ∆i is non-empty for each 0 < i ≤ N . Moreover, as ∆i ⊆ P(FL(φ)) and m1 ≥ N , there exists
0 < i < j ≤ m1 such that ∆3i = ∆3 j and ∆3i−1 = ∆3 j−1. To each v ∈ F t

3i is therefore associated a node
c(v) ∈ F t

3 j such that for every ∆ ⊆ FL(φ),

1. there is a tableau for (T ′↾τ t(v) , ∆q) if and only if there is a tableau for (T ′↾τ t(c(v)) , ∆q),

2. there exists an ω.(3i − 1)-tableau for (T ′↾τ t(v) , ∆q) if and only if there exists an ω.(3 j − 1)-tableau
for (T ′↾τ t(c(v)) , ∆q).

Let t̂ be the tableau obtained from t by replacing each node v ∈ F t
3i by t↾c(v). t̂ is a tableau for (T̂ , φq)

where T̂ is obtained from T ′ by replacing the sub-tree at each τt(v) ∈ F3i by T ′↾τ t(c(v)). Denote by A the
set of nodes of t̂ corresponding to this change.

Let ŝ be an absolutely minimal tableau for (T̂ , φ) and Â = {u ∈ ŝ ∶ ∃v ∈ A τ ŝ(u) = τ t̂(v)}. It suffices to
prove that o(ŝ) > α = ω.m1 +m2. Since (∆3i ,∆3i−1) = (∆3 j ,∆3 j−1), lemma 3.14 implies that for every u ∈ Â
there is a tableau, say tu , for (T ′↾τ ŝ(u) , λ ŝ(u))with o(tu) ≤ ω.3i, and o(tu) ≤ ω.(3i−1) if o ŝ(u) ≤ ω.(3 j−1).
From ŝ we define a new tableau s for (T ′ , φq) replacing the sub-tableau ŝ↾u by tu for each u ∈ Â. We remark
that s and ŝ have a common initial part, namely the pruning s0 = s ∩ {v ∶ v ≤s F3i}.

Assume o(ŝ) ≤ α. Every ordinal for a filter over (s, s0) is no greater than ω.3i by lemma 3.14, so by
lemma 3.17, o(s0) ≥ ω.(m1−3i)+m2. Notice also that o(s0) < ω.(m1−3i)+ω. But then o(ŝ) ≤ ω.m1+m2 <
ω.(3i + 1) + o(s0) and lemma 3.16 implies that every ordinal for a filter over ŝ is strictly below ω.(3i + 2).
Since 3i + 2 ≤ 3 j − 1, in forming s a sub-tableau of order-type < ω.(3i + 2) at A is replaced by a tableau of
order-type ω.(3i − 1). Therefore every filter over (s, s0) has ordinal ≤ ω.(3i − 1), whence

o(s) ≤ ω.(3i − 1) + o(s0)
< ω.(3i − 1) + ω.(m1 − 3i) + ω ≤ α

Thus by lemma 3.15 there exists a tableau for (T , φ) with order-type β < α, yielding a contradiction. ∎

Corollary 3.19 Let φ be a closed formula of alternation-free µ-calculus. If φ has closure ordinal α < ω2 with
respect to Xφ , in fact α < ω.N where N = 22∣φ∣+2 .
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Proof Suppose COXφ(φ) = α ∈ [ω.N ,ω2). Proposition 3.10 implies the existence of a TTS T and an
absolutely minimal tableau t for (T ,◻φ) with order-type α. By lemma 3.18 there exists a TTS T̂ ⊧ ◻φ and
a minimal tableau ŝ for (T̂ ,◻φ) with order-type greater than α, whence lemma 3.6 implies COXφ(φ) ≥
COT̂ ,Xφ

(φ) > α. ∎

It remains to rule out closure ordinals of ω2 or greater. To achieve this a more general version of the
argument in the preceding proof is required.

Lemma 3.20 If t is a minimal tableau for (T , φ) and o(t) ≥ ω2, then there exists a TTS T̂ and a minimal
tableau for (T̂ , φ) with order-type strictly greater than o(t).

Proof Suppose t is a minimal tableau for (T , φ) and ω2 ≤ ω.αt ≤ o(t) < ω.(αt + 1). Set T0 = φ ⋆ T . Let
q not appear in φ and for each k < ω let the set Fk be defined analogously to the previous lemma as the
collection of nodes in φ ⋆ T such that the sub-tree {x ∈ T0 ∶ q /∈ λT0(y) ∧ y ≤T x} has order-type ω.k. Now
Fk is non-empty for every k < ω, so there exist infinitely many indices, 0 < i < j(1) < j(2) < . . . such that
j(n + 1) ≥ j(n) + 2 and (∆i ,∆i−1) = (∆ j(n) ,∆ j(n)−1) for every n. Let cm ∶ Fi → F j(m) be the function such
that for each x ∈ Fi , ∆ ⊆ FL(φ) and every m < ω,

1. there is a tableau for (T0↾x , ∆q) if and only if there is a tableau for (T0↾cm(x) , ∆q),

2. there is a tableau for (T0↾x , ∆q) with order-type ω.(i − 1) if and only if there is a tableau for
(T0↾cm(x) , ∆q) with order-type ω.( j(m) − 1).

Beginning with cm , one can define iterated versions, cαm for each α: for i ∈ Fk with k ≥ i, c0m(x) = T0↾x
and c1m(x) is defined to be the result of replacing in T0↾x each node y ∈ Fi by the tree cm(y); cα+1m (x) is the
tree c1m(x) in which each node y ∈ Fi is replaced by cαm(y); for a limit ordinal α, cαm(x) is the tree c1m(x)
in which, given a bijection g0∶ Fi → ω,

• if α = ω.γ + ω then each node y ∈ Fi is replaced by the tree cω .γ+g0(y)g0(y) (y),

• if α = ω.α0, α0 is a limit ordinal and g1∶ Fi → α0 is a bijection, then each node y ∈ Fi is replaced by
the tree cω .g1(y)g0(y) (y).

The following two lemmata are obtained by generalising the argument in lemma 3.18 making essential
use of lemmata 3.16 and 3.17.

Sub-lemma 1 There exists a tableau for (cαm(x), ∆q) if and only if there exists a tableau for (T0↾cm(x) , ∆q).

Sub-lemma 2 If x ∈ Fi and there exists a tableau for (cαm(x), ∆q) with order-type < ω.α then there exists an
ω.(i − 1)-tableau for (T0↾x , ∆q).

The construction of the trees cαm(x) and the two previous sub-lemmata suffice to prove the main lemma.
By lemma 3.15, t naturally induces an absolutely minimal tableau for (T0 , φq) of the same order-type. Let
Tα t
0 be the tree obtained by replacing each sub-tree T0↾y for y ∈ Fi by cα t+ω

i (y). It is easy to see that
Tα t
0 ⊧ φ ∧ φq .
Let ŝ be an arbitrary absolutely minimal tableau for (Tα t

0 , φq) and s the collapse of ŝ to a tableau for
(T0 , φq): on each path replace the first v ∈ ŝ such that Tα t

0 ↾τ ŝ(v) = c
α t+ω
i (y) for some y ∈ Fi by the tableau for

(T0↾y , λ ŝ(v)) given by sub-lemma 2, if o ŝ(v) < ω.αt +ω, and by sub-lemma 1 otherwise. Let S0 denote the
collection of absolutely minimal tableaux for T0, and set S′0 to be the collection of tableaux for (T0 , φq) that
arise as the collapse, in the manner described above, of an absolutely minimal tableau for (Tα t

0 , φq). If there
is a minimal tableau for (Tα t

0 , φq) with order-type strictly greater than o(t) then we are done. Otherwise,
for every r′ ∈ S′0 there exists r ∈ S0 such that for all x, if or′(x) = ω.i then or(x) > ω.i. Now set T1 to be the
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S′0-pruning of T0. T1 has the same domain as T0 and hence T . Moreover, if {z ∈ T1 ∶ q /∈ λT1(z) ∧ x ≤T z}
has order-type ω.i then there exists x <T y such that the tree {z ∈ T0 ∶ q /∈ λT0(z) ∧ y ≤T z} has order-type
ω.i. Let the set S1 comprise all absolutely minimal tableaux for (T1 , φq). Any r ∈ S1 is also a tableau for
(T0 , φq) and hence also for (T , φ). Thus consider tableaux for (Tα t

1 , φq) and set S′1 to be the collection of
tableaux that are obtained from the collapse of absolutely minimal tableaux for (Tα t

1 , φq). Define S2 to be
the set of absolutely minimal tableaux for the S′1-pruning of T1. Similarly define S3, S4, etc. Every tableau in
Sn+1 “moves” the ω.i-frontier of T closer to the root. Thus, either for some n there exists a minimal tableau
for (Tα t

n , φq) with order-type strictly greater than o(t), or for every n there exists x ∈ T and tableau s j ∈ S j
for every j ≤ n such that os j(x) < os j+1(x). As the latter will yield a contradiction, we are done. ∎

As a consequence of lemmata 3.18 and 3.20 the closure ordinals of µ-formulæwill be sufficiently bounded.

Theorem 3.21 Let X be a principal set of µ-variables for a closed and alternation-free formula φ. Then the
closure ordinal of φ with respect to X , if it exists, is strictly less than ω.22

∣φ∣+2
.

Corollary 3.22 Suppose φ is a closed formula in the alternation-free fragment of the µ-calculus and X is a
principal set of ν-variables only. Then COX (φ) < ω.22

∣φ∣+2
if the former ordinal exists.

Proof Let φ̄ denote the dual of φ and letX be a set of ν-variables principal in φ. That COX (φ) = COX (φ̄)
follows from the dual semantics of the µ-calculus, whence theorem 3.21 implies COX (φ) < ω.22

∣φ∣+2
. ∎

Theorem 3.23 Let φ be a closed alternation-free formula in guarded form and let X be the set of variables
occurring in φ. If COX (φ) exists then COX (φ) < ω2.

Proof (Proof sketch) Suppose φ ∈ Σn+1 in the weak hierarchy has closure ordinal κ with respect to the
set of all variables in φ. By theorem 3.21 all µ-variables that do not appear under the scope of a ν-variable
close off at some ordinal α < ω2. Moreover, the structure of φ will induce, for each closed weak Πn sub-
formula ψ, a particular class of transition systems, say T , such that ψ has closure ordinal κ with respect to
trees in T . In the case n = 1, by relativising the previous arguments to the class T , one may deduce ψ has
closure ordinal, say αψ , strictly less than ω2 with respect to T . As the closure ordinal of φ is no greater than
the sum of α and ordinals αψ , COX (φ) < ω2. ∎

A profound consequence of lemma 3.20 and corollary 3.22 and one that also applies to theorem 3.23, is
that there is no essential dependency between closure ordinals and alternation depth for the alternation-free
fragment: the choice of N in these results depends only on the logical complexity of φ and the dependency
on the alternation depth of φ is essentially trivial, necessitating a smaller increase in bounds than for
the connectives and quantifiers. Whether this remains the case for formulæ outside the alternation-free
fragment is unclear.
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