
Analysing Layered Security
Protocols

Thomas Gibson-Robinson
St Catherine’s College

University of Oxford

A thesis submitted for the degree of

Doctor of Philosophy

Trinity 2013



Abstract

Many security protocols are built as the composition of an application-
layer protocol and a secure transport protocol, such as TLS. There are
many approaches to proving the correctness of such protocols. One popu-
lar approach is verification by abstraction, in which the correctness of the
application-layer protocol is proven under the assumption that the trans-
port layer satisfies certain properties, such as confidentiality. Following
this approach, we adapt the strand spaces model in order to analyse
application-layer protocols that depend on an underlying secure trans-
port layer, including unilaterally authenticating secure transport proto-
cols, such as unilateral TLS. Further, we develop proof rules that enable
us to prove the correctness of application-layer protocols that use either
unilateral or bilateral secure transport protocols. We then illustrate these
rules by proving the correctness of WebAuth, a single-sign-on protocol
that makes extensive use of unilateral TLS.

In this thesis we also present a full proof of the model’s soundness. In
particular, we prove that, subject to a suitable independence assumption,
if there is an attack against the application-layer protocol when layered
on top of a particular secure transport protocol, then there is an attack
against the abstracted model of the application-layer protocol. In con-
trast to existing work in this area, the independence assumption consists
of eight statically-checkable conditions, meaning that it can be checked
statically, rather than having to consider all possible runs of the protocol.

Lastly, we extend the model to allow protocols that consist of an arbitrary
number of layers to be proven correct. In this case, we prove the correct-
ness of the intermediate layers using the high-level strand spaces model,
by abstracting away from the underlying transport-layers. Further, we
extend the above soundness results in order to prove that the multi-layer
approach is sound. We illustrate the effectiveness of our technique by
proving the correctness of a couple of simple multi-layer protocols.



Acknowledgements

I cannot express sufficient thanks to my supervisor, Gavin Lowe, for
helping me immeasurably during my thesis. Not only has he been a
wonderful collaborator to do research with, always providing useful ideas,
checking proofs and proof-reading, but he has provided me with so many
opportunities throughout my degree. I am truly grateful to Gavin for
this.

I am very grateful to Sadie Creese, Michael Goldsmith and Bill Roscoe for
all providing useful feedback on my work, and providing me with many
interesting opportunities in other research areas.

I would also like to thank my family and friends for providing me with
much needed distractions during my DPhil. I’m also very grateful to Sze-
Kie for her support throughout my doctorate, and for putting up with
me when I have been stuck on a proof.

Last, but certainly not least, I would like to thank all of my friends
in the department for providing me not just with countless stimulating
discussions in so many different areas, but also for being such excellent
sources of laughter, entertainment and impromptu pub visits!



Contents

1 Introduction 1
1.1 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Introduction to Strand Spaces 10
2.1 Term Algebra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Strand Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 The Penetrator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.4 Penetrator Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3 Verifying Protocols by Abstraction 18
3.1 The High-Level Strand Spaces Model . . . . . . . . . . . . . . . . . . 18

3.1.1 Basic Definitions . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.1.2 The Penetrator . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.3 High-Level Normality . . . . . . . . . . . . . . . . . . . . . . 27

3.2 Verifying Layered Protocols . . . . . . . . . . . . . . . . . . . . . . . 30
3.3 Example: The WebAuth Protocol . . . . . . . . . . . . . . . . . . . . 34

3.3.1 The Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.3.2 Strand Space Definition . . . . . . . . . . . . . . . . . . . . . 36
3.3.3 Verification of WebAuth . . . . . . . . . . . . . . . . . . . . . 37

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Soundness of the Abstraction 45
4.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 Relating Regular Nodes . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3 Relating Penetrator Nodes . . . . . . . . . . . . . . . . . . . . . . . . 53
4.4 Interference Freedom and Abstract Correctness . . . . . . . . . . . . 61

4.4.1 Interference Freedom . . . . . . . . . . . . . . . . . . . . . . . 62
4.4.2 Abstract Correctness . . . . . . . . . . . . . . . . . . . . . . . 66

4.5 Soundness of The Abstraction . . . . . . . . . . . . . . . . . . . . . . 66
4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5 Disjoint Encryption 70
5.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1.1 Encryption Sets . . . . . . . . . . . . . . . . . . . . . . . . . . 71
5.1.2 Message Sending . . . . . . . . . . . . . . . . . . . . . . . . . 73
5.1.3 Bundle Correctness Properties . . . . . . . . . . . . . . . . . 73

iv



5.2 Formulating the Assumption . . . . . . . . . . . . . . . . . . . . . . . 74
5.3 Crossing-Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.3.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
5.3.2 Enlarging the Strand Space . . . . . . . . . . . . . . . . . . . 81
5.3.3 Abstract Correctness Preserving Transformations . . . . . . . 82
5.3.4 Removing Crossing-Paths . . . . . . . . . . . . . . . . . . . . 84

5.4 Interference Freedom . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.4.1 Restricting the Penetrator Paths . . . . . . . . . . . . . . . . 89
5.4.2 Making Nodes Abstractly Constructible . . . . . . . . . . . . 91
5.4.3 Making Nodes Interference-Free . . . . . . . . . . . . . . . . . 95

5.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6 Abstracting Correctness Properties 98
6.1 A Logic of Correctness Properties . . . . . . . . . . . . . . . . . . . . 99
6.2 High-Level Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
6.3 Low-Level Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.3.1 Unique Origination . . . . . . . . . . . . . . . . . . . . . . . . 105
6.3.2 The Semantics . . . . . . . . . . . . . . . . . . . . . . . . . . 106

6.4 Term Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
6.5 Logical Equivalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.5.1 Origination . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.5.2 Confidentiality . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.5.3 Causal Precedence . . . . . . . . . . . . . . . . . . . . . . . . 113
6.5.4 The Main Result . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.6 Proofs by Abstraction . . . . . . . . . . . . . . . . . . . . . . . . . . 115
6.6.1 High-Level Proofs . . . . . . . . . . . . . . . . . . . . . . . . 116

6.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7 TLS 119
7.1 The Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . 119
7.2 Bundle Predicate Preservation . . . . . . . . . . . . . . . . . . . . . . 122
7.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
7.4 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

8 Multi-Layer Protocol Analysis 127
8.1 High-Level Channels . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
8.2 Defining Layering of Channels . . . . . . . . . . . . . . . . . . . . . . 131

8.2.1 High-Level Penetrator Subpaths . . . . . . . . . . . . . . . . 136
8.3 High-Level Abstract Correctness . . . . . . . . . . . . . . . . . . . . 139
8.4 Disjoint Encryption . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
8.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 150

8.5.1 Sequence Numbers . . . . . . . . . . . . . . . . . . . . . . . . 150
8.5.2 Username and Password Protocol . . . . . . . . . . . . . . . . 154

8.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

9 Conclusions 163
9.1 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

v



A Index of Notation 170

B Index of Assumptions 173

vi



Chapter 1

Introduction

A security protocol is a sequence of messages that are exchanged between a number
of agents in order to allow the agents to conclude that particular security goals have
been achieved. For example, a security protocol might allow a user to securely login
to a server, or to transfer money securely between accounts.

Modern security protocols tend to be constructed as two separate layers. The
bottom layer, known as the secure transport layer, is a generic secure transport
protocol, such as TLS [DR08], that can send arbitrary messages protected in some
way. For example, the secure transport layer might guarantee confidentiality of the
messages (i.e. the messages can only be read by the intended recipient) or authenticity
(i.e. the recipient can be sure of the identity of the sender). The second layer,
known as the application layer, uses the guarantees provided by the transport layer
to provide some useful functionality. For example, WebAuth [SA09] is an application-
layer protocol that uses the security guarantees provided by the transport layer to
provide a single-sign-on service, so that users can login to multiple websites with just
one account.

It is highly desirable to be able to prove the correctness of security protocols,
given that the correctness of even trivial protocols is often difficult to precisely rea-
son about. There are numerous examples in the literature (e.g. [Low95], [ACC+08])
of protocols that have been assumed correct for lengthy periods of time before an
attack was found. There are two main tactics for verifying layered security protocols.
One option is to verify a combined protocol formed from the composition of the appli-
cation and the transport-layer protocols, using standard protocol analysis techniques.
Alternatively, verification by abstraction can be used to prove the application-layer
protocol correct in isolation, assuming only that the transport protocol satisfies cer-
tain abstract properties, rather than considering a particular implementation. For
example, WebAuth requires only that the transport layer ensures confidentiality of
messages and also authenticates the server to the client.

There are several advantages to verifying protocols by abstraction. Firstly, the
proofs are substantially simpler, as the combined protocols are often very large, and
transport-layer protocols (particularly TLS) are generally highly complex to model.
It also permits the proof of transport layer correctness to be reused for multiple
different application-layer protocols. Further, the application-layer proof no longer
depends on a particular transport layer being used, meaning that any protocol that
provides equivalent (or stronger) properties can be used instead. Lastly, such a

1



proof often reveals precisely why the transport layer has to satisfy some property to
guarantee the security of the application layer. This can be particularly informative
for the protocol designer, who may be able to alter the application-layer protocol to
weaken its requirements, or even change the transport-layer protocol required.

Proof by Abstraction The first contribution of this thesis is an extension to the
strand spaces model [TFHG99], the high-level strand spaces model, that can be used
to prove application-layer protocols correct by abstracting away from the transport-
layer protocol. Our model allows the guarantees of a wide variety of transport-layer
protocols, including TLS, to be modelled. In contrast to many other techniques, we
are also able to model the guarantees provided by so-called unilaterally authenticating
secure transport protocols, such as unilateral TLS. In these protocols, the server is
authenticated to the client, but the client is not authenticated to the server, although
the server can assume all messages come from the same source. We are also able
to model the guarantees provided by transport-layer protocols that provide session-
based properties and those protocols that, like TLS, prevent message reordering.
In addition, we provide a number of proof rules that can be used to prove the
correctness of application-layer protocols. We then illustrate the usefulness of the
model by proving the correctness of WebAuth [SA09].

The high-level strand spaces model defined in this thesis is an extension of that
developed by Kamil and Lowe [KL09, Kam10]. The main difference between the
two versions is that in this thesis, as discussed above, we add support for modelling
the guarantees provided by unilaterally authenticating secure transport protocols.
Further, the way in which transport-layer protocols that group messages into sessions
and prevent message reordering has been improved. More detailed comparisons are
made after defining the high-level strand spaces model in Section 3.4.

The majority of existing approaches to verifying layered security protocols
[ACC07, DL08, MV09a, BF08, KL09] have focused, in contrast to the high-level
strand spaces model, on modelling the security guarantees provided by bilateral
transport-layer protocols, such as bilateral TLS, where each participant is authenti-
cated to the other. However, many application-layer protocols, in particular those
used on the web, are unable to make use of bilateral TLS, because each party must
possess a public-key certificate. Therefore, web-based protocols almost exclusively
make use of unilateral TLS, making it important that protocol analysis techniques
can model its guarantees. Further comparisons with related work are given in Sec-
tion 3.4.

Soundness Proving a layered security protocol correct by abstraction introduces
a obligation to prove that the analysis captures all the attacks that verifying the
combined protocol would consider. Clearly, such a proof will require a number of
assumptions on the application and transport-layer protocols, as it is possible to
construct protocols that deliberately break the security guarantees of others by, for
example, deliberately leaking keys. Further, it is highly desirable for these assump-
tions to be statically checkable, in that, for a wide class of protocols, the condition
should be checkable by syntactic inspection of the protocol messages, or using pre-
existing protocol verification tools.

The second contribution of this thesis is a proof of the soundness of the high-level

2



strand spaces model, with respect to the Dolev-Yao model [DY83]. In particular, we
prove that, subject to statically-checkable conditions, whenever there is an attack
against the combined protocol, then there is an attack against the application-layer
protocol in the high-level model. Further, our condition is satisfied by a wide vari-
ety of application and transport-layer protocols, including TLS (although this does
require an attack-preserving transformation).

This is a particularly difficult problem for a number of reasons. The central
challenge was to ensure that the proof did not impose restrictions that prevented
real-world protocols from being modelled. For example, we could have proven the
result comparatively easily had we insisted that the messages of the the application
and transport layer were entirely disjoint. Clearly, this would have substantially
restricted the utility of the proof. Instead, we believe that our static assumptions are
satisfied by large classes of both application and transport-layer protocols, including
WebAuth and TLS. The other main complication was that the correctness proof
cannot assume a particular format for the transport-layer messages, as it requires
reasoning about arbitrary compositions of transport and application-layer protocols.

The statically-checkable conditions that we have developed take some inspiration
from [GT00] in that the majority of the conditions are concerned with what encryp-
tions can be shared between the application and transport layers. For example, we
prohibit any encrypted term from being shared between the application layer and
certain parts of the transport layer. We also make several assumptions about what
the penetrator initially knows and how the regular agents behave. These assumptions
allow us to prove our main result as follows.

In the following, a bundle is an collection of runs of a protocol by various agents,
possibly involving the penetrator, that satisfies a number of well-formedness condi-
tions, including that every message received must have been sent and that there are
no cycles in the bundle.

1. We prove that there exists a class of low-level bundles, known as interference-
free bundles, that can be converted into high-level bundles that have corre-
sponding (in a formal sense) application-layer behaviour. This is what Chap-
ter 4 achieves by giving the translation between low and high-level bundles. A
small part of this proof is based on the work by Kamil and Lowe [KL10, Kam10].
In particular, the way in which values are related between the two strand spaces
is based in a large part on the work by Kamil and Lowe. This is clarified further
in Section 4.6.

2. Assuming that our statically-checkable condition holds, we prove that any low-
level bundle can be transformed to a corresponding (again, in a formal sense)
interference-free low-level bundle. This is done in Chapter 5 by specifying the
transformation steps required.

3. Lastly, we show that the above transformations preserve protocol failures. In
particular, we prove that the transformations from Chapter 5 ensure that if a
bundle does not satisfy a particular protocol-correctness property, then neither
does the resulting bundle. Further, we show that whenever a low-level bundle
does not satisfy a protocol-correctness property, then neither does the high-
level bundle created by the transformations of Chapter 4. In order to prove this

3



result in Chapter 6, we define a logic in which protocol correctness properties
can be expressed.

Using the above, we can then observe that the high-level strand spaces model is
sound, in the sense that a proof of correctness at the high-level implies there can be
no bundle at the low-level that does not satisfy the property.

The soundness of general protocol composition has been widely considered before.
Most work [GT00, DDMR07, CD08, ACG+08, CC10] considers when it is sound to
compose protocols in parallel (i.e. what [GM11] refers to as horizontal protocol com-
position). Generally, the results of these papers require various message disjointness
properties to hold, not unlike the properties we consider in this thesis. However, the
problem that they consider is subtly different in that we are attempting to prove the
correctness of the layers independently, even though messages are formed from those
of multiple layers.

There has been relatively little work done on the soundness of techniques that
prove protocol correctness by abstraction. The work closest to ours is [GM11], in
which the authors show that their analysis technique is sound, assuming a statically-
checkable condition. Compared to the assumptions developed in this thesis, the
conditions the authors specify are more restrictive and, in particular, TLS does not
satisfy their definition. Further comparisons are given in Section 7.4.

Multiple Layers Many application-layer protocols themselves actually consist of
more than one layer, or can be viewed as the composition of a number of layers
in order to ease analysis. For example, many web-based application-layer protocols
authenticate the user by using a username/password exchange on top of a unilateral
TLS connection. This can be viewed as the composition of a three-layer protocol,
where the bottom layer is unilateral TLS, the middle layer is the username/password
protocol and the top layer is the application-layer protocol. In the above, the real
application-layer protocol is using the combination of the unilateral TLS channel and
the username/password protocol as a bilateral TLS-like channel.

The third and final contribution of this thesis is an extension of the high-level
strand spaces model to allow protocols that consist of an arbitrary number of layers,
such as the above example, to be verified. In particular, it provides a way of modelling
transport-layer protocols, such as the aforementioned username/password protocol,
in the high-level strand spaces model.

In order to prove that the multi-layer model is sound, we firstly define what it
means for a single channel to be equivalent to the layering of two other channels.
Note that this essentially specifies how implementors of multi-layer protocols have to
implement the layering. Then, we prove that whenever the combined transport-layer
protocol can be attacked (i.e. does not satisfy the required security guarantees), then
providing the bottom transport-layer protocol (e.g. unilateral TLS) is correct, there
is an attack against the upper of the transport-layers (e.g. the username/password
protocol). Further, this attack will be present in the high-level model, thus showing
that the high-level analysis is sufficient.

4



1.1 Related Work

In this section we give a brief overview of relevant related techniques. We make
detailed comparisons with: related protocol verification models in Section 3.4; re-
lated soundness proofs in Section 7.4; and related multi-layer analysis techniques in
Section 8.6.

ProVerif ProVerif [Bla01] is an automated tool that can be used to verify the cor-
rectness of security protocols. By using an over-approximation, ProVerif is able to
verify systems that are of unbounded size, both in terms of the number of partici-
pants in the system, and in the number of runs of the protocol that each participant
executes. It is able to verify secrecy properties, and via some extensions [Bla09], also
authenticity properties. It does not have explicit support for verifying layered proto-
cols by abstraction, and therefore can only be used to analyse the application-layer
protocol in conjunction with a particular secure transport-layer protocol (although
there is no reason to suppose that adding support for such analyses would be par-
ticularly difficult).

In ProVerif, the protocol being modelled is represented by a set of Horn clauses.
Further, the penetrator is modelled by a set of Horn clauses that allow him to
manipulate messages that he has received. An efficient solving algorithm is then
used to determine if a certain fact can be deduced given the horn clauses. Thus,
secrecy of a term can be checked by determining if the term can be derived using
the horn clauses. The algorithm is highly effective and is normally able to terminate
quickly even on complex protocols. When ProVerif is unable to prove the security of
a protocol, it instead attempts to construct an attack on the protocol which it can
then report to the user.

Scyther Scyther [Cre08a, Cre08b] is another automated tool that can automati-
cally verify both secrecy and authenticity properties of a wide class of single-layer
protocols. Like ProVerif, it does not have explicit support for verification of layered
protocols, and thus one has to analyse an explicit combination of the two layers. It
is also able to verify an unbounded number of sessions. In contrast to other tech-
niques that provide unbounded results, Scyther is guaranteed to terminate. Further,
even when Scyther cannot prove results for an unbounded number of sessions, it is
able to provide useful results. In particular, it gives guarantees that are essentially
equivalent to the guarantees given by bounded verification tools up to certain bound.

In order to analyse protocols, Scyther considers the traces obtained by running a
protocol, and then generates a characterisation of the protocol in the form of a finite
set of trace patterns. This set is guaranteed to cover the, possibly infinite, set of
all possible traces that the protocol could produce. In order to verify secrecy prop-
erties, Scyther considers the pattern that corresponds to a violation of the security
property. It then checks to see if any of these patterns are produced by the proto-
col. Interestingly, and unlike many other tools that support unbounded verification,
including ProVerif, Scyther does not apply any abstractions to the protocol. This
means that by construction, Scyther never produces a false counterexample.

5



Tamarin Tamarin [SMCB12] is an automated tool that is designed to verify prop-
erties of security protocols using a theorem-proving style approach. It has been de-
signed to analyse Authenticated Key Exchange protocols, and is distinguished from
other automated techniques in that it supports more powerful penetrators (such
as the eCK adversary [LLM07]) who can, for example, compromise certain crypto-
graphic keys. Further, it is able to support equational theories such as Diffie-Hellman,
thus allowing many more protocols to be proven correct than using other techniques.
In contrast to other automated techniques, Tamarin also supports an interactive
mode in which the user can guide it in proving the correctness of a protocol.

Tamarin models the protocol and the penetrator using multiset rewriting rules,
thus allowing for the easy specification of many protocols. Correctness properties are
specified in a fragment of first-order logic that is sufficient to express all of the usual
secrecy and authenticity properties. Tamarin then uses constraint solving in order
to search (symbolically) for an execution of the protocol that falsifies the desired
property.

Strand Spaces The strand spaces model [TFHG99] allows non-layered security
protocols to be proven correct. In contrast to other approaches, it has been princi-
pally developed to prove protocols correct, rather than trying to find attacks against
a protocol. Since it is a proof technique, it is able to verify protocols that consist of
an arbitrary number of sessions. In the strand spaces model, each local session of an
honest agent is represented as a sequence of message transmissions and receptions.
The penetrator has complete control over all message transmissions and receptions,
and is provided with simple ways of manipulating messages. One particular strength
of the strand spaces model is its ability to track where a message came from and how
the penetrator constructs a term. The latter is particularly useful when proving the
soundness results of Chapter 5.

The strand spaces model can also be used to automatically verify protocols by
using the tool CPSA [DGT07]. This works by enumerating all of the essentially
different shapes that the protocol interactions might have, and then checks to see if
each shape satisfies the required guarantees. It is principally focused around trying
to prove the correctness of protocols that make use of various forms of authentication
checks, such as challenge-response exchanges.

The strand spaces model has also been extended to the high-level strand spaces
model [KL09, Kam10] by Kamil and Lowe to allow protocols that consist of precisely
two layers to be verified. This model allows the guarantees offered by bilaterally
authenticating secure transport protocols to be modelled. It also provides limited
support for protocols that group messages into sessions and protocols that prevent
message from being reordered.

We give more detailed comparisons between Kamil and Lowe’s version of the
high-level strand spaces model and the version presented in this thesis in Section 3.4.

CSP-Based Approaches In [DL08, Dil11] Dilloway and Lowe use the process
algebra CSP [Hoa85, Ros10] to verify, by abstraction, application-layer protocols
layered on a single secure transport protocol. Their model allows the guarantees
provided by bilateral TLS-like transport-layers to be modelled. They also define a
full hierarchy of secure transport protocols, giving examples of each.

6



In their approach, each honest participant is represented by a CSP process that
can send and receive messages from the network. The intruder is represented by a
process that is parameterised by the set of values that he knows. The system is then
constructed by connecting each of the honest participants to the intruder: thus, in
a sense, the intruder is the network. The different guarantees offered by the various
secure transport channels are modelled by only allowing the penetrator to overhear
certain values. Thus, for example, if a message m is sent over a confidential channel,
the intruder is not allowed to add m to his set of known values but can prevent m
from being received.

Dilloway and Lowe also extended Casper [Low98] to automatically generate the
CSP scripts required to model the protocol. Since the input format for Casper is
relatively easy to use, this makes their technique useable by a large number of people.
However, their technique can only verify systems that consist of a finite size, for
example a single client and server. This means that it cannot be used to formally
prove the correctness of protocols, although it can be used to gain a reasonable level
of confidence. Casper can also be used to verify non-layered protocols and has been
extended to verify systems that consist of an unbounded number of sessions [KR05],
but only for single-layer protocols.

Pi-Calculus In [BF08] the authors analyse layered security protocols using another
process algebra, the pi-calculus [Mil99]. They explain the motivation for their work
by observing that, traditionally, in the pi-Calculus most application-layer protocols
are implemented using private channels, which are extremely difficult to implement
in practice. In particular, a private channel ensures messages are always received
by the intended recipient, traffic analysis cannot be used to discover the contents of
message, and that making a private channel public does not compromise the messages
that were sent earlier in the session. These are very difficult guarantees to implement
in practice.

In order to analyse layered security protocols, they extend the asynchronous pi-
calculus to add support for communications that are sent over secure transport-layer
protocols. In this, they use a simple penetrator model that allows the penetrator to
intercept, forward or replicate messages that are sent over secure transport layers.
The intercept mode has two variants: if a message is sent to an honest agent, then
the penetrator can only obtain the transport-layer payload, whilst otherwise the
penetrator can obtain the application-layer message itself. Hence, in some sense,
this is not pure verification by abstraction, since the application-layer analysis has
to take into account the format of the transport-layer messages.

Inductive Approach The inductive approach [Pau98] allows protocols that con-
sist of a single layer to be proven correct using the theorem prover Isabelle [NWP02].
In contrast to many of the techniques above, the analysis is not automatic, and
instead the user has to guide the theorem prover in order to help it prove the re-
quired goals. However, it does support unbounded verification, meaning that it can
be used for actually proving the correctness of protocols. The inductive approach is
formalised using event lists, which are conceptually execution traces of the system.
Each event of the system either denotes an agent injecting a message into the net-
work, retrieving a message from the network, or changing internal state. The honest

7



agents and the intruder are then defined as predicates over event lists.
[BLP03] extends the inductive approach to verify application-layer protocols that

are layered on a simple type of secure transport protocol. This allows the guarantees
provided by confidential and authentic channels to be specified relatively easily. In
order to add support for this new events are added that correspond to messages
being sent over confidential and authentic channels. The penetrator is then given
more restricted rules for manipulating messages that are sent over such channels.

Pseudonymous Channels In [MV09a] the authors define a model-checking based
approach that allows application-layer protocols that are layered on either unilater-
ally or bilaterally authenticating secure transport protocols to be verified. The au-
thors formalise their model in the context of The Intermediate Format, or IF, that is
a transition system along with a set of rules that specify which states are considered
to be attack states. Each state corresponds to a set of facts that are true, whilst
the transition relation relates sets of facts. The penetrator model is constructed by
adding transitions that correspond to each of the ways the penetrator can manipu-
late values (e.g. concatenating, encryption etc.). A protocol is then considered to be
secure if none of the attack states are reachable from the initial state.

Protocols defined in this model can be verified using the symbolic model-checker,
OFMC [MV09b]. Originally, OFMC could only be used to verify systems of some
particular finite size. However, it has since been extended [BM10] in order to allow
systems of an unbounded size to be verified. In order to do this, OFMC computes
progressively tighter abstractions of the protocol, until a fixpoint that contains no
false attacks is reached. This is then passed to a modified version of the Isabelle
theorem prover [NWP02], which uses this fixpoint in order to try and construct a
proof of the protocol correctness.

LTL In [ACC07] the authors give an LTL-based model checking approach that
allows security protocols that consist of no more than two layers to be verified by
abstraction. The formalism supports some basic channel types that are confidential
and may or may not prevent replay attacks. It does not support the guarantees
provided by unilaterally authenticating secure transport protocols.

This LTL-based approach is formalised in a similar way to the above approach
using OFMC. Again, the protocol is represented as a transition system where each
state represents a set of facts that are true. As with OFMC, transitions relate sets of
facts and the penetrator is modelled as a set of symbolic transitions between symbolic
states that allow him to deduce new facts, assuming that he knows other facts. Given
this model, it is easy to model the guarantees provided by different secure transport-
layers. For example, a confidential channel that ensures messages are only readable
by the intended recipient will only allow the penetrator to deduce m if the intended
recipient is the penetrator. As with other model checking based techniques, this does
not support verification of systems of unbounded size, but instead only checks to see
if there is an attack for which the trace length is bounded by a constant k . Thus,
this technique is not really able to formally verify protocols, but it can be used in
order to find attacks.

8



1.2 Outline

In Chapter 2 we give an overview of the standard low-level strand spaces model
of [TFHG99]. In Chapter 3 we define the high-level strand spaces model, concen-
trating on modelling the guarantees provided by both unilaterally and bilaterally
authenticating secure transport protocols. We also give a number of proof rules that
can be used to prove application-layer protocols correct. We then demonstrate the
effectiveness of the rules by proving the correctness of WebAuth [SA09].

In Chapter 4 we formalise the relationship between the two different verification
techniques and then prove that, subject to a semantic assumption, the high-level
strand spaces model is sound. In Chapter 5 we develop our statically checkable
assumption and prove that, if a particular combination of application and transport-
layer protocols satisfies the condition, then it can be transformed to a bundle that
satisfies the semantic condition of the previous section. In Chapter 6 we define a
logic in which protocol-correctness properties can be expressed and then prove that
correctness property dissatisfaction is preserved by the transformations of the previ-
ous section and by abstraction. In Chapter 7, we prove that TLS can be transformed
to a form that satisfies our statically checkable assumptions whilst preserving any
attacks.

In Chapter 8 we extend the high-level strand spaces model to allow protocols
with an arbitrary number of layers to be proven correct. In particular, we define
a way of modelling and proving the correctness of transport-layer protocols in the
high-level strand spaces model. We also prove, using the results from the previous
chapters, that any such analysis is sound. Lastly, in order to illustrate the model’s
effectiveness, we prove the correctness of a couple of simple example protocols.

Lastly, in Chapter 9 we summarise the results of the thesis, give further com-
ments on related work and detail some future work. In Appendix A we give a
summary of the notation used throughout the thesis. In Appendix B we summarise
the assumptions that were made in the thesis.

9



Chapter 2

Introduction to Strand Spaces

The strand spaces model, first proposed in [TFHG99], is principally concerned with
providing a theory in which protocols can be proven correct under the Dolev-Yao
assumptions [DY83]. One major advantage of it is that it makes the conditions under
which protocols are secure explicitly clear. Its main strength as a proof technique is
that it allows the sources and ordering of the messages to be easily deduced.

In this chapter we review how the strand spaces model can be used to analyse
standard security protocols (i.e. protocols with no layering). Firstly, in Section 2.1,
we describe how messages are represented in the model. Then, in Section 2.2 we
describe how protocol interactions are represented before, in Section 2.3, defining
how the penetrator can interact with messages. In Section 2.4 we describe how to
simplify proofs by reducing the number of possible penetrator interactions.

2.1 Term Algebra

In this section we define how protocol messages are represented in the strand spaces
model. The basic components of protocol messages are terms; a term could be an
atom, a concatenation of several terms, an encryption of a term or a cryptographic
key. In order to allow transport-layer protocols to be modelled, we extend the strand
spaces model to allow encryption keys to be generated from other terms.

Definition 2.1 (From [TFHG99]). The set of atoms T includes atomic messages
and two distinct subsets, firstly of names Tnames and secondly of cryptographic keys
K with a distinct subset of symmetric keys Ksym . We assume that the set of names
is partitioned into two distinct1 subsets, T reg

names and T pen
names that represent the set of

names that honest (regular) agents and dishonest (penetrator) agents use, respec-
tively. We also assume that there exists a function giving the inverse of a key k ∈ K,
written k−1 and functions giving the public and secret key of a name, which we write
as PK (A) and SK (A) for A ∈ Tnames .

The set of terms A is freely generated from the closure of T under encryption
(written as {|m|}k ) and concatenation (written t1 ˆt2 ). ˆ is defined as being right
associative, i.e. t1 ˆt2 ˆt3 is interpreted as t1 ˆt2 ˆt3 .

The set of key generation functions Kgf consists of functions that generate sym-
metric keys from terms; hence for all g ∈ Kgf, g : A → K. We assume that each

1We relax this slightly in the next section.

10



function g ∈ Kgf is injective and that distinct key generation functions have disjoint
ranges. A key k ∈ K is complex iff there exists g ∈ Kgf and t ∈ A such that g(t) = k ,
and is simple otherwise. If k is complex then k is symmetric, i.e. k = k−1 .

We assume an ordering relation, the subterm relation, v, over A such that t1 v
t2 iff t1 can be obtained from t2 by a finite number of decryption and splitting
operations. The relation ingredient is defined as the least reflexive transitive relation
such that: k ingredient {|m|}k , m ingredient {|m|}k , t1 ingredient t1 ˆt2 , t2 ingredient
t1 ˆt2 , and t ingredient g(t).

The set AP ⊆ A of public terms is the set of terms that the penetrator initially
knows. The sets TP = AP ∩ T and KP = AP ∩ K are the sets of atoms and keys
initially known to the penetrator, respectively2.

Note that the v relation is defined such that k 6v {|m|}k ; intuitively, k is not
contained within (and cannot be extracted from) {|m|}k as it is used only to construct
the message. In contrast, k ingredient {|m|}k , and indicates that k is required in order
to construct the message {|m|}k .

Whilst the term algebra does not include explicit support for hash functions, it
is possible to model protocols that use hash functions by making use of key gener-
ation functions. For example, hashing a term t using a hash function h could be
modelled as encrypting 0 using h as a key-generation function; i.e. {|0 |}h(t). Note
that this is equivalent to hashing since the algebra provides no way of inverting the
key generation function to reveal the the value of t .

Since A is freely generated from T it follows, for example, that m1 ˆm2 = m3 ˆm4

iff m1 = m3 and m2 = m4 . Further, no concatenation can ever be mistaken for an
encryption, or vice-versa. This does preclude type-flaw attacks where the intruder
exploits the fact that a message can be interpreted in two different ways.

Note that the way we model key-generation functions differs from [Kam10, KL11]
where the authors instead defined key-generation functions as taking an arbitrary
number of atoms as arguments, rather than terms. Further, they added explicit
support for hash functions in the algebra. We believe that the above model is more
general, in that it allows for keys to be generated from arbitrary terms. Further, by
not differentiating between hash functions and key-generation functions, we simplify
some of the formalisation. We discuss further differences between the approaches
after Definition 2.15.

2.2 Strand Spaces

We now describe how to actually model the protocol interactions. A strand represents
one principal’s view of one run of the protocol; in particular it consists of a sequence
of message transmissions (written +t) and receptions (written −t). For example,
the strand 〈−t ,+t〉 represents a principal who received one message, t , and then
immediately echoed it out. A strand space is an arbitrary set of strands; however,
generally a strand space will be defined relative to a particular protocol and will
contain all strands that are possible in that protocol.

2Note that this differs from [TFHG99], which assumed a set of public atoms only. We use a set of
public terms instead in order to allow the penetrator to initially know values that are encrypted, but
for which he does not know the plaintext. This is useful when modelling protocols, such as WebAuth
(cf. Section 3.3), where participants are issued with tokens that only the issuer can decrypt.

11



stA stB{|nA|}PK(B)

{|nAˆnB |}PK(A)

{|nB |}PK(B)

Figure 2.1: A graphical representation of a bundle containing one complete run of
the Needham-Schroder protocol.

It is worth noting that the strand spaces model makes no assumption on how
messages are sent and received; it assumes only that when receiving a message there
is a unique sending strand and when sending a message that multiple strands may
simultaneously receive it.

Definition 2.2 (From [TFHG99]). A signed term is a pair (σ, a) with a ∈ A and
σ ∈ {+,−}. A signed term is written as either +t or −t . The set of finite se-
quences of signed terms is denoted by (±A)∗ and a typical element is of the form
〈(σ1 , t1 ), . . . , (σn , tn)〉.

Definition 2.3 (From [TFHG99]). A strand space over A is a set Σ together with
a trace mapping tr : Σ → (±A)∗. Fix a strand space Σ :

1. A node is a pair (s, i) with s ∈ Σ and i ∈ {1 ..|tr(s)|}. We say that the node
(s, i) belongs to the strand s. Note that every node belongs to a unique strand.
The set of nodes is denoted by N.

2. If n = (s, i) ∈ N then index (n) = i and strand(n) = s. Furthermore, msg(n)
is defined to be tr(s)i .

3. There is an edge n1 → n2 if and only if there exists a ∈ A such that msg(n1 ) =
+a and msg(n2 ) = −a.

4. There is an edge n1 ⇒ n2 if and only if n1 = (s, i) and n2 = (s, i + 1 ). The
transitive closure of ⇒ is written ⇒+.

5. An unsigned term t originates at a positive node n ∈ N iff t v msg(n) and,
for all nodes n ′ such that n ′ ⇒+ n, t 6v msg(n ′).

6. An unsigned term t is uniquely originating iff t originates on a unique n ∈ N.

A bundle, defined formally below, represents possible real-world runs of the pro-
tocol; in particular it is a set of strands such that every message that is received by
a strand is sent by another strand in the bundle. For example, given the Needham-
Schroeder public-key protocol [NS78], the set containing the following strands:

〈+{|nA|}PK (B),−{|nAˆnB |}PK (A),+{|nB |}PK (B)〉,
〈−{|nA|}PK (B),+{|nAˆnB |}PK (A),−{|nB |}PK (B)〉

is a bundle representing exactly one complete run of the protocol. A graphical
representation of this bundle can be seen in Figure 2.1.

12



Observe that the above definition of a strand space allows us to view a strand
space as a connected graph G = (N,→ ∪ ⇒). We can therefore define a bundle as
a sub-graph of G that satisfies certain well-formedness conditions, as follows.

Definition 2.4 (From [TFHG99]). Suppose →B ⊂ →, ⇒B ⊂ ⇒ and B =
(NB,→B ∪⇒B) is a subgraph of (N,→ ∪⇒). Then B is a bundle iff:

1. B is finite;

2. If n2 ∈ NB and msg(n2 ) is negative then there exists a unique n1 such that
n1 ∈ NB and n1 →B n2 ;

3. If n2 ∈ NB and n1 ⇒ n2 then n1 ⇒B n2 ;

4. B is acyclic.

The set of regular nodes in a bundle B is denoted by N reg
B .

Note that it is possible to define a bundle such that certain values (e.g. certain
encryption keys, or nonces) are created only on one strand (or on no strands at all).
This is very important since most security protocols depend on certain values only
originating once for their security and integrity. Therefore, almost all strand spaces
proofs include an assumption that a certain value is only created on one strand in a
particular bundle.

Definition 2.5 (From [TFHG99]). A node n is in a bundle B = (NB,→B ∪ ⇒B),
written n ∈ B, iff n ∈ NB. A strand s is in B iff a non-empty subset of its nodes are
in NB.

It is sometimes useful to be able to express that a particular principal in a protocol
has got beyond a certain point. For example, in the case of the Needham-Schroeder
protocol one correctness property could be expressed as: if the responder has just
received the third message then there must exist an initiator strand of length 3 such
that they agree on na and nb . Formally we define the notion of strand height, which
allows us to express such properties, as follows.

Definition 2.6 (From [TFHG99]). If B is a bundle then the B-height of a strand s
is the largest i such that (s, i) ∈ B.

When considering where a term originated it is often necessary to reason about
the ordering of several nodes, possibly on different strands. Therefore, we define a
relation ≺ that orders any pair of nodes where there is a path between them in the
bundle graph.

Definition 2.7 (From [TFHG99]). If S is a set of edges, i.e. S ⊆→ ∪ ⇒, then ≺S
is the transitive closure of S and �S is the reflexive, transitive closure of S.

Lemma 2.8 (From [TFHG99]). Let B be a bundle; then �B is a partial order (i.e.
a reflexive, antisymmetric, transitive relation). Every non-empty subset of the nodes
in B has �B-minimal members (this is abbreviated to � when the bundle is clear;
further minimal will always mean �B-minimal).

13



2.3 The Penetrator

The capabilities of the penetrator are defined by the operations that he can perform.
In the case of the strand spaces model this means that we need to define strands that
allow the penetrator to manipulate messages in appropriate ways to expose attacks.
In particular we give the penetrator the ability to:

• Encrypt any message for which he knows the key and the message;

• Decrypt any message for which he knows the decryption key;

• Concatenate and split messages;

• Send any message he initially knows (i.e. any message from AP).

Note that we do not allow the penetrator to perform any cryptanalysis as we assume
perfect encryption as in the Dolev-Yao model. We define the penetrator strands that
correspond to these abilities below.

Definition 2.9 (From [TFHG99] and [KL11]). A penetrator strand is one of the
following:

M Text message: 〈+t〉 where t ∈ AP ;

C Concatenation: 〈−t0 ,−t1 ,+t0 ˆt1 〉;

S Separation into components: 〈−t0 ˆt1 ,+t0 ,+t1 〉;

E Encryption: 〈−k ,−t ,+{|t |}k 〉;

D Decryption: 〈−k−1 ,−{|t |}k ,+t〉;

KG Key generation: 〈−t ,+g(t)〉 where g ∈ Kgf.

On a D or E strand the incoming edge with k on is known as the key edge.

It is possible to model a more powerful penetrator by defining extra penetrator
strands. For example, if it was desired to verify a protocol under the assumption that
the encryption being used was vulnerable to known-plaintext attacks the penetrator
strand 〈−m,−{|m|}k ,+k〉 for m ∈ A, k ∈ K, could be added.

Definition 2.10 (Adapted From [TFHG99]).

• An infiltrated strand space is a tuple (Σ ,P ,AP) with Σ a strand space, P ⊆ Σ
and containing only penetrator traces, and AP ⊆ A containing the penetrator’s
initial knowledge.

• A strand s is a penetrator strand iff s ∈ P and a regular strand otherwise.

• A node n is a penetrator node iff the strand it lies on is a penetrator strand
and a regular node otherwise.

One useful concept is that of penetrator paths; these are sequences of penetrator
nodes where the first and last nodes are also allowed to be regular and that correspond
to transformations performed by the penetrator on a message.

14



Definition 2.11 (From [GT02]). A path p through a bundle B is a finite sequence of
nodes and edges such that for each consecutive pair of nodes m and n either m → n,
or m ⇒+ n with msg(m) negative and msg(n) positive. A penetrator path is a path
where every node, aside from possibly the first and the last, is a penetrator node.

Two bundles are defined to be equivalent if they have the same regular behaviour;
i.e. it does not matter how the penetrator achieves certain regular behaviour, only
that he has managed to cause it.

Definition 2.12 (From [GT02]). Bundles B, B′ of a strand space Σ are equivalent
iff they have the same regular nodes.

2.4 Penetrator Efficiency

Clearly, the number of interleavings of the penetrator strands defined above is ex-
tremely large since the penetrator may carry out arbitrarily many sessions in parallel
and may put the strands together in any order. This complicates proofs of proto-
col correctness and thus, in this section, we consider how to reduce the number of
possible combinations.

In [GT02] Guttman and Thayer develop the notion of normal bundles as well
as considering redundancies in bundles. They prove that for any bundle there is an
equivalent normal, redundancy-free bundle.

Guttman and Thayer identify an inefficiency in [GT02] when the penetrator
builds a value and then immediately destroys it. There are two different ways in
which this can be done:

1. The intruder first encrypts a value t with k (on a E strand) and then decrypts
it using k−1 (with a D strand);

2. The intruder first concatenates t0 and t1 (using a C strand) before splitting
them (on a S strand).

Clearly in both these cases the redundancies can be easily eliminated as show in
Figure 2.2. We formalise this as follows.

Definition 2.13 (From [GT02]). A redundancy in a bundle B is any labelled sub-
graph of B that consists of either an E strand followed by a D strand, or a C strand
followed by a S strand.

Lemma 2.14 (From [GT02]). Given any bundle B there exists an equivalent bundle
B′ that contains no redundancies.

We can generalise the above concept by categorising the penetrator strands into
three different types; constructive, destructive and initial. A constructive strand
creates a term larger than its input; a destructive strand creates a term smaller than
its input and an initial strand introduces a new term.

Definition 2.15 (Based on [GT02]). A ⇒+-edge is constructive if it is part of a E,
KG or C strand. It is destructive if it is part of a D or S strand. A penetrator node
is initial if it is a M node.

15



E

D

k

m

{|m|}k

k−1

mm

(a) Eliminating E-D redundancies.

C

S

m1

m2

m1 ˆm2

m1

m2

m1

m2

(b) Eliminating C-S redundancies.

Figure 2.2: Eliminating redundancies from bundles; the dashed lines represent how
the → relation is redefined in the resulting redundancy-free bundle.

16



In [Kam10, KL11] the authors instead defined KG strands as destructive, rather
than constructive. This made sense in their model where all of the inputs to a
key generation strand had to be atoms, and thus would naturally occur after other
destructive strands. Since KG strands are defined as taking terms in this thesis, rather
than atoms, it is no longer natural to define KG strands as destructive. Defining KG
strands as constructive will actually simplify many of the proofs, particularly in
Chapter 5.

Definition 2.16 (Based in [GT02]). A bundle B is normal if for any penetrator path
of B, whenever a constructive edge sends to a destructive edge, the constructive edge
must be a KG strand (i.e. the KG strand must feed into the key-edge).

Intuitively, a normal bundle is one where the penetrator first de-constructs any
term that it needs in order to build the new term, and only then starts constructing
the outgoing term. In particular, if the bundle does not contain KG strands, then
every destructive edge precedes every constructive edge (i.e. no destructive edge
occurs after a constructive edge).

Lemma 2.17 (Bundle Normal Form Lemma — Based on [GT02]). For any bundle
there exists an equivalent normal bundle.

Proof. This is a straightforward adaptation of the proof from [GT02].

17



Chapter 3

Verifying Protocols by Abstraction

In this chapter we define an extension of the strand spaces model of the previous
chapter, the high-level strand spaces model, which can be used to verify protocols that
consist of precisely two layers. In particular, it enables protocols to be proven cor-
rect by abstracting away from the underlying transport-layer protocol. Further, the
model is able to support the guarantees provided by a wide-variety of transport-layer
protocols, including both unilaterally and bilaterally authenticating secure transport
protocols.

The model we present in this chapter is based on that given by Kamil and Lowe
in [KL09]. The main difference between the two versions is that in this chapter, as
discussed in Chapter 1, we add support for modelling the guarantees provided by
unilaterally authenticating secure transport protocols. Further, the way in which
transport-layer protocols that group messages into sessions and prevent message
reordering has been improved. We discuss the precise differences in Section 3.4.

In Section 3.1 we define the high-level strand spaces model. In Section 3.2, we
define and prove some proof rules that can be used to easily construct correctness
proofs for application-layer protocols. In Section 3.3 we then prove the utility of
these proof rules by proving the correctness of WebAuth [SA09], a single-sign-on
protocol.

The contents of this chapter previously appeared in [GRL11]. The only difference
with the version that is presented here is that the model is now able to model the
guarantees provided by transport-layer protocols that prevent messages from being
reordered.

3.1 The High-Level Strand Spaces Model

In this section we actually define the high-level strand spaces model. We start, in
Section 3.1.1, by defining the basics of the high-level strand spaces model, including
the necessary adaptations to support unilaterally authenticating secure transport
protocols. In Section 3.1.2 we define the operations that the penetrator is allowed
to perform, in particular adding support for the penetrator manipulating messages
sent over secure channels. Lastly, in Section 3.1.3, we adapt the low-level notion of
normality defined in Definition 2.16 to the high-level strand spaces model, in order
to simplify the proofs that we give.

18



3.1.1 Basic Definitions

We consider a channel as an object that allows two participants to exchange mes-
sages: messages sent at one end of the channel are intended to be received at the
other end. A fundamental property of many transport protocols, including TLS, is
that a principal is able to send or receive on a channel only if she has the relevant
cryptographic keys; these are different in different channels, which prevents messages
being replayed between sessions.

A channel end conceptually encapsulates all the information that is required to
communicate on a channel. However, as we abstract away from the details of the
transport protocol, we treat channel ends as opaque values. For generality, we also
consider channels (for protocols that are weaker than TLS) that do not provide such a
separation between sessions; we denote the channel end by ? in such cases. Messages
will be addressed by channel endpoints that consist of a name and a channel end. In
channel endpoints we also permit the name to be ?; this corresponds to a message
where the sender has no name, as in the case of unilateral TLS. We therefore expand
Tnames to include ?.

Definition 3.1. We assume a set of channel types, Channels, that contains a value
⊥ that represents the channel that provides no security guarantees. In examples,
we write TLSC→S and TLSS→C to represent the channel types of a unilateral TLS
connection from client to server and server to client respectively.
C denotes the set of channel ends. It has two subsets: penetrator channel ends,

Cpen , known to the penetrator; and regular channel ends, Creg , known only to regular
agents; we have Creg ∩ Cpen = {?}.

The set of regular endpoints Ireg is defined as T reg
names ×Creg ; the set of penetrator

endpoints Ipen as T pen
names ×Cpen ; and the set of endpoints I as Ireg ∪Ipen (note that

Ireg ∩ Ipen = {(?, ?)}). We denote a typical member, (A, ψ) ∈ I, as Aψ. Given an
endpoint Aψ, name(Aψ) = A and end(Aψ) = ψ.

The set of sequence numbers, denoted S, is defined as N+∪{ } where indicates
no sequence number1 (which is used when the protocol does not consider the order
in which messages are received). We assume honest agents check that incoming
messages are being received in the correct order, and that any messages they send
are numbered correctly.

High-level terms model data being sent across the network. They are of the form
(Aψ, Bφ, i , m, c), which represents that this is the i th application-layer message
sent from A’s channel end ψ to B ’s channel end φ along a channel of type c containing
an application-layer term m.

Definition 3.2 (Based on [KL09]). A high-level term is a tuple of the form
σ(Sψ, Rφ, i , m, c) where:

• σ ∈ {+,−} which represents a message being sent or received respectively;

• Sψ ∈ I: is the claimed sender of m;
1 There is no reason why we could not allow an arbitrary partially ordered set to be used as the

set of sequence numbers. In particular, the soundness proofs of later sections would not require any
alteration. We make the above restriction in order to simplify the presentation.

19



• Rφ ∈ I: is the intended recipient of m;

• i ∈ S: is the sequence number of this message;

• m ∈ A is the application-layer message;

• c ∈ Channels is the channel type along which the term is communicated.

Let Â denote the set of high-level terms. The set of finite sequences of high-level
terms is denoted by Â∗. We abbreviate (Sψ, Rφ, , m, c) to (Sψ, Rφ, m, c). Given
a high-level term t = (Sψ, Rφ, s, m, c), we define sender(t) =̂ Sψ, recipient(t) =̂
Rφ, seqno(t) =̂ s, appmsg(t) =̂ m and chan(t) =̂ c.

From the above definition of high-level terms, high-level nodes, strands, high-level
strand spaces, high-level bundles and high-level origination can be defined analo-
gously to the standard case presented in Chapter 2. We also lift the definitions of
sender(t), recipient(t) etc to be defined over high-level nodes by defining sender(n)
as sender(msg(n)), for example.

Channel types determine the acceptable format of high-level terms. In particular,
they determine whether the sequence number is , or has to be from N+ and, in
addition, they determine the permissible channel endpoints. For example, if two
high-level terms both have the same channel type then either both have as the
sequence number, or neither do. Further, if the channel was a bilateral TLS channel
then the sender and recipient endpoints Aψ and Bφ could not contain ?, either as a
name or a channel end; conversely, if the channel was a TLSC→S channel, where the
sender’s name is not authenticated, then the sender’s channel end would be of the
form ?ψ. These assumptions are formalised in the following assumption.

In the following we also assume that a high-level term only uses sequence numbers
if it also uses channel ends. This is because, without channel ends, it is not possible
to group messages into logical sessions and thus it is impossible to decide which
messages must have consecutive sequence numbers.

Assumption 3.3. For every channel c ∈ Channels:

1. Either every high-level term (Sψ, Rφ, i , m, c) ∈ Â has S = ?, or none has
S = ?;

2. Either every high-level term (Sψ, Rφ, i , m, c) ∈ Â has ψ = ?, or none has
ψ = ?;

3. Either every high-level term (Sψ, Rφ, i , m, c) ∈ Â has R = ?, or none has
R = ?;

4. Either every high-level term (Sψ, Rφ, i , m, c) ∈ Â has φ = ?, or none has
φ = ?;

5. Either every high-level term (Sψ, Rφ, i , m, c) ∈ Â has i = , or none has
i = .

6. If a high-level term (Sψ, Rφ, i , m, c) ∈ Â has i 6= , then ψ 6= ? and φ 6= ?.

20



stC stS(?ψ , Sφ, C ˆPasswd , TLSC→S )

(Sφ, ?ψ , Messages, TLSS→C )

Figure 3.1: An example bundle illustrating how a regular agent on strand stC can
retrieve email from a server on strand stS via a hypothetical protocol.

Note that if a strand makes exclusive use of bilateral protocols then the sender’s
name will typically be the same on each node and would be the name contained in
her certificate.

Definition 3.4. Fix a strand space Σ . The function endpoints : Σ → P (Ireg) gives
the set of endpoints that a regular strand uses. If n is a node on regular strand st
with msg(n) = σ(Sψ, Rφ, m, c), then: if σ = + then Sψ ∈ endpoints(st); and if
σ = − then Rφ ∈ endpoints(st). Similarly, ends : Σ → P (Creg) gives the set of
channel ends that a regular strand uses. Further, we assume that in every high-level
bundle, channel ends are partitioned by strand. Formally, for every pair of regular
strands st and st ′ in B:

st 6= st′ =⇒ ends(st) ∩ ends(st′) ⊆ {?}. (3.1)

As an example consider Figure 3.1. This bundle represents a client retrieving e-
mail via a hypothetical protocol that makes use of unilateral TLS. It contains a client
strand stC and a server strand stS , such that ends(stC ) = {ψ} and ends(stS ) = {φ}.
All messages are sent over a unilateral TLS channel where the server is authenticated
and the client is not; therefore, the client is identified as ? in every high-level term.

This example also illustrates the necessity of channel ends. Note that we need
to ensure that Messages is sent back only to the source of Passwd , even though
the client herself isn’t authenticated by the transport channel. Without the channel
ends, a message sent along a unilateral channel c to the unauthenticated end would
be represented by (S , ?, m, c). As this representation does not identify the recipient
in any way, it would not be possible to decide if the penetrator was allowed to receive
the message. Later we will specify that, for TLS-like channels, the penetrator is able
to send and receive messages only on penetrator channel ends (i.e. in Cpen), thus
ensuring he is unable to receive the second message.

We now make an extra assumption that sequence numbers, if used, are properly
implemented. In particular, we need to assume that, on a regular strand between any
two channel ends, the sequence numbers of the messages (if not ) are contiguous
and start from 1 (i.e. they are a prefix of 〈1 ..〉).

Assumption 3.5. For all regular strands st in Σ , the function thst : C × C → S∗,
which returns the list of sequence numbers sent between two channel ends on a
strand, is defined by:

thst(ψ, φ) =̂ 〈seqno(msg(st , i)) | i ∈ 〈1 ..〉, i ≤ |st |,
end(sender(msg(st , i))) = ψ, end(recipient(msg(st , i))) = φ〉.

For all regular strands st , and all ψ, φ ∈ C, either thst(ψ, φ) ≤ 〈1 ..〉, or thst(ψ, φ) ∈
{ }∗.

21



3.1.2 The Penetrator

We now consider how to model the capabilities of the penetrator. We start with mes-
sages that are sent over the unprotected channel ⊥ (i.e. not over a secure transport
protocol). Clearly, we need to model the penetrator as the full Dolev-Yao penetrator
and therefore we allow the penetrator to perform all the usual actions.

Definition 3.6 (From [KL09]). The application-layer penetrator strands are strands
of the following form:2

M Text message: 〈+(?, ?, , r , ⊥)〉 where r ∈ AP ;

C Concatenation: 〈−(?, ?, , t0 , ⊥),−(?, ?, , t1 , ⊥),+(?, ?, , t0 ˆt1 , ⊥)〉;

S Separation: 〈−(?, ?, , t0 ˆt1 , ⊥),+(?, ?, , t0 , ⊥),+(?, ?, , t1 , ⊥)〉;

E Encryption: 〈−(?, ?, , k , ⊥),−(?, ?, , t , ⊥),+(?, ?, , {|t |}k , ⊥)〉 where
k ∈ K;

D Decryption: 〈−(?, ?, , k−1 , ⊥),−(?, ?, , {|t |}k ),+(?, ?, , t , ⊥)〉 where
k ∈ K;

KG Key generation: 〈−(?, ?, , t , ⊥),+(?, ?, , g(t), ⊥)〉 where g ∈ Kgf.

We now consider what the penetrator can do with messages sent over a secure
transport channel. For ease of exposition we firstly consider a restricted model in
which the only secure transport protocols are bilateral and unilateral TLS. Clearly,
we must allow the penetrator to receive messages intended for him, and to send
messages coming from himself.

Definition 3.7 (Based on [KL09]). The transport-layer penetrator strands for TLS-
like protocols are of the following form, where c 6= ⊥:

SD Send: 〈−(?, ?, , m, ⊥),+(Pψ, Bφ, i , m, c)〉 where Pψ ∈ Ipen , Bφ ∈ Ireg ,
i ∈ S;

RV Receive: 〈−(Aψ, Pφ, i , m, c),+(?, ?, , m, ⊥)〉 where Pφ ∈ Ipen , Aψ ∈ Ireg .

Note that the side conditions Bφ ∈ Ireg and Aψ ∈ Ireg in the above avoid
redundancies caused by the penetrator sending a message to himself, but do not
otherwise restrict him.

Observe that SD strands allow the penetrator to send messages to regular strands
from the client end of a unilateral TLS connection, and to claim to be some honest
agent A within the application-layer message, e.g. +(?ψ, Bφ, Aˆ. . ., TLSC→S). How-
ever, from the server end of a unilateral TLS (or bilateral TLS) connection, he has to
use a penetrator identity P ∈ T pen

names such that P 6= ?, e.g. +(Pψ, ?φ, m, TLSS→C ),
so couldn’t claim to have an identity other than P within m. Similarly RV strands
allow the penetrator to receive, at the client end, messages intended for regular
agents, e.g. −(Aψ, ?φ, Bˆ. . ., TLSS→C ). But at the server end, such a message
would have to have a penetrator identity as the recipient to allow a RV strand,
e.g. −(?, Pφ, Pˆ. . ., TLSC→S).

2We abbreviate ?? to ?, for simplicity of notation.

22



M C

M

SD

stS

RV

(?, ?, P , ⊥)

(?, ?, Passwd , ⊥)

(?, ?, PˆPasswd , ⊥)

(?ψ , Sφ, PˆPasswd , TLSC→S )

(Sφ, ?ψ , Messages, TLSS→C )

(?, ?, Messages, ⊥)

Figure 3.2: A figure illustrating how the penetrator can check his email, using the
same protocol as Figure 3.1.

Further, the definition captures session properties of TLS-like protocols. The
condition Pψ ∈ Ipen ensures that if a regular strand receives two messages
(?ψ, Bφ, m, c) and (?ψ, Bφ, m ′, c), either both came from another regular strand
(if ?ψ ∈ Ireg), or both come from penetrator SD strands (if ?ψ ∈ Ipen). Thus we
claim that this model accurately captures the penetrator’s capabilities when using
TLS-like protocols.

Figure 3.2 gives an example illustrating how the penetrator can use these strands
to check his email, using the same hypothetical protocol as earlier.

Generalising the secure transport protocol

For secure transport protocols that are weaker than TLS, there are many other ways
for the penetrator to interact with transport messages. We consider how to generalise
the above in order to model such protocols. In particular, we follow the approach
taken in [DL08, KL09] to define a more general penetrator that can also:

• Learn a message sent to an honest endpoint (i.e. overhear);

• Fake a message as coming from an honest endpoint;

• Hijack a message, redirecting it to a different endpoint, and/or re-ascribing it
as coming from a different endpoint (changing name and/or channel end);

• Alter the sequence numbers of messages (i.e. reorder messages).

Later, we will restrict the use of such strands to channels that do not provide confi-
dentiality (in the case of learning) or authentication (in the case of faking, hijacking
or reordering). Formally, we exclude penetrator strands from the strand spaces ac-
cording to the guarantees it provides (noting that this introduces a proof obligation
on the transport protocol). For example, in the case of bilateral TLS we exclude all
of the above penetrator strands from the strand space.

We define strands corresponding to each of the above behaviours below.

23



Definition 3.8 (Based on [KL09]). The transport-layer penetrator strands are SD
and RV strands, as above, and strands of the following forms, where c 6= ⊥:

LN Learn: 〈−(Aψ, Bφ, i , m, c),+(?, ?, , m, ⊥)〉 where Aψ,Bφ ∈ Ireg ;

FK Fake: 〈−(?, ?, , m, ⊥),+(Aψ, Bφ, i , m, c)〉 where Aψ,Bφ ∈ Ireg , i ∈ S;

HJ Hijack: 〈−(Sψ, Rφ, i , m, c),+(S ′ψ′ , R′φ′ , i , m, c)〉 providing either Sψ 6= S ′ψ′
or Rφ 6= R′φ′ ;

RN Renumber: 〈−(Aψ, Bφ, i , m, c),+(Aψ, Bφ, i ′, m, c)〉 where i ′ ∈ S and i ′ 6=
i .

Note that by Assumption 3.3 it is not possible for a HJ strand to change a message
that uses ? as, for example, the sending channel end to one that uses a value 6= ?.

Having defined the set of penetrator strands, we lift the usual definitions of
penetrator paths, penetrator nodes and bundle equivalence from the low-level strand
space definitions in the obvious way.

The restrictions on ? in HJ strands prevent a unilateral protocol from being
transformed into a bilateral protocol, or vice-versa. Similarly, the restriction on in
RN strands prevents protocols that do not have sequence numbers being transformed
into those that do, and vice-versa.

As an example of how these strands can be used by the penetrator consider the
following protocol that allows a user to send a message to another user via a trusted
server.

1 .Uψ→ Sφ : A

2 .Uψ→ Sφ : m

3 .Sφ→ Aχ : m

There are a number of attacks against this protocol, even when it is layered on top of
a reasonably secure transport protocol. For example, suppose the secure transport
protocol provides a guarantee of confidentiality, but does allow some hijacks. Further,
suppose that the user attempts to send two messages, m1 and m2 , to two different
users P ∈ T pen

names and B ∈ T reg
names over two separate connections. It follows that

the penetrator can take message 1 of connection 1 and change the sending channel
endpoint to match that of connection 2 so that it appears as message 1 of connection
2. Therefore, m2 will be routed to the penetrator which could potentially be a breach
of confidentiality. Figure 3.3 illustrates this attack.

Note that even if the protocol disallows HJ strands it is still possible to find
attacks against a slightly generalised version of the protocol. For example, suppose
we extend the protocol so that it allows a user to send multiple messages, each to a

24



st1
U HJ

st2
U

st2
S

RV

(Uψ , Sφ, 1 , P , c)

(Uψ , Sφ, 1 , m1 , c)

(Uψ′ , Sφ, 1 , B , c)

(Uψ′ , Sφ, 1 , P , c)

(Uψ′ , Sφ, 2 , m2 , c)

(Uψ , Pχ, 1 , m2 , c)

(?, ?, , m2 , ⊥)

Figure 3.3: A graphical representation of a re-ascribe hijack attack by the penetrator,
assuming that P ∈ T pen

names but B ∈ T reg
names . The above RV strand should not be

allowed as the intended recipient was B , who is honest.

different recipient, over one connection:

1 .Uψ → Sφ : P

2 .Uψ → Sφ : m1

3 .Sφ → Pχ : m1

4 .Uψ → Sφ : B

5 .Uψ → Sφ : m2

6 .Sφ → Bχ′ : m2

. . .

Suppose the user attempts to send two messages, m1 and m2 , to two different users,
P ∈ T pen

names and A /∈ T pen
names over a channel that does allow renumbering. Clearly,

the penetrator could copy, renumber and then re-send message 1 as message 4 and
thus receive m2 , which he is not entitled to receive. This attack is illustrated in
Figure 3.4.

Channel Properties

We now define channel properties that restrict the penetrator’s behaviour. There
are many different channel properties. We consider only the most important; other
definitions could be made if specialised applications require them.

The first property we consider is confidentiality. Intuitively this needs to prohibit
the penetrator from learning any value that was sent along a confidential channel to
a regular agent. Clearly, this requires LN strands to be prohibited, however, this is
not sufficient. For example, suppose Aψ sends a message to Bφ along a confidential
channel c; if the penetrator could redirect the message to Pχ ∈ Ipen , then he would
be able to do a receive and thus can obtain the message indirectly; we therefore

25



stU stS

RV

RN

RV

(Uψ , Sφ, 1 , P , c)

(U
ψ
,

S
φ ,

1
,

P
,

c)

(Uψ , Sφ, 2 , m1 , c)

(Uψ , Pχ, 1 , m1 , c)

(?, ?, , m1 , ⊥)

(Uψ , Sφ, 3 , B , c)

(Uψ , Sφ, 3 , P , c)

(Uψ , Sφ, 4 , m2 , c)

(Uψ , Pχ′ , 1 , m2 , c)

(?, ?, , m2 , ⊥)

Figure 3.4: A graphical representation of a renumbering attack by the penetrator,
assuming that P ∈ T pen

names but B ∈ T reg
names . The second RV strand should not be

allowed as the intended recipient was B , who is honest.

prohibit such behaviours. Lastly, renumbering has to be prohibited since, as was
shown in Figure 3.4, it can be used to break confidentiality.

Definition 3.9 (Confidential). Let channel c satisfy C. Then the strand space
contains no LN or RN strands on c, or HJ strands of the form 〈−(Sψ, Rφ, m, c),
+(S ′ψ′ , R′φ′ , m, c)〉 where Rφ 6= R′φ′ and Rφ ∈ Ireg .

Note that the above definition also prohibits changing the recipient from Yψ to
Yψ′ where Y ∈ T reg

names and ψ,ψ′ ∈ Creg , i.e. it prevents the receiving channel end
from being changed, even if it is still being received by the same entity. Intuitively
this can be justified by considering that a single agent may be running multiple
services that hold data in different levels of security. If the agent also broadcasts
data that was received at a lower security level, then it is essential that data cannot
be re-routed to different services and thus different channel ends.

Many application-layer protocols require some guarantee that messages came
from a certain source and that they were intended for a particular destination,
i.e. that the channel is an authenticated one. Clearly, this means that FK strands
must be prohibited on this channel. Furthermore, hijacks must also be prohibited
since these allow messages to be sent to unintended destinations and for messages to
have incorrect purported senders respectively.

Definition 3.10 (Authenticated). Let channel c satisfy A. Then the strand space
contains no FK or HJ strands on c.

The conjunction of the A and the C properties is known as AC. Note that, the
only penetrator strands allowed are SD and RV strands and therefore, as discussed

26



earlier, it corresponds to the security guarantees modelled by TLS3.

3.1.3 High-Level Normality

As with the low-level strand spaces model, there are a large number of ways for
the penetrator to construct and send a given message. Such redundancies have the
potential to complicate proofs and therefore, as in the low-level strand spaces model,
we will require a normal form for high-level bundles that avoids various redundancies.

In particular, we will require not only that bundles contain no low-level redun-
dancies, as per Definition 2.16, but also that there are no redundancies amongst the
high-level strands. For example, multiple adjacent RN or HJ strands will be pro-
hibited, as will SD or FK strands which are followed by RV or LN strands. In this
section we define what it means for a bundle to be normal and then prove that every
bundle is equivalent to a normal bundle.

We proceed as per the low-level case, and begin by defining what it means for
⇒+-edges to be constructive and destructive. This definition is then used to define
several types of penetrator paths, which are then used to define what it means for a
bundle to be normal. We formalise these notions as follows.

Definition 3.11. A⇒+-edge is constructive if it lies on a E, C, KG, SD or FK strand,
destructive if it lies on a D, S, RV or LN strand, or normal if it lies on a HJ or RN
strand.

A penetrator path p in a high-level bundle B is constructive iff it consists entirely
of constructive edges, destructive iff it consists entirely of destructive edges, or normal
iff either:

• p is a single HJ or RN strand; or

• p is the concatenation of a HJ and RN strand, in no specified order; or

• Whenever a constructive edge sends to a destructive edge in p, the constructive
edge must be a KG strand..

A high-level bundle B is normal iff every penetrator path that does not traverse a
key edge is normal.

In order to prove that every high-level bundle is equivalent to a normal bundle,
we will require several closure-like assumptions on what transport strands the strand
space contains. For example, by the above definition, penetrator paths that consist
of a SD strand followed by a HJ strand are prohibited. Thus, in order to prove our
result we need to replace this by a single FK or SD strand, that sends the message
to the correct agent immediately. Therefore, we need to ensure that whenever the
strand space contains the SD-HJ strand pair, it also allows the equivalent FK or SD
strand. More generally, we need a number of (reasonable) assumptions about what
strands the strand space has to allow, given that it allows a particular strand or pair
of strands. In general, the following assumptions are justified by observing that the
behaviour performed is identical.

3Of course this requires a proof that TLS does indeed satisfy the claimed properties. Such a
proof can be found in [KL11].

27



HJ/RN

RV/LN

(Aψ , Bφ, i , m, c)

(A′
ψ′ , B ′

φ′ , i ′, m, c)

(?, ?, , m, ⊥)

LN/RV(Aψ , Bφ, i , m, c)

(?, ?, , m, ⊥)

Figure 3.5: An illustration of one of the transformations of Lemma 3.13. This also
illustrates Assumption 3.12 (2).

FK/SD

HJ/RN

(?, ?, , m, ⊥)

(Aψ , Bφ, i , m, c)

(A′
ψ′ , B ′

φ′ , i ′, m, c)

FK/SD(?, ?, , m, ⊥)

(A′
ψ′ , B ′

φ′ , i ′, m, c)

Figure 3.6: An illustration of one of the transformations of Lemma 3.13. This also
illustrates Assumption 3.12 (3).

RN

HJ

RN

(Aψ , Bφ, i , m, c)

(Aψ , Bφ, i ′, m, c)

(A′
ψ′ , B ′

φ′ , i ′, m, c)

(A′
ψ′ , B ′

φ′ , i ′′, m, c)

RN

HJ

(Aψ , Bφ, i , m, c)

(Aψ , Bφ, i ′′, m, c)

(A′
ψ′ , B ′

φ′ , i ′′, m, c)

Figure 3.7: An illustration of one of the transformations of Lemma 3.13.

28



Assumption 3.12. Σ satisfies the following properties:

1. SD, FK, RV, LN and HJ strands are not disallowed on the basis of sequence
numbers. Formally, if sti = 〈(Aψ, Bφ, i , m, c), (A′ψ′ , B ′φ′ , i , m ′, c′)〉 is such
a strand, then whenever sti is in Σ and i 6= , sti ′ is in Σ for all i ′ ∈ N+.

2. If a HJ strand followed by a RV or LN strand is in the strand space then the
equivalent RV or LN strand is also in the strand space. This is illustrated in
Figure 3.5.

3. If a SD or FK strand followed by a HJ strand is in the strand space then the
equivalent SD or FK strand is also in the strand space. This is illustrated in
Figure 3.6.

4. If multiple adjacent HJ strands are in the strand space then then the equivalent
singleton HJ strand is also in the strand space.

5. Suppose sti ′ is a RN strand that alters a sequence number from i to i ′. If sti

is in the strand space then sti ′ is in the strand space for each i ′ ∈ N+.

6. If a HJ followed by a RN followed by a second HJ is in the strand space, then
an equivalent HJ-RN or RN-HJ strand pair must also be in the strand space.

This assumption is sufficiently general to permit all sensible channel types: in
particular, the strands that are removed from the strand space by A, C and AC are
compatible with the above definition. Note that if a channel type that did not satisfy
the above assumption then, by altering what it means for a bundle to be normal, it
may be possible to permit it.

Using the above we can now show that every bundle is equivalent to a normal
bundle. This is used throughout the remainder of this thesis in order to simplify
proofs.

Lemma 3.13. For every high-level bundle B there exists an equivalent normal bun-
dle B′.

Proof. Let B be a high-level bundle. Suppose that a given penetrator path p is
not normal. We show how to transform p to a penetrator path that is normal
by applying the following transformations inductively, noting that each preserves
equivalence. Termination follows from the fact that each case strictly decreases the
size of the penetrator path.

Note that the following cases are applied sequentially (i.e. case i +1 is considered
only if case i does not apply).

1. p contains both normal and non-normal (i.e. constructive or destructive) edges.
Thus, there must exist a transmission edge between a non-normal edge and a
normal edge. There are two possible types of such transmission edges, noting
that the normal edge must lie on either a RN or HJ strand:

(a) The transmission edge is from a non-normal edge to a normal edge. Hence,
the non-normal edge must lie on a FK or SD strand. Thus, we apply the
transformation from Figure 3.6 (formally, this uses Assumption 3.12 (1)
if the normal edge is on a RN strand, or Assumption 3.12 (3) if it lies on
a HJ strand).

29



(b) The transmission edge is from a normal edge to non-normal edge. Thus,
the non-normal edge must either lie on a RV or a LN strand. Therefore,
the transformation from Figure 3.5 is applied (formally, this uses Assump-
tion 3.12 (1) if the normal edge lies on a RN strand, or Assumption 3.12 (2)
if it lies on a HJ strand)

2. p contains multiple normal edges and no non-normal edges. It thus follows
that p contains only RN and HJ strands. There are several cases to consider:

(a) If p contains adjacent RN strands then they can be combined into a single
RN strand, by Assumption 3.12 (5).

(b) If p contains adjacent HJ strands they they can be combined into a single
HJ strand, by Assumption 3.12 (4).

(c) p contains no adjacent HJ or RN strands, but contains a RN strand,
followed by a HJ strand, followed by a RN strand. We therefore ap-
ply the transformation illustrated in Figure 3.7. Formally, by Assump-
tion 3.12 (5), the first RN strand can be altered to change the sequence
number to the output of the second RN strand, meaning the second RN
strand can be removed. Further, by Assumption 3.12 (1), the HJ strand
is still within the strand space.

(d) Otherwise, p must consist of a HJ, then a RN, then a HJ. Thus, by As-
sumption 3.12 (6), this is equivalent to the concatenation of a HJ and RN
strand (in some order).

3. p contains a destructive edge after a constructive edge and the constructive
edge is not a KG strand. As p contains no normal edges it follows that there
must exist n1 , n ′1 , n2 and n ′2 such that n1 ⇒+ n ′1 → n2 ⇒+ n ′2 form such a
pair of edges. Given the type restrictions on penetrator strands, it follows that
such a pair must consist of a E-D, C-S, SD-LN or a FK-RV strand pair. In all
cases, the redundant pair can simply be removed in the obvious way (Figure 2.2
illustrates how redundant C-S and E-D strand pairs can be eliminated). This
results in a penetrator path that is strictly shorter.

Thus, the above rules can be applied inductively to each non-normal penetrator
path that does not traverse a key edge until a normal bundle is reached, which is
defined as B̂′. This approach is guaranteed to terminate as each case strictly reduces
the size of the bundle. Note that B̂′ must be equivalent to B̂ as no regular nodes are
altered by the above transformations.

3.2 Verifying Layered Protocols

In this section we give proof rules that are of use when proving the correctness of
application-layer protocols that use either unilateral or bilateral secure transport pro-
tocols that provide authenticated or confidential channels. We have also developed a
prototype tool that is able to prove the correctness of application-layer protocols by
applying the proof rules from this section, as we discuss in Section 9.1. In Section 3.3

30



we show the effectiveness of these rules by proving the correctness of a single-sign-on
protocol.

The first proof rule allows the existence of a regular node to be deduced given a
message that is purported to have been sent by a regular agent.

Authentication Proof Rule. Let B be a high-level bundle and n ∈ B be a node
on a regular strand st such that msg(n) = −(Aψ, Bφ, m, c) for some Aψ 6= ??, Bφ,
m and c. Then, providing c satisfies A, and Aψ ∈ Ireg , there must exist a regular
node n ′ such that n ′ → n and msg(n ′) = +(Aψ, Bφ, m, c). Furthermore, if φ 6= ?
and n ′ → n ′′ then n ′′ must lie on the same strand as n.

Proof. Consider the node n ′ such that n ′ → n and suppose for a contradiction that
n ′ is a penetrator node; then as Aψ ∈ Ireg it follows that the only type of penetrator
strand that n ′ could be on is a FK strand. However, these are prohibited by the
assumption that c satisfies A. Therefore n ′ is a regular node. Thus, as n ′ → n, it
immediately follows that msg(n ′) = +(Aψ, Bφ, m, c).

Let n ′′ be a node on a strand st ′′ such that n ′ → n ′′ and suppose φ 6= ?. Then, it
immediately follows that msg(n ′′) = −(Aψ, Bφ, m, c) and thus that φ ∈ ends(st ′′).
However, as φ ∈ ends(st), it follows by Equation 3.1 that st ′′ = st , and thus that n ′′

lies on the same strand as n, as required.

The second proof rule extends the above rule by not only proving the existence of
the regular node, but also proving that it lies on the same strand as another regular
node (providing the channel ends match).

Session Proof Rule. Let B be a high-level bundle and n ∈ B be a node on a regular
strand st such that msg(n) = −(Aψ, Bφ, m, c) for some Aψ ∈ Ireg , Bφ, m and c.
Further, let st ′ be a regular strand such that Aψ ∈ endpoints(st ′). Then, providing
c satisfies at least A and ψ 6= ? there must exist a regular node n ′ on st ′ such that
n ′ → n.

Proof. This follows from the previous rule by Equation 3.1.

The third proof rule is mainly applicable to unilaterally authenticating secure
transport channels. Informally, it proves that if a term t is only known by regular
agents, then any node whose application-layer message includes t at the top level
(i.e. not inside an encryption) must be regular. In order to define this property we
firstly define what it means for a term to be known only by regular agents, as follows.

Definition 3.14. A term t is confidential in a high-level bundle B iff no equivalent
bundle contains a positive node n such that msg(n) = +(?, ?, , t , ⊥).

If the above definition holds then it follows it is impossible for the penetrator to
obtain the term t in any way. Note that we quantify over all equivalent bundles in
order to ensure we consider all possible ways in which the penetrator could possibly
obtain the value, without altering the regular behaviour.

Using the above we can now state and prove the proof rule as follows.

Authentication via Confidentiality Proof Rule. Let B be a bundle and t be
a confidential term in B. Further, let n ∈ B be a regular node such that msg(n) =
−(Aψ, Bφ, i , m, c) for some Aψ, Bφ, i , m and c, such that m = . . .ˆtˆ. . ., and c
satisfies AC. Then there exists a regular node n ′ ∈ B such that n ′ → n.

31



Proof. Let n ′ be the node such that n ′ → n. Suppose, for a contradiction, that n ′

is a penetrator node. Then as c satisfies AC it follows that n ′ must lie on a SD
strand and thus there must exist nodes n1 and n2 such that n2 → n1 ⇒ n ′ and
msg(n2 ) = +(?, ?, m, ⊥). Hence there exists an equivalent bundle B′ that contains
the same regular nodes, together with extra S strands to extract t from m to obtain
a node n ′′ such that msg(n ′′) = (?, ?, t , ⊥). However, this contradicts the fact that
t is confidential and therefore n ′ must be a regular node.

The premises of the above lemma can be weakened to only require the channel
to satisfy C (rather than AC) in return for weakening the conclusion to only prove
that there is some penetrator path between n ′ and n.

In order to use the above proof rule we need to be able to prove that certain
terms are confidential. In [Kam10] Kamil showed that a useful class of atoms known
as safe atoms are confidential, which we now adapt slightly.

Firstly, we define the set of terms deducible by the penetrator, denoted A∗P . This
consists of not only all terms that the penetrator initially possesses, but also those
he may be able to extract from these later on. For example, if {|m|}k ∈ AP then
m ∈ A∗P as m may be deducible by the penetrator later on, if he obtains k−1 .

Definition 3.15. The set of terms deducible by the penetrator, denotedA∗P , is defined
as {t ′ | t ∈ AP ∧ t ′ v t}.

In order to define what it means for an atom to be safe, we firstly define under
what conditions a term sent in a high-level message can only be received by a regular
nodes.

Definition 3.16 (From [Kam10]). Let B be a high-level bundle. A term t is sent
confidentially in a high-level term (Aψ, Bφ, m, c) iff t v m, c satisfies C, and
Aψ,Bφ /∈ Ipen .

We now define what it means for an atom to be safe. This definition is based on
the definition given in [Kam10], but it has been altered to permit it to be used more
simply4.

Definition 3.17 (Based on [Kam10]). The set of safe atoms in a high-level bundle
B is defined inductively byM(B) =

⋃
iMi(B) where:

• a ∈ M0 (B) iff a /∈ A∗P , a is not complex and, for all positive regular nodes
n ∈ NB, if a v appmsg(n), then a is sent confidentially in msg(n).

• Mi+1 (B) =Mi(B)∪Xi+1 (B) where a ∈ Xi+1 (B) iff a /∈ A∗P , a is not complex
and, for all positive regular nodes n ∈ NB, if a v appmsg(n), then either
a is sent confidentially in msg(n) or a occurs only within the set of terms
{{|t |}k | t ∈ A ∧ k−1 ∈Mi(B)} in msg(n).

We say that r occurs safely in B iff r ∈M(B).

We can now prove that whenever t is a safe atom, t must be confidential in B.
This proof is based on that in [Kam10], but has been altered to match the new
definitions above.

4In particular, [Kam10] insisted that if t is safe then t is always sent confidentially. We weaken
this condition to only require t to be sent confidentially by regular nodes.

32



Lemma 3.18 (Based on [KL09]). Let B be a bundle. If t a safe atom in B then t
is confidential in B.

Proof. Let B be a bundle and t a safe atom in B. Since t is safe in B, it follows that
t ∈Mi(B) for some i . We prove the result by induction on i .

If i = 0 , the it follows that t /∈ A∗P , t is not complex and, for all positive
regular nodes n ∈ NB, if a v appmsg(n), then a is sent confidentially in msg(n).
Suppose, for a contradiction, that t is not confidential in B. It therefore follows
that there exists an equivalent bundle B′ that contains a positive node n such that
msg(n) = (?, ?, t , ⊥). n cannot be regular since t is sent confidentially in B and
therefore in B′ (as the regular nodes of the bundles are the same). Thus, n must
be a penetrator node. Let n ′ � n be the positive node at which t originates via a
penetrator path p. Note that n ′ cannot be a penetrator node, since, by assumption,
t /∈ A∗P and t is not a complex key. Thus, n ′ must be a regular node. Consider
the node n ′′ on p such that n ′ → n ′′. Since a is sent confidentially in msg(n ′),
by assumption, it follows that n ′′ is a regular node since recipient(n ′) /∈ Ipen and
chan(n ′) satisfies C, by Definition 3.16. Therefore, by a trivial induction, it follows
that all nodes along p must be regular, contradicting the fact that n is a penetrator
node. Thus, t is confidential in B.

For the inductive case, suppose that all a ∈ Mi(B) are confidential in B. We
prove that all a ∈Mi+1 (B) are confidential in B. By definition ofMi+1 (B), either
a ∈ Mi(B) or a ∈ Xi+1 (B). In the former case, the required result immediately
follows by the inductive hypothesis. Otherwise, suppose a ∈ Xi+1 (B). It therefore
follows that a /∈ A∗P , a is not complex and, for all positive regular nodes n ∈
NB, if a v appmsg(n), then either a is sent confidentially in msg(n) or a occurs
only within the set of terms {{|t |}k | t ∈ A ∧ k−1 ∈Mi(B)} in m. Again, suppose,
for a contradiction, that a is not confidential in B. It therefore follows that there
exists an equivalent bundle B′ that contains a positive node n such that msg(n) =
(?, ?, a, ⊥). n cannot be regular since, by assumption, a is sent confidentially
within B from positive regular nodes (noting that the second branch of Xi+1 cannot
apply, since appmsg(n) = a). Thus, n must be a penetrator node. Let n ′ be the
last positive regular node on p, noting that such a node has to exist since a must
originate at on regular node, since a /∈ A∗P and a is not complex. By assumption,
there are two cases to consider:

• n ′ sends a confidentially in msg(n ′). However, since chan(n ′) satisfies C and
recipient(n) /∈ Ipen , it immediately follows that any node n ′′ such that n ′ → n ′′

must also be regular, contradicting the fact that n ′ is the last such node.

• a occurs only within the set of terms {{|t |}k | t ∈ A ∧ k−1 ∈Mi(B)} in
msg(n ′). Hence, the penetrator must extract a from its enclosing encryp-
tions and therefore, must be able to obtain k−1 for some {|m|}k that encloses
a in msg(n). However, such an inverse key is confidential by assumption, and
therefore there cannot exist a node n ′′ such that msg(n ′′) = (?, ?, k−1 , ⊥),
as required.

Thus, since we derive a contradiction in either case, it follows that a is confidential
in B, as required.

33



The fourth proof rule is based on a rule from [GT02]. In [GT02] Guttman and
Thayer develop the notion of authentication tests as a method of proving the correct-
ness of the authentication goals of security protocols. The Unsolicited Authentication
Test allows the existence of a regular node to be deduced, given a message encrypted
by a confidential key. The correctness of this rule can be observed by noting that
the penetrator could not have performed the encryption since the key is confidential
and thus unobtainable by the penetrator.

Unsolicited Authentication Test. Suppose that there is a negative node n1 ∈ B
such that msg(n1 ) = −(Aψ, Bφ, i , m, c), t = {|t0 |}K v m and K is confidential
in B. Providing t /∈ A∗P then there exists a regular node n ′1 ≺B n1 such that t
originates on n ′1 .

The last proof rule allows RN strands to be ignored under certain circumstances.
This can be deduced by observing that the model above allows three different types
of transport layer protocols to be differentiated:

1. Protocols that do not have a concept of sequence numbers;

2. Protocols that do have sequence numbers, but allow them to be altered;

3. Protocols that do have sequence numbers and do not allow them to be altered.

Under the assumption that the application layer protocol does not have direct access
to the sequence numbers, it follows that any attack against an application layer
protocol using a transport layer protocol of the second type could also be found by
considering the transport layer protocol as one of the first type. This is formalised
in the following Lemma.

Lemma 3.19. Let B be a high-level bundle containing RN strands over a channel c.
Then there exists a high-level bundle B′ containing no RN strands on c and where
each high-level term (Aψ, Bφ, i , m, c) has been replaced by (Aψ, Bφ, , m, c)
(i.e. B and B′ are equivalent, modulo sequence numbers).

Proof. Let B be such a bundle; we construct the bundle B′ directly as follows. The
nodes of B′ are those of B, but with each term (Aψ, Bφ, i , m, c) replaced by
(Aψ, Bφ, , m, c). Further, each RN strand is replaced by a direct message send
strand. Clearly this bundle satisfies the bundle conditions as the bundle structure
has not been altered. Further, all the malformed RN strands that resulted from
applying the term substitution have been removed.

3.3 Example: The WebAuth Protocol

WebAuth [SA09] is a single-sign on protocol that is designed to allow users to login
to multiple websites through a central authentication server, meaning that only one
username and password per user is required. It differs from other single-sign on
protocols, such as OpenID [FRH+], in that it requires shared keys to be established
between the website and the authentication server prior to authentication of users.
We prove the correctness of WebAuth by proving three propositions that show what
each principal can infer having completed a run. Our analysis reveals a subtlety

34



concerning the strength of authentication guarantees to the application server, and
a requirement on the user that may not be obvious to all users.

In this section we firstly introduce the WebAuth protocol and describe some of
the unusual issues that arise when verifying web-based protocols. We then formally
define a strand space for the WebAuth protocol, state the assumptions that are
required, and present the proofs of correctness.

Three principals participate in a WebAuth session: the User Agent (UA) is the
web browser that makes requests for the user; the Application Server (AS ) is the
server that the user wishes to access; the Login Server (LS ) is the server responsible
for authenticating the user. These principals communicate via HTTP [LBLM+04]
or HTTPS (i.e. HTTP over TLS) [Res00] requests, and pass data to each other by
embedding tokens in the redirect URLs. For example, when the AS redirects the
UA to the LS , the redirect URL will be of the form https://LS /?RT=rtok ;ST=stok
where rtok and stok are tokens. The AS and LS also use HTTP cookies to store
tokens to allow the user agent to re-authenticate on subsequent requests.

3.3.1 The Protocol

In this paper we prove the correctness of the initial sign on mode of WebAuth,
which assumes that the user is not already authenticated. The protocol in its most
simplified form is as follows:

1 . UA→AS : Request
2 . AS→UA : RequestTokenˆServiceTokenˆLS
3 . UA→ LS : RequestTokenˆServiceToken
4 . LS→UA : LoginFormˆRequestTokenˆServiceToken
5 . UA→ LS : RequestTokenˆServiceTokenˆU ˆpasswdLS (U )
6 . LS→UA : ASˆRequestˆProxyTokenˆIdToken
7 . UA→AS : RequestˆIdToken
8 . AS→UA : ResponseˆAppToken

In the above the user first sends a request to the application server. Since the user
is unauthenticated, the application server redirects the user to the login server, who
sends the user the login form to complete. The user then completes this form and the
username and password are sent back to the login server. Assuming the username
and password are correct, the login server issues the user with a token that can be
used to authenticate the user to the application server. The user thus passes this
token back to the application server and receives the content they requested.

A RequestToken encapsulates the original request that the user made. The
ServiceToken contains configuration information for the LS , enabling it to be state-
less. The ProxyToken allows a user to authenticate again without supplying her
password (i.e. repeat authentication), whilst the IdToken is a temporary token cre-
ated by the LS for the AS that details who the user is. The user exchanges this
temporary token for an AppToken by passing it to the AS .

WebAuth’s token encoding is complicated, so we use a simplified version; es-
sentially the same proof would hold for the full protocol. We encode a token by
{|tagˆdata|}key where key ∈ Ksym and tag is a tag. The protocol can be described
as follows, where SK (A) denotes a symmetric key that is secret to A ∈ Tnames and

35



ShAS
LS denotes the key shared between AS and LS .

1 . UA→AS : r
2 . AS→UA : LSˆ{|reqˆr |}ShAS

LS
ˆ{|webkdc serviceˆASˆShAS

LS |}SK (LS)

3 . UA→ LS : {|reqˆr |}ShAS
LS

ˆ{|webkdc serviceˆASˆShAS
LS |}SK (LS)

4 . LS→UA : LoginFormˆ{|reqˆr |}ShAS
LS

ˆ{|webkdc serviceˆASˆShAS
LS |}SK (LS)

5 . UA→ LS : U ˆpasswdLS (U )ˆ{|reqˆr |}ShAS
LS

ˆ{|webkdc serviceˆASˆShAS
LS |}SK (LS)

6 . LS→UA : ASˆrˆ{|webkdc proxyˆU |}SK (LS)ˆ{|idˆU |}ShAS
LS

7 . UA→AS : rˆ{|idˆU |}ShAS
LS

8 . AS→UA : respˆ{|appˆU ˆShAS
LS |}SK (AS)

WebAuth mandates the use of HTTPS between LS and AS , and between LS and
UA, but merely recommends that HTTPS is used between UA and AS . Clearly, if
HTTPS is not used between UA and AS then there are a number of attacks whereby
the intruder intercepts various tokens. For example, the penetrator could intercept
the app token and pose as the user in subsequent requests to AS . Thus, we assume
that all messages are sent over unilateral TLS, with UA unauthenticated.

When modelling security protocols it is generally assumed that the participants
are able to perform checks on the values they receive to ensure adherence to the
protocol. For example, a UA may be expected to compare the value of r received in
message 6 to the one sent in message 1. However, these checks are not possible if the
role is being assumed by a general-purpose web browser. In particular this means
that the user will not check if the request and the AS match between messages 1 and
7, or if the request and service tokens match. Therefore, when we formally define
how a UA behaves we ensure that it does not check for agreement on any values.
Further, the servers are stateless. For example, the AS stores no state between the
first two messages and the last two; we will therefore model these two exchanges using
two distinct strands (and similarly for the LS). Both of these factors contribute to
complicating our analysis.

One problem that we do not consider whilst proving the correctness of WebAuth
is that the web browser does not check if messages are skipped or reordered. For
example, there is nothing to prevent a dishonest application server from sending a
message 4 rather than a message 2 since there is no way for the web browser to detect
this. In principle, it would be possible to adapt the proofs to model this behaviour,
but the proofs would be rather intricate and uninteresting and therefore we do not
consider this case.

3.3.2 Strand Space Definition

We now define the strand space corresponding to the protocol. Note that the proof
of correctness of WebAuth does not depend on the ordering of the messages, and
therefore we omit the sequence number component in the high-level terms. In the
following:

• ψi denotes channel ends used by the user;

• φi denotes channel ends used by the login and application servers;

36



• ri denotes requests;

• stok , rtok , atok , ptok , idtok denote service, request, application, proxy and
identity tokens respectively.

Further, we assume that the set of atoms, T , includes requests, responses, the token
tags, passwords and the login form (denoted by LoginForm).

Definition 3.20. A Web-Auth Strand Space consists of the union of the images of
the following functions.

AS1 [AS ,LS , ψ1 , φ1 , r1 , stok ] =̂ // Messages 1, 2
〈−(?ψ1 , ASφ1 , r1 , TLSC→S),+(ASφ1 , ?ψ1 , {|reqˆr1 |}ShAS

LS
ˆstok , TLSS→C )〉

AS2 [AS ,U ,LS , ψ4 , φ4 , r2 , resp] =̂ // Messages 7, 8
〈−(?ψ4 , ASφ4 , r2 ˆ{|idˆU |}ShAS

LS
, TLSC→S),

+ (ASφ4 , ?ψ4 , respˆ{|appˆU ˆShAS
LS |}SK (AS), TLSS→C )〉

LS1 [LS ,AS , ψ2 , φ2 , k , r2 ] =̂ // Messages 3, 4
〈−(?ψ2 , LSφ2 , {|reqˆr2 |}k ˆ{|webkdc serviceˆASˆk |}SK (LS), TLSC→S),

+ (LSφ2 , ?ψ2 ,

LoginFormˆ{|reqˆr2 |}k ˆ{|webkdc serviceˆASˆk |}SK (LS), TLSS→C )〉
LS2 [LS ,U ,AS , ψ3 , φ3 , k , r2 ] =̂ // Messages 5, 6
〈−(?ψ3 ,LSφ3 ,

U ˆpasswdLS (U )ˆ{|reqˆr2 |}k ˆ{|webkdc serviceˆASˆk |}SK (LS),TLSC→S),

+ (LSφ3 , ?ψ3 , r2 ˆASˆ{|proxyˆU |}SK (LS)ˆ{|idˆU |}ShAS
LS
, TLSS→C )〉

User [U ,AS ,AS ′,LS , ψ1 , ψ2 , ψ3 , ψ4 , φ1 , φ2 , φ3 , φ4 , r1 , r2 , resp, rtok1 , rtok2 ,

stok1 , stok2 , pt , idtok , atok ] =̂

〈+(?ψ1 , ASφ1 , r1 , TLSC→S),−(ASφ1 , ?ψ1 , LSˆrtok1 ˆstok1 , TLSS→C ),

+ (?ψ2 , LSφ2 , rtok1 ˆstok1 , TLSC→S),

− (LSφ2 , ?ψ2 , LoginFormˆrtok2 ˆstok2 , TLSS→C ),

+ (?ψ3 , LSφ3 , U ˆpasswdLS (U )ˆrtok2 ˆstok2 , TLSC→S),

− (LSφ3 , ?ψ3 , AS ′ˆr2 ˆptˆidtok , TLSS→C ),

+ (?ψ4 , AS ′φ4
, r2 ˆidtok , TLSC→S),−(AS ′φ4

, ?ψ4 , respˆatok , TLSS→C )〉

3.3.3 Verification of WebAuth

Assumptions and Secrecy Lemmas

In order to prove the correctness of WebAuth we require a number of assumptions:

1. Honest application servers are configured with the correct service tokens and
keys;

2. The penetrator does not initially possess any term that contains the secret key
of a honest agent or a key shared amongst honest agents;

3. Penetrator application servers are configured with the correct service tokens;

37



4. The penetrator does not initially possess any term that contains the passwords
of honest users (i.e. the penetrator has not obtained the user’s password in
advance).

These are formalised as follows.

Assumption 3.21. 1. If st ∈ AS1 [AS ,LS , ψ1 , φ1 , r1 , stok ] then stok =
{|webkdc serviceˆASˆShAS

LS |}SK (LS);

2. If A ∈ T reg
names then SK (A) /∈ A∗P and if B ∈ T reg

names then ShA
B /∈ A∗P ;

3. If LS ∈ T reg
names and {|webkdc serviceˆASˆk |}SK (LS) ∈ A∗P , then k = ShAS

LS ;

4. If U ,LS ∈ T reg
names then passwdLS (U ) /∈ A∗P .

Further, we require that the user does not reveal her password except to the
appropriate login server; i.e. the user is not tricked into giving her password away
to the penetrator. In practice this means that the user, before divulging her pass-
word, should verify the LS by ensuring that the domain name matches the ex-
pected name; this requirement may not be obvious to all users. This assumption
is formalised in the definition of the strand space: in message 6 on a User strand,
(?ψ3 , LSφ3 , U ˆpasswdLS (U )ˆrtok2 ˆstok2 , TLSC→S), the identities of the recipient
and of the server in passwdLS (U ) are required to be equal.

The Confidentiality Guarantees

We start by proving that shared keys and passwords are confidential, as per Defini-
tion 3.14.

Lemma 3.22. Let B be a bundle from Σ . If AS ∈ T reg
names and LS ∈ T reg

names then
ShAS

LS is confidential. Further, if U ∈ T reg
names and LS ∈ T reg

names then passwdLS (U ) is
confidential.

Proof. We prove the above result by showing that the relevant terms are safe and
then using Lemma 3.18 to obtain confidentiality.

Firstly, given Assumption 3.21 (4) and the fact that passwdLS (U ) is always sent
confidentially in B (as TLSC→S satisfies C), it immediately follows that passwdLS (U )
is safe. Secondly, consider ShAS

LS for AS ,LS ∈ T reg
names . By Assumption 3.21 (2),

SK (LS ) /∈ A∗P ; further, by the definition of Σ , SK (LS ) does not appear as a subterm
of any message. Therefore, SK (LS ) is a safe key. Assuming AS ∈ T reg

names it follows
by Assumption 3.21 (2) that ShAS

LS /∈ A∗P . Further, since ShAS
LS appears only as a

subterm of messages encrypted using a safe key (i.e. SK (LS )) it follows that ShAS
LS

is a safe key, as required.

The User’s Guarantees

We now analyse what the user can deduce having completed a full run of the protocol.
The proposition and its proof are illustrated in Figure 3.8.

38



st1
AS stU

st1
LS

st2
LS

st2
AS

(?ψ1
, ASφ1

, r1 , TLSC→S )

(ASφ1
, ?ψ1

, LSˆrtok1 ˆstok1 , TLSS→C )

(?ψ2
, LSφ2

, rtok1 ˆstok1 , TLSC→S )

(LSφ2
, ?ψ2

, LoginFormˆrtok2 ˆstok2 , TLSS→C )

(?ψ3
, LSφ3

, U ˆpasswdLS (U )ˆrtok2 ˆstok2 , TLSC→S )

(LSφ3
, ?ψ3

, AS ′ˆr2 ˆptˆidtok , TLSS→C )

(?ψ4
, AS ′φ4

, r2 ˆidtok , TLSC→S )

(AS ′φ4
, ?ψ4

, respˆatok , TLSS→C )

Figure 3.8: A graphical illustration of Proposition 3.23.

Proposition 3.23. Let B be a bundle from Σ and let

stU ∈ User [U ,AS ,AS ′,LS , ψ1 , ψ2 , ψ3 , ψ4 , φ1 , φ2 , φ3 , φ4 , r1 , r2 , resp, rtok1 ,

rtok2 , stok1 , stok2 , pt , idtok , atok ]

be a regular strand of B-height 8. Then provided LS ∈ T reg
names :

1. If AS ∈ T reg
names then there exists a strand st1

AS ∈ AS1 [AS ,LS , ψ1 , φ1 , r1 , stok1 ]
of B-height 2 such that stU (1 ) → st1

AS (1 ), st1
AS (2 ) → stU (2 ) and rtok1 =

{|reqˆr1 |}ShAS
LS

;

2. There exists a strand st1
LS ∈ LS1 [LS ,AS ′′, ψ2 , φ2 , k , r

′
2 ] of B-height 2 such

that stU (3 ) → st1
LS (1 ) and st1

LS (2 ) → stU (4 ); further stok1 = stok2 =
{|webkdc serviceˆAS ′′ˆShAS ′′

LS |}SK (LS) and rtok1 = rtok2 = {|reqˆr ′2 |}ShAS ′′
LS

;

3. There exists a strand st2
LS ∈ LS2 [LS ,U ,AS ′′, ψ3 , φ3 , k , r

′
2 ] of B-height 2

such that stU (5 ) → st2
LS (1 ), st2

LS (2 ) → stU (6 ), r2 = r ′2 , AS ′ = AS ′′,
pt = {|proxyˆU |}SK (LS) and idtok = {|idˆU |}

ShAS ′′
LS

;

4. If AS ′ ∈ T reg
names then there exists a strand st2

AS ∈ AS2 [AS ′,U ,LS , ψ4 ,
φ4 , r2 , resp] of B-height 2 such that stU (7 ) → st2

AS (1 ), st2
AS (2 ) → stU (8 )

and atok = {|appˆU ˆShAS ′
LS |}SK (LS);

5. If AS ∈ T reg
names then r1 = r2 and AS = AS ′;

6. If resp /∈ AP and AS ′ ∈ T reg
names then resp is confidential in B;

7. The strands st1
AS , st2

AS , st1
LS and st2

LS so defined are unique.

Proof. Let stU be such a strand; we prove each of the points in turn as follows:

39



1. Assume that AS ∈ T reg
names . As TLSS→C satisfies A, by the Authentication

Rule there must exist a regular node n such that n → stU (2 ), and thus that
msg(n) = msg(stU (2 )). By inspection this can only be the second node
on an AS1 strand st1

AS . Consider the node n ′ such that n ′ → st1
AS (1 );

since TLSC→S satisfies A, the Session Rule can be applied to st1
AS (1 ) to

deduce that n ′ must be regular and lie on stU . By inspection this can
only be the first node. Hence msg(stU (1 )) = msg(st1

AS (1 )) and therefore,
st1

AS ∈ AS1 [AS ,LS , ψ1 , φ1 , r1 , stok1 ], and thus rtok1 = {|reqˆr1 |}ShAS
LS

.

2. Again, as TLSS→C satisfies AC and since LSφ2 ∈ Ireg it follows, by the Authen-
tication Rule, that there must exist a regular node n such that n → stU (4 ),
and thus that msg(n) = msg(stU (4 )). By inspection this can only be the
second node on a LS1 strand st1

AS . Also, by the Session Rule there exists a
regular node n ′ on stU such that n ′ → st1

LS (1 ). By inspection this can only
be stU (3 ), and therefore st1

LS ∈ LS1 [LS ,AS ′′, ψ2 , φ2 , k , r
′
2 ] for some AS ′′ and

k . Therefore, it immediately follows that rtok2 = rtok1 = {|reqˆr ′2 |}ShAS ′
LS

, and

stok2 = stok1 = {|webkdc serviceˆShAS ′
LS |}SK (LS).

3. The proof of this case is similar to before.

4. The proof of this case is similar to before.

5. This follows from part 1 and part 3.

6. Note that TLSS→C satisfies C and therefore, provided AS ′ ∈ T reg
names , resp is sent

confidentially in st2
AS (2 ). Therefore, it immediately follows that resp occurs

safely providing resp /∈ AP , as this is the only high-level term in which it
occurs. Thus, by Lemma 3.18, resp is confidential, as required.

7. This follows immediately from Equation 3.1 as disjoint regular strands use
disjoint channel ends.

The Login Server’s Guarantees

We now consider the guarantees to the login server. We require a lemma that shows
that only correct keys can be embedded in service tokens.

Lemma 3.24. Let B be a bundle from Σ , LS ∈ T reg
names and st2

LS ∈ LS2 [LS ,U ,AS ,
ψ3 , φ3 , k , r2 ] be a regular strand of B-height at least 1. Then k = ShAS

LS .

Proof. Firstly, note that by Assumption 3.21 (2), SK (LS ) /∈ A∗P ; further it never
appears as a subterm of a message. Hence, it follows trivially that SK (LS ) can
never appear as the key edge on a E strand meaning that the penetrator cannot use
SK (LS ) as an encryption key. Therefore, the penetrator can never construct a term
of the form {|webkdc serviceˆASˆk |}SK (LS). Thus, it follows that terms of this form
must either be from A∗P , and hence of the correct form by Assumption 3.21 (3), or
originate from regular AS stands and hence, due to Assumption 3.21 (1), be of the
correct form.

Proposition 3.25. Let B be a bundle from Σ , LS ∈ T reg
names and st2

LS ∈
LS2 [LS ,U ,AS ′, ψ3 , φ3 , k , r2 ] be a regular strand of B-height 2. Then:

40



1. If AS ′ ∈ T reg
names then there exists a strand st1

AS ∈ AS1 [AS ′,LS , ψ1 , φ1 , r2 , stok ]
of B-height 2;

2. If U ∈ T reg
names then there exists a strand (writing ∗ for values that are

arbitrary) stU ∈ User [U ,AS , ∗,LS , ψ′1 , ψ2 , ψ3 , ∗, φ′1 , φ2 , φ3 , ∗, r1 , ∗, ∗, rt , rt ,
stok1 , stok1 , ∗, ∗, ∗] of B-height at least 5, and there exists a strand st1

LS ∈
LS1 [LS ,AS ′, ψ2 , φ2 , k , r2 ], such that stU (3 ) → st1

LS (1 ), st1
LS (2 ) → stU (4 ),

stU (5 )→ st2
LS (1 ) and st2

LS (2 )→ stU (6 );

3. If AS ,U ∈ T reg
names then stU (1 ) → st1

AS (1 ), st1
AS (2 ) → stU (2 ), ψ1 = ψ′1 ,

φ1 = φ′1 , stok = stok1 , AS = AS ′ and r1 = r2 .

Proof. Let st2
LS be such a strand.

1. By Lemma 3.24, k = ShAS ′
LS ; and by Lemma 3.22, ShAS ′

LS is confidential. There-
fore, the Unsolicited Authentication Test can be applied to st2

LS (1 ) to deduce
that there must exist a regular node n ≺ st2

LS (1 ) such that {|reqˆr2 |}ShAS ′
LS

originates on n. By inspection this can only be the second node on an AS1
strand st1

AS ∈ AS1 [AS ′,LS , ψ1 , φ1 , r2 , stok ].

2. Assuming that U ∈ T reg
names it follows by Lemma 3.22 that passwdLS (U ) is con-

fidential. Therefore, by the Authentication via Confidentiality Rule it follows
that there exists a regular node n ′ such that n ′ → st2

LS (1 ). By inspection, this
can only be the fifth node on a user strand, stU :

msg(stU (5)) = +(?ψ3 , LSφ3 , UˆpasswdLS(U)ˆrtok2ˆstok2, TLSC→S).

Therefore stU ∈ User [U ,AS , ∗,LS , ψ′1 , ψ2 , ψ3 , ∗, φ′1 , φ2 , φ3 , ∗, r1 , ∗, ∗, rtok1 ,
rtok2 , stok1 , stok2 , ∗, ∗, ∗]. Further, as LS ∈ T reg

names , by the Authentication
Rule there exists a regular node n such that msg(n) = msg(stU (4 )). By in-
spection, this can only be the second node on a LS1 strand, st1

LS . Hence, it
follows that ψ2 ∈ ends(stU (4 )) and thus that ?ψ2 ∈ Ireg . Therefore, by the
Session Rule applied to st1

LS (1 ) there exists a regular node n ′ on stU such that
msg(n ′) = msg(st1

LS (1 )). Furthermore, the only node of the correct form is
stU (3 ), and hence it follows that st1

LS ∈ LS1 [LS ,AS ′, ψ2 , φ2 , k , r2 ], and that
stok1 = stok2 and rtok1 = rtok2 .

3. From the previous part, msg(stU (2 )) = −(ASψ2 , ?φ1 , LSˆrtok1 ˆstok1 ).
Hence, as AS ∈ T reg

names , by the Authentication Rule there exists a regular
node n such that msg(n) = msg(stU (2 )). By inspection, this can only be
the second node on an AS1 strand, st1

AS ∈ AS1 [AS ,LS , ψ1 , φ1 , r
′
1 , stok1 ], as

required. Further, as rtok = {|reqˆr1 |}ShAS
LS

, r ′1 = r1 .

The Application Server’s Guarantees

Lastly, we consider what an application server (in particular, an AS2 strand) can
deduce having completed a run of the protocol.

Proposition 3.26. Let B be a bundle from Σ , AS ′,LS ∈ T reg
names and st2

AS ∈
AS2 [AS ′,U ,LS , ψ4 , φ4 , r2 , resp] be a regular strand of B-height 2. Then:

41



1. There exists a strand st2
LS ∈ LS2 [LS ,U ,AS ′, ψ2 , φ2 , k , r

′
2 ] of B-height 2;

2. If U ∈ T reg
names then:

(a) There exists a strand stU ∈ User [U ,AS ,AS ′,LS , ψ1 , ψ2 , ψ3 , ψ4 , φ1 , φ2 ,
φ3 , φ4 , r1 , r2 , ∗, rt , rt , stok , stok , pt , idtok , atok ] of B-height at least 7;

(b) r ′2 = r2 ;
(c) If AS ∈ T reg

names then AS = AS ′ and there exists a strand st1
AS ∈

AS1 [AS ,LS , ψ1 , φ1 , r1 , stok ] of B-height 2;
(d) There exists a strand st1

LS ∈ LS1 [LS ,AS ′, ψ2 , φ2 , k , r2 ] of B-height 2;
(e) stU (3 ) → st1

LS (1 ), st1
LS (2 ) → stU (4 ), stU (5 ) → st2

LS (1 ), st2
LS (2 ) →

stU (6 ), stU (7 ) → st2
AS (1 ); and if AS ∈ T reg

names then stU (1 ) → st1
AS (1 ),

st1
AS (2 )→ stU (2 ), and r1 = r2 .

Proof. Let st2
LS be such a strand.

1. As AS ′,LS ∈ T reg
names , it follows by Lemma 3.22 that ShAS ′

LS is confidential.
Hence, by the Unsolicited Authentication Test applied to st2

AS (1 ) there must
exist a regular node n ≺ st2

AS (1 ) such that {|idˆU |}
ShAS ′

LS
v msg(n). By in-

spection, this can only be the second node on a LS2 strand, and hence there
exists a strand st2

LS ∈ LS2 [LS ,U ,AS ′, ψ3 , φ3 , k , r
′
2 ].

2. This follows immediately from a trivial extension of Proposition 3.25 to a User
strand of B-height 7 (we need to extend the User strand to ensure agreement
between the User and LS2 on r2 and r ′2 ).

Item 2c reveals a subtlety of the protocol: the application server has no guarantee
that the user wishes to authenticate herself to it. For example, suppose there are
two application servers, one dishonest, P , and one honest, AS . Further, suppose
the user wishes to access a resource on P ; when P redirects the user to the Login
Server, rather than P sending his own service and request token, P can send a
service token for AS and a request token for a resource r on AS . This means that
the user, after successfully authenticating to LS , would be redirected to AS and
would inadvertently request r . Clearly, this could be dangerous if r is a request that
causes data to be modified or disclosed.

3.4 Summary

In this chapter we started, in Section 3.1, by presenting the high-level strand spaces
model, which can model the security guarantees provided by both bilaterally and
unilaterally authenticating secure transport protocols. This included defining the
basic elements of the high-level strand spaces model, including high-level terms,
strands, bundles, etc., as well as defining the various penetrator strands that interact
with transport-layer terms.

In Section 3.2 we then defined and proved the correctness of a number of proof
rules that could be used to prove the correctness of application-layer protocols in
the high-level strand spaces model. These proof rules capture a variety of common
protocol interactions, which should make them of significant use to others.

42



In Section 3.3 we then illustrated how the high-level strand spaces model and,
in particular, the proof rules that we have developed can be used by proving the
correctness of WebAuth, a web-based single-sign-on protocol. This proof was also
interesting in that it showed how web-based protocols can be modelled and formally
analysed. Further, this proof revealed an interesting subtly in the guarantees pro-
vided to the application server. We are not aware of any other correctness proofs for
WebAuth.

Related Work Compared to the high-level strand spaces model defined by Kamil
and Lowe in [KL09], the model in this thesis supports a wider variety of transport-
layer protocols. In particular, we now are able to model the guarantees provided by
unilaterally authenticating secure transport protocols, not just bilateral protocols.
Further, the model now supports multiple sessions between the same honest agents,
which is something that was not supported by the session property of [Kam10].
Lastly, the way in which transport-layer protocols that have sequence numbers are
modelled has been altered, in order to make it simpler to work with. In particular,
the stream property of [Kam10] required that the messages received at a particular
name must be a prefix of those sent to it. Whilst this property did capture the
intended meaning, it was not very strand-spaces like, as it is a global property. In
particular, this means that the act of a penetrator doing a renumber was implicit in
the graph, whereas it is now made explicit, via a RN strand.

In addition to our proof of correctness of WebAuth above, in [Hoy12] Hoyland
proved the correctness of a variant of OAuth [JH12] using the high-level strand spaces
model. This suggests that our model is able to prove the correctness of a variety of
different application-layer protocols. We have also developed a prototype tool that is
able to automatically prove all of the security guarantees on WebAuth and OAuth.
Essentially, the tool works by automatically applying the proof rules of this chapter,
along with a few new proof rules. We discuss this further in Section 9.1.

The most similar approach to verifying layered protocols by abstraction is that
of Mödersheim and Viganò [MV09a]. They define a model, the Ideal Channel Model
(ICM), that abstracts away from how the channels are implemented. They then
consider how to model the guarantees given by unilaterally authenticating transport-
layer protocols (or secure pseudonymous channels). In their model they specify
confidential, authentic and secure channels, which roughly correspond to C, A and
AC respectively. The primary difference between the two approaches is that whilst
both formalisms permit analysis of protocols that use bilateral or unilateral transport
protocols, ours also allows protocols that do not group messages into sessions to
be analysed (i.e. by letting the channel end be ?). Another difference is that they
address unauthenticated clients using pseudonyms rather than our name and channel
end combination, which we use to enable bilateral and unilateral protocols to be
considered together more uniformly. We also think that this clarifies the model and
makes it clearer what is occurring at the transport layer. Mödersheim and Viganò
have developed tool support to enable protocols to be proven correct in their model
automatically. Currently, we only have a prototype tool for verifying the correctness
of protocols in the high-level strand spaces model, as we discuss further in Section 9.1.

The two other main approaches to modelling layered security protocols, as dis-
cussed in Section 1.1, are an extension to the inductive approach [BLP03], and

43



using a LTL-based model checking approach [ACC07]. Neither of these allows the
guarantees provided by unilaterally authenticating secure transport protocols to be
modelled although in both cases there appears to be no reason why the model could
not be extended to support it. Neither of these models supports grouping messages
into sessions or prevents messages from being reordered.

44



Chapter 4

Soundness of the Abstraction

Analysing layered security protocols by abstracting away from the implementation
of the transport layer, as in Chapter 3, introduces a proof obligation that this ab-
straction is sound. In particular, it requires one to prove that, if there is an attack
on the protocol when implemented using a transport layer protocol that satisfies the
channel properties, then there is also an attack on the abstracted protocol. In this
chapter we begin to prove such a result for the high-level strand spaces model. In
particular the outline of the overall proof is as follows:

1. In Section 4.2 and Section 4.3 we define what it means for a high-level bundle
to abstract a low-level bundle. Informally, this means that they have the same
application-layer behaviour. We then prove, in Section 4.4, that if a bundle is
interference-free, which is a semantic condition, then it can be abstracted.

2. Chapter 5 proves that every bundle B of a low-level strand space Σ that satisfies
our statically-checkable condition, known as disjoint-layered encryption, can be
transformed to an interference-free low-level bundle B′ of a related strand space
ΣE . Further, B D B′ which, informally, means that B′ has similar application-
layer behaviour.

3. Lastly, Chapter 6 introduces a logic in which protocol-correctness properties
can be expressed. If φ is such a property, then this section also proves that
whenever B D B′ and φ is not satisfied by B, then φ is also not satisfied
by B′. This therefore implies that the transformations of Chapter 5 preserve
any application-layer incorrectness. Lastly, we also prove that whenever B̂′
abstracts B′ and B′ does not satisfy a property φ, then B̂′ also does not.

Together, these results prove that whenever there is an attack against a low-level
bundle, there is also an attack against a high-level bundle, thus showing the model
is sound.

We begin, in Section 4.1 by defining a number of preliminaries and, in particular,
consider how to model arbitrary transport-layer protocols in the low-level strand
spaces model. In Section 4.2 and Section 4.3 we formalise the relationship between
the low and high-level bundles by defining various relations (one for the regular nodes
and two for the penetrator nodes) that relate nodes of low and high-level bundles.
Section 4.4 then introduces various definitions in order to define the independence

45



assumption. Finally, in Section 4.5 we prove the main result; namely that for every
low-level bundle, if it satisfies the independence assumption, then there exists a
corresponding abstracted high-level bundle. This work in this chapter is based on
[KL10, Kam10]. Essentially, the work in Sections 4.2 and 4.3 is a straightforward
adaptation, but the remainder of the work is new. We give more details on this in
Section 4.6.

For the remainder of this thesis, when it is not clear from the context whether
we are in the low or high-level strand spaces model, we will denote high-level objects
with a hat. For example, B̂ denotes a high-level bundle, whereas B denotes a low-level
bundle.

4.1 Preliminaries

In this section we define several preliminaries that are required for our soundness
proof. Firstly, we define several different types of penetrator paths, which are useful
for defining low-level versions of high-level strands. Then, we define a method of
extracting a subterm that lies at a particular position within a term. Lastly, we
describe how generic transport-layer protocols can be represented in the low-level
strand spaces model. The notation from this section is used extensively throughout
the rest of the thesis and is summarised in Appendix A.

Penetrator Paths

In order to define low-level penetrator behaviours like sending and hijacking, Kamil
and Lowe used the notion of penetrator subpaths. These allowed them to define
how the various transport-layer penetrator strands (such as HJ and FK strands) are
translated to the low-level model. Formally, a penetrator subpath is a sequence of
penetrator nodes where each consecutive pair of nodes is linked by either ⇒+ or
→. It is then possible to differentiate between several different types of penetrator
subpath as follows.

Definition 4.1 (Based on [KL10]). A penetrator subpath p in a low-level bundle is:

1. normal iff whenever a constructive edge sends to a destructive edge, the con-
structive edge is a KG strand (cf. Definition 2.15);

2. constructive iff it only traverses constructive edges;

3. destructive iff it only traverses destructive edges.

Extraction Paths

We will frequently wish to check if a given term is the application-layer message of a
transport-layer message. However, we cannot use the subterm relation to check this.
For example, suppose we wished to check if A ∈ Tnames was the application-layer
message, but transport-layer packing included A, then using the subterm relation
could induce false positives. Hence, we would like the ability to retrieve the term
that lies in a particular position. We thus define extraction paths which allow us to
specify the subterm to extract from a term, given the position of it. Conceptually,
they are paths in the abstract syntax tree.

46



n1

S

n4

D

n7

M

n2 n5

n3 n6

{|t |}k ˆt ′

{|t |}k

t ′

k−1

t

(a) A bundle containing a destructive penetrator path 〈n1 ,n2 ,n5 ,n6 〉.

n1

C

n2 n4

E

n7

M

n3 n5

n6

t

t ′

tˆt ′

k

{|tˆt ′|}k

(b) A bundle containing a constructive penetrator path 〈n1 ,n3 ,n5 ,n6 〉.

Figure 4.1: Bundles to illustrate the relationship between extraction and penetrator
paths.

Definition 4.2. The set of all extraction paths, EP, is defined as ({1 , 2 ,Decrypt})∗.
The partial function extract : A× EP → A is defined as follows:

extract(t , 〈〉) =̂ t

extract(t1 ˆt2 , 〈i〉ˆp) =̂ extract(ti , p)

extract({|m|}k , 〈Decrypt〉ˆp) =̂ extract(m, p).

Given an extraction path es and x ∈ {1 , 2 ,Decrypt}, we write x in es iff there exists
an index i such that the i th element is x . We denote t1 = extract(t2 , es) by t1 ves t2 ,
i.e. t1 is the subterm of t2 at position es.

For example, if t = {|t1 |}k ˆt2 , then t1 = extract(t , 〈1 ,Decrypt〉) (i.e.
t1 v〈1 ,Decrypt〉 t) and t2 = extract(t , 〈1 〉).

It will be helpful, particularly in Chapter 5, to consider what the penetrator
is doing in terms of extraction paths. For example, consider Figure 4.1a and the
destructive penetrator path 〈n1 ,n2 ,n5 ,n6 〉. This penetrator path takes the first
component of a concatenation and then decrypts the message. Therefore, this can be
represented by the extraction path 〈1 ,Decrypt〉. Alternatively, consider Figure 4.1b
and the constructive penetrator path 〈n1 ,n3 ,n5 ,n6 〉. This takes the term t and
packages it up as the first component of a concatenation, encrypting the result. This
can be represented by the extraction path 〈Decrypt, 1 〉 that extracts the original
term t from the result term {|tˆt ′|}k .

In general, given a destructive or constructive penetrator subpath that does not
cross a key-edge, it is possible to obtain a corresponding extraction path. This is
formalised below.

47



n1

A

n4

B

n2 n5

n3 n6

appmsg1

{|k |}PK(B)

AˆBˆ{|appmsg2 |}k

(a) The low-level bundle

n̂1

A

n̂4

B

n̂3 n̂6

(A, B , appmsg1 , ⊥)

(A, B , appmsg2 , c)

(b) The corresponding high-level bun-
dle

Figure 4.2: A low-level bundle that sends application-layer messages, one over the
unprotected channel and another using a simple transport-layer protocol. The cor-
responding high-level bundle is also given.

Lemma 4.3. Let p be a constructive or destructive penetrator path in a bundle B
starting at a node n1 and ending at a node n|p|. Providing p does not traverse a key
edge or a KG strand there exists an extraction path es such that:

• If p is destructive extract(msg(n1 ), es) = msg(n|p|); we define expath (p) =̂ es;

• If p is constructive extract(msg(n|p|), es) = msg(n1 ); we define expath∼ (p) =̂
es.

Transport Layer Modelling

In this section we define how to extract application-layer information, such as the
sender of a transport-layer message, from a low-level strand space including arbitrary
secure-transport protocols. We also define some assumptions on the transport-layer
protocols and the low-level strand space in order to make sure the above functions
are well defined.

Throughout this subsection we use the example of a simple transport-layer pro-
tocol that sends an application-layer message m from A to B as follows:

1 . A→ B : {|k |}PK (B)

2 . A→ B : AˆBˆ{|m|}k

This channel is confidential, as only B can decrypt the message containing they key
k , but is not authentic as the penetrator can trivially alter the apparent sender by
changing message 2. An example bundle, which is used throughout the following, is
given in Figure 4.2.

We start by stating an assumption regarding the partitioning of the set of regular
nodes according to the type of transport-layer content they contain (if any). This
has to be an assumption, rather than a definition, as it is not always possible to
disambiguate between certain types of nodes.

Assumption 4.4 (Based on [KL10]). The set of regular nodes N reg is partitioned
between:

• The set of transport-layer nodes, denoted Ntrpt , that contains all regular nodes
that send or receive application-layer messages on a channel other than ⊥;

48



• The set of unprotected regular nodes, denoted N⊥, that contains all regular
nodes that send or receive application-layer messages over ⊥;

• The set of transport-layer non-message nodes, denoted Nnon-payload , that con-
tains all regular nodes that are related to the transport-layer, but do not send
or receive application-layer messages (e.g. handshake nodes).

The set of application-layer nodes, denoted Npayload , is defined as Ntrpt ∪N⊥.

For example, in Figure 4.2, {n1 ,n4} = N⊥, {n2 ,n5} = Nnon-payload and
{n3 ,n6} = Ntrpt .

We now consider how to transform transport-layer messages into high-level terms.
Firstly, we will assume the existence of several sets of terms related to the transport-
layer terms. We also require the existence of a function that extracts the sequence
number of a transport-layer payload term. Lastly, we require the existence of an
extraction path that can be used to extract the application-layer message from a
transport-layer payload term. These assumptions are formalised as follows. Note
that the following excludes ⊥ as this requires special treatment.

Assumption 4.5 (Based on [KL10]). Given a low-level strand space Σ , for each
channel c ∈ Channels \ {⊥} we assume the existence of:

• A set of transport-layer payload terms, T c
payload ⊆ A, that contains all terms

that carry an application-layer payload on channel c.

• A set of transport-layer non-payload terms, T c
non-payload ⊆ A, that contains all

other terms used by the channel c (e.g. handshake terms).

• An extraction path expathc (c) 6= 〈〉, that extracts the application-layer message
from a transport term t ∈ T c

payload .

We also define:

T ⊥payload =̂ {msg(n) | n ∈ N⊥}
T ⊥non-payload =̂ ∅

Tpayload =̂
⋃

c∈Channels

T c
payload

Tnon-payload =̂
⋃

c∈Channels

T c
non-payload .

Thus, Tpayload consists of all transport-layer terms that contain application-layer
messages, whilst Tnon-payload consists of all transport-layer terms that do not contain
application-layer messages.

Further, we assume that for all channels c ∈ Channels:

T c
payload = {msg(n) | n ∈ Nc

trpt}
T c

non-payload = {msg(n) | n ∈ Nc
non-payload}.

49



For example, considering Figure 4.2 and the example channel c, T c
payload contains

all terms of the form AˆBˆ{|appmsg2 |}k , T c
non-payload contains all terms of the form

{|k |}PK (B) and expathc (c) = 〈2 , 2 ,Decrypt〉 (assuming that ˆ associates to the right).
Note that the existence of expathc (c) implicitly assumes that the application-

layer message is a subterm of the transport-layer payload term. Further, it requires
that all application-layer messages on a given channel are packaged in the same
way. These conditions are satisfied by every secure transport protocol that we have
considered1.

We now make an assumption that requires the existence of functions to extract
the sender and recipient of high-level terms in a particular bundle.

Assumption 4.6 (Based on [KL10]). For each low-level bundle B of Σ we assume
the existence of:

• senderc
B : T c

payload → I that gives the sender of a transport-layer payload term
on channel c;

• recipientc
B : T c

payload → I that gives the recipient of a transport-layer payload
term on channel c;

• seqnoc
B : T c

payload → S that gives the sequence number (possibly ) of the
transport-layer payload term.

Further, for each regular node n ∈ Ntrpt , if n is positive, senderB(msg(n)) ∈ Ireg

and, if n is negative, recipientB(msg(n)) ∈ Ireg .

For example, using our running example, in Figure 4.2 senderB(msg(n3 )) = A
and recipientB(msg(n3 )) = B .

Observe that we cannot define sender and recipient over the strand space since
it is possible for the sender or recipient of a particular transport-layer term to be
different in different bundles. For example, if the transport-layer protocol in use was
TLS then the sender and recipient of a given transport-layer term are determined
by the encryption key used to protect the application-layer message. However, as
it is possible for the same encryption key to be derived in two different bundles by
different participants it follows that sender and recipient are bundle-specific.

The same also applies to seqno. In TLS, each end of a channel records the number
of messages that have been sent or received. The sequence number is then included
not as part of the plaintext, but instead it is incorporated into the hash that is sent
with each message. Regular agents then verify that the messages are received in
the correct order by including the sequence number that they expect in the data
they hash to verify the message. Hence, the sequence number is a bundle-specific
property, since it is dependent on what terms have been sent before and is therefore
dependent on the structure of the bundle.

Using the above functions we can define several functions that extract components
from arbitrary transport-layer payload terms. These will later be used to define a
mapping between transport-layer terms and the high-level terms that they represent.
In order to define these functions it will be necessary to know which channel a

1It would be relatively straightforward to support transport-layer protocols that had multiple
application-layer extraction paths, providing the extraction path that was in use could be deter-
mined by a value within the application-layer message.

50



particular transport-layer payload term was sent on. To ensure such a function is
well-defined we clearly need to ensure that no two channels share any transport-layer
payload terms. We formalise this assumption as follows.

Definition 4.7 (Based on [KL10]). Channel c1 has disjoint transport-layer payload
messages with a channel c2 iff T c1

payload ∩ T
c2

payload = ∅.

Assumption 4.8 (Based on [KL10]). For all distinct channels c1 6= ⊥ and c2 6= ⊥,
c1 has disjoint transport-layer payload messages with c2 .

Given the above assumption we can now define the following functions.

Definition 4.9 (Based on [KL10]). Let Σ be a low-level strand space. The following
functions are defined over all Tpayload :

chan : Tpayload → (Channels \ {⊥})
chan(t) =̂ c where t ∈ T c

payload

appmsg : Tpayload → Tapp

appmsg(t) =̂ extract(t , expathc (chan(t)))

Thus chan gives the channel of a transport-layer term (assuming Assumption 4.8);
and appmsg gives the application-layer message contained in a transport-layer term.

For each B of Σ we define senderB, recipientB : Tpayload → I, which give the
claimed sender and intended recipient end points of a transport layer-term, respec-
tively. Further, we define seqnoB : Tpayload → S, which gives the claimed sequence
number (possibly ) for a given message. Formally, these functions are defined by:

senderB(t) =̂ sender
chan(t)
B (t)

recipientB(t) =̂ recipient
chan(t)
B (t)

seqnoB(t) =̂ seqno
chan(t)
B (t).

When the bundle is clear from the context we simply write sender(t) and recipient(t).
We lift chan, sender , recipient and seqno to be defined on Ntrpt in the obvious way
(e.g. chan(n) = chan(msg(n)). We lift appmsg to be defined on Npayload by defining
appmsg(n) to be msg(n) if n ∈ N⊥ and appmsg(msg(n)) otherwise (i.e. if n ∈ Ntrpt).

For example, in the case of Figure 4.2, sender(msg(n3 )) = A?,
recipient(msg(n3 )) = B?, seqno(msg(n3 )) = , appmsg(msg(n3 )) = appmsg2 and
chan(msg(n3 )) = c.

We now consider what conditions are required to ensure that the above functions
are well-defined. Recall that in the high-level strand spaces model (in particular in
Assumption 3.3) we disallowed the penetrator from transforming a message where,
for example, the sending channel end was ? into one where the sending channel end
was not ?. In order to ensure that there are no penetrator behaviours that would be
prohibited at the high-level we lift this assumption to an assumption on the low-level
bundles by insisting that either all terms sent on c have sending channel end ?, or
none do. Since we require, in Equation 3.1, that distinct regular strands use disjoint
channel ends we will also require that the functions sender and recipient are defined
in such a way that ensures this. Lastly, since we require in Assumption 3.5 that the
sequence numbers are actually used sequentially, we also need to assume that this
holds in the low-level strand space. We lift these assumptions as follows.

51



Assumption 4.10. For all low-level bundles B, channels c ∈ Channels \ {⊥}, and
terms t1 , t2 ∈ T c

payload sent on c:

1. name(senderB(t1 )) = ? iff name(senderB(t2 )) = ?;

2. end(senderB(t1 )) = ? iff end(senderB(t2 )) = ?;

3. name(recipientB(t1 )) = ? iff name(recipientB(t2 )) = ?;

4. end(recipientB(t1 )) = ? iff end(recipientB(t2 )) = ?;

5. seqnoB(t1 ) = iff seqnoB(t2 ) = ;

6. If seqnoB(t1 ) 6= then end(senderB(t1 )) 6= ? and end(recipientB(t1 )) 6= ? (and
similarly for t2 ).

Further, for all low-level bundles B and low-level strands st and st ′ in B, if st 6= st ′

then ends ′B(st) ∩ ends ′B(st ′) = ∅ (cf. Equation 3.1), where ends ′B is the low-level
version of ends and is formally defined as:

ends ′B(st) =̂ {end(senderB(n)) | n ∈ Ntrpt ∧ sign(n) = + ∧ n is on st}
∪ {end(recipientB(n)) | n ∈ Ntrpt ∧ sign(n) = − ∧ n is on st}.

Lastly, for all low-level bundles B and for all regular strands st in Σ , the function
thst
B : C × C → S∗, which returns the list of sequence numbers sent between two

channel ends on a strand, is defined by:

thst
B (ψ, φ) =̂ 〈seqnoB(msg(st , i)) | i ∈ 〈1 ..〉, i ≤ |st |, (st , i) ∈ Npayload ,

end(senderB(msg(st , i))) = ψ, end(recipientB(msg(st , i))) = φ〉.

For all regular strands st , and all ψ, φ ∈ C, either thst
B (ψ, φ) ≤ 〈1 ..〉, or thst

B (ψ, φ) ∈
{ }∗.

4.2 Relating Regular Nodes

The first step in the proof is to define an abstraction function, α̂B, that translates
low-level terms from B into the corresponding high-level terms. For example, given
the low-level term AˆBˆ{|m|}PK (B) above, α̂B returns (A, B , , m, c).

Definition 4.11 (Based on [KL10]). Let B be a low-level bundle. The term mapping
function α̂B : A → Â that maps low-level terms to the corresponding high-level terms
is defined as follows:

1. for m ∈ Tpayload :

α̂B(m) =̂ (senderB(m), recipientB(m), seqnoB(m), appmsg(m), chan(m));

2. for m ∈ A \ Tpayload , α̂B(m) = (??, ??, , m, ⊥);

3. if m is a directed term then α̂B(m) has the same direction as m.

The bundle is omitted when it is clear from the context.

52



Using the above we specify a class of functions that, given a low-level node
containing an application-layer message, return the corresponding high-level node.
Furthermore, such functions are defined so as to preserve the bundle structure.

Definition 4.12 (From [KL10]). A regular node map is a partial function φ̂ that
maps regular nodes of a low-level bundle B onto those of a high-level bundle B̂ and
such that:

1. dom(φ̂) = Npayload ;

2. α̂B(msg(n)) = msg(φ̂(n));

3. φ̂ is injective and surjective onto the regular nodes of B̂;

4. for n,n ′ ∈ dom(φ), n ⇒+
B n ′ iff φ̂(n)⇒+

B̂
φ̂(n ′).

For example, the regular node map between the low and high-level bundles of
Figure 4.2 is given by the function φ̂ where φ̂(n1 ) = n̂1 , φ̂(n3 ) = n̂3 , φ̂(n4 ) = n̂4 ,
φ̂(n6 ) = n̂6 .

4.3 Relating Penetrator Nodes

In this section we define how the penetrator nodes of the low-level bundle are related
to the penetrator nodes of the high-level bundle. This is done by defining two
different maps, the first of which maps non-application layer nodes to application-
layer penetrator nodes. This definition is similar to Definition 4.12.

Definition 4.13 (From [KL10]). An application-layer penetrator node map is a par-
tial injective function β̂1 from penetrator nodes of B to those of B̂, whose domain is
a subset of Σ \ Npayload , and such that if n ∈ dom(β̂1 ) then:

1. α̂B(msg(n)) = msg(β̂1 (n)) = (??, ??, , msg(n), ⊥);

2. β̂1 (n) is on the same type of strand as n (e.g. if n is on a low-level E strand
then β̂1 (n) is on a high-level E strand);

3. β̂1 respects the strand structure: for n,n ′ ∈ dom(β̂1 ), n ⇒+ n ′ iff β̂1 (n) ⇒+

β̂1 (n ′).

For example, considering the bundle shown in Figure 4.3b, a valid application-
layer penetrator node map would be the map that maps n1 , n2 , n3 , n4 and n5 to
n̂1 , n̂2 , n̂3 , n̂4 and n̂5 respectively.

Relating transport-layer penetrator nodes requires more thought since some of
the transport-layer high-level penetrator strands (i.e. HJ, FK, SD, RV, LN and RN
strands) do not correspond directly to single low-level penetrator strands, but instead
to a collection of them. For example, consider the transport-layer protocol (which
we will use as a running example for the remainder of this section) that encodes a
high-level term t = (A?, B?, , m, c) by Aˆ{|m|}PK (B). Using this protocol, the
path from n6 to n13 in Figure 4.3b is the low-level representation of a high-level SD
strand that sends the message mˆn to an honest agent B . We will define a mapping

53



n̂1

M

n̂2

C

n̂3

M

n̂4

n̂5 n̂6

SD

n̂13 n̂14

(?, ?, m, ⊥)

(?, ?, n, ⊥)

(?, ?, mˆn, ⊥)

(P?, B?, mˆn, c)

(a) The corresponding high-level bundle, including the high-level
SD strand.

n1

M

n2

C

n3

M

n4 n6

E

n7

M

n5 n8 n9

C

n10

M

n11 n12

n13 n14

m

n

mˆn

PK (B)

P

{|mˆn|}PK(B)

Pˆ{|mˆn|}PK(B)

(b) A bundle containing a low-level Send penetrator subpath.

Figure 4.3: An illustration of how the low-level penetrator subpaths and high-level
penetrator strands relate.

54



from such low-level penetrator subpaths to the corresponding high-level penetrator
strands.

Note that on a single penetrator path it is possible for the penetrator to change
both the apparent sender and the sequence number associated with a message (e.g.
Figure 4.5h). Therefore, for technical reasons, that are explained in Remark 4.22,
we require a strand that does both re-numbering and hijacking at the same time.
Further, we will also require a high-level penetrator strand that simply copies the
application-layer message. This is again required for technical reasons, which are
discussed in Remark 4.20. We define these new penetrator strands as follows.

Definition 4.14. The transmit and hijack-renumbering penetrator strands are de-
fined as:

TX Transmit: 〈−(Aψ, Bφ, i , m, c),+(Aψ, Bφ, i , m, c)〉;

HJRN Hijack-Renumbering: 〈−(Sψ, Rφ, i , m, c),+(S ′ψ′ , R′φ′ , i ′, m, c)〉 provid-
ing i ′ 6= i , and either Sψ 6= S ′ψ′ or Rφ 6= R′φ′ .

Note that by Assumption 4.10 in any such HJRN strand, i 6= , i ′ 6= , S = ?⇔
S ′ = ?, R = ?⇔ R′ = ?, ψ = ?⇔ ψ′ = ? and φ = ?⇔ φ′ = ?, as required.

However, note that both TX and HJRN strands are unnecessary, in the sense that
they can be replaced by a direct message sending edge or combinations of HJ and
RN strands, respectively. Therefore, when proving a result in the high-level strand
spaces model for a particular bundle B̂ we can instead consider the equivalent bundle
B̂′ that contains no HJRN strands. Note, however, that the above is only true if the
channel conditions, such as AC, permit HJRN strands iff they permit equivalent
combinations of HJ and RN strands. We formalise this assumption as follows. Note
that we also assume that all channels permit TX strands. This will be required in
the proof of Proposition 4.31.

Assumption 4.15. All channels c permit TX strands, and permit HJRN strands iff
they permit an equivalent combination of HJ and RN strands.

Lemma 4.16. Let B̂ be a high-level bundle. Then B̂ is equivalent to a bundle that
contains no TX or HJRN strands.

Proof. Clearly, any TX strands can be removed by replacing them with direct message
transmission edges, noting that the bundle conditions will still be satisfied. Any
HJRN strand is equivalent to a combination of a HJ and a RN strand, in some order.
Further, since the channel permits HJRN strands, it follows by Assumption 4.15
strand that both the RN and HJ strand are permitted. Hence, the bundle conditions
are satisfied.

In Proposition 6.22 we use this lemma to justify only considering bundles in the
high-level strand space that don’t contain HJRN or TX strands.

In order to define the various transport-layer penetrator strands, we will need to
identify when a penetrator path is sending or receiving an application-layer message.
We can formalise such a definition by using extraction paths, as follows.

Definition 4.17. We say that a destructive penetrator path pd starting at a
node n extracts the application message from n, written pd app-extracts n, iff

55



n3

D

n6

M

n1

A

n4

n5 n6

D

n2 n9

S

n10

n11 n12

S

n13

n14 n7

n8

SK (P)

{|k |}PK(P)

k

AˆBˆ{|m|}k

A

Bˆ{|m|}k

B

{|m|}k

m

(a) A bundle containing a path that extracts the application-message
from n1 .

n1

M

n3

E

n2

M

n4

n5 n6

A

n8

E

n11

M

n9 n12

C

n15

M

n10 n13 n16

C

n19

M

n14 n17

n18 n7

PK (A)

k

k {|k |}PK(A)

m

{|m|}k

A

P

Aˆ{|m|}k

PˆAˆ{|m|}k

(b) A bundle containing a path that packages the application-message of n1 .

Figure 4.4: A low-level bundle in which the penetrator sends and receives application-
layer messages using a simple transport-layer protocol.

56



expath (pd ) = expathc (chan(n)). A constructive penetrator path pc ending at
a node n packages the application message of n, denoted pc app-packages n, iff
expath∼ (pc) = expathc (chan(n)).

For example, in Figure 4.4a, 〈n2 ,n9 ,n11 ,n12 ,n14 ,n7 ,n8 〉 app-extracts n2 whilst
in Figure 4.4b, 〈n11 ,n9 ,n10 ,n13 ,n14 ,n17 ,n18 〉 app-packages n7 .

Consider the low-level penetrator subpaths that correspond to the normal high-
level penetrator strands, i.e. HJ, RN, TX, HJRN strands. All of these penetrator
strands do not alter, or even inspect the enclosed application-layer message. There-
fore, a low-level penetrator subpath that corresponds to one of these strands should,
again, not extract the application-layer message from the transport-layer packaging.
We formalise this as follows.

Definition 4.18. A normal penetrator path p transports the application-layer mes-
sage iff p(1 ), p(|p|) ∈ Ntrpt , chan(p(1 )) = chan(p(|p|)), and there exists pd , and
pc such that p = pdˆpc , pd is destructive, pc is constructive and expath (pd ) =
expath∼ (pc) ≤ expathc (chan(p(1 ))).

The above definition ensures that the penetrator can extract the application-layer
message, but cannot divide it further.

We now define how low-level penetrator subpaths correspond to high-level pene-
trator strands.

Definition 4.19 (Based on [KL10]). Let p be a penetrator subpath in a low-level
bundle B, starting at a node n and ending at a node n ′. p is a transport-layer pen-
etrator subpath iff it is of one of the following forms: (these subpaths are illustrated
in Figure 4.5):

Receive 1. n is a positive regular node and n ′ is a negative penetrator node;

2. p is destructive;

3. n ∈ Ntrpt ;

4. sender(msg(n)) ∈ Ireg ;

5. recipient(msg(n)) ∈ Ipen ;

6. p app-extracts n.

Learn 1. n is a positive regular node and n ′ is a negative penetrator node;

2. p is destructive;

3. n ∈ Ntrpt ;

4. sender(msg(n)) ∈ Ireg ;

5. recipient(msg(n)) ∈ Ireg ;

6. p app-extracts n.

Fake 1. n is a positive penetrator node and n ′ is a negative regular node;

2. p is constructive;

3. n ′ ∈ Ntrpt ;

4. sender(msg(n ′)) ∈ Ireg ;

57



S

D

Aˆ{|m|}PK(P)

A

SK (P)

{|m|}PK(P)

m

(a) A Receive subpath for A ∈ T reg
names , P ∈

T pen
names .

E

C

m

PK (A) P

{|m|}PK(A)

Pˆ{|m|}PK(A)

(b) A Send subpath for A ∈ T reg
names , P ∈

T pen
names .

S

D

Aˆ{|m|}PK(B)

A

SK (B)

{|m|}PK(B)

m

(c) A Learn subpath for A,B ∈ T reg
names , assum-

ing that the penetrator obtains SK (B) some-
how.

E

C

m

PK (B) A

{|m|}PK(B)

Aˆ{|m|}PK(B)

(d) A Fake subpath for A,B ∈ T reg
names .

S

C

Aˆ{|m|}PK(B)

PA

{|m|}PK(B)

Pˆ{|m|}PK(B)

(e) A Hijack subpath for A ∈ T reg
names , P ∈

T pen
names .

S

C

dˆAˆ{|m|}PK(B)

d ′d

Aˆ{|m|}PK(A)

d ′ˆAˆ{|m|}PK(A)

(f) A Transmit subpath, assuming that the run-
ning example has been augmented with nonces.

S

C

1ˆAˆ{|m|}PK(B)

21

Aˆ{|m|}PK(B)

2ˆAˆ{|m|}PK(B)

(g) A Renumber subpath, assuming that the
running example has been augmented with se-
quence numbers.

S

C

1ˆAˆ{|m|}PK(B)

2ˆP1ˆA

{|m|}PK(B)

2ˆPˆ{|m|}PK(B)

(h) A Hijack-Renumber subpath, assuming that
the running example has been augmented with
sequence numbers.

Figure 4.5: Various penetrator subpaths from Definition 4.19 using the running
example of a secure transport protocol.

58



5. recipient(msg(n ′)) ∈ Ireg ;

6. p app-packages n ′.

Send 1. n is a positive penetrator node and n ′ is a negative regular node;

2. p is constructive;

3. n ′ ∈ Ntrpt ;

4. sender(msg(n ′)) ∈ Ipen ;

5. recipient(msg(n ′)) ∈ Ireg ;

6. p app-packages n ′.

Hijack 1. n is a positive regular node and n ′ is a negative regular node;

2. p is normal;

3. n,n ′ ∈ Ntrpt ;

4. seqno(msg(n)) = seqno(msg(n ′));

5. appmsg(n ′) = appmsg(n);

6. chan(msg(n ′)) = chan(msg(n));

7. sender(msg(n)) 6= sender(msg(n ′)) or recipient(msg(n)) 6=
recipient(msg(n ′));

8. p transports the application-layer message.

Renumber 1. n is a positive regular node and n ′ is a negative regular node;

2. p is normal;

3. n,n ′ ∈ Ntrpt ;

4. appmsg(n) = appmsg(n ′);

5. chan(msg(n)) = chan(msg(n ′));

6. sender(msg(n)) = sender(msg(n ′));

7. recipient(msg(n)) = recipient(msg(n ′));

8. 6= seqno(msg(n)) 6= seqno(msg(n ′)) 6= ;

9. p transports the application-layer message.

Hijack-Renumber 1. n is a positive regular node and n ′ is a negative regular node;

2. p is normal;

3. n,n ′ ∈ Ntrpt ;

4. appmsg(n ′) = appmsg(n);

5. chan(msg(n ′)) = chan(msg(n));

6. sender(msg(n)) 6= sender(msg(n ′)) or recipient(msg(n)) 6=
recipient(msg(n ′));

7. 6= seqno(msg(n)) 6= seqno(msg(n ′)) 6= ;

8. p transports the application-layer message.

Transmit 1. n is a positive regular node and n ′ is a negative regular node;

59



2. p is normal;
3. n,n ′ ∈ Ntrpt ;
4. appmsg(n) = appmsg(n ′);
5. chan(msg(n)) = chan(msg(n ′));
6. seqno(msg(n)) = seqno(msg(n ′));
7. sender(msg(n)) = sender(msg(n ′));
8. recipient(msg(n)) = recipient(msg(n ′));
9. p transports the application-layer message.

Remark 4.20. As an example of why the Transmit subpath is needed con-
sider the transport layer protocol that encodes the high-level term (A,B ,m, c) as
dˆAˆ{|m|}PK (B) where d is a nonce. Clearly, this can be transformed by the pene-
trator to d ′ˆAˆ{|m|}PK (B) where d 6= d ′. However, observe that the corresponding
high-level term is unchanged and therefore, since we do not wish to remove pene-
trator subpaths entirely from the high-level bundle, there needs to be a penetrator
subpath that reflects this.

We can now define the second map involving penetrator nodes, which maps nodes
on penetrator paths to nodes on high-level penetrator strands. Note that the map
cannot be a function since a subsequence of a penetrator subpath could be part of
two different penetrator subpaths. For example, consider the penetrator subpath
in Figure 4.3b; if the penetrator wanted to send the message from two different
penetrator identities then he could create another C strand that would receive from
the E strand and therefore the first few nodes of the penetrator subpaths are shared.

Definition 4.21 (Based on [KL10]). A transport-layer penetrator node map is a
relation β̂2 between the penetrator nodes of B and B̂ that:

1. Maps the first and last penetrator nodes of Send, Receive, Learn, Fake, Hijack,
Renumber, Hijack-Renumber and Transmit subpaths to the first and last nodes
of high-level SD, RV, LN, FK, HJ, RN, HJRN and TX strands respectively, and
relates no other nodes; and

2. α̂B(msg(n)) = msg(β̂2 (n)) for (n, n̂) ∈ β̂2 .

For example, again considering the bundle from Figure 4.3b, a suitable transport-
layer penetrator node map would map n6 and n13 to n̂6 and n̂13 respectively.

Remark 4.22. The above definition illustrates the need for HJRN strands. For ex-
ample, consider a Hijack-Renumber subpath which, if we did not have HJRN strands,
would need to be mapped to a HJ strand followed by a RN strand, or vice-versa. The
above definition would insist that there exists an intermediate low-level transport-
layer node that contained the original transport term, but with only one of the
hijacking or the renumbering done. However, such a node does not necessarily ex-
ist as in a normal bundle the penetrator would do both transformations without
reconstructing an intermediate transport-layer term.

For example, consider the transport-layer protocol that represents
(A, B , i , m, c) as AˆBˆ{|{|m|}PK (B)ˆi |}SK (A). Clearly there exists a pene-
trator path that consists of a Hijack subpath (changing the sending identity to one

60



from Ipen) followed by a Renumber subpath that includes an explicit intermediate
node. However, note that the above path would be equivalent to one that obtains
the term {|m|}PK (B) using S and D strands and then uses C and E strands to
construct a term PˆBˆ{|{|m|}PK (B)ˆi ′|}SK (P). Hence, there exists no intermediate
node: the hijack and renumber happen simultaneously.

Using the above definitions in conjunction with those from Section 4.2 it is now
possible to define a node map for a bundle B that maps the regular and penetrator
nodes to nodes of a high-level bundle. In particular, the map explains how each
high-level node and strand corresponds to low-level nodes and strands.

Definition 4.23 (From [KL10]). A node map is a partial relation ψ̂ between the
nodes of B and B̂, such that:

1. ψ̂ is of the form φ̂ ∪ β̂1 ∪ β̂2 , where φ̂, β̂1 and β̂2 are as in Definitions 4.12,
4.13, 4.21 respectively; and

2. ψ̂ is surjective onto the nodes of B̂; and

3. ψ̂ respects the strand structure:

(a) if n,n ′ ∈ dom(ψ̂) and n →B n ′ then ∃n̂, n̂ ′ · n ψ̂ n̂ ∧ n ′ ψ̂ n̂ ′ ∧ n̂ →B̂ n̂ ′;
and

(b) if n̂ →B̂ n̂ ′, then ∃n,n ′ · n ψ̂ n̂ ∧ n ′ ψ̂ n̂ ′ ∧ n →B n ′.

For example, in Figure 4.3b, the node map is equivalent to the regular node map
since it contains penetrator nodes. Equally, in Figure 4.3 the node map is equivalent
to β̂1 ∪ β̂2 since there are no regular nodes.

Note that in some cases there may be multiple, equally valid, node maps from a
low-level bundle. For example, a Receive subpath followed by a Send subpath could
be mapped to a RV and SD strand. However, providing the receive and send are both
on the same channel this could be viewed as a Hijack subpath, and thus mapped to
a HJ strand.

4.4 Interference Freedom and Abstract Correctness

In this section we consider the conditions under which we can safely abstract away
from the transport-layer behaviour. In particular, we develop a condition that holds
whenever a term t is constructed by the penetrator in a way that can be mirrored in
a high-level bundle. Further, we describe a bundle condition, interference-freedom,
that is true whenever the bundle can be safely abstracted, in the following sense.

Definition 4.24 (Based on [KL10]). A high-level bundle B̂ abstracts a low-level
bundle B iff there exists a node map ψ̂ between the nodes of B and B̂. A low-level
bundle B is abstractable iff there is a high-level bundle B̂ that abstracts B. A high-
level strand space Σ̂ abstracts a low-level strand space Σ iff every low-level bundle
B of Σ is abstractable to a bundle of Σ̂ .

In Section 4.4.1 we consider under what conditions we can safely abstract a low-
level bundle. In particular, we define what it means for a bundle to be interference-
free. In order to define this we also give an axillary definition that decides when a

61



penetrator node can be safely abstracted; we term such nodes abstractly constructible
(in the sense that the message on the node can be constructed after abstracting away
from the transport protocol). In Section 4.4.2 we briefly consider how the restrictions
on high-level transport-layer penetrator strands, such as AC, impact the bundles that
we can safely abstract. Lastly, in Section 4.5 we prove our main result and show that
any interference-free bundle is abstractable, in the above sense.

4.4.1 Interference Freedom

When proving that a low-level bundle is abstractable we will need to ensure that
application-layer messages constructed by the penetrator are constructed only from
terms that he can obtain in the high-level model, otherwise the bundle cannot be
abstracted. For example, suppose the penetrator takes a nonce sent by an honest
agent in the key establishment phase of the transport-layer protocol and replays it
within an application-layer message. Clearly, this case has to be disallowed since the
node providing the nonce will not exist in the abstracted bundle.

In order to define interference-freedom we will require the following auxiliary
definition. Informally, a negative low-level node n is abstractly constructible precisely
when msg(n) is constructed only from:

1. Terms in the penetrator’s initial knowledge, obtained from M strands;

2. Terms sent by honest agents on ⊥;

3. Terms sent by honest agents on non-⊥ channels that are unpacked by the
penetrator.

Thus, if a negative node is abstractly constructible it follows that all the nodes that
are required to construct the message will be in the abstracted bundle.

Note that in all subsequent definitions and lemmas we assume, without loss of
generality, that all bundles are normal in order to simplify the definitions and proofs.
In the following an initial penetrator subpath is one that either starts at an initial
penetrator node (i.e. at a M strand), or starts at a regular node.

In order to define abstractly constructible, we firstly need to define what it means
for a penetrator path to contribute to the message of a node n ′. In particular, a
penetrator path that merely provides a key to decrypt a transport-layer message
whose application-layer content is later used in constructing msg(n ′) should not be
considered as contributing to msg(n ′).

Definition 4.25. A penetrator subpath p directly-contributes iff, for every node n
on p that lies on the key edge of a D strand, there exists a destructive penetrator
subpath pd ending at n such that:

1. pd does not traverse a key edge or contain a KG strand; and

2. pd (1 ) ∈ N⊥; or pd (1 ) ∈ Ntrpt and expathc (chan(pd (1 ))) ≤ expath (pd ).

Thus, the above definition identifies penetrator paths that only provide a key
to decrypt a transport-layer message. Using the above, we can now define what it
means for penetrator paths and nodes to be abstractly constructible.

62



Definition 4.26. Let B be a normal low-level bundle. An initial penetrator subpath
p is abstractly constructible iff either:

1. p starts at a M strand; or

2. p starts at a regular node n1 ∈ N⊥; or

3. p starts at a regular node n1 ∈ Ntrpt and there exists a destructive penetrator
path pd ≤ p such that pd app-extracts n1 .

A penetrator node n2 ∈ B is abstractly constructible iff every initial penetrator path
p that ends at n2 and directly-contributes is abstractly constructible. A regular node
n2 ∈ B is abstractly constructible iff n2 ∈ N⊥.

The above definition intuitively states that if a node is abstractly constructible
then every penetrator path that reaches it either starts at an initial penetrator node,
or starts with a message receiving path. In particular, if a node is abstractly con-
structible we should be able to safely abstract it, as it does not depend in any way
on the transport-layer: it depends only on application-layer messages.

As an example, consider Figure 4.6a which uses the running example as a
transport-layer protocol and sends the application-layer message (P?, B?, U , c)
to n13 . In this figure, n9 is abstractly constructible because the only penetrator
path to n9 starts at a M strand. However, n5 is not abstractly constructible since
n1 ∈ Ntrpt and thus the penetrator subpath 〈n1 ,n2 ,n3 ,n5 〉, is not abstractly con-
structible. Intuitively, this is because the penetrator is taking a value U from the
transport-layer packaging, rather than unpacking the message contents.

We prove a simple consequence of the abstractly constructible definition, which
is easier to apply.

Lemma 4.27. Let B be a normal bundle. If a penetrator node n2 ∈ B is abstractly
constructible then either:

1. There exists a destructive penetrator path p ending at n2 and starting at a
regular transport-layer node n1 ∈ Ntrpt such that p app-extracts n1 ; or

2. There exists a regular node n1 ∈ N⊥ such that n1 → n2 ; or

3. n2 is a negative node on a penetrator strand such that there exists an abstractly
constructible node n1 where n1 → n2 ; or

4. n2 is a positive node on a penetrator strand such that every negative node on
the strand is abstractly constructible.

Proof. Let n2 be abstractly constructible and suppose that cases (1) and (2) do not
apply. If n2 is a negative node then, by Definition 4.26, it follows that every directly-
contributing penetrator path pˆ〈n1 〉ˆ〈n2 〉 ending at n2 , is abstractly constructible.
Thus, every directly-contributing penetrator path ending at n1 is also abstractly
constructible and hence n1 is abstractly constructible, meaning that n2 satisfies
clause (3).

Otherwise, n2 is a positive node. Therefore, let n1 ⇒+ n2 be a negative node
on n2 ’s strand, if one exists. Note that since n2 is abstractly constructible every

63



penetrator path of the form pˆ〈n1 〉ˆ〈n2 〉 must be abstractly constructible. Thus,
every penetrator path that ends at n1 must also be abstractly constructible, and
therefore n1 is abstractly constructible. Hence n2 satisfies clause (4).

We now define what it means for a bundle to be interference-free. The intention is
that this property is true precisely when a low-level bundle can be safely abstracted,
in the sense that high-level terms are not constructed from transport-layer terms.
(Note that this definition differs from that given in [KL10] in order to simplify it and
also support regular nodes that send messages over ⊥.)

Definition 4.28. Let B be a normal low-level bundle. A negative regular
application-layer node n2 ∈ Npayload is interference-free iff either:

1. n2 ∈ N⊥ and there exists an abstractly constructible node n1 such that n1 →
n2 ; or

2. n2 ∈ Ntrpt and there exists a penetrator subpath p ending at n2 such that
either:

(a) p is normal, p starts at a regular node n1 ∈ Ntrpt , appmsg(n1 ) =
appmsg(n2 ), chan(n1 ) = chan(n2 ) and p transports the application-layer
message; or

(b) p is constructive and starts at an abstractly constructible node n1 such
that p app-packages n2 .

A bundle B is interference-free iff every negative regular application-layer node is
interference-free.

Thus, a negative regular node n2 is interference-free providing the penetrator has
constructed any messages that are sent to n2 in a way that can be safely abstracted.
In particular, this means that the penetrator must either:

• Hijack, renumber, or simply alter the packaging of an existing message (case
(2a)); or

• Send a message that has been properly constructed (i.e. is generated at an
abstractly constructible node) via a Send or a Fake subpath (case (2b)), or
directly on the ⊥ channel.

The above definition restricts several kinds of attacks. In particular, it disallows pene-
trator paths where the penetrator transforms a transport-layer term from one channel
into one for another channel, without fully decrypting the application layer message
(a multi-channel attack). It also prevents the penetrator from sending transport-
layer terms as application-layer messages (a multi-layer attack — e.g. Figure 4.6a).
Clearly, we have to prohibit both of these cases: otherwise the bundle cannot be
safely abstracted as there would be attacks that depend on the implementation of
the transport-layer protocol. See Figure 4.6 for an example.

Whilst the above definition is a semantic condition, we define a statically-
checkable condition in Chapter 5 that implies interference freedom.

64



n1

stU

n2

S

n3 n5

E

n4 n6 n8

M

n9

C

n12

M

n7 n10

n11 n13

U ˆ{|m1 |}PK(B)

U

P

PK (B)

{|U |}PK(B)

{|m1 |}PK(B)

Pˆ{|U |}PK(B)

(a) n13 is not interference-free as there is no penetrator subpath that satisfies
condition (1) or (2) of Definition 4.28. In particular, the penetrator path that
sends the application-layer message (i.e. 〈n3 ,n5 ,n7 ,n10 ,n11 ,n13 〉) starts at a non-
abstractly constructible node n3 . This is because it is taking a term, U , from a non-
application layer source (that will not be in the high-level bundle) and attempting
to send it as an application-layer message.

n3

M

n5

E

n6 n8

M

n9

C

n12

M

n7 n10

n11 n13

P

U

PK (B)

{|U |}PK(B)

Pˆ{|U |}PK(B)

(b) This bundle is interference-free as n3 is now abstractly con-
structible (as it lies on a M strand).

Figure 4.6: Two bundles that illustrate abstractly constructible and interference-
freedom.

65



4.4.2 Abstract Correctness

The channel properties that were defined in Section 3.1.2, such as AC, require that
certain high-level strands are not contained in the high-level strand space. Therefore,
when abstracting low-level bundles we must take care to ensure that we only abstract
bundles that do not contain any prohibited penetrator behaviours. For example, if
the transport protocol was bilateral TLS then the high-level strand space contains
no high-level LN, FK, HJ or RN strands on the bilateral TLS channel. Therefore, we
can only abstract low-level bundles that contain no Learn, Fake, Hijack, Renumber or
Hijack-Renumber subpaths.

Unfortunately, this is too strong. Recall that a RV strand followed by a SD strand
is actually equivalent to a HJ strand where the recipient of the first message and the
sender of the second message are penetrator identities. Hence, since the penetrator
is always allowed to send and receive messages, it follows that some Hijack subpaths
will be present for even the most secure transport-layer protocols. As a result,
the high-level bundles that we abstract to will contain some prohibited penetrator
strands, but only if they are equivalent to combinations of permitted strands. This
is addressed in Proposition 4.31, but we formalise the type of penetrator subpath
that is problematic as follows.

Definition 4.29. A Hijack or Hijack-Renumber subpath p is an innocuous penetrator
subpath iff recipient(p(1 )) ∈ Ipen and sender(p(|p|)) ∈ Ipen . An innocuous penetra-
tor subpath p is expanded iff it is the concatenation of Receive and Send subpaths.

We now define a property of low-level bundles that is true iff the bundle contains
only penetrator behaviours that are permitted by the channel definitions. Whilst
this could be considered as a property of strand spaces, we define it as a property of
bundles as in Chapter 5 we will have to consider strand spaces in which only some
of the bundles satisfy this property.

Definition 4.30. A channel c ∈ Channels \ {⊥} is abstractly correct in a low-level
bundle B iff every penetrator subpath of c in B either corresponds to a penetrator
strand allowed by definition of c, or is an innocuous subpath. A bundle B is abstractly
correct iff every channel c ∈ Channels \ {⊥} is abstractly correct in B. A strand
space Σ is abstractly correct iff every bundle of Σ is abstractly correct.

Observe that equivalence of bundles does not not necessarily imply that both are
abstractly correct. For example, consider a very simple bundle that contains two
regular transport-layer nodes and a direct message edge between them. Clearly such
a bundle is trivially abstractly correct. However, the transport protocol in question
may be fundamentally insecure, and the bundle may be equivalent to one in which
the penetrator concatenates a Learn subpath and a Fake subpath. This is of no
consequence in this section, but does affect our proofs in Chapter 5.

4.5 Soundness of The Abstraction

In this section we finally prove that any interference-free low-level bundle is ab-
stractable. Note that the resulting high-level bundle will contain TX and HJRN
strands. We deal with this in Proposition 6.22. This proof is based on the proof
given in [KL10].

66



Proposition 4.31. Let B be a normal, abstractly correct, interference-free bundle
such that every innocuous penetrator subpath is expanded. Then B is abstractable
by a high-level bundle B̂.

Proof. Let B be a normal, abstractly-correct, interference-free bundle in Σ such that
every innocuous penetrator subpath is expanded. We construct a high-level bundle
B̂ that abstracts B. Firstly, the regular strands of B̂ are constructed from those of
B according to Definition 4.12.

In order to make B̂ a bundle we need to construct sufficient penetrator strands
such that there are no negative regular nodes with no incoming edges (henceforth
lonely nodes). We follow the approach of Kamil and Lowe and show that for each
negative regular application layer node n2 ∈ Npayload in B there exists a penetrator
path p that ends at n2 and that maps to a high-level penetrator path that ends at
φ̂(n2 ) in B̂.

Consider the negative node n2 . As B is interference-free there are three cases to
consider, following Definition 4.28:

Case (1) n2 ∈ N⊥ and hence, there exists a positive abstractly constructible node
n1 such that n1 → n2 .

Case (2a) n2 ∈ Ntrpt and there exists a normal penetrator path p, starting at
a regular node n1 ∈ Ntrpt and ending at n2 such that chan(n1 ) = chan(n2 )
and p transports the application-layer message. If p is an innocuous penetrator
subpath, it follows by the assumptions of this lemma that p must be expanded,
and therefore, we choose to consider this path in Case (2b) instead. Otherwise,
by Assumption 4.10 it follows that:

• name(sender(msg(n1 ))) = ? iff name(sender(msg(n2 ))) = ?;

• end(sender(msg(n1 ))) = ? iff end(sender(msg(n2 ))) = ?;

• name(recipient(msg(n1 ))) = ? iff name(recipient(msg(n2 ))) = ?;

• end(recipient(msg(n1 ))) = ? iff end(recipient(msg(n2 ))) = ?;

• seqno(msg(n1 )) = iff seqno(msg(n2 )) = .

Therefore, according to Definition 4.19, p must either be a Transmit, Hijack,
Renumber or Hijack-Renumber subpath and hence, by Definition 4.21, it can be
mapped to a TX, HJ, RN or HJRN strand that ends at φ̂(n2 ).

Case (2b) There exists a constructive penetrator subpath p, starting at a
positive abstractly constructible node n1 , and ending at n2 , such that
p app-packages n2 . Hence, this subpath fits the definition of a Send or Fake
subpath (noting that recipient(msg(n2 )) ∈ Ireg as n2 is a negative regular
node) and thus gets mapped to a SD or FK strand that ends at φ̂(n2 ).

We now show that the positive abstractly constructible node n1 from cases (1)
and (2b) above maps to a non-lonely node. If n1 is regular then by Definition 4.26
it follows that n1 ∈ N⊥ and hence gets mapped to φ̂(n1 ) in B̂. Otherwise, n1 is a
penetrator node and thus there are the following cases of Lemma 4.27 to consider.

67



Case (1) There exists a destructive penetrator path pd ending at n1 and starting
at a regular application-layer node n0 ∈ Ntrpt such that pd app-extracts n0 .
Therefore, as sender(msg(n0 )) ∈ Ireg (since n1 is regular), pd fits the definition
of a Learn or Receive subpath and thus can be mapped to either a LN or RV
strand that ends at φ̂(n1 ).

Case (2) There exists a regular node n0 ∈ N⊥ such that n0 → n1 . Hence, in the
high-level bundle this is simply mapped to a transmission edge from φ̂(n0 ) to
φ̂(n1 ).

Case (3) This case cannot apply as n1 is positive.

Case (4) n1 is a positive node on a penetrator strand st such that every negative
node on the strand is abstractly constructible. Therefore, according to Def-
inition 4.13, this penetrator strand will be mapped to one of the same type.
Clearly, we now must ensure that the negative nodes on st (if any) are not
lonely. This can be proven by inductively applying the argument of this and
the previous paragraph to each negative node on this strand.

Hence, it follows that there are no regular or penetrator lonely nodes and there-
fore, B̂ satisfies the bundle conditions. Further, since B is abstractly correct it follows
that if B̂ contains a penetrator strand p that is prohibited by the channel definitions,
then p must be the abstraction of an innocuous penetrator subpath. However, since
all innocuous penetrator subpaths are expanded, we have not abstracted any such
penetrator subpaths. Hence, B̂ does not violate any channel conditions. Lastly, note
that Assumption 3.5, Assumption 3.3 and Equation 3.1 hold by Assumption 4.10
and the definition of α̂. Thus, B is abstractable.

4.6 Summary

In this chapter we have proven the soundness of the high-level strand spaces model
presented in Section 3.1. In particular, we have shown that every bundle that satisfies
our independence assumption, defined in Definition 4.28, can be abstracted to a high-
level bundle.

In order to prove this result we firstly defined a mapping α̂ that converts low-level
transport terms into the corresponding high-level terms. Using this we then defined
a function φ̂ that relates the low-level regular nodes of a bundle to the corresponding
high-level regular nodes. Further, φ̂ abstracts away from the details of how the
transport-layer is implemented by not including, for instance, handshake nodes. We
then defined two further maps, β̂1 and β̂2 , that relate the low-level penetrator nodes
to high-level penetrator nodes. These three maps are all combined into a single map,
ψ̂, that maps the nodes of a low-level bundle to the corresponding nodes of a high-
level bundle. Using this we define what it means for a high-level bundle to abstract
a low-level bundle.

We then defined our main semantic condition. In order to do this we firstly de-
fined what it means for a node to be abstractly constructible, which is true whenever
a node’s message is built from only application-layer values. Intuitively, this means

68



that the node can be safely abstracted. Using this, we then defined our main se-
mantic assumption, interference freedom, before proving that whenever a bundle is
interference free, it is abstractable.

As noted in the introduction, the work in this chapter is based on that in [KL10,
Kam10]. In particular, Section 4.2 and Section 4.3 are substantially based on [KL10,
Kam10], whilst the remaining sections have been entirely reworked. Compared to
the work of Kamil and Lowe, the proof in this chapter adds support for our expanded
model, which includes both RN strands and support for unilaterally authenticating
secure transport protocols. It also adds support for application-layer protocols that
send some messages over ⊥. Further, the independence assumption (i.e. as presented
in Section 4.4.1) has been entirely reformulated in order to increase its applicability,
and to clarify a number of hidden assumptions. We have also modified the way
the transport-layer protocols are defined in the low-level strand spaces model. In
particular, we have defined what extraction paths are, and have redefined many of
the properties in terms of extraction paths. This has made a number of the definition
more precise. Lastly, we have made explicit a number of hidden assumptions. Most
notably, we have made explicitly clear, via the definition of abstract correctness,
what it means for a low-level transport-layer protocol to be correct.

We discuss related work at the end of Chapter 7, in Section 7.4.

69



Chapter 5

Disjoint Encryption

In the previous chapter we proved that any interference-free bundle can be safely
abstracted. One problem with the definition of interference freedom is that it is
semantic and therefore it is difficult to prove that all bundles modelling the protocol
satisfy it. What would be preferable is a statically-checkable condition, based on
the transport and application-layer messages, that could decide if a given bundle
is interference-free. In this chapter we address this problem by introducing a new
statically-checkable condition based on disjoint encryption [GT00]. We then prove
that if a strand space satisfies our condition, then any bundle of the strand space
can be transformed to an equivalent bundle that is interference-free.

One of the main challenges that we have to address is the presence of paths in
the low-level bundle that transform some value that is part of the transport-layer
packaging or handshake (say a nonce, or a name) and send it as part of an application-
layer message. We term such penetrator paths crossing-paths. These paths prevent
us from safely abstracting such bundles as the paths are not abstractly constructible.
However, under the assumptions that we define in this chapter, it turns out that any
crossing-paths that do exist are actually superfluous, in that an equivalent bundle
exists that contains no crossing-path.

The outline of the proof in this chapter is as follows. Firstly, we assume that
the low-level strand space satisfies a number of (statically checkable) assumptions
relating to various disjointness conditions. Then, we detail the construction of a
new strand space that is related to the previous strand space, but in which the
penetrator has been given a larger set of initial knowledge (this set will not contain
any values of relevance to the application layer). Intuitively, this is required because
the penetrator may, for instance, transfer transport-layer nonces into the application-
layer. Therefore, as we cannot model such a transfer in the high-level bundle, we
instead assume that the penetrator knows such values initially. We then prove that
any bundle in this new strand space can be transformed to an equivalent bundle
that contains no crossing-paths. Then, we prove the main result and show how to
transform a crossing-path-free bundle into an equivalent one that is interference-free,
which we do as a number of separate, but composeable, bundle transformations. This
allows us to prove the high-level strand spaces model is sound, since any bundle that
contains an attack is equivalent to an abstractable bundle that will also contain the
attack. We formalise and prove this in Chapter 6.

We begin in Section 5.1 by defining a few preliminaries; in particular we define

70



several sets of encryptions (for the disjointness condition) and a type of penetrator
path that are used by the penetrator to send application-layer messages. We also in-
troduce a new, stronger, form of bundle equivalence that preserves the satisfaction of
application-layer correctness properties. Then, in Section 5.2 we define nine different
assumptions that are required to prove our main result. In Section 5.3 we consider
crossing-paths and show how we can remove them. This requires the proof of several
technical results. In Section 5.4 we prove the main result of this chapter and prove
that any low-level bundle can be transformed into an abstractable low-level bundle
in such a way that it preserves any attacks.

5.1 Preliminaries

In this section we briefly outline a few extra definitions and results that will be
needed in the following subsections. In Section 5.1.1 we further split up the set of
terms that occur in transport-layer messages. This then allows us to define various
sets of encryptions that occur in particular contexts, which we use when defining
our main assumptions. In Section 5.1.2 we define a new type of penetrator path, a
penetrator message-construction path that helps to identify which penetrator nodes
are manipulating application-layer messages. We then show in Section 5.1.3 that
bundle equivalence does not necessarily preserve the correctness of application-layer
correctness properties, and introduce a stronger type of bundle equivalence that does
preserve such correctness properties.

5.1.1 Encryption Sets

In the following sections we will need to know several sets of terms.

Definition 5.1. The set of application-layer messages sent over the unprotected
channel, ⊥, is defined by T ⊥app =̂ {msg(n) | n ∈ N⊥}.

The following sets of terms are defined for each channel c ∈ Channels \ {⊥}.

• The set of application-layer terms, T c
app ⊆ A defined as:

T capp =̂ {extract(t, expathc (c)) | t ∈ T cpayload}.

• The (subterm closed) set of transport-layer non-message terms, T c
non-msg , that

contains all non-application layer terms that appear in transport terms, is
defined as:

T c
non-msg =̂ {extract(t , es) | t ∈ T c

payload ∧ es ∈ EP
∧ expathc (c) 6≤ es ∧ es 6≤ expathc (c)}

∪ {s | t ∈ T c
non-payload ∧ s v t}.

The second line of the definition of T c
non-msg extracts all subterms of a transport-

layer message that do not contain the application-layer message (i.e. es 6≤
expathc (c)), or occur within the application-layer message (i.e. expathc (c) 6≤
es).

71



• The set of application-layer ingredients, Aapp , is defined by1:

Aapp =̂ X ∪ {k , k−1 | k ∈ X ∩ K}
where X =̂ {t ′ | t ∈ T c

app , c ∈ Channels, t ′ ingredient t}.

Recalling the running example used in Section 4.1, in the case of Figure 4.2,
T c

app = {appmsg2}, T c
non-msg = {A,B , {|k |}PK (B), k}, T ⊥app = {appmsg1} and Aapp =

{appmsg1 , appmsg2}, assuming appmsg1 and appmsg2 are atomic.
A central part of our disjointness condition will be that certain encryptions cannot

be shared amongst different layers. In order to define such a condition we define
several sets of encryptions, as follows.

Definition 5.2. The set of all encryptions, denoted by E , is defined as:
{{|m|}k | {|m|}k ∈ A}. The set of application-layer encryptions for ⊥, denoted E⊥app ,
is defined as E ∩ {s | t ∈ T ⊥app , s v t}.

The following are all defined for each channel c ∈ Channels \ {⊥}.

• The set of application-layer encryptions, denoted by Ec
app , of all encryptions

that appear in an application-layer message:

{e | t ∈ T capp, e v t, e ∈ E}.

• The set of transport-layer message encryptions, denoted by Ec
trpt , of all encryp-

tions that enclose an application-layer message:

{e | t ∈ T cpayload, e ∈ E , es ∈ EP, es ≤ expathc (c) , e ves t}.

• The set of transport-layer non-message encryptions for a channel c, denoted
Ec

trpt-non-msg :
T cnon-msg ∩ E .

The unions of Ec
trpt and Ec

trpt-non-msg over Channels \{⊥} are written as Etrpt and
Etrpt-non-msg respectively. The closure of Ec

app over Channels is written as Eapp .

We now state a simple result that shows that the above encryption sets are total,
in that every encryption that occurs on a node is contained within one of the above
sets.

Lemma 5.3. Let B be a bundle and n a regular node in B. Then every encryption
{|m|}k v msg(n) is a member of at least one of Eapp , Etrpt and Etrpt-non-msg .

Proof. Recall Assumption 4.4 states that regular nodes are partitioned between N⊥,
Ntrpt and Nnon-payload . The result then immediately follows from Assumption 4.5
and the definitions of Eapp , Etrpt and Etrpt-non-msg .

1 In the definition of Aapp , note it is important that complex keys are symmetric. If this was
not the case then Aapp would erroneously not include the ingredients required to produce inverse
keys. This definition could be adapted if non-symmetric complex keys were desired.

72



5.1.2 Message Sending

In the following sections we will need to identify which penetrator nodes are manipu-
lating application-layer messages. We term such nodes application-layer penetrator
nodes. Unfortunately, it is difficult to tell, for instance, if a D or an E strand is
manipulating a transport-layer encryption, or an application-layer encryption. We
first consider how to identify the nodes that construct application-layer messages.
In particular, we will to identify all penetrator paths that manipulate terms that
are eventually incorporated into application-layer messages. The following definition
identifies when a constructive penetrator path constructs a message and then sends
it over a transport channel. For ease we consider only normal bundles.

Note that the following definition is related to Proposition 4.31, as in the proof
of this proposition we identified nodes that were manipulating application-layer mes-
sages. However, Proposition 4.31 assumed that the bundle was interference-free, so
here we require a different method of identifying such nodes.

Definition 5.4. Let B be a normal low-level bundle. A penetrator path p that starts
at a positive regular node n1 and ends at a negative regular node n2 ∈ Npayload is a
penetrator message-construction path iff either:

1. n2 ∈ N⊥ and p is directly contributing; or

2. n2 ∈ Ntrpt , p = pnˆps such that pn is directly contributing and
expathc (chan(n2 )) = expath∼ (ps).

We can visualise the latter type of penetrator message-construction path as fol-
lows:

n2

ns

n1
pn

ps

Application

Transport

where ps sends the application-layer message of ns using a Send or Fake subpath,
whilst p constructs the application-layer message, and p = pnˆps . Diagrams in this
section will be drawn with: penetrator paths drawn as wiggly lines, constructive
penetrator paths sloping up, destructive penetrator paths sloping down and a delin-
eation between nodes that are dealing with application-layer content, and those that
are dealing with transport-layer content (if such a line can be drawn).

5.1.3 Bundle Correctness Properties

In Chapter 6 we will prove that the high-level strand spaces model is sound, by
showing that whenever a low-level bundle does not satisfy a correctness property, a
high-level bundle that also does not satisfy the property exists. We will prove this
by showing that we can transform (via a number of bundle transformations that we
develop in this section) the low-level bundle to a related low-level bundle that is
abstractable, but also does not satisfy the correctness property. Then, we prove that
if a low-level bundle is abstractable and does not satisfy the correctness property,
then its abstraction also does not. Clearly, in order for the above proof to work we

73



n1

st1

n3

st2

n2

t

t

(a) Bundle 1

n1

st1

n3

st2

n2

t

t

(b) Bundle 2

Figure 5.1: A bundle illustrating the problem with bundle equivalence.

need the bundle transformations that we develop to preserve the incorrectness of the
correctness property. Unfortunately, the standard definition of bundle equivalence is
not strong enough to do this.

For example, consider trying to specify that a certain node causally precedes, i.e.
using �, another node. Since bundle equivalence only requires the regular behaviour
to be the same, this relation is not necessarily preserved by bundle equivalence.
For example, Figure 5.1 gives two bundles that are equivalent, but such that the
� relation is different. Further, the transformations we define will change the �
relation: they will remove some penetrator paths that cannot be safely abstracted.
Thankfully, in our correctness properties we will only want to write � as a conclusion
of an implication, and therefore it will only occur positively. Thus, if suffices to
ensure that the transformed � relation relates fewer nodes. This will ensure that
if the original bundle did not satisfy the correctness property, then the transformed
bundle also will not, as required.

We therefore introduce a relation on bundles D that holds when the bundles are
equivalent and the resulting � relation is a restriction of the original relation. We
then ensure that all of the transformations in this section output bundles that are
related to the original bundle using D.

Definition 5.5. A low-level bundle B can be reduced to B′, denoted B D B′, iff B
and B′ are equivalent and �B′ relates no more regular nodes than �B, i.e:(

N reg
B ×N reg

B
)
∩ �B ⊇

(
N reg
B′ ×N

reg
B′
)
∩ �B′ .

We now prove that any bundle can be reduced to a normal bundle, analogously
to Lemma 2.17. This lemma is used instead of Lemma 2.17 throughout the following
sections to ensure all bundles satisfy the same correctness properties.

Lemma 5.6. Let B be a low-level bundle. Then there exists a normal bundle B′
such that B D B′.

Proof. The proof of Lemma 2.17 in [GT02] proceeds by removing redundancies, as
illustrated in Figure 2.2b, to create an equivalent bundle B′. This transformation
ensures that if n1 �B′ n2 then n1 �B n2 , as it does not add paths between regular
nodes; it merely removes them. Therefore, B D B′.

5.2 Formulating the Assumption

In this section we consider what statically-checkable assumptions are necessary in
order to prove our main result of this chapter, i.e. that every bundle can be made

74



interference-free. In particular, we consider what behaviours we need to prohibit
in order to safely abstract the bundles of a given strand space. We intersperse the
definition of our assumptions with the reasons for their necessity.

The first condition requires that different transport protocols do not share any
encryptions that enclose application-layer messages. This ensures that a message
for one transport protocol cannot be partially deconstructed and then altered to
appear as a message for another transport protocol. In particular, this ensures that
any penetrator path starting at a regular transport-layer node on a channel c1 and
ending at a regular transport-layer node on a channel c2 must traverse a node n
such that the application-layer message is unencrypted on n. This is necessary as HJ
strands do not allow the channel to be changed, meaning that there is no high-level
strand that could represent the the opposite of the above behaviour.

Definition 5.7. Two transport-layer channels c1 , c2 ∈ Channels \ {⊥} satisfy dis-
joint message encryption iff Ec1

trpt ∩ E
c2
trpt = ∅. A set of channels C ⊆ Channels \ {⊥}

satisfies disjoint message encryption iff each distinct pair of channels from C satisfies
disjoint message encryption.

Using the above definition we can easily state our first assumption.

1. Channels \ {⊥} satisfies disjoint message encryption.

The next few conditions impose further disjointness conditions on various types of
encryptions. Recall that the set of all encryptions is given by Eapp∪Etrpt∪Etrpt-non-msg

(cf. Definition 5.1); the next few conditions concern the overlaps that are allowed
between these sets. In particular, our second condition ensures that the penetrator
cannot send transport-layer messages as application-layer messages. The third con-
dition requires that the penetrator cannot send encryptions that contain application-
layer payloads in the transport-layer packaging or as part of the handshake. Clearly
if a bundle were to exist that exhibited either of these behaviours, then it would not
be possible to make the bundle interference-free as there is no high-level strand to
represent such behaviour.

2. No application-layer encryption can also be used as a transport-layer encryp-
tion, i.e. Eapp ∩ Etrpt = ∅.

3. No non-message transport encryption is also a transport-layer encryption, i.e.
Etrpt ∩ Etrpt-non-msg = ∅.

Note that we do not require that Eapp ∩ Etrpt-non-msg = ∅ as there may be values,
such as public-key certificates, that can be shared safely between the layers. Instead
we require that, for each encryption in Eapp ∩ Etrpt-non-msg , the inverse key must be
public.

4. If a term {|m|}k is an application-layer encryption and a non-message transport
encryption then k−1 must be public, i.e. ∀{|m|}k ∈ Eapp ∩ Etrpt-non-msg · k−1 ∈
AP .

To see why a condition like this is necessary consider the bundle in Figure 5.2,
where {|t |}k ∈ Eapp ∩ Etrpt-non-msg . In this figure, nodes within dotted boxes are

75



n1

st1

n2

st2

n4

C

n6

M

. . . n3 n5

. . . n7 n8

st3

. . .

{|t |}k

t

Aˆt

A

Figure 5.2: A bundle that does not satisfy Assumption 5.9 (4).

application-layer nodes whilst nodes within dashed boxes are handshake nodes (i.e.
transport non-message nodes). Observe that the bundle is not interference-free as
n5 is not abstractly constructible (as the penetrator obtains t from a handshake
node). However, under the above assumption we can easily transform the bundle
to add a path between n1 and n5 via a D strand, with the key coming from a M
strand (as k−1 ∈ AP). This condition will be required in the following section when
crossing-paths are considered.

The alternatives to this are not clear. Whatever transformation we make has to
ensure the path between n1 and n5 is independent of the transport-layer. Further, it
may well be the case that the only paths that can decrypt terms of the form {|m|}k
are in the transport-layer. Therefore, it would appear that in order to remove such
paths we need such inverse keys to be public.

The fifth condition ensures that the penetrator cannot possess any transport-layer
encryptions in his initial knowledge. This is required as it prevents the penetrator
from creating transport-layer messages for which he does not know the application-
layer message: clearly there is no high-level strand that permits this.

5. No transport-layer encryptions are initially deducible by the penetrator, i.e.
A∗P ∩ Etrpt = ∅.

The sixth condition ensures that the penetrator cannot possess non-public
application-layer terms surrounded by non-application-layer encryptions. If the pen-
etrator initially knew a non-public term that contained an application-layer term
surrounded by some transport-layer encryptions, then there could exist a penetrator
path on which he extracts the application-layer term by decrypting using transport-
layer keys. However, such a path would not be valid in the high-level bundle and
thus we cannot safely abstract the bundle.

6. Non-public application-layer terms must only appear in the penetrator’s initial
knowledge surrounded by application-layer encryptions, i.e. if t ∈ Aapp \ AP ,
then for all s ∈ AP , if es is an extraction path such that t ves s then for each
es ′ < es such that {|m|}k ves′ s, {|m|}k ∈ Eapp .

The seventh condition disallows bundles in which an application-layer secret (e.g.
a key) originates at both the application-layer and the transport-layer. Such occur-
rences are likely to be coincidences (and are certainly indicative of poor design) and

76



may result in the bundle being unable to be abstracted. For instance, suppose a
node n originates a value t at both the application-layer and the transport-layer.
Further, assume that the application-layer value is unavailable to the penetrator (as
it is sent over a confidential channel, or similar) but that the transport-layer value
can be obtained by the penetrator. Therefore, the low-level bundle may contain a
penetrator path from n to another application-layer node along which the penetra-
tor uses t . However, such a path is not abstractable since it requires a particular
configuration of the transport-layer protocol.

7. Atomic or encrypted application-layer values originate only at the application-
layer. That is, if a non-public application-layer term t ∈ Aapp\AP originates at
a regular node n and t is an atom or an encryption, then either n ∈ N⊥, or n ∈
Ntrpt and for every extraction path es such that t ves msg(n), expathc (c) ≤ es
(i.e. t originates only at the application-layer at n).

The eighth condition disallows bundles in which a transport-layer encryption is
also an application-layer ingredient (cf. Definition 2.1). Clearly any such bundle
is not abstractable, since the transport-layer encryptions are not available in the
abstracted bundle, and thus the key cannot be generated.

8. No transport-layer encryption can be an application-layer ingredient. That is,
Aapp ∩ Etrpt = ∅.

Note that the above condition actually subsumes the first part of Assump-
tion 5.9 (2); we keep these as separate conditions for clarity.

Lastly, we require that the strand space is abstractly correct. This is required
as without this condition we are unable to abstract any bundles as there would be
transport-layer behaviours that have no accompanying representation in the high-
level bundles. In particular, recall that Proposition 4.31 required a bundle to be
abstractly correct in order for it to be abstractable.

9. Σ is abstractly correct.

Definition 5.8. A strand space Σ satisfies layered-disjoint encryption iff it satisfies
conditions (1)–(9) above.

Assumption 5.9. Σ satisfies layer-disjoint encryption.

Unfortunately, TLS [DR08] does not satisfy the above condition. This is discussed
further in Chapter 7.

We now briefly outline how these properties can be checked using static analysis.
Assumption 5.9 (1)–(4) and (8) all require various sets of encryptions to be disjoint.
The most obvious approach to verify this would be to firstly prove that the sets are
disjoint for a single protocol (e.g. for each c, Ec

app ∩Ec
trpt = ∅), and then that sets for

different protocols are disjoint. The latter can be proven correct by using a standard
protocol composition result, such as [GT00, DDMR07, CD08, ACG+08, CC10]. The
former could be addressed by considering a symbolic definition of the application
and transport-layer protocols and considering where encryption keys can be used.
For many protocols, including TLS, this should be largely straightforward (since, for

77



example, TLS encryption keys are not obtainable by the application layer), although
it would almost certainly require additional assumptions regarding the secure storage
of keys.

Assumption 5.9 (7) could be easily verified given a symbolic definition of the reg-
ular agents that included details of where terms originate (i.e. which terms are fresh).
Assumption 5.9 (5) and Assumption 5.9 (6) are assumptions on the penetrator’s ini-
tial knowledge and thus could be verified by considering a symbolic definition of AP .
Lastly, Assumption 5.9 (9) can be verified by, firstly, proving that the transport-layer
protocols are abstractly correct in isolation, via a standard technique (e.g. ProVerif
[Bla01], Scyther [Cre08a] etc.). Then, the composition of the protocols can be proven
to be abstractly correct by applying one of the standard protocol composition results,
as per above.

5.3 Crossing-Paths

As discussed in the introduction, there is nothing to prevent the penetrator from tak-
ing terms from a transport-layer message and then moving them into the application
layer. We term such penetrator paths crossing-paths and the corresponding terms
crossing terms. Clearly, we cannot safely abstract such bundles as the transport-
layer sections of such penetrator paths will not appear in the high-level bundle and
therefore there is nowhere to obtain the crossing term from.

Note that we do not mind if the penetrator moves values from the application
layer to the transport layer (which could also be considered as a crossing path). This
is because such crossovers do not affect our ability to abstract the bundle as they
affect transport-layer behaviour, rather than application-layer behaviour. Further,
as we assume that the bundle is abstractly correct, we are already assuming that the
application-layer protocol does nothing to break the transport-layer protocol.

In this section we prove (Lemma 5.24) that we are able to remove crossing-paths
from a bundle B and produce a bundle B′, of a related strand space, such that
B D B′. This proof will be used in later sections in order to help make bundles
interference-free. We begin by formally defining what a crossing-path is.

Definition 5.10. Let B be a normal low-level bundle and p be a penetrator message-
construction subpath that starts at a positive regular node n1 and finishes at a
negative regular node n2 ∈ Npayload . Let pd be the longest destructive prefix of p
that does not traverse a key-edge. p is a crossing-path iff either:

1. n1 ∈ Ntrpt and, letting c = chan(n1 ), expath (pd ) 6≤ expathc (c), and
expathc (c) 6≤ expath (pd ); or

2. n1 ∈ Nnon-payload .

A bundle B is crossing-path-free iff it contains no crossing paths. The crossing point
is defined as the last node on pd and the crossing term is defined as msg(n) where
n is the crossing point.

The first clause in the above captures the case where the penetrator takes a
term that originated within a transport-layer message, but not from within the
application-layer content or enclosing the application-layer content, and then uses

78



it in constructing the application-layer content of another message. The second
clause captures the case where the penetrator takes a term obtained from a hand-
shake node and uses it to construct the application-layer content of another message.
Both of these take terms from a non-application-layer source and move it into the
application layer, and are therefore crossing-paths.

In order to abstract our bundles we need to remove any crossing-paths, as such
paths will not be abstractly constructible. Our basic approach is to replace the
crossing edge with a M strand that simply originates the required term; the resulting
bundle would clearly have no crossing-paths and therefore could be safely abstracted.
A difficulty with this approach is that the unique origination assumptions that held
on the original low-level bundle would no longer hold in the transformed bundle. This
means that if a low-level bundle does not satisfy a given property, then the high-level
bundle may satisfy it (as the high-level bundle may not satisfy the unique origination
assumptions and thus the property holds vacuously). Therefore, we remove crossing-
paths, taking care not to break any unique origination assumptions.

In this section we firstly, in Section 5.3.1, prove several small lemmas that follow
almost immediately from the assumptions of the previous section. Then, in Sec-
tion 5.3.2, we define a new, related, strand space in which the penetrator’s initial
knowledge has been updated to include various crossing terms that are not relevant
to the application-layer. This is done in order to remove several types of crossing-
paths. By enlarging the set of terms that the penetrator initially knows we could
be allowing him to develop more attacks that would not have been possible initially.
Therefore, in Section 5.3.3 we define a class of abstract correctness preserving bun-
dle transformations that ensure false attacks against the transport-layer protocol are
not introduced. We also show that the types of transformations that we perform are
abstract correctness preserving. Lastly, in Section 5.3.4 we consider how to actually
remove crossing-paths.

5.3.1 Preliminaries

We now prove that if a regular node has a transport-layer encryption as a subterm
of its message, then it must be a transport-layer node. Further, we show that the
encryption must be a transport-layer encryption of the channel of the transport-layer
node.

Lemma 5.11. If n is a regular node such that for some e ∈ Etrpt , e v msg(n) then
n ∈ Ntrpt and e ∈ Echan(n)

trpt .

Proof. Let n and e be as stated. If n ∈ Nnon-payload then it immediately follows that
e ∈ Etrpt-non-msg which violates Assumption 5.9 (3). Similarly, if n ∈ N⊥ then, as
msg(n) ∈ Tapp , e ∈ Eapp which violates Assumption 5.9 (2). Hence, as the regular
nodes are partitioned, n ∈ Ntrpt .

Let es be an extraction path such that e ves msg(n). If expathc (chan(n)) < es
then it follows that e ∈ Eapp , violating Assumption 5.9 (2). Thus expathc (chan(n)) 6<
es. Alternatively, if es 6< expathc (chan(n)) then it follows that e ∈ Etrpt-non-msg

(by Definition 5.1 and Definition 5.2), violating Assumption 5.9 (3). Therefore,
es < expathc (chan(n)) and hence, by definition of Etrpt , e ∈ Echan(n)

trpt .

79



Next we show that whenever there is a path between two regular transport-
layer nodes such that the same transport-layer encryption is a subterm of all the
messages on the path, then neither the channel nor application-layer message can be
altered. This follows from the fact that distinct channels use distinct transport-layer
encryptions (i.e. Assumption 5.9 (1)).

Lemma 5.12. Let n1 ,n2 ∈ Ntrpt . If there exists e ∈ Etrpt and a penetrator path
p from n1 to n2 such that for every node n on p, e v n, then appmsg(n1 ) =
appmsg(n2 ) and chan(n1 ) = chan(n2 ).

Proof. Let n1 ,n2 , e and p be as stated in the lemma. As e ∈ Etrpt it follows, by
Lemma 5.11, that e ∈ Echan(n1 )

trpt and e ∈ Echan(n2 )
trpt . Therefore, by Assumption 5.9 (1)

chan(n1 ) = chan(n2 ).
By the definition of Etrpt it follows that there exists extraction paths es1 and es2

such that es1 < expathc (c), es2 < expathc (c) and:

e ves1 msg(n1) and e ves2 msg(n2).

If es1 = es2 then it immediately follows that appmsg(n1 ) = appmsg(n2 ), as required.
If es1 < es2 (the other case is symmetric to this) then define xs1 6= xs2 such that:

es1ˆ〈Decrypt〉ˆxs1 = expathc (c) = es2ˆ〈Decrypt〉ˆxs2. (5.1)

Suppose, for a contradiction, that Decrypt in xs1 , and let ys be the longest extraction
path such that ysˆ〈Decrypt〉 ≤ xs1 . Thus, as es1 ˆ〈Decrypt〉ˆys < expathc (c), by
definition of Etrpt :

extract(msg(n), es1ˆ〈Decrypt〉ˆys) = extract(e, 〈Decrypt〉ˆys) ∈ Etrpt. (5.2)

Let i be the (1-based) index of the last Decrypt on expathc (c) and note that,
by definition of ys, i = |es1 ˆ〈Decrypt〉ˆysˆ〈Decrypt〉|. However, as es1 < es2 ,
it follows that there exists an index i ′ > i at which the final Decrypt appears in
es2 ˆ〈Decrypt〉ˆysˆ〈Decrypt〉. Thus, es2 ˆ〈Decrypt〉ˆysˆ〈Decrypt〉 6≤ expathc (c). Fur-
ther:

• If expathc (c) < es2 ˆ〈Decrypt〉ˆysˆ〈Decrypt〉 then extract(e, 〈Decrypt〉ˆys)
∈ Eapp . Hence, by Equation 5.2, extract(msg(n2 ), es2 ˆ〈Decrypt〉ˆys) =
extract(e, 〈Decrypt〉ˆys) ∈ Etrpt ∩ Eapp , contradicting Assumption 5.9 (2).

• If expathc (c) 6≤ es2 ˆ〈Decrypt〉ˆysˆ〈Decrypt〉 then:

extract(msg(n2 ), es2 ˆ〈Decrypt〉ˆys)

= extract(e, 〈Decrypt〉ˆys) ∈ Etrpt-non-msg .

Hence, by Equation 5.2, extract(e, 〈Decrypt〉ˆys) ∈ Etrpt ∩Etrpt-non-msg , contra-
dicting Assumption 5.9 (3).

Hence, as we derive a contradiction in both of the above cases, Decrypt does not
appear in xs1 . Further, as by Equation 5.1 xs2 is a suffix of xs1 , it follows that
Decrypt does not appear in xs2 . Thus, both xs1 and xs2 must be equal to the longest
Decrypt-free suffix of expathc (c) and hence xs1 = xs2 . Moreover, es1 = es2 and
therefore appmsg(n1 ) = appmsg(n2 ), as required.

80



5.3.2 Enlarging the Strand Space

When removing crossing-paths from a bundle we may need to add extra values to
the penetrator’s initial knowledge. For instance, consider a bundle containing a
crossing-path where the penetrator takes a handshake nonce and then uses it in an
application-layer message. This bundle will be transformed to an equivalent bundle
in which the crossing-path has been replaced by a M strand.

The reason why we allow the above transformation is that the penetrator was
taking a value that originated only at the transport-layer, and was moving it into
the application layer. From the application-layer’s point of view, this behaviour is
indistinguishable from the penetrator simply originating the value on a M strand.

We now consider how to enlarge the set of public terms in such a way as to allow
transformations like those discussed above. We do this by defining a new strand
space, based on the existing strand space, that differs only in the penetrator’s initial
knowledge (cf. Definition 2.10). Further, we restrict the penetrator’s behaviour so
that the transport-layer behaviour is identical (but the application-layer behaviour
is enlarged, as discussed above). Clearly, such a transformation has the potential to
introduce false attacks against the application-layer protocol by giving the penetrator
encryption keys that he could not otherwise obtain. However, we avoid doing this
by only adding values that are not in Aapp (Definition 5.1) which contains all terms
of interest to the application-layer.

This still has some repercussions on the application-layer proof. In general, in
order to prove the required application-layer result we will need an assumption on the
terms in AP (e.g. Assumption 3.21). Since we add terms to AP , the application-layer
correctness proof is only allowed to assume that certain terms are not in AP , rather
than specifying exactly what is allowed (i.e. it can only assume that AP ∩ X = ∅,
not that AP ⊆ X ). Further, the assumption may only consider terms in Aapp (i.e.
X ⊆ Aapp), as terms that are not in Aapp may be added to the penetrator’s initial
knowledge by the transformation. In practice this is not a restriction, since terms
that are not in Aapp cannot possibly affect the security of the application layer. Note
that the WebAuth assumptions in Assumption 3.21 are formulated in such a way.

In order to define this transformation we firstly define a set that contains all
terms that may appear at crossing points and may need transforming as above.

Definition 5.13. The set of transport extractable components, denoted TX is defined
as the set of all terms that are not in Aapp , but are in the following set:

{extract(t , es) | t ∈ Tpayload , es ∈ EP, expathc (chan(t)) 6≤ es,

es 6≤ expathc (chan(t))}
∪ {s | t ∈ Tnon-payload , s v t}

Recall that Tpayload gives the set of all terms that carry an application-layer
payload. Thus, the first clause in the above definition extracts all the transport-layer
packaging of a payload carrying-message, whilst the second clause gives all the terms
that the penetrator could possibly extract from other transport-layer messages. The
following lemma proves that this set is sufficiently large for our purposes by proving
that any crossing term that is not in Aapp must be in TX .

Lemma 5.14. Let B be a normal low-level bundle. If p is a crossing-path starting
at a node n1 , t the crossing term on p and t /∈ Aapp , then t ∈ TX .

81



Proof. Let B, p, t be as per the lemma. Further, let n1 be the first node of p, nc be
the crossing point (i.e. t = msg(nc) is the crossing term), and pd be the destructive
path starting at n1 and ending at nc . By the definition of a crossing-path it follows
that either n1 ∈ Ntrpt or n1 ∈ Nnon-payload . In the latter case it immediately
follows that t v msg(n1 ) ∈ Tnon-payload (as pd is destructive) and hence that t ∈ TX .
Otherwise, n1 ∈ Ntrpt and thus, by Definition 5.10, expath (pd ) 6≤ expathc (chan(n1 ))
and expathc (chan(n1 )) 6≤ expath (pd ). Therefore, as msg(n1 ) ∈ Tpayload , t ∈ TX .

Using the above it is now possible to define the enlarged strand space. Clearly, if
we were to allow the penetrator to use the terms from TX arbitrarily in the enlarged
strand space, then there would exist bundles in which the penetrator could break
otherwise secure transport protocols (for example, if TX contained transport-layer
keys that should be secret).

Definition 5.15. Let Σ be an abstractly correct low-level strand space. The enlarged
strand space of Σ , denoted ΣE is defined to be as Σ but with the set of public terms
enlarged to be:

AΣE
P = AΣ

P ∪ TX .

In order to prove anything useful in the above strand space we will need As-
sumption 5.9 to hold. Most of the assumptions hold trivially in ΣE as the regular
behaviour of agents has not changed. However, note that not all bundles in ΣE will
necessarily be abstractly correct as the penetrator may now know values that could
be used to compromise transport-layer protocols. However, in the following we can
restrict our attention to the subset of bundles that are abstractly correct.

Lemma 5.16. If Σ is a low-level strand space satisfying layer-disjoint encryp-
tion then ΣE also satisfies layer-disjoint encryption, with the exception of Defini-
tion 5.8 (9).

Proof. Let Σ and ΣE be as per the lemma. From the definition of layer-disjoint
encryption it is clear that Definition 5.8 (1), (2), (3), (4) and (8) trivially hold in
ΣE . Further, it can be seen from the definition of TX that no {|m|}k ∈ Etrpt can be in
TX and thus Definition 5.8 (5) holds. Also, Definition 5.8 (6) and (7) are monotonic
with respect to Tapp and thus trivially hold in ΣE . Hence, ΣE satisfies layer-disjoint
encryption with the exception of Definition 5.8 (9).

Given the above result, for the remainder of this section we make exclusive use
of the enlarged strand space, ΣE , rather than Σ .

5.3.3 Abstract Correctness Preserving Transformations

Later in this section we will develop a number of bundle transformations that take
a bundle from ΣE and return another bundle. We then prove that the resulting
bundles satisfy certain properties. However, in these proofs we will need to assume
that the bundle is abstractly correct. Therefore, when transforming bundles we need
to be careful not to go outside of the set of abstractly correct bundles. In order
to ensure this, we define a class of transformations, known as abstract correctness
preserving transformations, that preserve the abstract correctness of bundles.

82



Definition 5.17. A bundle transformation f is abstract correctness preserving
(henceforth ACP) iff whenever B is an abstractly correct bundle, f (B) is abstractly
correct.

Observe that the composition of a series of ACP bundle transformations is itself
ACP.

In order to prove that the transformations we use in this section are ACP, we
firstly need an additional assumption that the channel restrictions are sensible. For
example, recall that a RV strand followed by a SD strand is equivalent to a HJ strand
when the channel types and application-layer messages match. We require that if
a channel prohibits certain HJ strands, then it also prohibits the equivalent RV, SD
strand combination. This is merely a well-formedness condition on the channel and
is satisfied by all existing definitions (e.g. [DL08, KL09]).

Assumption 5.18. A low-level strand space Σ contains only sensible channels
iff: the strand space contains a Receive, Send subpath pair 〈−(Aψ, Pφ, i , m, c),
+(?, ?, , m, ⊥)〉 and 〈−(?, ?, , m, ⊥),+(P ′ψ′ , Bφ′ , i , m, c)〉 iff it contains
the equivalent Hijack, Renumber or Hijack-Renumber subpath 〈−(Aψ, Pφ, i , m, c),
+(P ′ψ′ , Bφ′ , i ′, m, c)〉.

Using the above we can now prove a simple lemma that shows a sufficiently large
class of transformations are ACP.

Lemma 5.19. If a transformation is one of the following then it is ACP:

1. The addition of an M strand connected only to a message-construction path;

2. The concatenation of adjacent Receive and Send subpaths to form an equivalent
Hijack, Renumber or Hijack-Renumber subpath;

3. The addition of redundant S and C strand pairs.

Proof. In order to show that the transformation is ACP it suffices to show that it
preserves abstract correctness. (1) follows immediately from the observation that
introducing an M strand connected only to a message-construction path means no
new penetrator subpaths of the form of Definition 4.19 are introduced. Hence, no
new transport-layer subpaths are introduced and thus trivially abstract correctness
is preserved.

(2) is ACP since whenever adjacent Receive and Send subpath pairs are in the
strand space, by Assumption 5.18, the corresponding Hijack, Renumber or Hijack-
Renumber subpath is allowed.

(3) is ACP since the transformation will, at worst, create a Receive, Send subpath
pair where a Hijack, Renumber or Hijack-Renumber subpath existed previously. Thus,
by Assumption 5.18, the resulting subpaths are in the strand space iff the original
subpaths were.

In this section we only consider transformations of the above form, and thus all
bundle transformations are ACP. Further, note that the composition of an arbitrary
chain of bundle transformations is ACP.

83



5.3.4 Removing Crossing-Paths

We now prove the main result from this section and show how to remove individual
crossing-paths from a bundle (in the enlarged strand space ΣE ). In order to do this
we consider several sub-cases, each of which removes a certain type of crossing-path
whilst not adding any new crossing-paths.

The first case that we consider concerns crossing-paths where the crossing term is
non-public and does not originate in the application-layer. Such cases correspond to
the penetrator passing a transport-layer term, like a nonce, into the application-layer.
Intuitively, such behaviours are harmless in that the application-layer behaviour is
not affected by the fact that the value originated in the transport-layer behaviour.
We can remove such a crossing-path by creating a new M strand, since any such
crossing term is in AΣE

P .

Lemma 5.20. Let B be a normal low-level bundle and p be a crossing-path such
that the crossing term t /∈ AP and t /∈ Aapp . Then there exists a B′ in ΣE such that
B D B′, in which p has been removed, and such that the transformation is ACP.

Proof. Let B, p and t be as per the lemma. We construct the bundle B′ as follows.
Let pd be the destructive penetrator path leading to the crossing point on p.

As t /∈ Aapp , Lemma 5.14 can be applied to deduce that t ∈ TX . Hence, by
definition of ΣE , t ∈ AΣE

P and thus a new M strand 〈+t〉 can be introduced in
place of pd . Note that the resulting bundle is well formed (i.e. it satisfies the bundle
conditions), still normal and B D B′ as we have not added any penetrator paths.
Further, by Lemma 5.19, such a transformation is ACP.

Before considering the next case we prove a technical lemma. Informally, the
lemma states that there is only one possible way of extracting the application-layer
message from a given encryption. That is, if there are two extraction paths that
are prefixes of the channel extraction path and that lead to the same encrypted
subterm in two different transport-layer messages, then the extraction paths must
be identical.

Lemma 5.21. Let c ∈ Channels \ {⊥}, t1 , t2 ∈ T c
payload and es1 , es2 ≤ expathc (c).

If extract(t1 , es1 ) = extract(t2 , es2 ) is an encryption, then es1 = es2 .

Proof. Let c, t1 , t2 , es1 and es2 be as per the lemma. Further, let t =
extract(t1 , es1 ) = extract(t2 , es2 ). Suppose for a contradiction that es1 < es2

(the case for es2 < es1 is entirely symmetric). Since t is an encryption it fol-
lows that there exists es ′1 such that es2 = es1 ˆ〈Decrypt〉ˆes ′1 . Let es ′ be such
that expathc (c) = es2 ˆes ′. If es2 = expathc (c) then extract(t2 , es2 ) = t ∈ Eapp but
extract(t1 , es1 ) = t ∈ Etrpt . Hence, t ∈ Eapp∩Etrpt , contradicting Assumption 5.9 (2).
Otherwise, es2 < expathc (c) and thus, as t is an encryption, es ′ starts with Decrypt.
Consider the last Decrypt in es ′, i.e. let es ′′ and es ′′′ be extraction paths such that
es ′ = es ′′ˆ〈Decrypt〉ˆes ′′′ and Decrypt 6in es ′′′. In summary:

expathc (c) = es1 ˆ〈Decrypt〉ˆes ′1︸ ︷︷ ︸
es2

ˆes ′′ˆ〈Decrypt〉ˆes ′′′︸ ︷︷ ︸
es′

where es ′′′ is Decrypt-free.

84



n1 ∈ Npayload n2 ∈ Ntrpt

nm

{|m|}k

t

pd pc

es

est

Figure 5.3: An illustration of Lemma 5.22. In the figure above dotted arrows indicate
extraction paths, whilst wiggly lines arrows indicate, as usual, penetrator paths.

Let t ′ = extract(t1 , es2 ˆes ′′) (note that this is a valid extraction path for t1 since
it is a prefix of expathc (c)). As es2 ˆes ′′ ≤ expathc (c) it follows, by definition of Etrpt ,
that t ′ ∈ Etrpt . We now prove, for a contradiction, that t ′ /∈ Etrpt . Thus, observe
that:

t ′ = extract(t1 , es2 ˆes ′′)

= extract(t1 , es1 ˆ〈Decrypt〉ˆes ′1 ˆes ′′)

= extract(t , 〈Decrypt〉ˆes ′1 ˆes ′′)

= extract(t2 , es2 ˆ〈Decrypt〉ˆes ′1 ˆes ′′).

Further, as expathc (c) = es2 ˆes ′ it follows that es2 ˆ〈Decrypt〉ˆes ′1 ˆes ′′ 6< expathc (c).
Thus, considering the copy of t ′ at es2 ˆ〈Decrypt〉ˆes ′1 ˆes ′′ in t2 , it follows that t ′

cannot be in Etrpt . However, as t ′ ∈ Etrpt , this contradicts Assumption 5.9 (2). Thus,
as we derive a contradiction in all cases, es1 = es2 .

We now consider the most complex case of the proof. This case considers a
crossing-path where the crossing term originally originated in the application layer.
Thus, the penetrator has taken the value from within the application layer, then
moved it to the transport layer, then moved it back to the application layer (the last
of these paths is the crossing-path). In this particular case, we show that whenever
the penetrator takes a value from within the application layer (from a regular node)
and sends it into a non-application-layer context then there must exist a node such
that any enclosing encryptions are in Etrpt-non-msg ∩ Eapp . The utility of this lemma
follows from the fact that, due to Assumption 5.9 (4), the inverse key to any such
encryption must be public (e.g. cryptographic certificates). Therefore, we can arrange
for the penetrator to remove these encryptions to obtain the crossing term, and so
eliminate the crossing-path.

Intuitively, this result follows from the fact that any enclosing encryption would
have to be a transport-layer message encryption or an application-layer encryption at
the first node, but could only be a transport-layer message encryption or a transport-
layer non-message encryption at the second node. Due to the disjointness conditions
imposed by our assumptions above, the only possible case is that the encryption is
a transport-layer encryption from both nodes’ point of view. Therefore, the proof
essentially shows that it is impossible to view a single transport-layer message as
containing two different application-layer messages.

85



Lemma 5.22. Let B be a normal low-level bundle, p = pdˆpc be a penetrator path
that does not traverse a key-edge or a KG starting at n1 ∈ Npayload and ending at
n2 ∈ Ntrpt , such that pd is destructive, pc is constructive and nm is the middle node
(i.e. nm = pc(1 )). Further, let est be an extraction path to a term t inside msg(nm)
such that t vest msg(nm), t is inside the application layer at n1 and t lies outside
of the application layer at n2 . That is, either n1 ∈ N⊥ or expathc (chan(n1 )) ≤
expath (pd )ˆest , but expathc (chan(n2 )) 6≤ expath∼ (pc)ˆest . Then, any encryption
that encloses t in msg(nm) is in Etrpt-non-msg ∩ Eapp .

Proof. Let B, p, pd , pc , n1 , n2 , nm , t and est be as stated above. Further let m, k
and es be an extraction path such that es < est and extract(msg(nm), es) = {|m|}k ,
as illustrated in Figure 5.3. We need to prove that {|m|}k ∈ Etrpt-non-msg ∩ Eapp .

Consider n2 ; by assumption expathc (chan(n2 )) 6≤ expath∼ (pc)ˆest and hence
expathc (chan(n2 )) 6≤ expath∼ (pc)ˆes. Therefore, in order to prove that {|m|}k ∈
Etrpt-non-msg it suffices to show that expath∼ (pc)ˆes 6≤ expathc (chan(n2 )) (cf. Defi-
nition 5.2). Assume, for a contradiction, that expath∼ (pc)ˆes ≤ expathc (chan(n2 )).
It thus follows that {|m|}k ∈ Etrpt and therefore, by Lemma 5.11, n1 ∈ Ntrpt .
Hence, Lemma 5.12 can be applied to deduce that appmsg(n1 ) = appmsg(n2 ) and
chan(n1 ) = chan(n2 ). Let c = chan(n1 ). As expath (pd )ˆes ≤ expathc (c) and:

extract(msg(n1 ), expath (pd )ˆes)

= extract(msg(n2 ), expath∼ (pc)ˆes)

= {|m|}k

it follows, by Lemma 5.21 applied to msg(n1 ), msg(n2 ), c, expath (pd )ˆes and
expath∼ (pc)ˆes, that expath (pd )ˆes = expath∼ (pc)ˆes. Hence, expath (pd ) =
expath∼ (pc) and therefore, since expathc (c) ≤ expath (pd )ˆest (by assumption of
the lemma), it follows that expathc (c) ≤ expath∼ (pc)ˆest , contradicting an assump-
tion of the lemma.

Thus, as we derive a contradiction in all cases, it must be the case that
expath∼ (pc)ˆes 6≤ expathc (chan(n2 )) and thus {|m|}k ∈ Etrpt-non-msg .

Further, observe that any encryption enclosing t in msg(n1 ) must either be in
Etrpt or Eapp . However, as Etrpt ∩ Etrpt-non-msg = ∅, by Assumption 5.9 (3), it follows
that {|m|}k ∈ Eapp . Thus, {|m|}k ∈ Eapp ∩ Etrpt-non-msg , as required. Further, this
holds for any encryption that encloses t in msg(n1 ).

Using the above lemmas it is now possible to prove that it is always possible to
remove a crossing-path to yield an equivalent bundle. The following proof considers
only non-concatenations (i.e. only atoms and encryptions) as crossing terms. We lift
this assumption in Lemma 5.24.

Lemma 5.23. Let B be a normal low-level bundle that contains a crossing-path,
but contains no crossing-paths such that the crossing term is a concatenation. Then,
there exists a normal bundle B′ in ΣE in which the number of crossing-paths in the
bundle strictly decreases and such that B D B′ and the transformation is ACP.

Proof. Let B be as per the lemma; we construct the bundle B′ as follows. Let p
be a crossing-path in B such that there does not exist a crossing-path p′ where
p′(1 ) � p(1 ) (i.e. p is a first crossing-path, according to �). Let pd be the longest

86



norig porig(i) porig(i ′) n1 n2

ñ n

pd
n pc

n pd ps

porig

pn

(a) The penetrator paths for Case (1).

norig porig(i) n1 n2

ñ n

{|m|}k

t

pd
n pc

n pd pc

es

tpath̃i

porig

(b) The penetrator paths for Case (2).

Figure 5.4: The penetrator paths involved in Lemma 5.23.

destructive prefix of p that does not traverse a key-edge. Let n1 be the first node of
pd , n2 be the last node of p, n be the crossing point and t = msg(n) be the crossing
term, as illustrated in the right-hand part of Figure 5.4). Clearly, if t ∈ AP then
the crossing-path can simply be removed by the addition of a new M strand 〈+t〉
replacing pd . Otherwise, t /∈ AP . If t /∈ Aapp then Lemma 5.20 can be applied to
construct B′.

Otherwise, t ∈ Aapp . Let norig � n1 , be the node that originates the instance
of t that ultimately ends up at this crossing-point. Further, let porig be a path
(nb. not necessarily a penetrator path), starting at norig and ending at n, such that
t v msg(n ′) for every node n ′ on porig . Note that by definition, porig cannot traverse
any key-edges or KG strands (although norig could be the positive node on a KG
strand). Further, for each i , let tpathi be the extraction path needed to extract the
copy of t that we are interested in from porig(i) (e.g. tpath|p| = 〈〉). We now prove
that there exists a node ñ, at index ĩ on porig , that contains t and such that any
encryption that encloses t in msg(ñ) is in Eapp ∩ Etrpt-non-msg . Formally:

t vtpath̃i
msg(ñ) ∧ ∀es,m, k · es < tpath̃i

∧ {|m|}k ves msg(ñ) =⇒ {|m|}k ∈ Eapp ∩ Etrpt-non-msg .
(5.3)

There are two cases to consider.

Case 1 Suppose an index i exists such that porig(i) is regular and t occurs inside
the application-layer payload, i.e. either porig(i) ∈ N⊥ or porig(i) ∈ Ntrpt and
expathc (chan(porig(i))) ≤ tpathi . Let i be the largest such index and i ′ > i
be the index of the first regular node on porig after porig(i). Note that such an
i ′ must exist as n1 is such a node and porig(i) 6= n1 as, otherwise, n1 would
not be the start of a crossing-path. Then, by definition of i , it follows that

87



t does not occur inside the application-layer payload at i ′, so porig(i ′) /∈ N⊥,
and either:

1. porig(i ′) ∈ Nnon-payload ; or
2. porig(i ′) ∈ Ntrpt and expathc (chan(porig(i ′))) 6≤ tpathi ′ .

Consider the penetrator path pn between porig(i) and porig(i ′): as B is normal
we can divide pn around the node that divides pn into a destructive and a
constructive subpath, as illustrated in Figure 5.4a. Let ñ be this node; it
remains show that any encryption enclosing t in ñ is in Eapp ∩ Etrpt-non-msg , as
per Equation 5.3.

If (1) applies then any encryption surrounding t at porig(i ′) is in Etrpt-non-msg ,
by definition of Etrpt-non-msg . Further, since t lies within the application-layer
at porig(i), any encryption enclosing t must either be in Eapp or Etrpt . However,
the latter case would contradict Assumption 5.9 (3) and thus, every encryption
enclosing t at porig(i) must be in Eapp . Hence, every encryption enclosing t at
msg(ñ) (which are a subset of the intersection of the encryptions enclosing t
at porig(i) and porig(i ′)) must be in Eapp ∩ Etrpt-non-msg , as required.

Otherwise, if (2) applies then we can apply Lemma 5.22 to deduce that any
encryption enclosing t in msg(ñ) is in Eapp ∩ Etrpt-non-msg , as required.

Case 2 If the above case does not apply then for every regular node n on porig , t
does not occur inside the application-layer payload. Therefore, for each index i
of a regular node on porig , n /∈ N⊥ and either n ∈ Nnon-payload , or n ∈ Ntrpt and
expathc (chan(n)) 6≤ tpathi . Suppose, for a contradiction, that norig is regular.
Note that, as t ∈ Aapp it follows, by Assumption 5.9 (7), that norig ∈ Ntrpt and
for every extraction path es such that t ves msg(norig), expathc (chan(norig)) ≤
es. Hence, expathc (chan(norig)) ≤ tpath1 , contradicting the above. Therefore,
it follows that norig is a penetrator node and is thus the positive node on either
a M, E or KG strand (t is not a concatenation by assumption). We perform a
case analysis on the type of norig .

Firstly, if norig lies on either a KG or E strand then it necessarily follows that
t = msg(norig) since t originates on norig . Thus, the crossing path can be
trivially removed by replacing pd with a connection from norig .

Otherwise, norig lies on a M strand. Since t ∈ Aapp\AP , by Assumption 5.9 (6),
t is surrounded only by encryptions from Eapp in norig . Let i be the index of
the first regular node on porig (note that such a node exists as n1 is one) and
p be the normal penetrator path leading to porig(i). Further, we divide p
into a destructive path pd

n and a constructive path pc
n . This is illustrated in

Figure 5.4b. Let ñ be pc
n(1 ) and let ĩ be the index of pc

n(1 ) on porig . Further,
let es, m and k be such that es < tpath̃i and extract(es,msg(ñ)) = {|m|}k .
Note that {|m|}k ∈ Eapp as every encryption enclosing t in norig is in Eapp . It
remains to show that {|m|}k ∈ Etrpt-non-msg , as required by Equation 5.3.

If porig(i) ∈ Nnon-payload it immediately follows, by definition of Etrpt-non-msg

that {|m|}k ∈ Etrpt-non-msg , as required. Otherwise, porig(i) ∈ Ntrpt and
expathc (chan(porig(i))) 6≤ tpathi . As es < tpath̃i , it follows by definition
of tpathi that expath∼ (pc

n)ˆes < tpathi . Thus, it must be the case that

88



expathc (chan(porig(i))) 6≤ expath∼ (pc
n)ˆes. Further, if expath∼ (pc

n)ˆes ≤
expathc (chan(porig(i))) then {|m|}k ∈ Etrpt , which as {|m|}k ∈ Eapp , contra-
dicts Assumption 5.9 (2). Hence, expath∼ (pc

n)ˆes 6≤ expathc (chan(porig(i)))
and therefore {|m|}k ∈ Eapp ∩ Etrpt-non-msg .

Therefore, by Equation 5.3, there exists a node ñ such that any encryption en-
closing t in msg(ñ) is in Eapp ∩ Etrpt-non-msg . Therefore, by Assumption 5.9 (4), the
inverse key for any encryption enclosing t in ñ is in AP . Hence, a new penetrator
path can be constructed that starts at ñ and consists of appropriate S and D strands
(with keys coming from M strands) so as to extract t . The last node on this new
path can then be connected to n, thus removing the crossing-path that did exist.
Further, the new path is not a crossing-path, B D B′ as there are no new causal
predecessors of n, and by Lemma 5.19, the transformation is ACP.

Lemma 5.24. Let B be a normal low-level bundle. Then there exists a bundle B′
in ΣE that contains no crossing-paths such that B D B′ and the transformation is
ACP.

Proof. Let B be a normal bundle. If B contains no crossing-paths such that the
crossing term is a concatenation then we let B′′ be equal to B. Otherwise, we
construct a new bundle B′′ which is formed by adding extra S and C strand pairs to
each such crossing-path to leave only crossing-paths such that the crossing term is
not a concatenation. Note that B′′ will still be normal and that the transformation
is ACP by Lemma 5.19 (1).

Since B′′ contains no crossing-paths with concatenations, Lemma 5.23 can be
applied multiple times to remove each crossing-path to yield a bundle B′ such that
B D B′ and which is reachable via an ACP transformation.

5.4 Interference Freedom

In this section we prove our main result: that we can transform any bundle of Σ into
an equivalent interference-free bundle of ΣE . We begin in Section 5.4.1 by proving
that the penetrator has only a few behaviours available. We then provide our first
bundle transformation in Section 5.4.2 and show how to make nodes abstractly con-
structible. Using this we then show in Section 5.4.3 how to make nodes interference-
free. Lastly, we show how to combine the above results to take an arbitrary bundle
of Σ and transform it into an equivalent abstractable bundle.

5.4.1 Restricting the Penetrator Paths

We now consider what behaviours the penetrator has available to him, given the
restrictions imposed on him by Assumption 5.9. In particular, we prove that the
bundle is almost interference-free, but may contain transport-layer messages that
are not fully received, but have had all of their encryptions removed (i.e. they are
of the form . . .ˆappmsgˆ. . .). In particular, we show that each negative regular
application-layer node either:

1. Receives messages on the ⊥ channel; or

89



n2

n ′2

n1

{|m|}k

appmsg(n2 )

pc

p′

es′

es

Figure 5.5: An illustration of Lemma 5.25.

2. Receives messages on a transport channel from a penetrator node that contains
the application-layer message unencrypted (i.e. there is a node from which the
application-layer message can be extracted without removing any transport-
layer encryptions); or

3. Receives messages from another regular agent along a Hijack, Renumber, Hijack-
Renumber or a Transmit strand.

We formalise these conditions as follows.

Lemma 5.25. Let B be a normal low-level bundle and n2 ∈ Npayload a negative
regular node in B. Then there must exist a penetrator path p starting at a node n1

and ending at n2 such that either:

1. n2 ∈ N⊥ and n1 → n2 ; or

2. n2 ∈ Ntrpt , p is constructive and there exists an extraction path es, not con-
taining Decrypt, such that esˆexpath∼ (p) = expathc (c); or

3. n1 ,n2 ∈ Ntrpt , appmsg(n1 ) = appmsg(n2 ), chan(n1 ) = chan(n2 ) and p trans-
ports the application-layer message.

Proof. Let B and n2 be as per the lemma and suppose that (1) and (2) do not hold.
Then, it must be the case that n2 ∈ Ntrpt . Let pc be the longest constructive pene-
trator path ending at n2 such that pc does not traverse a key-edge and expath∼ (pc)
is a suffix of expathc (c). Also, let n ′2 be the start node of pc and es be such that
esˆexpath∼ (pc) = expathc (c), as illustrated in Figure 5.5. Clearly, as (2) does not
hold (with pc in the place of p), Decrypt in es and hence there exists an extrac-
tion path es ′ < es such that extract(es ′,msg(n ′2 )) = {|m|}k . Further, as es ′ < es,
expath∼ (pc)ˆes ′ < expathc (c); so by definition of Etrpt , {|m|}k ∈ E

chan(n2 )
trpt .

We show that there is a destructive path p ′ starting at a regular or initial node,
ending at n ′2 , such that {|m|}k v msg(n) for every node n on p′. Suppose otherwise.
It therefore follows that there must exist a node n such that msg(n) = m and there
is a constructive path p between n and n ′2 that does not traverse a key-edge. Hence,
expath∼ (pˆpc) = 〈Decrypt〉ˆes ′ˆexpath∼ (pc) and is therefore a suffix of expathc (c).
However, this contradicts the maximality of pc . Thus, there exists a penetrator path
p ′, ending at n ′2 such that for every node n on p′, {|m|}k v msg(n). Further, p ′ must

90



be destructive as otherwise pc could be extended to a longer path, contradicting its
maximality. Lemma 5.21 can then be applied (with t1 = msg(n1 ), t2 = msg(n2 ),
es1 = expath∼ (p ′) and es2 = expath (pc)) to deduce that expath∼ (p′) = expath (pc).

Consider the starting node n1 of p ′ˆpc ; by Assumption 5.9 (5) it cannot lie on a
M strand. Hence, n1 must be a regular node and therefore, by Lemma 5.11 it follows
that n1 ∈ Ntrpt . Thus, by Lemma 5.12, appmsg(n1 ) = appmsg(n2 ) and chan(n1 ) =
chan(n2 ), as required. Further, note that expath (pc) < expathc (chan(n)) as other-
wise a node n would exist such that msg(n) = m, contradicting the above paragraph.
Hence, p transports the application-layer message, as required.

5.4.2 Making Nodes Abstractly Constructible

In this section we consider how to transform a bundle in order to make a given
penetrator node abstractly-constructible (cf. Definition 4.26). In order to define this
transformation, we begin by proving several lemmas that show how the ingredient re-
lation is preserved by penetrator paths. This will be used to show that the penetrator
only uses application-layer ingredients to construct application-layer messages.

Lemma 5.26. If p is a constructive penetrator path in a normal bundle B then
msg(p(1 )) ingredient msg(p(|p|)).

Proof. Since p can only contain KG, C, and E strands, the required result immediately
follows from the definition of ingredient.

A weaker result can be proven for destructive penetrator paths. In particular,
we now prove that if a destructive penetrator path ends with a message in Aapp ,
then there must be some subterm of the first message that is in Aapp . This result
is complicated by the presence of key-edges. However, thanks to the assumptions,
it follows that if an encryption {|m|}k contains an application-layer ingredient inside
m, then it can only be using encryption keys that are application-layer ingredients,
thus setting up an inductive argument.

Lemma 5.27. Let p be a directly-contributing destructive penetrator path in
a normal crossing-path-free bundle B such that: p starts at a penetrator node;
msg(p(|p|)) ∈ Aapp ; and, for all nodes n on p that are not on M strands,
msg(n) /∈ AP . Then there exists t ∈ Aapp such that t v msg(p(1 )).

Proof. Let B and p be as per the lemma. Consider the sequence of nodes ni on p
such that p(|p|) is the last node, and the remaining nodes are the positive nodes that
send via a key-edge to a node on a D strand. We prove, by a backwards induction,
that for each i , msg(ni) ∈ Aapp . Note that this immediately implies the required
result, since the destructive penetrator path between p(1 ) and n1 does not traverse
any key edges, and thus msg(p(1 )) w msg(n1 ) ∈ Aapp , as required.

The base case of the induction follows immediately from the assumption that
msg(p(|p|)) ∈ Aapp . For the inductive case, suppose that that msg(ni+1 ) ∈ Aapp

and let pd be the destructive penetrator path between ni and ni+1 . By definition
of ni , it follows there must be a key edge must be from ni = pd (1 ) to pd (2 ), where
pd (2 ) must be the first node on a D strand 〈−k−1 ,−{|m|}k ,+m〉. Further, by the
inductive hypothesis and the fact that the path between pd (2 ) and pd (|pd |) does
not traverse a key-edge, it follows that m w msg(ni+1 ) ∈ Aapp . We prove that

91



ni

D

ni+1

k−1

{|m|}kp′d

Figure 5.6: An illustration of Lemma 5.27.

this implies {|m|}k ∈ Eapp , which therefore implies that msg(ni) = k−1 ∈ Aapp , as
required.

Let p ′d be the penetrator path that does not traverse any key-edges and leads to
the second node on the D strand (i.e. p′d is the source of {|m|}k ). This is illustrated
in Figure 5.6. We prove that {|m|}k ∈ Eapp by a case analysis on p′d (1 ).

1. p ′d (1 ) is a penetrator node and thus must lie on a M strand (it cannot be a
E strand as p is normal). Since p′d is destructive, msg(ni+1 ) v msg(p′d (1 )).
Thus, since by assumption msg(ni+1 ) /∈ AP , by Assumption 5.9 (6), every
encryption that encloses msg(ni+1 ) in msg(p′d (1 )) is in Eapp . In particular,
{|m|}k ∈ Eapp , as required.

2. p ′d (1 ) is a regular node. Since p is directly-contributing and pd (1 ) lies on
the key-edge of a D strand, it follows that p ′dˆpn , where pn is the suffix of
p starting at the positive node on the D strand, is also directly-contributing.
Since p ′dˆpn is directly-contributing either p ′d (1 ) ∈ N⊥, or p ′d (1 ) ∈ Ntrpt . If
p ′d (1 ) ∈ N⊥ it immediately follows that {|m|}k ∈ Eapp (since it is a subterm
of msg(p′d (1 )) ∈ Tapp). Otherwise, p′d (1 ) ∈ Ntrpt and expathc (chan(p ′d (1 ))) ≤
expath (p ′d ). Therefore, {|m|}k v appmsg(p′d (1 )) and hence {|m|}k ∈ Eapp , as
required.

Hence, {|m|}k ∈ Eapp and thus, as discussed above, msg(ni) ∈ Aapp , as required.

We now prove a technical lemma that states, informally, that if a normal pen-
etrator path is directly-contributing (cf. Definition 4.25), then the message on the
starting node of the penetrator path is in Aapp . This, in some sense, proves that
the definition of Aapp is sufficiently general to include all terms that the penetrator
uses, as ingredients, to construct application-layer messages. This lemma will be
used when proving Lemma 5.30 in order to show that even if a node is not abstractly
constructible, the penetrator must only be using terms from Aapp .

In the following lemma, we consider the turning points of a normal penetrator
path p. These are the series of nodes nt

i on p such that the penetrator path to the
next turning point is purely constructive or destructive. Unless a turning point is the
first node on a penetrator path, note that they will be negative. For example, if the
bundle contains no KG strands then there are at most three turning points: the first
and last nodes on p, and the node that divides p into destructive and constructive
paths, if such a node exists. Figure 5.7 illustrates the turning points on a normal
penetrator path.

92



nt
1 nt

3 nt
5

nt
2 nt

4

Figure 5.7: An illustration of the turning points on a normal penetrator path.

Lemma 5.28. Let B be a normal crossing-path-free low-level bundle and p be a
directly-contributing normal penetrator path such that p(1 ) ∈ Ntrpt , msg(p(|p|)) ∈
Tapp , and for all nodes n on p that are not on M strands, msg(n) /∈ AP . Further, let
pd ≤ p be the maximal destructive penetrator path that does not traverse a key-edge
such that expath (pd ) ≤ expathc (chan(p(1 ))). Then, msg(pd (|pd |)) ∈ Aapp .

Proof. Let B, p and pd be as per the lemma. Consider the node n such that
pd (|pd |)→ n. By assumption, either: (1) n is the negative key node on a D strand,
(2) expath (pd ) = expathc (chan(p(1 ))), or (3) n is a negative node on a constructive
strand. If case (1) applies, it therefore follows that t = msg(n) is an atom, and
therefore that expath (pd ) = expathc (chan(p(1 ))). Hence, this reduces to case (2).
If case (2) applies, then t = appmsg(p(1 )) ∈ Tapp and thus t ∈ Aapp , as required.

Otherwise, case (3) must apply and therefore n is a negative node on a construc-
tive strand. We prove, by a backwards induction on the turning points nt

i of p, that
for all i > 1 , msg(nt

i ) ∈ Aapp . This implies the required result since the node n is the
second turning point. The base case of the induction is trivial, since by assumption
msg(p(|p|)) ∈ Tapp ⊆ Aapp .

For the inductive case, consider the i th turning point (for i > 1 ) nt
i and assume

that msg(nt
i+1 ) ∈ Aapp . If the penetrator path between nt

i and nt
i+1 is construc-

tive, then the result immediately follows by Lemma 5.26. Otherwise, consider the
destructive penetrator path p′d between nt

i and nt
i+1 (i.e. nt

i+1 is the first node on
a constructive strand). nt

i cannot be a regular node, since p is a penetrator path
and thus only the first and last nodes on p can be regular (recall i > 1 ). Hence,
nt

i is a penetrator node. By definition of normality, it follows that nt
i must lie on

the key-edge of a D strand. Since the path to nt
i+1 is destructive, by Lemma 5.27

applied to nt
i , msg(nt

i ) ∈ Aapp (since msg(nt
i ) is atomic), as required.

Before proving the main result of this section we firstly state, for clarity, what it
means for a penetrator path not to be abstractly-constructible.

Lemma 5.29. Let B be a normal low-level bundle. If a penetrator path p is not
abstractly-constructible then either:

1. p starts at a regular node n1 ∈ Nnon-payload ; or

2. p starts at a regular node n1 ∈ Ntrpt but there exists no destructive penetrator
subpath pd ≤ p such that pd app-extracts n1 .

Proof. This follows immediately from Definition 4.26.

We now show how we can transform a non-abstractly-constructible node into an
abstractly-constructible node, using an ACP transformation. Note in the following

93



n1 n2 ∈ Ntrpt

n

{|m|}k

appmsg(n1 )

pd pc

es′′

es ′

Figure 5.8: An illustration of Lemma 5.30.

we assume that the bundle is crossing-path-free. Under this assumption, it turns out
that the only reason a node might not be abstractly-constructible is if the penetrator
has not fully unpacked a transport-layer message, but has removed all the encryp-
tions. Thus, we can make the node abstractly-constructible simply by adding extra
S and C strands.

Lemma 5.30. Let B be a normal crossing-path-free low-level bundle and ps be a
message-construction penetrator path ending at a node n2 ∈ Npayload that has a suffix
pc such that expath∼ (pc) = expathc (chan(n2 )). Then, there exists an application-
layer equivalent crossing-path-free normal bundle B′ such that B D B′ and that can
be reached by an ACP transformation in which n =̂ pc(1 ) is abstractly-constructible.

Proof. Let B, n, n2 , ps and pc be as per the lemma. We show how to transform each
non-abstractly-constructible directly-contributing penetrator path p that ends at n.
Hence, let p be such a penetrator path.

Firstly, we simplify the bundle. If there exists a negative node n on p such that
msg(n) ∈ AP , but that the sender of n is not a M strand, then it follows that a
new M strand 〈+msg(n)〉 can be created and connected to n. This results in a
crossing-path-free normal bundle B′ such that B D B′ and that is obtainable via a
ACP transformation, as per Lemma 5.19. Further, the resulting bundle is simpler,
in that the length of p has strictly decreased. This means that this lemma can be
safely applied recursively to ensure n is abstractly-constructible.

Otherwise, for all i > 1 , msg(nt
i ) /∈ AP . Further, since p is not abstractly-

constructible, by Lemma 5.29, either p starts at a node in Nnon-payload , or p starts
at a node in Ntrpt but there does not exist a destructive prefix p′ of p such that
p′ app-extracts p(1 ). However, if the first case applies then p(1 ) ∈ Nnon-payload and
thus ps is a crossing-path, contradicting the assumption that B is crossing-path-free.

Hence, p starts at a node n1 ∈ Ntrpt but there exists no destructive penetrator
subpath p′ ≤ p such that p′ app-extracts n1 . Let pd be the longest destructive
penetrator subpath such that pd ≤ p and pd does not traverse a key-edge. Let
c1 = chan(n1 ) and es be the longest common prefix of expath (pd ) and expathc (c1 ),
i.e. es ≤ expath (pd ) and es ≤ expathc (c1 ). Note that, by the above assumption,
es < expathc (c1 ). This is illustrated in Figure 5.8.

If es < expath (pd ) then expath (pd ) 6≤ expathc (c1 ) and expathc (c1 ) 6≤ expath (pd )
and therefore it must be the case that ps is a crossing-path, contradicting our as-
sumption that B is crossing-path-free. Hence, this case cannot occur.

94



Otherwise, it follows that es = expath (pd ) and thus that expath (pd ) <
expathc (c1 ). Consider es ′ such that expath (pd )ˆes ′ = expathc (c1 ). Suppose,
for a contradiction, that Decrypt in es ′, i.e. that there exists an es ′′ such that
es ′′ˆ〈Decrypt〉 ≤ es ′. Then it immediately follows that extract(msg(n1 ), esˆes ′′) =
{|m|}k for some m and k . Hence, {|m|}k ∈ Etrpt . Further, since p is directly-
contributing, by Lemma 5.28, msg(pd (|pd |)) ∈ Aapp and thus, by definition of
ingredient and Aapp , {|m|}k ∈ Aapp . Therefore, {|m|}k ∈ Aapp ∩ Etrpt , contradict-
ing Assumption 5.9 (8).

Therefore, Decrypt 6in es ′ and thus extra S strands can be added in B′ to extend
p′d to produce a penetrator path p ′d that ends at a node n ′1 such that expath (p′d ) =
expathc (c1 ). Moreover, extra C strands can be added to ensure the bundle remains
essentially unchanged, except that pc is extended. Hence, B D B′; further, B′ is still
normal, and by Lemma 5.19 (3), such a transformation is ACP.

Since new penetrator paths are introduced by the above transformation, we may
have created new crossing-paths and thus it does not immediately follow that B′ is
crossing-path-free. In particular, p may actually be a crossing-path since, by adding
the new S and C strand pairs, we may have created new Send or Fake subpaths,
thus causing a new crossing-path to be uncovered (cf. Definition 5.10). These new
crossing-paths can be removed by applying Lemma 5.24 to yield a bundle B′′ that is
normal, crossing-path-free and obtainable via an ACP transformation. Further, p is
still abstractly-constructible since Lemma 5.24 connects p to either:

1. An extension of an existing destructive penetrator path starting at a M strand,
which is abstractly-constructible by definition (Lemma 5.24 Case (2)); or

2. An extension of an existing destructive penetrator path that has been extended
with S and D strands to make it into a Receive or Learn subpath, which are by
definition abstractly-constructible (Lemma 5.24 Case (1)).

Therefore, it follows that p is abstractly correct in B′′, as required.

5.4.3 Making Nodes Interference-Free

We can now combine the results of the above sections and show that any node can
be made interference-free.

Lemma 5.31. Let B be a normal crossing-path-free bundle with a negative regular
node n2 ∈ Npayload that is not interference-free. Then there exists, by an ACP
transformation, a normal, crossing-path-free, bundle B′ such that n2 is interference-
free and B D B′.

Proof. Let B and n2 be as per the lemma. We proceed by constructing B′ from B.
By Lemma 5.25 applied to n2 there must exist a penetrator path p such that either:

1. n2 ∈ N⊥ and n1 → n2 ; or

2. n2 ∈ Ntrpt , p is constructive and there exists an extraction path es, not con-
taining Decrypt, such that esˆexpath∼ (p) = expathc (c); or

3. n1 ,n2 ∈ Ntrpt , appmsg(n1 ) = appmsg(n2 ), chan(n1 ) = chan(n2 ) and p trans-
ports the application-layer message.

95



Clearly, case (3) cannot apply as otherwise n2 is already interference-free. Hence,
suppose case (2) holds. It therefore follows that extra S strands followed by C strands
could be added (care would need to be taken to avoid introducing non-normal paths)
to yield a penetrator path p′ such that expath∼ (p′) = expathc (chan(n2 )). Further,
as p ′ is a message-construction path it follows, by Lemma 5.30, that the start node
of p′ can be made abstractly constructible. Hence, n2 in B′ is interference-free.

Alternatively, if case (1) applies and n1 is regular then observe n1 ∈ N⊥ as
otherwise n1 → n2 would be a crossing-path, contradicting the assumption that B is
crossing-path-free. However, in such a case n2 is already interference-free. Therefore,
n1 must be a penetrator node and thus Lemma 5.30 can be applied to n1 to deduce
a normal bundle B′ such that B D B′ and in which n1 is abstractly constructible.
Thus, n2 in B′ is interference-free and reachable by an ACP transformation.

Remark The above lemma may be applied inductively since the only penetrator
paths that are altered are those concerning n2 . Further, if the penetrator paths to
n2 were shared with other nodes then they could be duplicated before being altered.
This ensures that any node that was interference-free in B will also be interference-
free in the resulting bundle B′, thus allowing the lemma to be applied repeatedly.

Recall that Proposition 4.31 required that each innocuous penetrator subpath
in B is expanded. Thus, before we can apply the proposition, we need to ensure
that all innocuous subpaths are expanded. Clearly, such a transformation should be
possible, since an innocuous penetrator subpath is equivalent to a Receive subpath
followed by a Send subpath. However, in general, this transformation would be very
hard to specify, since arbitrary encryption keys could be required in order to achieve
the necessary decryption or encryptions. Therefore, we instead make an assumption
on the underlying transport-layer protocol that each innocuous penetrator subpath
can be expanded. Whilst this does impose a proof obligation on the transport layer,
it is essentially requiring that the transport layer allows the penetrator to send and
receive messages from his own channel ends. Clearly, every sensible channel will
satisfy this.

Assumption 5.32. Let B be a normal bundle and p be an innocuous non-expanded
penetrator subpath between n and n ′. Then there exists a bundle B′, obtainable via
a ACP transformation, in which p is expanded and such that B D B′.

Corollary 5.33. Let B be a normal bundle of a low-level strand space Σ . Then,
there exists, by an ACP transformation, a normal bundle B′ in which every innocuous
penetrator subpath has been expanded and such that B D B′.

Using the above results we are now able to prove our main proposition as follows.

Proposition 5.34. Let B be a bundle of an strand space Σ that satisfies layer-
disjoint encryption. Then there exists a normal, abstractable bundle B′ of the en-
larged strand space ΣE such that B D B′.

Proof. Let B be a bundle. By Lemma 5.6, there exists a normal bundle B1 such that
B D B1 . By definition of ΣE , B1 is also a bundle of ΣE . Further, ΣE also satisfies
layer-disjoint encryption, by Lemma 5.16. By Lemma 5.24, there exists a crossing-
path-free bundle B2 such that B1 D B2 . Therefore, Lemma 5.31 can be applied

96



multiple times to yield a normal, interference-free, bundle B3 such that B2 D B3 .
Lastly, Corollary 5.33 can be applied to expand the innocuous penetrator subpaths
of B3 to yield a bundle B4 . Further, by Assumption 5.9 (9), B is abstractly correct
and therefore, as all transformations were ACP, B4 is abstractly correct. Thus, it
follows by Proposition 4.31 that B4 is abstractable and B D B4 , as required.

5.5 Summary

In this chapter we have generalised the results of Chapter 4 and proven that whenever
there exists a low-level bundle in a strand space satisfying our main condition, defined
in Definition 5.8, then there exists a related (according to Definition 5.5) bundle that
can be abstracted. The advantage of the result in this chapter is that the assumption
is a statically-checkable condition, rather than the semantic condition from the prior
chapter. Further, the condition allows us to understand more about the problem. For
example, the required assumptions indicate where care should be taken by protocol
designers to explicitly avoid key sharing.

We make use of this result in Chapter 6 in order to prove that whenever there is
an attack against a bundle in the low-level model, there must be an attack against a
bundle in the high-level model. This shows that the high-level strand spaces model is
sound, in that if a proof of protocol correctness can be constructed in the high-level
model, then there are no attacks against the corresponding low-level model.

In this chapter we began by defining several sets of encryptions which were used
in the assumption, and the bundle relation D, which formalises how a bundle is
related to its abstractable version. Then, in Section 5.2 we defined the nine separate
clauses that make up Assumption 5.9. In Section 5.3 we considered one of the more
difficult cases of the proof, where the penetrator takes values from the transport layer
and plays them into the application layer via a so-called crossing-path. In particular,
we proved that all crossing-paths are incidental, in that they can be safely removed.
This required carefully enlarging the strand space to include more values in AP . In
Section 5.4 we then showed that the assumptions defined in Section 5.2 imply that
all bundles can be transformed to a related (using D) bundle that is interference-free,
allowing the results from Chapter 4 to be re-used.

Given Definition 5.15, when proving the correctness of the application-layer pro-
tocol, AP in the high-level strand space must include at least AΣE

P . In practice, this
is not an issue since AΣE

P = AΣ
P ∪ TX and TX contains nothing from Tapp . However,

from a practical point of view, it means that the assumptions that the application-
layer makes on the contents of AP should be expressed like those of WebAuth in
Assumption 3.21. In particular, the assumption should specify what AP cannot
contain, rather than exactly what AP does contain.

We discuss related work at the end of Chapter 7, in Section 7.4.

97



Chapter 6

Abstracting Correctness
Properties

In the previous chapters we have proven that, subject to certain assumptions, any
low-level bundle can be transformed to a bundle that can be abstracted. Further, the
transformed bundle has the same regular application-layer behaviour as the original
bundle. In this chapter we prove that whenever there is an attack against a bundle
in the low-level model, there must be an attack against a bundle in the high-level
model. This shows that the high-level strand spaces model is sound, in that if a proof
of protocol correctness can be constructed in the high-level model, then there are
no attacks against the corresponding low-level model. We actually prove a slightly
stronger version of the above result: we show that if a low-level bundle does not
satisfy a given correctness property, it can be transformed to an abstractable bundle
such that its abstraction does not satisfy the correctness property in question.

We firstly need to define what a correctness property is. In Section 6.1 we for-
malise a logic in which protocol-correctness properties can be expressed. This logic
has not been designed to be complete, but can express all of the correctness prop-
erties for WebAuth and other protocols that we have looked at. We then define, in
Section 6.2 and Section 6.3, two semantics for the logic, one that applies to low-level
bundles and one that applies to high-level bundles. Clearly, it is important for the
two semantics to be equivalent, modulo abstraction. In particular, in order to prove
our main result we will require that if an abstractable low-level bundle does not
satisfy a correctness property, then the abstracted high-level bundle must also not
satisfy the property. In order to prove this result we, in Section 6.4, consider how
the values of the terms of the logic are related when interpreted in both a low-level
bundle and a high-level bundle that abstracts it. Then, in Section 6.5, we prove
the required result and show that, for a large subclass of correctness properties,
whenever an abstractable low-level bundle does not satisfy a correctness property,
then its high-level abstraction also does not. In Section 6.6, we firstly show that the
transformations applied in Chapter 5 preserve the correctness of bundle predicates.
Then, we combine the results of this chapter and Proposition 5.34 and prove that
whenever a low-level bundle does not satisfy a correctness property, the bundle can
be transformed to an abstractable bundle such that its abstraction does not satisfy
the correctness property.

98



6.1 A Logic of Correctness Properties

In this section we define a logic in which we can express correctness properties. Before
defining the logic we consider what predicates the logic would require in order to
express the WebAuth correctness properties from Section 3.3. By inspection we can
see that the logic needs to be able to express:

1. A node either sends a message to, or causally precedes, another node;

2. A term (e.g. the user’s password in WebAuth) is confidential or uniquely orig-
inating;

3. A channel is confidential or authentic;

4. Certain message components are equal (e.g. the request tokens in WebAuth
were required to match between multiple messages);

5. A node lies on a particular type of strand (e.g. on an AS1 strand).

The logic that we will define allows all of the above to be expressed, with the ex-
ception of a node sending a message directly to another node. The reason why
we cannot express the latter is that it is, in general, too complex to be practical.
Defining what it means in a normal high-level bundle is not particularly difficult; a
reasonable definition might be that either the nodes must be directly connected using
→, or there must be a TX strand between them. However, we also need to define
an equivalent semantics for both normal and non-normal low-level bundles, which
is far more complicated. For example, in the low-level bundle the penetrator may
receive an application-layer message (using a Receive subpath), and then incorporate
the message as part of the transport-layer packaging (i.e. creating a crossing path).
This could then be passed through any number of regular nodes, all as part of the
transport-layer packaging, before being extracted. However, as the above path would
abstract to a direct message path (i.e. a TX strand or a direct edge), any low-level
definition would have to hold on such paths. Clearly it would be very difficult to
define a property that covers such cases. Whilst this may appear to be a restric-
tion of the logic, in reality this property is not required; what really matters is the
application-layer behaviour of the regular agents and, to a lesser extent, the causal
ordering (i.e. �) of nodes. Therefore, we do not consider the lack of this property to
be a major problem for the logic.

We start, by defining the terms in our logic, which we call logical terms (in
contrast to message terms, from A). The informal meaning behind the terms of the
logic is given in Figure 6.1.

Definition 6.1. We assume the existence of a set of variables V . The set of logical
terms is then defined by the following grammar, where c denotes a constant and v
denotes a variable:

Term ::= TermˆTerm | {|Term|}Term | appmsg(T̂ erm) | g(Term)

| endpoint name(Endpoint) | c | v

Natural ::= height(Strand) | seqno(T̂ erm)

| Natural σ Natural, σ ∈ {+,−, . . .} | c | v

99



Logical Term Informal Meaning
v v ∈ V , a variable
c c ∈ A ∪ P (A), a constant term or set of terms

{|t1 |}t2 encryption of a logical term
t1 ˆt2 concatenation of two logical terms
g(t) the application of the key-generation function g to t
tt ′ a channel endpoint with name t and channel end t ′

σ(t1 , t2 , t3 , t4 , t5 ) σ ∈ {+,−}, a high-level term
height(t) bundle height of a strand
msg(t) high-level message of a node
sign(t) sign of a high-level term

sender(t) sending endpoint of a high-level term
recipient(t) receiving endpoint of a high-level term

seqno(t) sequence number of a high-level term
appmsg(t) application message of a high-level term
channel(t) channel of a high-level term

t1 σ t2 σ ∈ {+,−, . . .}, standard mathematical functions
endpoint name(t) name contained in an endpoint
endpoint end(t) channel end contained in an endpoint

rolek the set of strands for the regular agent in role k (e.g.
for WebAuth this includes LS1 , LS2 , AS1 , etc.)

node(t ,n) nth node on a strand t
strand(t) strand of a node

Figure 6.1: An informal explanation of the meaning of the terms of our correctness
property logic.

100



Predicate Informal Meaning
t1 � t2 t1 causally precedes t2

AuthChan(t) t is an authenticated channel
ConfChan(t) t is a confidential channel

Confidential(t) t is a confidential term
UniquelyOriginates(t1 , t2 ) t1 uniquely originates at the node t2

t1 σ t2 σ ∈ {v,=, <}, comparison of t1 and t2

∀v ∈ t · φ universal quantification
∃v ∈ t · φ existential quantification
¬φ1 logical negation

φ1 ∧ φ2 logical and
φ1 ∨ φ2 logical or

Figure 6.2: An informal explanation of the bundle predicates.

ChannelEnd ::= endpoint end(Endpoint) | c | v

Endpoint ::= TermChannelEnd | sender(T̂ erm) | recipient(T̂ erm) | c | v

T̂ erm ::= msg(Node)

| Sign(Endpoint, Endpoint, Natural, Term, Channel) | v

Channel ::= channel(T̂ erm) | c | v
Node ::= node(Strand,Natural) | v

Strand ::= strand(Node) | v

Sign ::= sign(T̂ erm) | + | − | v
Set(Term) ::= c | v
Set(Strand) ::= rolek | v

We denote the least-fixed point of the above by LogicalTerm. A logical term is
well-typed with respect to a particular variable assignment Γ iff every variable and
constant has been instantiated with a value of the correct type.

Using the above definition of logical terms we are now able to define what a
bundle predicate is. The informal meaning behind the predicates of the logic is given
in Figure 6.2.

Definition 6.2. The set of high-level bundle predicates is given by the following
grammar:

Formula ::= Node � Node | AuthChan(Channel) | ConfChan(Channel)

| Confidential(Term) | UniquelyOriginates(Term,Node)

| LogicalTerm v LogicalTerm | LogicalTerm = LogicalTerm

| Natural < Natural | Formula ∧ Formula

| Formula ∨ Formula | ¬Formula

| ∀v ∈ Set(Term) · Formula | ∃v ∈ Set(Term) · Formula

| ∀v ∈ Set(Strand) · Formula | ∃v ∈ Set(Strand) · Formula

| ∀v ∈ N · Formula | ∃v ∈ N · Formula

101



A free variable in a high-level bundle predicate is a variable v that is not enclosed
by a quantification of the form ∀v ∈ S or ∃v ∈ S . A high-level bundle predicate φ is
closed iff it contains no free variables.

In the definition above we include a number of cases that could be removed by
using logical equivalences (e.g. φ1 ∧ φ2 = ¬(¬φ1 ∨ ¬φ2 )). We include them in
order to allow us to obtain formulas in negation normal form, where negations only
occur next to atomic predicates. This is used in several of the proofs in this section,
including Proposition 6.19.

Whilst the above logic may appear to have relatively few predicates, note that
it is possible to express all of the WebAuth correctness properties. Further, to ease
the expression of correctness predicates we can also define some macros as follows.
For example, we can express the strand ordering relation, ⇒, as follows:

t1 ⇒ t2 =̂ strand(t1 ) = strand(t2 )

∧ ∃i ∈ N · node(strand(t1 ), i) = t1 ∧ node(strand(t2 ), i + 1 ) = t2 .

⇒+ can be expressed as:

t1 ⇒+ t2 =̂ strand(t1 ) = strand(t2 ) ∧ ∃i ∈ N · ∃j ∈ N·
i < j ∧ node(strand(t1 ), i) = t1 ∧ node(strand(t2 ), j ) = t2 .

Lastly, we can test for set membership as follows:

member(t, S) =̂ ∃x ∈ S · x = t.

This macro, when combined with constant sets of terms, can be used to test if values
are in AP , or A∗P , for instance. When defining high-level bundle predicates we will
use, without loss of generality, the above macros.

As an example, we can express Proposition 3.25 (1) as a bundle predicate as
follows:

∀LS ∈ T reg
names · ∀U ∈ Tnames · ∀AS ′ ∈ T reg

names · ∀ψ3 ∈ C · ∀φ3 ∈ C · ∀k ∈ K·
∀r2 ∈ A · ∀st2

LS ∈ roleLS2·
height(st2

LS ) = 2 ∧msg(node(st2
LS , 1 )) =

− (?ψ3 ,LSφ3 ,U ˆpasswdLS (U )ˆ{|reqˆr2 |}k ˆ{|webkdc serviceˆAS ′ˆk |}SK (LS),

TLSC→S)

=⇒ ∃ψ1 ∈ C · ∃φ1 ∈ C · ∃stok ∈ A · ∃st1
AS ∈ roleAS1·

height(st1
AS ) = 2

∧msg(node(st1
AS , 2 )) = +(AS ′φ1

, ?ψ1 , {|reqˆr2 |}ShAS ′
LS

ˆstok , TLSS→C ).

Remark 6.3. Since any statement of Peano arithmetic can be translated into a high-
level bundle predicate, preserving satisfaction, it follows that the set of valid formulas
of the logic is not recursively enumerable. Thus, the logic is not axiomatizable, in
that the set of valid formulas cannot be enumerated from a set of axioms. In practice,
this means that the logic is not suitable for analysis by methods that make use of a
proof theory.

102



Note also that the logic is not closed under isomorphism; i.e. if there exist two
strand spaces that have an isomorphism between them, then satisfaction of a formula
in one strand space does not necessarily imply that it is satisfied in the other. This
is because logical terms allow algebraic terms to be encoded directly. Hence, if the
two strand spaces differ in how they represent a certain value then it is possible for
a formula to be satisfied by one strand space but not the other. For example, let: φ
be the open formula x = c, where x ∈ V and c is a term constant (i.e. c ∈ A); Γ
be a substitution such that Γ (x ) = c; H be an isomorphism that exchanges c with
a c′ 6= c. Hence, φ is satisfied under Γ since Γ (x ) = c, but not under H ◦ Γ , since
(H ◦ Γ )(x ) = c′ 6= c.

Since the aim of this chapter is to define a logic for the purposes of proving that
the high-level strand spaces model is sound, we do not consider the above properties
to be essential. More importantly, in Proposition 6.22 we will prove that satisfaction
of all formulas of the logic is preserved under abstraction. Thus, if a well-behaved
sub-logic is defined, then it follows that satisfaction of the sub-logic is still preserved
under abstraction. Since we are focused on proving the preservation of satisfaction
by abstraction, we leave the development of such a sub-logic for future work.

6.2 High-Level Semantics

We now consider how to define the semantics of this logic when applied to both
low and high-level bundles. We start by considering the easier case of the high-level
semantics. In order to define this we will need to assume the existence of a set
of high-level strands, R̂olek , for each regular role k . For example, in the case of
WebAuth, this would mean that we had a set of strands that represent all possible
AS1 strands.

We define the semantics relative to a particular bundle as follows. Firstly, we
define the set of logical term values that includes all values that logical terms will be
evaluated to. We then define a function that, given a logical term, returns the logical
term value for the current bundle. We then define the satisfaction relation between
high-level bundles and high-level bundle predicates using the above interpretation
function. In the following heightB̂(st) denotes the B̂-height of the strand st .

Definition 6.4. The set of high-level logical term values in a high-level strand space
Σ̂ is given by:

A ∪ N ∪ C ∪ I ∪ Â ∪ Channels ∪ N̂ ∪ Σ̂ ∪ {+,−} ∪ P (A) ∪ P
(

Σ̂
)
.

Let B̂ be a high-level bundle, t be a logical term and Γ̂ be a type-respecting
high-level term map, from variables to high-level logical term values, defined on all
free-variables in t such that t is well-typed. Then, the high-level logical term value
of t in B̂, denoted JtKΓ̂

B̂ , is defined inductively as follows:

• JvKΓ̂
B̂ =̂ Γ̂ (v);

• JcKΓ̂
B̂ =̂ c;

• J{|t1 |}t2 KΓ̂
B̂ =̂ {|Jt1 KΓ̂

B̂ |}Jt2 KΓ̂
B̂
;

103



• Jt1 ˆt2 KΓ̂
B̂ =̂ Jt1 KΓ̂

B̂ˆJt2 KΓ̂
B̂ ;

• Jtt ′KΓ̂
B̂ =̂ (JtKΓ̂

B̂ , Jt ′KΓ̂
B̂ );

• Jg(t)KΓ̂
B̂ =̂ g(JtKΓ̂

B̂ );

• Jheight(t)KΓ̂
B̂ =̂ heightB̂(JtKΓ̂

B̂ );

• Jsign(t)KΓ̂
B̂ =̂ σ, where JtKΓ̂

B̂ = σ(Aφ, Bψ, i , m, c);

• Jmsg(t)KΓ̂
B̂ =̂ msg(JtKΓ̂

B̂ );

• Jsender(t)KΓ̂
B̂ =̂ Aφ, where JtKΓ̂

B̂ = σ(Aφ, Bψ, i , m, c);

• Jrecipient(t)KΓ̂
B̂ =̂ Bψ, where JtKΓ̂

B̂ = σ(Aφ, Bψ, i , m, c);

• Jseqno(t)KΓ̂
B̂ =̂ i , where JtKΓ̂

B̂ = σ(Aφ, Bψ, i , m, c);

• Jappmsg(t)KΓ̂
B̂ =̂ m, where JtKΓ̂

B̂ = σ(Aφ, Bψ, i , m, c);

• Jchannel(t)KΓ̂
B̂ =̂ c, where JtKΓ̂

B̂ = σ(Aφ, Bψ, i , m, c);

• Jt1 σ t2 KΓ̂
B̂ =̂ Jt1 KΓ̂

B̂
σJt2 KΓ̂

B̂ , where σ ∈ {+,−, . . .};

• Jendpoint name(t)KΓ̂
B̂ =̂ A where JtKΓ̂

B̂ = Aφ;

• Jendpoint end(t)KΓ̂
B̂ =̂ φ where JtKΓ̂

B̂ = Aφ;

• JrolekKΓ̂
B̂ =̂ R̂olek ∩ {strand(n̂) | n̂ ∈ N reg

B̂
};

• Jnode(t ,n)KΓ̂
B̂ =̂ (JtKΓ̂

B̂ , JnKΓ̂
B̂ ), providing JnKΓ̂

B̂ ≤ heightB̂(JtKΓ̂
B̂ );

• Jstrand(t)KΓ̂
B̂ =̂ strand(JtKΓ̂

B̂ ).

Let B̂ be a high-level bundle, φ be a high-level bundle predicate, and Γ̂ be a a high-
level term map defined on all free-variables of φ. Then, B̂ and Γ̂ satisfy φ, denoted
(B̂, Γ̂ ) �̂ φ, according to the following inductive definition:

• (B̂, Γ̂ ) �̂ t1 � t2 iff Jt1 KΓ̂
B̂ �B̂ Jt2 KΓ̂

B̂ ;

• (B̂, Γ̂ ) �̂ AuthChan(t) iff JtKΓ̂
B̂ satisfies A;

• (B̂, Γ̂ ) �̂ ConfChan(t) iff JtKΓ̂
B̂ satisfies C;

• (B̂, Γ̂ ) �̂ Confidential(t) iff JtKΓ̂
B̂ is confidential (Definition 3.14) in B̂ and JtKΓ̂

B̂ ∈
Aapp ;

• (B̂, Γ̂ ) �̂ UniquelyOriginates(t1 , t2 ) iff Jt1 KΓ̂
B̂ ∈ T \ A

∗
P and uniquely originates

on Jt2 KΓ̂
B̂ ;

104



• (B̂, Γ̂ ) �̂ t1 σ t2 , σ ∈ {v,=, <} iff Jt1 KΓ̂
B̂ σ Jt2 KΓ̂

B̂ ;

• (B̂, Γ̂ ) �̂ ∀v ∈ S · φ iff for all t ∈ JSKΓ̂
B̂ , (B̂, Γ̂ ∪ {v 7→ t}) �̂ φ;

• (B̂, Γ̂ ) �̂ ∃v ∈ S · φ iff there exists t ∈ JSKΓ̂
B̂ , (B̂, Γ̂ ∪ {v 7→ t}) �̂ φ.

• (B̂, Γ̂ ) �̂ ¬φ1 iff (B̂, Γ̂ ) 6�̂ φ1 ;

• (B̂, Γ̂ ) �̂ φ1 ∧ φ2 iff (B̂, Γ̂ ) �̂ φ1 and (B̂, Γ̂ ) �̂ φ2 ;

• (B̂, Γ̂ ) �̂ φ1 ∨ φ2 iff (B̂, Γ̂ ) �̂ φ1 or (B̂, Γ̂ ) �̂ φ2 .

In the semantics of Confidential(t) we require t to be in Aapp , to ensure that the
predicate does not claim that a transport-layer value is confidential. If the predicate
were to require that a transport-layer nonce, for instance, was confidential then
clearly this could be true in the high-level bundle, as it may have been abstracted
away, but may not be true in the low-level bundle. Further, this matches the intention
of the logic; we are interested in specifying that the application-layer protocol is
correct, not that certain transport-layer details are correct.

Note that in the semantics of UniquelyOriginates(t1 , t2 ), we restrict our attention
to atoms that the penetrator cannot obtain from a term that he initially knows (i.e.
atoms in T \A∗P). This is to simplify the low-level semantics, which we define below,
as the low-level semantics has to correspond to the high-level semantics. However,
as we are only interested in writing correctness properties that require values that
regular agents created to uniquely originate, this is not a problematic restriction.

6.3 Low-Level Semantics

In this section we develop a semantics for high-level bundle predicates when applied
to low-level bundles. As we aim to prove that the correctness of bundle predicates
can be abstracted, we take care to define the semantics of the logic in a way that is
both intuitive and compatible with the high-level semantics.

6.3.1 Unique Origination

In order to define a low-level semantics that corresponds to the high-level seman-
tics we need to consider how to interpret UniquelyOriginates(t1 , t2 ) in the low-level
bundle. Unfortunately, we cannot map it directly to the standard notion of unique
origination in the low-level bundle, as this would also consider values that originate
as part of the transport-layer packaging. Hence, we introduce a new definition that
gives the set of values that originate in the application layer in low-level bundles.

Definition 6.5. Let B be a low-level bundle. An atom t /∈ A∗P originates in the
application layer at a regular node n ∈ NB iff t v appmsg(n) and, for all n ′ such that
n ′ ⇒+ n, t 6v appmsg(n ′). An atom t /∈ A∗P uniquely originates in the application
layer at a regular node n ∈ NB iff t originates in the application layer on a unique
n.

105



6.3.2 The Semantics

We now consider how to define the semantics of high-level bundle predicates when
applied to low-level bundles.

We need to assume a few things about how the strand spaces are defined. Firstly,
we assume that for each regular role there is a set of strands Rolek . Clearly, we will
need this set to be related to R̂olek and we formalise this, in Assumption 6.10. We
also define several partial functions:

• app node(st ,n) gives the the index of the nth application-layer node on st :

app node(st, n) =̂ i where (st, i) ∈ Npayload ∧ app node−1(st, i) = n.

• app node−1 (st ,n) gives the application-layer index of the nth node if one
exists:

app node−1(st, n) =̂ #{i | 1 ≤ i ≤ n ∧ (st, i) ∈ Npayload} if (st, n) ∈ Npayload.

• app heightB(st) gives the application-layer height of the transport-layer strand
st from B:

app heightB(st) =̂ #{i | (st, i) ∈ NB ∩Npayload}.

We also need to define what it means for a term t to be confidential in a low-level
bundle, analogously to Definition 3.14.

Definition 6.6. A term t is confidential in a low-level bundle B iff no equivalent
bundle contains a positive node n such that msg(n) = +t .

Definition 6.7. The set of low-level logical term values in a low-level strand space
Σ is given by:

A ∪ N ∪ C ∪ I ∪ Â ∪ Channels ∪N ∪ Σ ∪ {+,−} ∪ P (A) ∪ P (Σ) .

Let B be a low-level bundle, t be a logical term and Γ be a type-respecting
low-level term map, from variables to low-level logical term values, defined on all
free-variables in t , such that t is well-typed. Then, the low-level logical term value
of t in B, denoted JtKΓ

B , is defined inductively as follows (for ease we omit cases that
are equivalent to the high-level semantics):

• Jnode(t ,n)KΓ
B =̂ (JtKΓ

B , app node(JtKΓ
B , JnKΓ

B )), providing JnKΓ
B ≤

app heightB(JtKΓ
B );

• Jstrand(t)KΓ
B =̂ strand(JtKΓ

B );

• Jheight(t)KΓ
B =̂ app heightB(JtKΓ

B );

• JrolekKΓ
B =̂ Rolek ∩ {strand(n) | n ∈ N reg

B };

• Jmsg(t)KΓ
B =̂ α̂B(JtKΓ

B ).

106



Let B be a low-level bundle, φ be a high-level bundle predicate, and Γ be a low-
level term map defined on all free-variables of φ. Then, B and Γ satisfy φ, denoted
(B,Γ ) � φ, according to the following inductive definition:

• (B,Γ ) � t1 � t2 iff Jt1 KΓ
B �B Jt2 KΓ

B ;

• (B,Γ ) � AuthChan(t) iff JtKΓ
B satisfies A;

• (B,Γ ) � ConfChan(t) iff JtKΓ
B satisfies C;

• (B,Γ ) � Confidential(t) iff JtKΓ
B is confidential in B and JtKΓ

B ∈ Aapp ;

• (B,Γ ) � UniquelyOriginates(t1 , t2 ) iff Jt1 KΓ
B ∈ T \ A∗P and uniquely originates

in the application layer on Jt2 KΓ
B ;

• (B,Γ ) � t1 σ t2 , σ ∈ {v,=, <} iff Jt1 KΓ
BσJt2 KΓ

B ;

• (B,Γ ) � φ1 ∧ φ2 iff (B,Γ ) � φ1 and (B,Γ ) � φ2 ;

• (B,Γ ) � φ1 ∨ φ2 iff (B,Γ ) � φ1 or (B,Γ ) � φ2 ;

• (B,Γ ) � ¬φ1 iff B 6� φ1 ;

• (B,Γ ) � ∀v ∈ S · φ iff for all t ∈ JSKΓ
B , (B,Γ ∪ {v 7→ t}) � φ;

• (B,Γ ) � ∃v ∈ S · φ iff there exists t ∈ JSKΓ
B , (B,Γ ∪ {v 7→ t}) � φ.

6.4 Term Equivalence

In order to prove that the low and high-level semantics of our logic correspond, we
firstly consider the slightly simpler problem of relating the terms of the logic. We
start by defining a relation ↗ψ̂ that pairs low-level term values (which could be
terms, nodes, strands etc) with the high-level term value that they abstract to. We
then prove a number of lemmas that build towards proving that, given a logical term
t and a high-level bundle B̂ that abstracts a low-level bundle B, JtKΓ

B ↗ψ̂ JtKΓ̂
B̂ .

Definition 6.8. Let B be a low-level bundle and B̂ be a bundle that abstracts it
using a node map ψ̂. x is abstracted by y , denoted x ↗ψ̂ y , iff one of the following
clauses applies:

• x , y ∈ A ∪ N ∪ C ∪ I ∪ Â ∪ Channels ∪ {+,−} and x = y ;

• x ∈ NB, y ∈ NB̂ and x ψ̂ y ;

• x is a low-level strand, y is a high-level strand, app heightB(x ) = heightB̂(y)
and, for all indices i ≤ heightB̂(y), (x , app node(x , i))↗ψ̂ (y , i);

• x is a set of strands, y is a set of strands and there exists a bijection µ between
x and y such that, for each pair (st , st ′) ∈ µ, st ↗ψ̂ st ′.

We lift the above definition to apply to logical term environments. Γ ↗ψ̂ Γ̂ iff Γ

and Γ̂ are defined on the same variables and for each variable v , Γ (v)↗ψ̂ Γ (v).

107



Note that the above definition has a clause for each possible logical term type.

Lemma 6.9. Let B be a low-level bundle and B̂ be a high-level bundle that abstracts
B using a node map ψ̂. Further, let n ∈ B and n̂ ∈ B̂ be regular nodes such that
n ψ̂ n̂. Then, strand(n)↗ψ̂ strand(n̂).

Proof. This follows immediately from the definitions.

In order to prove compatibility we need to assume that the set of regular strands
(i.e. Rolek and R̂olek ) are properly defined as follows.

Assumption 6.10. Let B be a low-level bundle and B̂ be a high-level bundle that
abstracts B using an abstraction function ψ̂. Then, for all k :

{strand(n) | n ∈ NB} ∩Rolek ↗ψ̂ R̂olek ∩ {strand(n̂) | n̂ ∈ NB̂}.

One consequence of the way that logical terms were defined is that we only ever
consider regular nodes and regular strands, i.e. it is impossible to write a term that
is interpreted as a penetrator node. This can be formalised as follows.

Lemma 6.11. Let t be a logical term, B be a low-level bundle, B̂ be a high-level
bundle and Γ be a high or low-level term environment. Then, if Γ ` t : Node then
JtKΓ
B and JtKΓ̂

B̂ are regular and JtKΓ
B ∈ Npayload . Also, if Γ ` t : Strand then JtKΓ

B and

JtKΓ̂
B̂ are regular.

Proof (Sketch). This can be proven by a trivial structural induction over t .

Using the above results we are now able to prove the main result of this section.

Lemma 6.12. Let t be a logical term, B be a low-level bundle and B̂ be a high-
level bundle that abstracts B using a node map ψ̂. Further, let Γ and Γ̂ be logical
term environments defined on all free variables in t such that Γ ↗ψ̂ Γ̂ . Then,

JtKΓ
B ↗ψ̂ JtKΓ̂

B̂ .

Proof. Let t , B, B̂, Γ , Γ̂ and ψ̂ be as per the lemma. We prove the result by
structural induction on the logical term, t .

Case height(t) By the inductive hypothesis JtKΓ
B ↗ψ̂ JtKΓ̂

B̂ . Hence, by definition

of ↗ψ̂, app heightB(JtKΓ
B ) = heightB̂(JtKΓ̂

B̂ ), as required.

Case rolek This follows immediately from Assumption 6.10.

Case node(t ,n) By applying the inductive hypothesis it follows that JnKΓ
B = JnKΓ̂

B̂
and that JtKΓ

B ↗ψ̂ JtKΓ̂
B̂ . Thus, by definition of the ↗ψ̂ relation on strands, it

follows that (assuming JnKΓ
B ≤ heightB̂(JtKΓ̂

B̂ )):

Jnode(t ,n)KΓ
B = (JtKΓ

B , app node(JtKΓ
B , JnKΓ

B ))

↗ψ̂ (JtKΓ̂
B̂ , JnKΓ̂

B̂ )

= Jnode(t ,n)KΓ̂
B̂ .

108



Case strand(t) By the inductive hypothesis JtKΓ
B ψ̂ JtKΓ̂

B̂ . Further by Lemma 6.11

both JtKΓ
B and JtKΓ̂

B̂ are regular and therefore Lemma 6.9 can be applied to

deduce that strand(JtKΓ
B )↗ψ̂ strand(JtKΓ̂

B̂ ), as required.

Case msg(t) As Γ ` t : Node it follows, by the inductive hypothesis, that JtKΓ
B ψ̂

JtKΓ̂
B̂ . Therefore, by definition of a regular node map (Definition 4.12), it must

be the case that:

α̂B(msg(JtKΓ
B)) = msg(ψ̂(JtKΓ

B) = msg(JtKΓ̂
B̂).

Hence, by definition of Jmsg(t)KΓ
B and Jmsg(t)KΓ̂

B̂ it follows that Jmsg(t)KΓ
B =

Jmsg(t)KΓ̂
B̂ , as required.

The remaining cases follow trivially from the induction hypothesis.

6.5 Logical Equivalence

In this section we prove that, if B̂ abstracts B and B does not satisfy a bundle
predicate φ, then B̂ also does not satisfy φ. We start by proving several lemmas that
cover the more complicated cases in the above proof.

6.5.1 Origination

Firstly, we prove that our definition of application-layer origination (cf. Defini-
tion 6.5) is correct, in that it matches the definition of origination in high-level
bundles.

Lemma 6.13. Let B be a normal low-level bundle and B̂ be a high-level bundle
that abstracts it using a node map ψ̂. Further, let n ∈ NB ∩ Npayload and n̂ ∈ NB̂
be regular nodes such that n ψ̂ n̂. Then, for every atom t /∈ A∗P , t originates in the
application layer at n in B iff t originates at n̂ in B̂.

Proof. Let B, B̂, ψ̂, t , n and n̂ be as per the lemma. Firstly, suppose that t originates
in the application layer at n in B. As n is a regular node it follows that t v
appmsg(n) and t 6v appmsg(n ′) for any n ′ ∈ Npayload such that n ′ ⇒+ n. Hence,
as appmsg(n) = appmsg(n̂) (since φ̂(n) = n̂) it follows that t v appmsg(n̂). Let
n̂ ′ be such that n̂ ′ ⇒+ n̂. By Lemma 6.9, st ↗ψ̂ ŝt , and thus ψ̂−1 (n̂ ′) must
lie on st . Therefore, by Definition 4.12, ψ̂−1 (n̂ ′) ⇒+ n so t 6v appmsg(ψ̂−1 (n̂ ′))
and appmsg(ψ̂−1 (n̂ ′)) = appmsg(n̂ ′) so t 6v appmsg(n̂ ′). Hence, it follows that t
originates at n̂ in B̂, as required.

Otherwise, if t originates at n̂ in B̂ then a similar proof to the above can be used
to show that t must originate in the application-layer at n.

We now prove a simple extension of the above lemma that shows the high and
low-level semantics of UniquelyOriginates(t ,n) are compatible.

109



Corollary 6.14. Let B be a normal low-level bundle and B̂ be a high-level bundle
that abstracts it using a node map ψ̂. Further, let n ∈ NB and n̂ ∈ NB̂ be such that
n ↗ψ̂ n̂. Then, for every atom t /∈ A∗P , t uniquely originates in the application-layer
at n in B iff t uniquely originates at n̂ in B̂.

Proof. Let B, B̂, ψ̂, n, n̂ and t be as per the lemma. As t /∈ A∗P it must be the case
that t originates only on regular nodes (as atoms cannot originate on constructive
penetrator strands) in both B and B̂. Further, by definition of application-layer
origination, it follows that if t originates in the application-layer at a regular node n,
then n ∈ Npayload . The result therefore follows immediately from Lemma 6.13.

6.5.2 Confidentiality

We now prove that the application-layer values that are confidential are identical in
the low and high-level semantics. We firstly prove that if a value is confidential at
the low-level, then it is confidential at the high-level. This result follows immediately
from the observation that the penetrator knows at least as many values at the low-
level as the high-level, so can still perform the requisite decryptions.

Lemma 6.15. Let B be a low-level bundle and B̂ be a bundle that abstracts it using
an abstraction function ψ̂. If t is confidential in B then t is confidential in B̂.

Proof. Let B, B̂, ψ̂ and t be as per the lemma. Suppose, for a contradiction, that t
is confidential in B but not in B̂. Thus, it follows that there must exist an equivalent
high-level bundle B̂′ and a node n̂ ∈ B̂′ such that msg(n̂) = +(?, ?, , t , ⊥).
Further, a low-level bundle B′ can be constructed such that B̂′ abstracts B′ by altering
B in the same way that B̂ was altered to obtain B̂′, mapping each high-level strand
to a low-level subpath. Further, note that B and B′ must be equivalent, as the
high-level bundles that abstract them contain the same regular nodes. However, this
contradicts the fact that t was confidential in B. Hence, t is confidential in B̂, as
required.

We now consider how to prove the opposite direction; i.e. whenever a value is
confidential in the high-level bundle, then it is confidential in the low-level bundle.
The correctness of this lemma can be informally justified by recalling from the logical
semantics that we restrict our attention to the confidentiality of application-layer
values (i.e. terms from Aapp). Therefore, we would expect that the penetrator gains
no more relevant information from the low-level bundle and hence, there should
be no way for him to compromise the confidentiality of the value in the low-level
bundle. The following proof is similar in structure to Lemma 5.23. As before, we
only consider the case of non-concatenations but lift this restriction in Lemma 6.17

Lemma 6.16. Let B be a low-level bundle and B̂ be a bundle that abstracts it
using an abstraction function ψ̂. If t is not a concatenation, is confidential in B̂ and
t ∈ Aapp , then t is confidential in B.

Proof. Let B, B̂, ψ̂ and t be as per the lemma. Note that since t is confidential in
B̂, t /∈ AP . Suppose, for a contradiction, that t is not confidential in B. Thus, it
follows that there must exist an equivalent low-level bundle B′ and a node n such
that msg(n) = +t . Without loss of generality, assume that B′ is normal (but still

110



includes the penetrator node n) and let norig be the node that originates the copy of
t that ends up at n. Further, let porig be the path between norig and n, and, for each
j , let tpathj be the extraction path used to extract the copy of t that is used at n from
porig(j ). Note that, by definition, porig does not traverse any key edges or KG strands
(although norig could be the positive node on a KG strand). Let i be the index, if it
exists, of the last regular node on porig such that t occurs in the application layer;
i.e. p(i) ∈ N⊥ or porig(i) ∈ Ntrpt and expathc (chan(p(i))) ≤ tpathi . There are three
cases to consider:

Case 1 No such node porig(i) exists. Consider the node norig and suppose, for a
contradiction, that it is regular. Then it must be the case that either norig ∈
Nnon-payload , or norig ∈ Ntrpt but expathc (chan(norig)) 6≤ tpath1 . However, as
t ∈ Aapp \AP and is not a concatenation, this contradicts Assumption 5.9 (7).
Hence norig must be a penetrator node, and further, as t originates on norig ,
norig must be the positive node of either a M, E or KG strand, since t is not a
concatenation.

Suppose norig lies on a E strand. Let t = {|m|}k and note that at least one of
m and k must be confidential in B̂. Thus, the same argument as the previous
paragraph can be applied to derive an equivalent contradiction. Thus, norig

cannot lie on a E strand. Further, an identical argument can be applied to
show that norig cannot lie on a KG strand.

Otherwise, suppose norig lies on a M strand. Since t is confidential in B̂ it
follows that there must exist es < tpath1 , m and k such that {|m|}k ves

msg(norig), k−1 /∈ AP and k−1 is confidential in B̂. Let es be the shortest such
extraction path. As t ∈ Aapp , Assumption 5.9 (6) can be applied to deduce
that every encryption that encloses t in msg(norig) is in Eapp . Therefore, since
es < tpath1 we have {|m|}k ∈ Eapp . We consider how the penetrator removes
the encryption {|m|}k in B′.
Firstly, suppose that the penetrator uses a D strand to decrypt {|m|}k . As
{|m|}k ∈ Eapp , k−1 is the inverse key of an application-layer encryption and,
by definition of Aapp , k−1 ∈ Aapp . Therefore, as k−1 is confidential in B̂ this
lemma can be inductively applied1 to prove that k−1 is confidential in B, and
thus B′. This contradicts the existence of the negative key node on the D
strand.

The only other possibility is that there exists a regular node at an index i such
that {|m|}k v msg(porig(i)), and an index i ′ > i such that {|m|}k has been
decrypted (i.e. the penetrator uses the regular agent to do the decryption).
However, in such a case it immediately follows, since t does not appear in the
application-layer on porig , that porig(i) ∈ Nnon-payload or porig(i) ∈ Ntrpt but
expathc (chan(porig(i))) 6≤ tpathi . Therefore, at porig(i), {|m|}k ∈ Etrpt-non-msg

or {|m|}k ∈ Etrpt . However, this implies that either {|m|}k ∈ Etrpt ∩ Eapp ,
contradicting Assumption 5.9 (2), or {|m|}k ∈ Etrpt-non-msg ∩Eapp . In the latter

1 If there is an encryption cycle, e.g. if {|m|}k = {|k−1 |}k , then this is not well founded. It would
be possible to rewrite this proof to take this into account by considering a set of terms that are
required to be confidential, rather than an individual term. For ease of exposition, we do not give
this version.

111



norig porig(i) porig(j ) n

porig(im)

pd pc

porig

p ′

(a) The penetrator paths for Case (2).

Figure 6.3: An illustration of Lemma 6.16.

case, by Assumption 5.9 (4), k−1 ∈ AP , contradicting the earlier assumption
that k−1 /∈ AP . Hence, the penetrator cannot use a regular node to do the
decryption.

As we derive a contradiction in all cases, this case cannot occur.

Case 2 Such a node porig(i) exists and there exists an index j > i such that porig(j )
is regular. Thus, let j be the first such regular node and note that t does not
occur in the application layer at porig(j ). Hence, either porig(j ) ∈ Nnon-payload

or porig(j ) ∈ Ntrpt but expathc (chan(porig(j ))) 6≤ tj . Consider the normal
penetrator path p ′ between porig(i) and porig(j ). Further, let pdˆpc = p′ where
pd is destructive and pc is constructive and let porig(im) be the middle node
(i.e. pc(1 )), as illustrated in Figure 6.3. We aim to apply Lemma 5.22, with
n1 = porig(i), n2 = porig(j ), nm = porig(im) and est = tim . By definition
of i and tpathi it follows that, if porig(i) /∈ N⊥, expathc (chan(porig(i))) ≤
tpathi = expath (pd )ˆtim , as required. Further, by definition of j it follows
that expathc (chan(porig(j ))) 6≤ tj = expath∼ (pc)ˆtim , as required. Hence, all
assumptions of Lemma 5.22 are satisfied and therefore any encryption that
encloses t within msg(porig(im)) is in Etrpt-non-msg ∩ Eapp .

Therefore, by Assumption 5.9 (4), the inverse of every key enclosing t is in AP .
However, this clearly contradicts the confidentiality of t in B̂. In particular, pd

could be mapped to a RV or LN strand followed by D strands with keys from
M strands, in order to to extract t from the application-layer payload.

Case 3 Such a node porig(i) exists but no further node on porig is regular. In this
case, as B is normal there exists a normal penetrator path p′ from porig(i) to n.
Note that p′ must be destructive as if it were to finish with a constructive path
then t would originate at n since msg(n) = t . Thus p′ is destructive and note
that, by definition of tpathi , tpathi = expath (p ′). Hence, if porig(i) ∈ Ntrpt

then expathc (chan(porig(i))) ≤ tpathi = expath (p′). Therefore, there exists
a path p′′ ≤ p′ such that expathc (chan(porig(i))) = expath (p′′) and thus, p′′

can be mapped to either a RV or LN strand in B̂. Thus, there exists a bundle
in B̂′ that is equivalent to B̂, but such that there can exist a node n ′ such
that msg(n ′) = (?, ?, , appmsg(porig(i)),⊥) (noting that it trivially follows if
porig(i) ∈ N⊥).
Therefore, as t is confidential in B̂, it follows that t must be enclosed by an
encryption {|m|}k in appmsg(porig(i)) such that the inverse key k−1 is confi-
dential in B̂ (otherwise it would be trivial to extract t). Hence, k−1 /∈ AP

112



and further, since {|m|}k v appmsg(tpathi), {|m|}k ∈ Eapp . Hence, k−1 is the
inverse key of an application-layer encryption and therefore k−1 ∈ Aapp . Thus,
the arguments of this lemma can be applied inductively to k−1 to deduce that
k−1 must be confidential in B (and hence B′), contradicting this case.

Hence, in each of the above cases we derive a contradiction and therefore it follows
that t is confidential in B, as required.

We now lift the restriction on concatenations.

Lemma 6.17. Let B be a low-level bundle and B̂ be a bundle that abstracts it using
an abstraction function ψ̂. If t is confidential in B̂ and t ∈ Aapp , then t is confidential
in B.

Proof. Let B, B̂, ψ̂ and t be as per the lemma. If t is not a concatenation the result
follows immediately from Lemma 6.16. Otherwise, let t = t1 ˆt2 and observe that
t is confidential in B̂ only if at least one of its components (i.e. t1 or t2 ) is. Thus,
suppose that tj , j ∈ {1 , 2}, is confidential in B̂ and hence, by definition of Aapp , as
t ∈ Aapp , tj ∈ Aapp . Thus, this lemma may be applied inductively to prove that tj

is confidential in B. Thus, it follows that t1 ˆt2 is confidential in B, as required.

6.5.3 Causal Precedence

We now consider under what circumstances the � relation between application-layer
nodes is preserved between low and high-level bundles. Consider two nodes n1 and
n2 in a low-level bundle such that n1 � n2 . If the path between n1 and n2 transfers
only transport-layer values then the path does not need to be abstracted. Hence, it is
not necessarily the case that the same relation holds amongst the abstracted nodes
and, therefore, we can only prove that if n̂1 � n̂2 in the high-level bundle, then
n1 � n2 . This result follows from the observation that any path in the high-level
bundle must be reflected (by the definition of a node map) in a (possibly extended)
path in the low-level bundle.

Lemma 6.18. Let B be a normal low-level bundle and B̂ be a high-level bundle that
abstracts it using a node map ψ̂. Then, if n1 ,n2 ∈ Npayload , ψ̂(n1 ) = n̂1 , ψ̂(n2 ) = n̂2

and n̂1 �B̂ n̂2 , then n1 �B n2 .

Proof. Let B, B̂, ψ̂, n1 , n2 , n̂1 and n̂2 be as per the lemma. Recall that � is the
reflexive transitive closure of → ∪ ⇒. Thus, there exists a sequence of nodes n̂1 =
n̂ ′1 , . . . , n̂

′
m = n̂2 such that for each i ∈ {1 ..m − 1}, n̂i σB̂ n̂i+1 where σB̂ =̂ →B̂ ∪

⇒+

B̂
. If there exists i such that n̂i →B̂ n̂i+1 then, by Definition 4.23, ψ̂−1 (n̂i) →B

ψ̂−1 (n̂i+1 ).
Alternatively, suppose n̂i ⇒B̂ n̂i+1 . We prove the existence of a series of nodes

n ′1 , . . . ,n
′
j such that ψ̂−1 (n̂i) = n ′1 , ψ̂−1 (n̂i+1 ) = n ′j and for each k ∈ {1 ..j − 1},

nk σB nk+1 where σB =̂→B ∪⇒B. Thus, define n ′1 and n ′j as above. There are two
cases to consider. If n̂i and n̂i+1 are regular, then by Definition 4.12, strand(n ′1 ) =
strand(n ′j ) and n ′1 ⇒

+
B n ′j .

Otherwise, n̂i and n̂i+1 are penetrator nodes. By Definition 4.23 n ′1 and n ′j
are either related by an application-layer penetrator node map, or a transport-layer

113



penetrator node map. In the former case, Definition 4.13 requires the ⇒ relation
to be preserved and thus n ′1 ⇒ n ′j . Otherwise, by Definition 4.21, there must exist
a penetrator subpath (i.e. a Receive, Learn, Fake subpath etc.) between n ′1 and
n ′j . Hence, we can find a sequence of nodes from the subpath such that for each
k ∈ {1 ..j − 1}, n ′k σB n ′k+1 , as required.

6.5.4 The Main Result

Using the results from the previous section we are now able to prove our main result,
namely that bundle satisfaction is preserved by abstraction. In light of Lemma 6.18
we are only able to consider formulas where � only occurs positively (i.e. within the
scope of an even number of negations only). However, this is not a restriction in
practice; all the predicates that we are likely to want to express will take the form of
an implication where � will occur only on the right hand side (i.e. as a conclusion
of the predicate), and thus will occur positively.

Proposition 6.19. Let φ be a closed high-level bundle predicate in which � occurs
only positively. Further, let B be a normal low-level bundle in a strand space that
satisfies layer-disjoint encryption and B̂ be a high-level bundle that abstracts B. If
(B̂, Γ̂ ) �̂ φ then (B,Γ ) � φ.

Proof. Let B, B̂ and φ be as per the lemma. Without loss of generality we assume
that φ is in negation normal form. We prove the claim by structural induction
on the formula φ using the inductive hypothesis that Γ ↗ψ̂ Γ̂ , and if (B′, Γ̂ ) �̂ φ
then (B,Γ ) � φ. Most cases follow immediately from Lemma 6.12 or the inductive
hypothesis, so are omitted.

Case t1 � t2 : By Lemma 6.12 it follows that Jt1 KΓ
B ψ̂ Jt1 KΓ̂

B̂ and Jt2 KΓ
B ψ̂ Jt2 KΓ̂

B̂ .

Further, by Lemma 6.11, Jt1 KΓ
B , Jt2 KΓ

B , Jt1 KΓ̂
B̂ and Jt2 KΓ̂

B̂ are all regular and,

further, Jt1 KΓ
B , Jt2 KΓ

B ∈ Npayload . Thus, suppose Jt1 KΓ̂
B̂ � Jt2 KΓ̂

B̂ . Therefore,
Lemma 6.18 can be applied to deduce that Jt1 KΓ

B � Jt2 KΓ
B , as required.

Cases Confidential(t), ¬Confidential(t): By Lemma 6.12 it follows that JtKΓ
B = JtKΓ̂

B̂ .
Let t ′ = JtKΓ

B . Suppose (B,Γ ) � Confidential(t). Then, t ′ must be confidential
in B and t ′ must be the inverse key of an application-layer encryption, or
t ′ ∈ Aapp . Hence, by Lemma 6.17, t ′ is confidential in B̂. Hence, (B̂, Γ̂ ) �̂
Confidential(t).

Conversely, suppose (B̂, Γ̂ ) �̂ Confidential(t). It thus follows that t is confiden-
tial in B̂ and t must be the inverse key of an application-layer encryption, or
t ∈ Aapp . Thus, Lemma 6.15 can be applied to show that t is confidential in
B and thus that (B,Γ ) � Confidential(t), as required.

Cases UniquelyOriginates(t1 , t2 ), ¬UniquelyOriginates(t1 , t2 ): By Lemma 6.12 it im-
mediately follows that Jt1 KΓ

B = Jt1 KΓ̂
B̂ and Jt2 KΓ

B ↗ψ̂ Jt2 KΓ̂
B̂ . Hence, let t be

equal to Jt1 KΓ
B . If t /∈ T \ A∗P then the result immediately follows. Otherwise,

t ∈ T \ A∗P and the result follows immediately from Corollary 6.14.

114



6.6 Proofs by Abstraction

We now consider how to combine the results of Proposition 5.34 and Proposition 6.19
to show that the high-level strand spaces model is sound. In particular, we show that
whenever a low-level bundle B does not satisfy a bundle predicate then there is a
high-level bundle B̂′ that also does not satisfy the bundle predicate. We prove the
above by using Proposition 5.34 to obtain a bundle B′ that is abstractable and such
that B D B′. Then, we can apply Proposition 6.19 to deduce that if B′ does not
satisfy a particular bundle predicate, then there exists a high-level bundle B̂′ that
abstracts B and such that B̂′ also does not. Hence, it suffices to show that whenever
B D B′ and B does not satisfy a property, B′ also does not satisfy this property. We
begin by proving this result.

Lemma 6.20. Let B and B′ be equivalent low-level bundles, t be a logical term and
Γ a low-level term environment defined on all free variables of t . Then, JtKΓ

B = JtKΓ
B′ .

Proof. This follows from a trivial structural induction on t .

Lemma 6.21. Let φ be a closed high-level bundle predicate in which � occurs only
positively. Let B, B′ be two low-level bundles such that B D B′ and (B′, ∅) � φ.
Then (B, ∅) � φ.

Proof. Let φ, B and B′ be as per the lemma. Let φ′ be the negation normal form
of φ. Since, for any low-level bundle B, (B,Γ ) � φ iff (B,Γ ) � φ′, it follows it is
sufficient to consider φ′. We prove the claim by structural induction on the formula
φ′ using the inductive hypothesis that if (B′,Γ ) � φ′ then (B,Γ ) � φ′. We omit cases
that follow immediately from Lemma 6.20 or the inductive hypothesis.

Case t1 � t2 : By Lemma 6.20, Jt1 KΓ
B = Jt1 KΓ

B′ and Jt2 KΓ
B = Jt2 KΓ

B′ . Further, by
Lemma 6.11, Jt1 KΓ

B , Jt2 KΓ
B ∈ Npayload . Thus, assume Jt1 KΓ

B �B′ Jt2 KΓ
B and note

that, as B D B′, �B′ ⊆ �B. Hence, Jt1 KΓ
B �B Jt2 KΓ

B , as required.

Cases Confidential(t), ¬Confidential(t): These follow immediately from Lemma 6.20
and the observation that confidentiality is closed under bundle equivalence.

Cases UniquelyOriginates(t1 , t2 ), ¬UniquelyOriginates(t1 , t2 ): By Lemma 6.20
Jt1 KΓ

B = Jt1 KΓ
B′ and Jt2 KΓ

B = Jt2 KΓ
B . Suppose (B,Γ ) � UniquelyOriginates(t1 , t2 ).

Then, by definition of � it follows that t ∈ T \A∗P . Thus, t can only originate
on regular nodes (as t is an atom it cannot originate on a constructive penetra-
tor strand). Therefore, since B and B′ are equivalent, it follows that the set of
regular nodes is identical between the two strands and thus application-layer
origination on regular nodes is unaffected. The other direction can be proven
in an identical fashion.

Lastly, we can prove our main result that shows that a proof of protocol correct-
ness in the high-level model is sound, in that it will consider all attacks that could
have occurred in the low-level model.

Proposition 6.22. Let φ be a closed high-level bundle predicate in which � occurs
only positively. Further, let Σ be a low-level strand space satisfying layer-disjoint

115



encryption and Σ̂E be a high-level strand space abstracting ΣE such that Σ and
ΣE are related according to Definition 5.15. Then, if every high-level bundle of Σ̂E

satisfies φ, then every low-level bundle of Σ satisfies φ.

Proof. Let φ, Σ and Σ̂E be as per the lemma. Suppose, for a contradiction, that
there exists a low-level bundle B of Σ such that (B, ∅) 6� φ, but that every bundle of
Σ̂E satisfies φ. Then, by Proposition 5.34 there exists a normal abstractable bundle
B′ of ΣE such that B D B′. Further, by Lemma 6.21 it follows that (B′, ∅) 6� φ.
Let B̂′ abstract B′ and note that, by Proposition 6.19, (B̂′, ∅) 6�̂ φ, contradicting the
assumption.

Note that the above proposition requires the high-level strand space to abstract
ΣE , rather than Σ . Therefore, when doing the proof of protocol correctness in the
high-level model the penetrator’s initial knowledge must include TX . In practice,
this should not cause any difficulty as TX contains only items that are not in Aapp ,
meaning that nothing of consequence to the application-layer security of the protocol
is added to AP . This means that when constructing proofs of protocol correctness,
any assumptions on the contents of AP should be negative, in that they should
specify what is not in AP , rather than what is.

6.6.1 High-Level Proofs

When proving the correctness of application-layer protocols in the high-level strand
spaces model we will frequently only consider normal bundles, for ease. Further,
recall that the high-level bundles produced as abstractions of low-level bundles in
Proposition 4.31 contain HJRN and TX strands, which we do not normally consider
in high-level correctness proofs. We therefore need to prove that this is sound. The
proof of this is identical to the proof of Lemma 6.21 for low-level bundles, and thus we
simply state the lemmas and definitions without proof or much explanation. We start
by defining a high-level version of D, D̂, and then proving that, given an arbitrary
high-level bundle, we can find a normal high-level bundle that relates to the original
bundle using D̂ and, further, contains no HJRN or TX strands.

Definition 6.23. A high-level bundle B̂ can be reduced to B̂′, denoted B̂ D̂ B̂′, iff B̂
and B̂′ are equivalent and �B̂′ relates no more regular nodes than �B̂, i.e:(

N reg

B̂
×N reg

B̂

)
∩ �B̂ ⊇

(
N reg

B̂′
×N reg

B̂′

)
∩ �B̂′ .

Lemma 6.24. Let B̂ be a high-level bundle. Then there exists a normal bundle B̂′
such that B̂ D̂ B̂′.

Proof. This can be proven by adapting Lemma 3.13 in an identical fashion to
Lemma 5.6 by noting that removing redundancies does not increase �.

Lemma 6.25. Let B̂ be a normal high-level bundle. Then there exists a normal
high-level bundle B̂′ such that B̂ D̂ B̂′ and such that B̂′ contains no TX or HJRN
strands.

Proof. The result immediately follows from the fact that the transformation used in
Lemma 4.16 to remove the TX and HJRN strands does not increase �.

116



Lemma 6.26. Let φ be a closed high-level bundle predicate in which � occurs only
positively and let B̂, B̂′ be two high-level bundles such that B̂ D̂ B̂′ and (B̂′, ∅) �̂ φ.
Then (B̂, ∅) �̂ φ.

Proof. This can be proven in identical fashion to Lemma 6.21.

Proposition 6.27. Let Σ̂ be a high-level strand space and φ be a closed high-level
bundle predicate in which � occurs only positively. Then, if every normal bundle of
Σ̂ that contains no TX or HJRN strands satisfies φ, then every bundle of Σ̂ satisfies
φ.

Proof. Let Σ̂ and φ be as per the lemma. Suppose every normal bundle of Σ̂ that
contains no TX or HJRN strands satisfies φ. Let B̂ be an arbitrary bundle of Σ̂ .
By Lemma 6.24 it follows that there exists a normal bundle B̂′ such that B̂ D̂ B̂′.
Further, by Lemma 6.25 it follows that there exists a normal bundle B̂′′ that contains
no TX or HJRN strands and such that B̂′ D̂ B̂′′. Thus, as D̂ is transitive and since
(B̂′, ∅) �̂ φ, Lemma 6.26 can be applied to deduce that (B̂, ∅) �̂ φ.

Henceforth, in all high-level strand spaces proofs we can, without loss of gener-
ality, consider only normal bundles.

6.7 Summary

In this chapter we have proven the main soundness result of the thesis. In partic-
ular, we proved in Proposition 6.22 that, if a protocol has been proven to satisfy a
given property in the high-level strand spaces model, then it also satisfies the same
property in any corresponding low-level strand spaces model, assuming the transport
protocols satisfy the relevant channel types. We also showed, in Proposition 6.27,
that if a correctness property is satisfied by all high-level normal bundles then that
it is satisfied by all high-level bundles. This is particularly important as it is of-
ten necessary to make such an assumption in order to easily prove application-layer
protocols correct.

In order to prove these results, we began, in Section 6.1, by formally defining
a logic of correctness properties that can express a number of useful correctness
properties. Then, in Section 6.2 and Section 6.3 we formally defined what it meant
for high and low-level bundles to satisfy the correctness properties. In Section 6.4
we then proved that, given a high-level bundle that abstracts a low-level bundle, the
value of any logical term in the low-level bundle is related, according to Definition 6.8,
to its value in the high-level bundle. This was then used in Section 6.5 and Section 6.6
to prove that whenever a low-level bundle satisfies a correctness property, then the
corresponding high-level bundle also satisfies the property.

Related Work Many other logics for expressing protocol correctness properties
have been proposed in the past. In general, most logics are, like the one proposed
in this chapter, tightly coupled to the theory in which the properties are being con-
sidered, making general comparisons less useful. As an example, Casper [Low97] has
a simple past-time temporal logic that can be used to express that certain messages
received by certain agents must agree. In [ACC07] the authors specify correctness

117



properties in LTL, where the individual predicates express that an agent knows a
message, or that a particular agent is in a particular role, amongst others. The
former is a generalisation of Confidential(t) which we can use to express what the
penetrator knows, whilst the latter can be expressed using rolek. Many of the model
checking tools, including Scyther [Cre08a] ProVerif [Bla01] and Casper, have simple
assertion-based logics in which correctness properties can be expressed. In particu-
lar, all of the above tools supports simple assertions that terms are secret, or that
two agents have successfully completed a run of the protocol together.

We discuss related work more generally at the end of Chapter 7, in Section 7.4.

118



Chapter 7

TLS

As TLS [DR08] is the most widespread secure transport protocol, we need to ensure
that our model allows application-layer protocols that use TLS to be analysed. TLS
is really two separate protocols: bilateral TLS, where the server is authenticated to
the client and the client is authenticated to the server, and unilateral TLS, where
only the former occurs. Unfortunately, as we illustrate in Section 7.1, TLS does not
satisfy Assumption 5.9 as it is possible for some encryptions to be shared between the
two forms of TLS in a (harmless) way that it is not allowed by Assumption 5.9. In
this chapter we describe how any low-level bundle that uses TLS can be transformed
into a bundle of a strand space that does satisfy Assumption 5.9 and has precisely
the same application-layer behaviour.

We start in Section 7.1 by describing what the problem is. We then formalise the
transformation of low-level bundles to the new strand space by defining a new notion
of low-level bundle equivalence that is true whenever the bundles have the same
application-layer behaviour. In Section 7.2 we then prove that any low-level bundle
that uses TLS and does not satisfy a bundle predicate φ (i.e. as per Definition 6.2)
can be transformed to a bundle that also does not satisfy φ, and is in the strand
space that satisfies Assumption 5.9. In this section we follow the presentation of
TLS given in Section 3 of [KL11].

7.1 The Transformation

Unilateral and bilateral TLS both have two stages. The first phase, called the hand-
shake phase, involves the two participants exchanging data in order to derive a master
key; this is then used in the second phase to protect the messages sent in the ses-
sion. In the second phase, the identities of the sender and recipient of the message
are not included in the message packaging. Thus, if the penetrator can somehow
cause two sessions to use the same encryption keys then he will be able to pass mes-
sages between the two sessions without the other participants detecting it. If the
two participants are regular agents then this is not possible [KL11]. However, if the
penetrator is a legitimate participant in two different TLS sessions, one as the client
and one as the server (i.e. both regular agents are aware they are communicating
with the penetrator), he is able to manipulate the messages to cause this to occur.

The encryption keys used in the second phase are generated from a nonce nc sent
by the client, a nonce ns sent by the server and the pre-master secret pms, which is

119



C P

S

ncˆ{|pms|}PK(PServer )

{|ncˆ{|pms|}PK(S)|}SK(PClient )

ns

ns

Figure 7.1: A example of a session where the penetrator causes a unilateral TLS
session between C and PServer to use the same encryption key as the bilateral TLS
session between PClient and S . The above uses a simplified version of TLS, rather
than the full version.

generated by the client (and sent securely so it can only be received by the server).
Thus, the penetrator could act as the server in one session, taking the client nonce
and pre-master secret and play these into a second session, in which he acts as the
client. Further, he can pass back the server nonce from the second session to the
client in the first session, as illustrated in Figure 7.1. The participants will then all
generate the same master key for use in the protocols.

If one of the sessions is using unilateral TLS and the other is using bilateral TLS
then ETLSC→S

trpt and ETLSC↔S

trpt are not disjoint, as required by Assumption 4.10 and
Assumption 5.9 (1). Further, there are also some penetrator paths that start at a
bilateral TLS node and end at a unilateral TLS node, as the penetrator can simply
forward messages from one session directly into the other. There is no high-level
strand that corresponds to this behaviour, as no strand allows the channel to be
changed.

Whilst such behaviour contradicts our assumptions, it is clear that any bundle in
which such behaviour occurs could be replaced by a bundle in which disjoint message
encryption is satisfied by:

1. Replacing every path that crosses between the two sessions by a Receive sub-
path, then a Send subpath; then

2. Making the penetrator generate fresh nonces, rather than passing the nonces
directly between the sessions.

The first step ensures that messages are no longer passed directly between the
strands, whilst the second step ensures that the sessions will use disjoint keys and
hence ETLSC→S

trpt and ETLSC↔S

trpt are disjoint. The first transformation step is possible as
the above situation can only arise when the penetrator is legitimately involved with
both sessions, and thus he knows the keys required to send and receive messages. The
second transformation is permitted as the penetrator was the intended participant,
so can change the values that he uses.

Unfortunately, the low-level bundle that results from the above transformation
is not equivalent to the original bundle, since the regular behaviour has changed as
the keys used have been altered. However, the application-layer behaviour has not

120



changed. We can formalise the notion of equivalence between the two bundles as
follows.

Definition 7.1. Two low-level bundles B and B′ are application-layer-equivalent iff
there exists a bijection γ between the regular application-layer nodes of B and B′
(i.e. γ : N reg

B ∩Npayload → N reg
B′ ∩Npayload ) such that:

1. For all (n,n ′) ∈ γ, α̂B(msg(n)) = α̂B′(msg(n ′));

2. γ respects the regular strand structure on application-layer nodes, i.e. for all
n1 ,n2 ∈ Npayload , n1 ⇒+

B n2 iff γ(n1 )⇒+
B′ γ(n2 ).

In the above, the first clause ensure that the application-layer messages are iden-
tical. The second clause then ensures that none of the nodes have been re-ordered, as
two regular strands will be related by this bijection iff every application-layer node
is related by γ. Together, these two points ensure that, if two regular strands in two
application-layer-equivalent bundles are related by γ, then the strands can abstract
to the same high-level strand. Further, the above induces an obvious bijection on
regular strands with application-layer nodes. We now prove that application-layer-
equivalent bundles do indeed abstract to equivalent high-level bundles.

Lemma 7.2. Let B and B′ be low-level application-layer-equivalent abstractable
bundles that abstract to B̂ and B̂′ respectively. Then B̂ and B̂′ are equivalent.

Proof. Let B, B′, B̂ and B̂′ be as per the lemma. Let γ be the bijection between
the regular application-layer nodes of B and B′. As B and B′ abstract to B̂ and B̂′,
respectively, it follows that there must exist node maps ψ̂ and ψ̂′ between the nodes
of B and B̂, and B′ and B̂′, respectively. We define the function γ′ : N reg

B̂
→ N reg

B̂′
by

γ′(n̂) =̂ ψ̂′(γ(ψ̂−1 (n̂))). This is a bijection as γ, ψ̂ and ψ̂′ are bijections on regular
application-layer nodes. Further, γ′ satisfies the following properties:

1. For all (n̂, n̂ ′) ∈ γ′, msg(n̂) = msg(n̂ ′);

2. For all regular nodes n̂, n̂ ′, n̂ ⇒+

B̂
n̂ ′ iff γ′(n̂)⇒+

B̂′
γ′(n̂ ′).

The above properties immediately imply that B̂ and B̂′ are equivalent.

As with standard bundle equivalence, application-layer equivalence does not pre-
serve the correctness of application-layer correctness properties that include � (cf.
Section 5.1.3). Therefore, we introduce a relation Dapp , analogous to D (from Defini-
tion 5.5), that ensures � only decreases in size (recalling that we are only interesting
in using � positively). We also require that transport-layer encryptions are replaced
with encryptions such that the inverse keys are equivalently confidential. This en-
sures that the penetrator cannot learn the value of application-layer messages in one
bundle, but not the other. This is required when we later consider how confidentiality
of application-layer values is preserved by Dapp .

Definition 7.3. A low-level bundle B can be application-layer reduced to B′, denoted
B Dapp B′, iff:

1. B and B′ are application-layer-equivalent using a bijection γ;

121



2. For all regular application-layer nodes n1 ,n2 ∈ Npayload ∩ NB′ , if n1 �B′ n2

then γ−1 (n1 ) �B γ−1 (n2 );

3. For all regular application-layer nodes n ∈ Npayload ∩ NB, if es ≤
expathc (chan(n)) is such that {|m|}k ves msg(n) then, letting {|m ′|}k ′ ves

msg(γ(n)), k is complex iff k ′ is, and k ′−1 is confidential iff k−1 is confidential.

It is clear that the transformation that we described above will result in a bundle
that is application-layer-equivalent to the original bundle. Thus, we can formalise
the notion that any TLS bundle can be converted into an application-layer-equivalent
bundle that satisfies out assumptions as follows.

Claim 7.4. Let Σ be a low-level strand space that satisfies layer-disjoint encryption,
except for disjoint message encryption or disjoint transport-layer payload messages
between unilateral and bilateral TLS. Then, there exists a strand space Σ TLSC↔S ,
satisfying full layer-disjoint encryption and such that there is a bijection χ between
the bundles of Σ and Σ ′ such that, for all (B,B′) ∈ χ, B Dapp B′.

We believe that the truth of the above claim is intuitively clear. However, a
formal proof requires a complete analysis of both forms of TLS, which is beyond
scope of this thesis.

7.2 Bundle Predicate Preservation

We now consider how to show that the transformation of Claim 7.4 preserves the
correctness of high-level bundle predicates. We do so by proving that application-
layer equivalence preserves the correctness of high-level bundle predicates. The proofs
in this section follows the same outline as the proofs in Section 6.4 and Section 6.5.

Definition 7.5. Let B and B′ be application-layer-equivalent bundles using a bijec-
tion γ. We write x ≺γ y iff one of the following clauses applies:

• x , y ∈ A ∪ N ∪ C ∪ I ∪ Â ∪ Channels ∪ {+,−} and x = y ;

• x ∈ NB, y ∈ NB′ , γ(x ) = y and α̂B(msg(x )) = α̂B(msg(y));

• x is a low-level strand in B, y is a low-level strand in B′, app heightB(st) =
app heightB′(st) and for all i ≤ app heightB(st), (x , app node(x , i)) ≺γ
(y , app node(y , i));

• x , y are sets of strands in B and B′ respectively such that there exists a bijection
µ such that for each pair (st , st ′) ∈ µ, st ≺γ st ′.

We lift the above definition to logical term environments as follows: Γ ≺γ Γ ′ iff Γ
and Γ ′ are defined on the same variables and for each variable v , x (v) ≺γ y(v).

Note that ≺γ is an equivalence relation. We now prove that if two bundles are
application-layer-equivalent, then evaluating a logical term in each of the bundles
results in a value that is related using the ≺γ relation.

Lemma 7.6. Let B and B′ be low-level bundles that are application-layer-equivalent
using a bijection γ. Further, let t be a logical term and Γ , Γ ′ be low-level term
environments defined on all free variables of t such that Γ ≺γ Γ ′. Then JtKΓ

B ≺γ JtKΓ ′
B′ .

122



Proof. Let t , B, B′, γ, Γ and Γ ′ be as per the lemma. We prove the result by
structural induction on the logical term, t .

Case node(n, t): By applying the inductive hypothesis it follows that JnKΓ
B ≺γ JnKΓ ′

B′
and that JtKΓ

B ≺γ JtKΓ ′
B . Thus, by definition of the ≺γ relation on strands, it

follows that (assuming n ≤ app heightB(JtKΓ
B )):

Jnode(n, t)KΓ
B = (JtKΓ

B , app node(JtKΓ
B , JnKΓ

B ))

≺γ (JtKΓ ′
B′ , app node(JtKΓ ′

B′ , JnKΓ ′
B′ ))

= Jnode(n, t)KΓ ′
B′ .

Hence, Jnode(n, t)KΓ
B ≺γ Jnode(n, t)KΓ ′

B′ , as required.

Case strand(t): By the inductive hypothesis and the definition of ≺γ it follows that
JtKΓ
B ≺γ JtKΓ ′

B′ . Thus, let n = JtKΓ
B and n ′ = JtKΓ ′

B′ and observe that, by
Lemma 6.11, n and n ′ are regular. Thus, by definition of γ it follows that each
application-layer node on strand(n) must map to a node in B′. Further, as γ
requires the⇒ relation to be preserved, it follows that each node in Npayload on
strand(n) must map to a node on strand(n ′) (since γ(n) = n ′). Moreover, as
every node inNpayload on strand(n ′) must be mapped to by a node on strand(n)
and γ is a bijection, it follows that the strands must be of the same application-
layer height (i.e. app heightB(strand(n)) = app heightB′(strand(n ′))).

By definition of γ, the ⇒ relation must be preserved. Hence the only option
is to map each node i ≤ app heightB(strand(n)) to the i th application-layer
node on strand(n ′) and thus, for each such i :

γ((strand(n), app node(strand(n), i))) =

(strand(n ′), app node(strand(n), i)).

Hence, Jstrand(t)KΓ
B ≺γ Jstrand(t)KΓ ′

B′ .

The remaining cases follow trivially from the induction hypothesis.

Given the above we can now prove that application-layer reduction preserves
satisfaction of high-level bundle properties (cf. Lemma 6.21 and Lemma 6.26).

Lemma 7.7. Let B and B′ be low-level bundles such that B Dapp B′ and φ be
a closed high-level bundle predicate such that � occurs only positively. Then, if
(B′, ∅) � φ then (B, ∅) � φ.

Proof. Let φ, B and B′ be as per the lemma. Further, let γ be the bijection between
B and B′, as per Definition 7.1. Without loss of generality, we assume that φ is in
negation normal form. We prove the claim by structural induction on the formula φ
using the inductive hypothesis that, if Γ ≺γ Γ ′ and (B′,Γ ′) � φ, then (B,Γ ) � φ.

Case t1 � t2 : This follows immediately from Lemma 7.6 and the definition of
application-layer reduction.

123



Cases Confidential(t), ¬Confidential(t): Informally, this holds because the confiden-
tiality of application-layer values is not affected by the precise values of the
transport-layer keys and both bundles use the same application-layer keys.
This is because of our disjoint encryption assumptions, from Assumption 5.9,
that prevent application-layer encryptions from intersecting with transport-
layer encryptions, meaning that the penetrator will not be able to compromise
any new application-layer encryptions in B′. Further, application-layer reduc-
tion (Definition 7.3) requires that confidential transport-layer encryption keys
are replaced only with confidential encryption keys, meaning that the pene-
trator will not be able to decrypt the contents of any more transport-layer
messages in B′.
If can be formally proven in the same way as Lemma 6.15, firstly using
Lemma 7.6. The only difference in the proof is the use of penetrator subpaths,
rather than high-level penetrator strands.

Cases UniquelyOriginates(t1 , t2 ), ¬UniquelyOriginates(t1 , t2 ): By Lemma 7.6
Jt1 KΓ

B = Jt1 KΓ ′
B′ and γ(Jt2 KΓ

B ) = Jt2 KΓ ′
B′ . The result then follows by observing

that γ preserves the application-layer content of messages. Therefore, it
preserves origination in the application layer, and hence unique origination in
the application layer.

Cases t1 σ
′ t2 , ¬(t1 σ

′ t2 ), σ′ ∈ {v,=, <}: This follows immediately from
Lemma 7.6, noting that γ ensures there is a bijection on nodes and
strands.

The remaining cases follow immediately from Lemma 7.6 and the inductive hy-
pothesis.

The following proposition shows that whenever a property is proven correct in a
high-level abstraction of the transformed TLS strand space, then it is also correct in
the original strand space that did not satisfy Assumption 5.9.

Proposition 7.8. Let Σ be a low-level strand space that satisfies layer-disjoint
encryption, except for disjoint message encryption between unilateral and bilateral
TLS or disjoint transport-layer payload messages between unilateral and bilateral
TLS. Further, let Σ TLSC↔S be the strand space resulting from Claim 7.4, Σ TLSC↔S

E

be related to Σ TLSC↔S by Definition 5.15, φ be a closed high-level bundle predicate
and Σ̂ TLSC↔S

E be a strand space abstracting Σ TLSC↔S

E . Then, if every bundle of
Σ̂ TLSC↔S

E satisfies φ then every bundle of Σ satisfies φ.

Proof. Let Σ , Σ TLSC↔S

E , Σ̂ TLSC↔S

E and φ be as per the lemma. By Claim 7.4,
Σ TLSC↔S satisfies layer-disjoint encryption and hence Proposition 6.22 can be ap-
plied to deduce that every bundle of Σ TLSC↔S satisfies φ. Further, by Claim 7.4,
there is a bijection χ between the bundles of Σ and Σ TLSC↔S such that if χ(B) = B′,
then B Dapp B′. Hence, Lemma 7.7 can be applied to deduce that every bundle of
Σ satisfies φ, as required.

124



7.3 Summary

In this chapter we have shown how TLS can be transformed into a form that satis-
fies Assumption 5.9. In Section 7.1 we explained why TLS does not satisfy our as-
sumptions, before defining a bundle transformation that preserves application-layer
behaviour, but removes transport-layer behaviour that contradicts Assumption 5.9.
Then, in Section 7.2 we proved that the transformations of the previous chapters are
sound, in that they do not remove application-layer attacks against protocols. These
results, together with those of Section 3.3, imply that WebAuth, if implemented
using TLS as its transport-layer, satisfies the correctness properties of Section 3.3.

7.4 Related Work

In this section we discuss related work to Chapters 4–7. The problem of when it
is safe to compose protocols has been widely considered before [GT00, DDMR07,
CD08, ACG+08, CC10]. However, most existing approaches consider when it is safe
to compose protocols together in parallel, rather than when it is safe to compose
the protocols on top of one another, or vertically. These two problems are subtly
different in a very important way: when parallel compositions are being considered,
terms for one protocol do not often occur embedded inside the terms of another
protocol. Clearly when protocols are being vertically composed, application-layer
terms will occur inside the transport-layer terms. We believe that this is one reason
why the result appears to be more complex to prove.

In [GM11] Groß and Mödersheim consider what they term vertical protocol com-
position, which corresponds to our notion of layering protocols. They develop a
statically-checkable condition that guarantees arbitrary composition of the protocols
introduces no new attacks. In one sense, this is more general than the result we
prove since it permits arbitrary stacks of protocols to be composed, whereas we have
only considered the two layer case. However, it only allows transport-layer protocols
that establish two symmetric keys, one for protecting messages sent in each direc-
tion, meaning it is not a general result. Further, the disjointness condition that
they require prohibits a large class of encryptions from being shared between pro-
tocols. In particular, if a transport and an application-layer protocol were to both
use public-key certificates, then these protocols would not be considered disjoint and
would violate the condition.

In [MV11] Mödersheim and Viganò also propose a statically-checkable condition
that allows for the composition of precisely two layers in a very similar way to the
approach presented in this thesis. However, their assumptions are more restrictive
than ours, and prevent TLS from being used as a secure transport-layer (since it
does not support transport-layer protocols with an unbounded number of messages),
as well as prohibiting a large class of application-layer protocols. For example, they
require the disjointness of all non-atomic messages, whereas we only require cer-
tain encryptions to be disjoint. They also require that distinct agents send disjoint
payloads, which appears to prohibit messages from being forwarded by agents, as is
commonplace. Additionally, they currently only consider transport-layer protocols
where a single message is sent.

The conditions that we propose in this chapter most closely relate to those of

125



[GT00], in which the authors detail sufficient conditions for protocols to be composed
securely in parallel, using the strand spaces model. Unlike other parallel composition
methods, this does permit terms from one protocol to be re-used inside another
(e.g. for login tickets). The main assumption in [GT00] essentially requires that
encryptions produced by one protocol may only be removed by the same protocol.
For example, if one protocol produces {|m|}k as a login ticket and then passes this
value to a second protocol, then the second protocol may not undo the encryption
but must treat this value as an indivisible value. Using this the authors prove that
any protocols that satisfy the condition can be safely composed in parallel.

Protocol Composition Logic [DDMR07], henceforth PCL, is a logic in which
security protocols can be proven correct. Uniquely, one of the main goals of PCL is to
allow protocols to be easily composed either in parallel, or sequentially (i.e. protocol
A runs and then protocol B is run using keys established by the first protocol). In
PCL, an invariant is identified for each protocol such that the invariant implies that
protocol correctness holds. Then, providing that the invariants are not violated by
other protocols, it immediately follows that the protocols are still correct in parallel
or sequential composition.

126



Chapter 8

Multi-Layer Protocol Analysis

The results of the previous chapters have provided an effective and sound way of
verifying protocols that consist of precisely two layers. However, many application-
layer protocols actually consist of many more layers. Further, some application-layer
protocols might actually be easier to analyse if they are decomposed into a number
of layers, rather than considering them as one monolithic protocol. For example,
an application-layer protocol layered on a unilateral TLS connection might send a
username and password pair as the first message, in order to authenticate the client
to the server. This effectively turns a unilateral TLS connection into a bilateral TLS
connection for subsequent application-layer messages. In this chapter we develop a
technique that enables us to formalise and prove this notion.

In more detail, consider trying to prove the correctness of the above proto-
col. This protocol can be decomposed into three layers: the unilateral TLS layer,
the username/password layer and the actual application-layer (excluding the user-
name/password exchange). One way to prove that this protocol is correct is as
follows:

1. Prove unilateral TLS is correct in the low-level strand spaces model and pro-
vides an AC channel, but such that the sending name is unauthenticated;

2. Prove that the username/password protocol is correct in that it provides a bilat-
eral AC channel, providing it is layered on an arbitrary unilateral AC channel;

3. Prove that the application-layer protocol is correct in the high-level strand
spaces model when layered on a bilateral AC channel.

Clearly (1) and (3) can already be accomplished (the former using the standard
strand spaces model and the latter using the high-level model of Section 3.1). In
this chapter we provide a way of proving (2), i.e. to prove that a concrete transport-
layer protocol provides certain security guarantees when layered on an arbitrary (i.e.
abstracted) secondary transport-layer. This allows an arbitrary number of layered
to be combined together via a simple inductive argument. This also enables us to
prove the correctness of the username and password example above (which must
be one of the most widely deployed protocols on the internet). Further, thanks to
the abstractions involved, the proofs of the correctness of each layer are entirely
independent, meaning that any of the transport-layers could be exchanged for an

127



alternative that provides equivalent guarantees. Also, since the proofs of each layer
are independent, it follows that the correctness proofs for each layer can be reused.

The Strand Spaces In order to formalise what we are proving, we firstly consider
the different transport-layer protocols that are under consideration. Firstly, there
is the bottom transport-layer, which, in the above username/password example, this
would be the unilateral TLS protocol. The new transport-layer protocol we refer
to as the middle transport-layer. In the above, this would correspond to the user-
name/password protocol itself. The combined transport-layer protocol refers to the
explicit combination of the two (i.e. considering them as one protocol).

There are also three different strand spaces under consideration in these proofs:

Bottom This is a low-level strand space that contains an explicit instantiation of
the combined transport-layer protocol.

Middle This is a high-level strand space that is an abstraction of the bottom strand
space, but only abstracts away from the bottom transport-layer.

Top This is a high-level strand space that abstracts the bottom strand space away
from the combined transport-layer, meaning that it abstracts directly to the
application-layer protocol.

Note that both the middle and the top strand spaces are high-level strand spaces:
messages are tuples of the form (Aψ, Bφ, i , m, c), and penetrator strands include
SD, FK strands etc. Also, there are two ways of viewing the bottom strand space:
we can view the strand space as containing transport-layer protocols that allow ab-
straction either to the middle strand space, or to the top strand space. We formalise
this in Section 8.2.

In this chapter we prove that providing there are no penetrator subpaths of a
prohibited form in the middle strand space for the combined transport-layer protocol,
then there are no penetrator subpaths of a prohibited form in the low-level strand
space for the combined transport layer. Hence, if a given middle-transport-layer
protocol can be proven correct in the middle strand space, then it is guaranteed
that its composition with any bottom transport layer that satisfies the required
guarantees is also, itself, a secure transport layer. Further, this means that the
top-most application-layer protocol can be analysed in the usual way.

We prove this result in two stages, along the lines of Chapter 4 and Chapter 5.
We firstly prove that if there exists a normal interference-free bundle of the bottom
strand space that contains a prohibited subpath for the combined protocol, then there
exists a high-level bundle in the middle strand space that also contains a prohibited
subpath. We then prove that if there is an arbitrary bundle of the bottom strand
space that contains a prohibited subpath, then the transformations of Chapter 5
preserve the prohibited subpath. Together, these prove that analysing the middle
transport layer in the middle strand space is sufficient.

Outline We start in Section 8.1 by formalising what a middle-transport-layer pro-
tocol is. Further, we define high-level analogues of the penetrator subpaths from
Chapter 4 that represent subpaths in high-level bundles against the middle trans-
port layer. In Section 8.2 we consider how the bottom, middle and top strand spaces

128



are related and define an abstraction function from the middle to the top strand
space. Further, we also define what it means for a channel to be the combined
channel, i.e. the explicit combination of the bottom and middle transport-layers. In
Section 8.3 we then prove that, subject to the semantic condition from Chapter 4,
if a low-level bundle contains a prohibited penetrator subpath, then there exists a
high-level bundle in the middle strand space, containing a corresponding penetrator
subpath. In Section 8.4 we use the results of Chapter 5 to change the semantic
condition into a statically-checkable condition. In Section 8.5 we give two examples
of how the theorems in this chapter can be applied by proving the correctness of two
example multi-layer protocols, including the username/password protocol described
above. Lastly, in Section 8.6, we summarise the results of the chapter and make
detailed comparisons with related work.

8.1 High-Level Channels

Since we are going to prove the correctness of transport-layer protocols in the high-
level strand spaces model (in the middle strand space), we firstly consider how to
model arbitrary transport-layer protocols in a high-level strand space. In this section
we define high-level analogues of many of the low-level strand space definitions of
Section 4.1. We deliberately define these in similar ways to how they are defined
for the low-level case, in order to allow us to prove, in later sections, that the two
definitions are compatible.

Firstly, we define a high-level version of extraction paths (cf. Definition 4.2) that
extract a particular term from the application-layer content of a high-level term. If
the high-level term is sent on ⊥, then we should be able to extract values from it in
an identical fashion to the low-level case. However, we need to add an extra case to
allow the application-layer content to be extracted from a message sent over a non-⊥
channel: this corresponds to the action of a RV or LN strand.

Definition 8.1. A high-level extraction path is either an extraction path (i.e. from
EP), or is 〈Payload〉ˆes where es ∈ EP. The partial function êxtract is defined as
follows:

êxtract((Aψ, Bφ, i , m, c), 〈Payload〉ˆes) =̂ extract(m, es)

êxtract((Aψ, Bφ, i , m, ⊥), es) =̂ extract(m, es).

For example, assuming c 6= ⊥, êxtract((Aψ, Bφ, i , t1 ˆt2 , c), 〈Payload, 1 〉) = t1 ,
whilst êxtract((?, ?, , t1 ˆt2 , ⊥), 〈1 〉) = t1 .

We now prove a lemma analogous to Lemma 4.3 and show that there is an ex-
traction path corresponding to each high-level constructive or destructive penetrator
path.

Lemma 8.2. Let p be a constructive or destructive penetrator path in a high-level
bundle B̂ starting at a node n1 and ending at a node n|p|. Providing p does not
traverse a key edge or a KG strand there exists a high-level extraction path es such
that:

• If p is destructive êxtract(msg(n1 ), es) = appmsg(n|p|); we define êxpath (p) =̂
es;

129



• If p is constructive êxtract(msg(n|p|), es) = appmsg(n1 ); we define
êxpath

∼
(p) =̂ es.

Proof. Let p, B̂, n1 and n|p| be as per the lemma. We consider how to prove (1),
noting that the proof for (2) can be constructed in a similar fashion. There are two
cases to consider.

Firstly, if chan(n1 ) = ⊥ then it follows that all nodes on the penetrator path
must have chan(n) = ⊥, by definition of the penetrator strands. Thus, a proof
identical to that of Lemma 4.3 can be applied to construct a suitable extraction
path, noting the above observation.

Otherwise, it follows that p must start with either a LN or RV strand, since
these are the only destructive penetrator strands that can have a non-⊥ channel.
Further, it immediately follows that the remainder of the penetrator strand will be
on ⊥. Thus, as above, a suitable extraction path can be constructed and Payload
prepended to yield the required extraction path.

Using the above we can now define what a high-level channel is. Intuitively, these
correspond to the middle transport layer and are high-level analogues of channels.
More precisely, the username and password protocol is a family of high-level channels,
with one high-level channel for every bottom transport-protocol. Thus, the bottom
transport layer is modelled as a normal channel (i.e. it is a member of Channels), the
middle transport layer is modelled as a high-level channel, as defined below, whilst
the explicit combination of the bottom and middle transport protocols is modelled as
a normal channel. In Definition 8.6 we define what it means for a channel to actually
be the explicit combination of the bottom and middle transport-layer channels.

Definition 8.3. Let Σ̂ be a high-level strand space. A high-level channel ĉ requires
the following to be defined:

• ̂transport(ĉ) 6= ⊥ that gives the channel the protocol is layered on1;

• T̂ ĉ
payload ⊆ Â that is the set of high-level terms that encode application-layer

messages on this channel, which must be defined such that for all t ∈ T̂ ĉ
payload ,

chan(t) = ̂transport(ĉ);

• ̂expathc (ĉ) that is the high-level extraction path that extracts the application-
layer message from terms in T̂ ĉ

payload (cf. expathc (c))2.

For each high-level bundle B̂ of Σ̂ we assume the existence of the following functions:

• ŝender
ĉ

B̂(t) : T̂ ĉ
payload → I that extracts the sender of t ;

• ̂recipient
ĉ

B̂(t) : T̂ ĉ
payload → I that extracts the recipient of t ;

• ŝeqno
ĉ
B̂(t) : T̂ ĉ

payload → S that extracts the sequence number of t .

1Equivalently, we could define a high-level channel as a function from a transport-layer channel to
a high-level channel and remove this clause. We choose not to do this since it would only complicate
the definitions.

2Since ̂transport(ĉ) 6= ⊥ it follows that ̂expathc (ĉ) must start with Payload.

130



We elide the bundle from ŝender , ̂recipient and ŝeqno whenever it is clear from the
context. The set of high-level channels is denoted as ̂Channels. The union of T̂ ĉ

payload

over all ĉ ∈ ̂Channels is denoted by T̂payload .

We require that ̂transport(ĉ) 6= ⊥ since it enables us to simplify a number of the
results in this section. This is not a restriction in practice since a channel that is
layered on the bottom channel can be analysed in the normal low-level strand spaces
model.

As an example, which we will use as a running example throughout this chap-
ter, consider the (middle) transport-layer protocol that takes an AC channel that
does not provide sequence numbers, and augments it so that it does provide se-
quence numbers. This can be accomplished by simply pairing each application-
layer message m with the corresponding sequence number, e.g. 1 ˆm. We for-
malise this as follows. ̂transport(ĉ) is defined as an arbitrary AC channel that
does not provide sequence numbers; T̂ ĉ

payload is defined as the set of all high-level

terms of the form (Aψ, Bφ, , iˆm, ̂transport(ĉ)); ̂expathc (ĉ) =̂ 〈Payload, 2 〉;
ŝeqno

ĉ
B̂(Aψ, Bφ, , iˆm, ̂transport(ĉ)) =̂ i . Then, for each high-level bundle B̂,

ŝender
ĉ

B̂(t) =̂ sender ̂transport(ĉ)(t) and ̂recipient
ĉ

B̂(t) =̂ recipient ̂transport(ĉ)(t). Note
that this example illustrates that the middle transport layer is allowed to promote
values, such as the sender or recipient, directly from the bottom transport layer.

As with the low-level strand spaces model, we need to assume that the set of
transport-layer terms on distinct channels is disjoint in order to make sure that we
can detect over which channel a transport-layer message is sent. Whilst this might
appear restrictive, note that for any channel where the channel ends are not ?, it will
always be the case that the term sets are disjoint.

Assumption 8.4. For all ĉ1 , ĉ2 ∈ ̂Channels such that ĉ1 6= ĉ2 , T̂ ĉ1
payload ∩

T̂ ĉ2
payload = ∅.

8.2 Defining Layering of Channels

As mentioned in the introduction to this chapter, there are two ways of abstracting
the bottom strand space: either the strand space could be abstracted directly to
the top strand space (i.e. abstracting the combined channel), or could be abstracted
to the middle strand space (i.e. abstracting the bottom transport-layer only). This
suggests that there are actually two ways of viewing a low-level strand space: either
it can be viewed with certain nodes being transport-layer nodes of the combined
channel, or it can be viewed with a superset of those nodes being transport-layer
nodes of the bottom transport-layer. For example, Figure 8.1 is a low-level bundle
that contains a Renumber penetrator subpath for the combination of the running
example and a simple bottom transport-layer protocol. In this figure, n1 and n15

can be identified either as nodes for the combined transport-layer protocol, or as
nodes for the bottom transport-layer protocol.

We formalise this by introducing the concept of a view, as follows.

Definition 8.5. A view v of a low-level strand space consists of a low-level strand
space along with compatible definitions of Channels, Ntrpt , N⊥, Nnon-payload , T c

payload

131



n1 n2

S

n3 n12

C

n4 n5

S

n6 n8

M

n9

C

n7 n10

n11 n13

n14 n15

AˆBˆ1ˆm

AˆB

1ˆm

1

m

2

2ˆm

AˆBˆ2ˆm

Figure 8.1: The penetrator path 〈n1 ,n2 ,n4 ,n4 ,n5 ,n7 ,n10 ,n11 ,n13 ,n14 ,n15 〉 is a
vB→T -Renumber subpath for the running example layered on a bottom transport-
layer protocol that encodes (A?, B?, , m, c) as AˆBˆm. The above bundle is a
low-level version of the HL-Renumber penetrator subpath of Figure 8.3.

and T c
non-msg such that Assumptions 4.4, 4.5, 4.6, 4.8 and 4.10 hold. When the

definition of a set, function, etc. is affected by the view, we indicate the view using
a dot. For example, v .Ntrpt or v .α̂(t).

When the lemmas of earlier sections are referenced, in particular those of Chap-
ter 4, we will explicitly indicate which view is being used.

Using the above, we can define what it means for a low-level channel to be the
combined protocol in the bottom strand space. Thus, we are essentially defining
how an implementation of the multiple layers must be constructed. Informally, we
require:

1. There must be two views for the bottom strand space. Intuitively, the top view
of the bottom strand space abstracts directly to the top strand space, whilst
the middle view abstracts to the middle strand space.

2. The channel extraction path for the combined protocol must be composed from
the extraction paths of the two transport layers.

3. The channels prohibit the same kinds of transport-layer penetrator subpaths.

4. Every transport-layer node for the combined protocol must be a transport-layer
node for the bottom-transport-layer protocol.

5. Every high-level term obtained by abstracting a message of a transport-layer
node of the combined protocol to the middle strand space must be a high-level
transport-layer term for the middle transport layer.

6. The high-level abstraction of a low-level transport-layer term of the combined
protocol matches that produced by abstracting via the middle strand space.

132



These correspond to (1)–(6) in the following definition. We claim that the above
list is reasonable, and does in fact correspond to how implementations are likely to
work, but of course this is a proof obligation on the user.

Definition 8.6. Let Σ be a low-level strand space, Σ̂ be a high-level strand space
and ĉ be a high-level channel. Given two views vB→T and vB→M , c is the abstraction
of ĉ in Σ iff:

1. The top view vB→T of Σ includes c ∈ Channels. The middle view vB→M of Σ
includes ̂transport(ĉ) ∈ Channels but c /∈ Channels.

2. expathc (c) = expathc
(

̂transport(ĉ)
)

ˆes where 〈Payload〉ˆes = ̂expathc (ĉ).

3. ĉ and c prohibit the same transport-layer penetrator subpath types.

4. In the bottom strand space, every transport-layer payload or non-payload node
for the combined protocol must be a transport-layer payload node for the
bottom-transport-layer protocol. Formally:

vB→T .Nctrpt ∪ vB→T .Ncnon-payload ⊆ vB→M .N
̂transport(ĉ)

trpt .

Note that these sets are not necessarily equal because many different high-level
channels could be layered on ̂transport(ĉ).

Further, for each low-level bundle B of Σ :

5. Every middle strand space term reached by abstracting the message of a
transport-layer node of the combined protocol in the bottom strand space must
be a transport-layer term for the high-level channel:

{vB→M .α̂B(msg(n)) | n ∈ vB→T .Nctrpt} ⊆ T̂ ĉpayload.

6. For all bundles B̂ in the middle strand space that abstract B, and for all
t ∈ T c

payload :

vB→T .senderc
B(t) = ŝender

ĉ

B̂(vB→M .α̂B(t))

vB→T .recipientc
B(t) = ̂recipient

ĉ

B̂(vB→M .α̂B(t))

vB→T .seqnoc
B(t) = ŝeqno

ĉ
B̂(vB→M .α̂B(t)).

As an example of how the top and middle viewes are related, consider Fig-
ure 8.1. In this figure, n1 and n15 are in both vB→T .Ntrpt and vB→M .Ntrpt , since
vB→T .chan(n1 ) is the channel that represents the combined-transport-layer protocol,
whilst vB→M .chan(n1 ) is the bottom transport-layer.

Note Definition 8.6 (6) is well defined thanks to Definition 8.6 (5). Further,

Definition 8.6 (5) is well defined only if vB→T .T c
payload ⊆ vB→M .T

̂transport(ĉ)
payload . This is

because vB→M .α̂B ̂transport(ĉ) can only be applied to terms from vB→M .T
̂transport(ĉ)

payload , but
is being applied to terms from vB→T .T c

payload . We prove that this inequality holds as
follows.

133



Lemma 8.7. Let Σ be a low-level strand space, ĉ be a high-level channel and c be
an explicit layering of ĉ on ̂transport(ĉ) in Σ . Then:

vB→T .T cpayload ⊆ vB→M .T
̂transport(ĉ)

payload .

Proof. Let Σ , ĉ and c be as per the lemma. By Definition 8.6 (4) it follows that

vB→T .Nc
trpt ⊆ vB→M .N

̂transport(ĉ)
trpt . Therefore, since Assumption 4.5 guarantees that

(for any view), for any channel c, T c
payload = {msg(n) | n ∈ Nc

trpt}, the required
relationship immediately follows.

We can now define two additional functions that give the application-layer mes-
sage and the high-level channel for a high-level transport-layer term, respectively.
The latter of these requires Assumption 8.4 in order to be well defined.

Definition 8.8. The following functions are defined on all terms in t ∈ T̂payload :

• ̂appmsg
ĉ

: T̂payload → A that extracts the application-layer message, and is
defined by ̂appmsg

ĉ
(t) =̂ êxtract( ̂expathc (ĉ) , t).

• ĉhan : T̂payload → ̂Channels that gives the high-level channel on which the term
is sent, and is defined as ĉ such that t ∈ T̂ ĉ

payload .

Given the above definition of ĉhan, we can lift ŝender B̂ to be defined indepen-

dently of the channel in the obvious way: ŝender B̂(t) =̂ ŝender
ĉhan(t)

B̂ (t). We lift
̂recipient , ŝeqno and ̂appmsg in similar ways.
We now define a function χ̂ that abstracts high-level terms from the middle strand

space to high-level terms of the top strand space. This is defined in a similar way
to α̂, which abstracts terms from the low-level bottom strand space to either the
middle or the top strand space.

Definition 8.9. Let B̂ be a high-level bundle. The high-level term mapping function
χ̂B̂ : T̂payload → Â that maps high-level transport-layer terms to the corresponding
high-level terms is defined as follows:

1. For t ∈ T̂payload , letting ĉ = ĉhan(t) and c be the explicit layering of ĉ on
̂transport(ĉ):

χ̂B̂(t) = (ŝender
ĉ

B̂(t), ̂recipient
ĉ

B̂(t), ŝeqno
ĉ
B̂(t), ̂appmsgĉ(t), c).

2. If t is a directed term then χ̂B̂(t) has the same direction as t .

For example, using our running example, χ̂B̂(Aψ, Bφ, , iˆm, ̂transport(ĉ)) =

(Aψ, Bφ, i , m, c), assuming c is the explicit layering of ĉ on ̂transport(ĉ). The
relationship between χ̂ and α̂ is indicated in Figure 8.2.

We now prove that the high-level term we reach by abstracting directly from
the bottom to the top strand space is equivalent to the high-level term obtained by
abstracting via the middle strand space (i.e. using α̂ to obtain a term of the middle
strand space, and then χ̂ to obtain a term of the top strand space).

134



Top

Middle B̂

Bottom B

vB→T .α̂B

vB→M .α̂B

χ̂B̂

Figure 8.2: An illustration of how the terms of the three strand spaces are related.

Lemma 8.10. Let Σ be a low-level strand space, Σ̂ be a middle strand space, ĉ be a
high-level channel and c be a channel that is an explicit layering of ĉ on ̂transport(ĉ)
in Σ . For all bundles B of Σ , for all middle bundles B̂ of Σ̂ that abstract B and for
all n ∈ vB→T .Nc

trpt ∩NB:

vB→T .α̂B(msg(n)) = χ̂B̂(vB→M .α̂B(msg(n))).

Proof. Let Σ , Σ̂ , ĉ and c be as per the lemma. Firstly, we prove that the
above equation is well defined. Since vB→M .α̂ can only be applied to terms in
vB→M .T

̂transport(ĉ)
payload , but is being applied to terms in vB→T .T c

payload we require that

vB→T .T c
payload ⊆ vB→M .T

̂transport(ĉ)
payload . Further, χ̂ can only be applied to terms in

T̂ ĉ
payload and hence we require that {vB→M .α̂B(msg(n)) | n ∈ vB→T .Nc

trpt} ⊆ T̂ ĉ
payload .

The former follows from Lemma 8.7 whilst the latter follows immediately from Def-
inition 8.6 (5).

Let B be an arbitrary low-level bundle of Σ , n ∈ vB→T .Nc
trpt ∩ NB and B̂ be an

arbitrary bundle of Σ̂ that abstracts B. Further, define t̂M =̂ vB→M .α̂B(msg(n)),
t̂T
1 =̂ vB→T .α̂B(msg(n)) and t̂T

2 =̂ χ̂B̂ (̂tM ). In order to prove the desired equivalence
it is sufficient to prove that each component of t̂T

1 and t̂T
2 is equal, which we do as

follows.

1. By Definition 8.6 (6) and the definition of χ̂, it immediately follows

that sender (̂tT
1 ) = ŝender

ĉ

B̂ (̂tM ) = sender (̂tT
2 ), as required. Simi-

larly recipient (̂tT
1 ) = ̂recipient

ĉ

B̂ (̂tM ) = recipient (̂tT
2 ) and seqno (̂tT

1 ) =

ŝeqno
ĉ
B̂ (̂tM ) = seqno (̂tT

2 ), as required.

2. Let 〈Payload〉ˆes = ̂expathc (ĉ).

appmsg (̂tT
1 )

= appmsgc
B(msg(n))

= extract(msg(n), expathc (c))

135



= extract(msg(n), expathc
(

̂transport(ĉ)
)

ˆes) 〈By Definition 8.6 (2)〉

= extract(vB→M .appmsg(msg(n)), es)

= extract(êxtract(vB→M .α̂B(msg(n)), 〈Payload〉), es) 〈By Definition 4.11〉

= êxtract (̂tM , ̂expathc (ĉ)) 〈By Definition 8.6 (2)
and Definition 8.1〉

= ̂appmsg
ĉ
B̂ (̂tT

2 ).

3. Since n ∈ vB→T .Nc
trpt , it immediately follows by definition of vB→T .α̂ that

chan (̂tT
1 ) = c. Further, since t̂M ∈ T̂ ĉ

payload by Definition 8.6 (5), it therefore

follows that chan(T̂1 ) = c, since ĉhan (̂tM ) = ĉ and c is the explicit layering
of ĉ on ̂transport(ĉ).

Hence, t̂T
1 = t̂T

2 and therefore the desired equivalence holds.

8.2.1 High-Level Penetrator Subpaths

In this section we consider how to model the penetrator’s interaction with transport-
layer terms in the middle strand space. As in the low-level case, this requires us to
define what each of the transport-layer penetrator strands in the top strand space
(i.e. SD, FK, etc. strands) corresponds to in the middle strand space. We follow
the technique used in the low-level model, in Definition 4.19, and define a high-
level penetrator subpath in the middle strand space that corresponds to each type
of penetrator strand in the top strand space. For example, considering the running
example of a middle transport layer that adds session numbers to each message, a
high-level penetrator subpath that represents a RN strand is given in Figure 8.3. In
fact, Figure 8.1 gives a low-level version of the high-level penetrator HL-Renumber
subpath of Figure 8.3. Thus, when abstracting the low-level bundle according to
vB→M , Figure 8.3 would be obtained.

In order to define the high-level penetrator subpaths, we firstly define what it
means for a high-level penetrator path to extract or send the application-layer mes-
sage of a given node. This definition is a high-level analogue of Definition 4.17.

Definition 8.11. In a high-level strand space, we say that a destructive penetrator
path pd starting at a node n extracts the high-level application message from n,
written pd ̂app-extracts n, iff êxpath (pd ) = ̂expathc (ĉ) where ĉ = ĉhan(msg(n)). A
constructive penetrator path pc ending at a node n packages the high-level application
message of n, denoted pc

̂app-packages n, iff êxpath
∼

(pc) = ̂expathc (ĉ) where ĉ =

ĉhan(msg(n)).

For example, considering Figure 8.3, 〈n1 ,n2 ,n3 ,n4 ,n6 ,n7 〉 ̂app-extracts n1 and
〈n6 ,n7 ,n10 ,n11 ,n12 ,n13 〉 ̂app-packages n13 .

Recall that when defining low-level penetrator subpaths that correspond to nor-
mal high-level penetrator strands (e.g. HJ strands), we insisted that the penetrator
did not divide the application-layer message (cf. Definition 4.18). In order to de-
fine high-level penetrator subpaths that correspond to normal high-level penetrator
strands, we lift this definition to the high-level strand space model.

136



n1 n2

LN

n3 n4

S

n5

n6 n7

C

n9 n8

M

n11

FK

n10

n13 n12

(Aψ , Bφ, 1ˆm, c)

(?, ?, 1ˆm, ⊥)

(?, ?, 1 , ⊥)

(?, ?, m, ⊥)

(?, ?, 2 , ⊥)

(?, ?, 2ˆm, ⊥)

(Aψ , Bφ, 2ˆm, c)

Figure 8.3: The penetrator path 〈n1 ,n2 ,n3 ,n4 ,n6 ,n7 ,n10 ,n11 ,n12 ,n13 〉 is a high-
level penetrator renumber subpath for the running example. In the above, c is the
bottom-transport-layer and it is assumed that it permits FK and LN strands (thus,
it is not an AC channel, in particular).

Definition 8.12. A normal high-level penetrator path p transports the high-
level application-layer message iff msg(p(1 )),msg(p(|p|)) ∈ T̂payload , ĉhan(p(1 )) =

ĉhan(p(|p|)), and there exists pd and pc such that p = pdˆpc , pd is destructive, pc

is constructive and êxpath (pd ) = êxpath
∼

(pc) ≤ ̂expathc
(

ĉhan(p(1 ))
)
.

We now define the high-level penetrator subpaths, which are analogous to the
low-level penetrator subpaths defined in Definition 4.19, except each use of sender

is replaced by ŝender , etc.

Definition 8.13. A penetrator path p in a high-level bundle B̂, starting at n and
ending at n ′ is a transport-layer high-level penetrator subpath iff it is of one of the
following forms:

HL-Receive 1. p is destructive;

2. msg(n) ∈ T̂payload ;

3. ŝender(msg(n)) ∈ Ireg ;

4. ̂recipient(msg(n)) ∈ Ipen ;

5. p ̂app-extracts n.

HL-Learn 1. p is destructive;

2. msg(n) ∈ T̂payload ;

3. ŝender(msg(n)) ∈ Ireg ;

4. ̂recipient(msg(n)) ∈ Ireg ;

5. p ̂app-extracts n.

137



HL-Send 1. p is constructive;

2. msg(n ′) ∈ T̂payload ;

3. ŝender(msg(n ′)) ∈ Ipen ;

4. ̂recipient(msg(n ′)) ∈ Ireg ;

5. p ̂app-packages n.

HL-Fake 1. p is constructive;

2. msg(n ′) ∈ T̂payload ;

3. ŝender(msg(n ′)) ∈ Ireg ;

4. ̂recipient(msg(n ′)) ∈ Ireg ;

5. p ̂app-packages n.

HL-Hijack 1. p is normal;

2. msg(n),msg(n ′) ∈ T̂payload ;

3. Either p is a normal penetrator strand or p transports the high-level
application-layer message;

4. ̂appmsg(n) = ̂appmsg(n ′);

5. ĉhan(msg(n)) = ĉhan(msg(n ′));

6. ŝender(msg(n)) 6= ŝender(msg(n ′)) ∧ ŝender(msg(n ′)) ∈ Ireg or
̂recipient(msg(n)) 6= ̂recipient(msg(n ′));

7. ŝeqno(msg(n)) = ŝeqno(msg(n ′)).

HL-Renumber 1. p is normal;

2. msg(n),msg(n ′) ∈ T̂payload ;

3. Either p is a normal penetrator strand or p transports the high-level
application-layer message;

4. ̂appmsg(n) = ̂appmsg(n ′);

5. ĉhan(msg(n)) = ĉhan(msg(n ′));

6. ŝender(msg(n)) = ŝender(msg(n ′));

7. ̂recipient(msg(n)) = ̂recipient(msg(n ′));

8. 6= ŝeqno(msg(n)) 6= ŝeqno(msg(n ′)) 6= ;

HL-Hijack-Renumber 1. p is normal;

2. msg(n),msg(n ′) ∈ T̂payload ;

3. Either p is a normal penetrator strand or p transports the high-level
application-layer message;

4. ̂appmsg(n) = ̂appmsg(n ′);

5. ĉhan(msg(n)) = ĉhan(msg(n ′));

6. ŝender(msg(n)) 6= ŝender(msg(n ′)) or ̂recipient(msg(n)) 6=
̂recipient(msg(n ′));

138



7. ŝeqno(msg(n)) 6= ŝeqno(msg(n ′)).

HL-Transmit 1. p is normal;

2. msg(n),msg(n ′) ∈ T̂payload ;

3. Either p is a normal penetrator strand or p transports the high-level
application-layer message.

4. ̂appmsg(n) = ̂appmsg(n ′);

5. ĉhan(msg(n)) = ĉhan(msg(n ′));

6. ŝender(msg(n)) = ŝender(msg(n ′));

7. ̂recipient(msg(n)) = ̂recipient(msg(n ′));

8. ŝeqno(msg(n)) = ŝeqno(msg(n ′)).

Using the above we can now define what it means for a high-level channel to be
abstractly correct in a high-level bundle. As in the low-level case (cf. Definition 4.29),
we need to ensure that we don’t prohibit HL-Hijack subpaths that correspond to a
HL-Receive subpath followed by a HL-Send subpath.

Definition 8.14. A HL-Hijack or HL-Hijack-Renumber subpath p is a innocuous
high-level penetrator subpath iff ̂recipient(p(1 )) ∈ Ipen and ŝender(p(|p|)) ∈ Ipen .

Definition 8.15. Let Σ̂ be a high-level strand space and ĉ be a high-level channel.
ĉ is abstractly correct in Σ̂ iff every transport-layer high-level penetrator subpath
on ĉ is either a penetrator strand allowed by the definition of ĉ, or is an innocuous
high-level subpath.

The remainder of this chapter essentially proves that high-level abstract correct-
ness implies low-level abstract correctness. In other words, proving the abstract
correctness of a middle-transport-layer protocol in the high-level model is sufficient.

8.3 High-Level Abstract Correctness

We now consider how to prove our first soundness result. In this section we build
on the results of Chapter 4 and prove that, subject to a semantic assumption, the
multi-layer analysis is sound. In particular, we prove that if a vB→M -interference-free
(Definition 4.28) bundle of the bottom strand space contains a prohibited penetrator
path of the combined protocol, then the middle strand space contains a corresponding
high-level penetrator path of the middle transport layer that is also prohibited. This
therefore implies that, subject to the semantic assumption that all bundles can be
made interference free, if no prohibited high-level penetrator subpaths exist in the
middle strand space, then no prohibited penetrator subpaths exist for the combined
transport-layer in the bottom strand space.

Before proving the above result, we prove a few simple lemmas that show how
low-level penetrator subpaths in the bottom strand space are related in different
views. For example, the penetrator subpath from n1 to n15 of Figure 8.1 is both a
vB→T -Renumber subpath, and the concatenation of a vB→M -Learn, an application-
layer subpath (from n5 to n11 ) and a vB→M -Fake subpath.

139



Firstly, we prove that a destructive vB→T -penetrator subpath consists of a vB→M -
penetrator subpath, followed by some application-layer penetrator path. This can
be observed by noting that the middle-transport-layer protocol data is contained
solely in the application-layer message of the bottom transport-layer. Hence, the
penetrator can only manipulate this by first extracting it using a Receive or Learn
subpath for the bottom transport-layer.

Lemma 8.16. Let Σ be a low-level strand space, c be a channel and ĉ be a high-
level channel such that c is an explicit layering of ĉ on ̂transport(ĉ). Further, let
B be a normal low-level bundle that contains a destructive vB→T -transport-layer
penetrator subpath p. Then p = p′ˆp′′ where p ′ is a destructive vB→M -transport-
layer penetrator subpath (i.e. either a vB→M -Learn or Receive subpath).

Proof. Let Σ , c, ĉ and B be as per the lemma. Since p is a destructive transport-
layer penetrator subpath it follows that p must be either a Learn or Receive subpath.
Thus, by Definition 4.19:

1. p(1 ) is a positive regular node and p(|p|) is a negative penetrator node;

2. p(1 ) ∈ vB→T .Nc
trpt ;

3. p vB→T . app-extracts p(1 );

4. vB→T .senderB(p(1 )) ∈ Ireg .

Consider p in vB→M . By Definition 8.6 (4), since p(1 ) ∈ vB→T .Nc
trpt , p(1 ) ∈

vB→M .N
̂transport(ĉ)

trpt . Further, by Definition 8.6 (2), it follows that there exists i such
that p[1 ..i ] vB→M . app-extracts p(1 ) and thus:

expath (p[1..i]) = expathc
(

̂transport(ĉ)
)
.

Therefore, define p′ =̂ p[1 . . . i ] and p′′ =̂ p[i + 1 . . . |p|] and note that by As-
sumption 4.6, vB→M .senderB(msg(p ′(1 )) ∈ Ireg . Hence, by Definition 4.19, p′ is a
vB→M -Learn or Receive subpath (depending on whether vB→M .recipientB(p(1 )) is in
Ireg or Ipen), as required.

Note that in the above proof, there is nothing to prevent p being a Learn subpath
whilst p′ is a Receive subpath. This could occur when the bottom transport-layer
protocol is not confidential, and therefore permits Learn subpaths, but the middle
transport layer implements its own encryption to ensure confidentiality, and thus
does not allow Learn subpaths.

We can also prove a similar result for constructive paths. By the same argument
as above, it follows that for the penetrator to send an application-layer message over
the combined transport layer, he must first construct the necessary values for the
middle transport layer and then enclose these within the application-layer message
of a middle transport-layer message using a Fake or Send subpath.

Lemma 8.17. Let Σ be a low-level strand space, c be a channel and ĉ be a high-
level channel such that c is an explicit layering of ĉ on ̂transport(ĉ). Further, let
B be a normal low-level bundle that contains a constructive vB→T -transport-layer
penetrator subpath p. Then p = p′′ˆp′ where p′ is a constructive vB→M -transport-
layer penetrator subpath (i.e. either a vB→M -Fake or Send subpath).

140



n1 n2

S

n3 n5

M

n7

C

n4 n8

n9 n10

AˆBˆ1ˆm

AˆB

1ˆm

A′ˆB ′

A′ˆB ′ˆ1ˆm

Figure 8.4: The penetrator path 〈n1 ,n2 ,n4 ,n9 ,n10 〉 is a vB→T -Hijack subpath for
the running example layered on a bottom transport-layer protocol that encodes
(A?, B?, , am, c) as AˆBˆam (in the above am = 1 ˆm). Note that the subpath
is also a vB→M -Hijack subpath and hence will be abstracted to a HJ strand in the
middle strand space.

Proof. This can be proven in a similar fashion to Lemma 8.16.

We now consider how normal subpaths of vB→T are related to subpaths in vB→M .
As an example, suppose p is a vB→T -Hijack subpath in which sender has been altered
and recipient has remained unchanged. There are, realistically, two different ways in
which ŝender could have been defined: either it merely promotes the values received
from the underlying transport-layer, or, similarly to the running example, defines
it as some function over the application-layer message extracted from the bottom
transport layer. It therefore follows that there are two different ways for p to be
viewed in vB→M :

1. p is also a normal vB→M -transport-layer penetrator subpath of some type;

2. p is not a normal vB→M -transport-layer penetrator subpath, but can be
decomposed into the concatenation of a destructive vB→M -penetrator sub-
path, a vB→M -application-layer penetrator subpath, and a constructive vB→M -
penetrator subpath.

The first case corresponds to ŝender simply promoting the value contained in the
lower layer, and thus the penetrator can hijack a message simply by using a penetra-
tor subpath for the bottom transport layer, as illustrated in Figure 8.4. The second
case corresponds to ŝender being defined as some function over the application-layer
message of the bottom transport layer. In this case it is clear the penetrator cannot
alter the sender without first extracting the bottom-transport-layer application-layer
message. A similar case for a Renumber subpath is illustrated in Figure 8.1.

Note that in the first case, the vB→M -penetrator subpath does not have to be of
the same type. For example, suppose ŝender was defined as some function over the
sequence number field of the bottom transport-layer. In this case it follows that a
vB→T -Hijack subpath could actually arise from a vB→M -Renumber subpath. Whilst
such transport-layer protocols are unlikely to be practical, we do not prohibit them
since it does not simplify the proofs.

We now prove that the above options are the only types of vB→T -penetrator
subpaths.

141



Lemma 8.18. Let Σ be a low-level strand space, c be a channel and ĉ be a high-
level channel such that c is an explicit layering of ĉ on ̂transport(ĉ). Further, let B
be a normal low-level vB→M -interference-free bundle that contains a normal vB→T -
transport-layer penetrator subpath p for c. Then either:

1. p is a normal vB→M -transport-layer penetrator subpath; or

2. p = p1 ˆpdˆpcˆp2 where p1 is a vB→M -Learn or Receive penetrator subpath, pd

is a destructive penetrator subpath, pc is a constructive penetrator subpath,
p2 is a vB→M -Fake or Send penetrator subpath and expath (pd ) = expath∼ (pc).

Proof. Let Σ , c, ĉ and B be as per the lemma. Since p is a normal vB→T -
transport-layer penetrator subpath it follows that p must be either a Hijack,
Renumber, Hijack-Renumber or Transmit subpath. By Definition 8.6 (4), since
p(1 ), p(|p|) ∈ vB→T .Nc

trpt (according to the definition of a vB→T -transport-layer

penetrator subpath), p(1 ), p(|p|) ∈ vB→M .N
̂transport(ĉ)

trpt . Therefore, by definition of
Ntrpt , vB→M .chan(p(1 )) = vB→M .chan(p(|p|)) = ̂transport(ĉ).

By Definition 4.19 it follows that p transports the (top-level) application-layer
message and thus, by Definition 4.18, p = pdˆpc where pd is destructive, pc is
constructive and expath (pd ) = expath∼ (pc) ≤ expathc (c). Hence, it follows, by
Definition 8.6 (2), that either, Case (1), expath (pd ) ≤ expathc

(
̂transport(ĉ)

)
, or,

Case (2), expath (pd ) = expathc
(

̂transport(ĉ)
)

ˆes where es 6= 〈〉. In Case (1),

expath (pd ) = expath∼ (pc) ≤ expathc
(

̂transport(ĉ)
)
. Therefore, let es be such that

expath (pd )ˆes = expathc
(

̂transport(ĉ)
)
and observe that:

vB→M .appmsg(p(1 )) = extract(expathc
(

̂transport(ĉ)
)
,msg(p(1 )))

= extract(expath (pd )ˆes,msg(p(1 )))

= extract(es,msg(pc(1 ))))

= extract(expath∼ (pc)ˆes,msg(p(|p|)))

= extract(expathc
(

̂transport(ĉ)
)
,msg(p(|p|)))

= vB→M .appmsg(p(|p|)).

Thus, by Definition 4.19, p must be a normal vB→M -transport-layer penetrator sub-
path and thus satisfies (1).

Otherwise, in Case (2), expath (pd ) = expath∼ (pc) = expathc
(

̂transport(ĉ)
)

ˆes

for an es 6= 〈〉. Hence, there must exist p1 , p′d , p′c and p2 such that
pdˆpc = p = p1 ˆp ′dˆp ′cˆp2 , p1 and p′d are destructive, p′c and p2 are construc-
tive, expath (p1 ) = expath∼ (p2 ) = expathc

(
̂transport(ĉ)

)
, and expath (p ′d ) =

expath∼ (p′c). Further, by Assumption 4.6, vB→M .senderB(msg(p1 (1 ))) ∈ Ireg and
vB→M .recipientB(msg(p2 (|p2 |))) ∈ Ireg . Therefore, p1 is either a vB→M -Learn or
Receive subpath, and p2 is a vB→M -Fake or Send subpath, as required by (2).

Given low and high-level penetrator paths that are related according to the node
abstraction function β̂1 , it follows that the extraction paths for each should be exactly

142



the same. This follows from the fact that β̂1 maps nodes from a strand of one type
to strands of the same type.

Lemma 8.19. Let p̂ be either a destructive or constructive high-level penetrator
path, and p be a penetrator path of the same type, such that p̂ and p are related
according to β̂1 (i.e. |p̂| = |p| and, for all 1 ≤ i ≤ |p|, p̂(i) β̂1 p(i)). Then, if
p is destructive, êxpath (p̂) = expath (p), and if p is constructive, êxpath

∼
(p̂) =

expath∼ (p).

Proof. This follows immediately from the observation that β̂1 maps strands to
strands of the same type.

We now prove the main result of this section and show that, given an interference-
free bundle that contains a vB→T -transport-layer penetrator subpath prohibited by
the definition of the combined channel, the bundle can be abstracted to a bundle of
the middle strand space that contains a high-level version of the prohibited penetrator
subpath. Thus, whilst most of the results of the previous pages have shown that a
low-level penetrator subpath can be of different types in different views, the following
proposition proves that the actual application-layer behaviour (i.e. in the top strand
space) is always the same.

Proposition 8.20. Let Σ be a low-level strand space, c be a channel and ĉ be a
high-level channel such that c is an explicit layering of ĉ on ̂transport(ĉ). Further,
let B be a normal, vB→M -interference-free, vB→M -abstractly-correct low-level bundle
such that c is not vB→T -abstractly correct. Then, there exists a high-level bundle B̂
in the middle strand space such that B̂ abstracts B and in which ĉ is not abstractly
correct.

Proof. Let Σ , c, ĉ and B be as per the lemma. Since c is not vB→T -abstractly correct
in B it follows that there must exist a transport-layer penetrator subpath p that is
prohibited by the definition of c. We define a high-level bundle B̂ that contains a
transport-layer penetrator subpath p̂ that is prohibited by the definition of ĉ. Note
that in the following, we partially define a high-level bundle B̂ of the middle strand
space that vB→M -abstracts B, but defer to Proposition 4.31 to construct the rest of
the bundle. This is justified by observing that B is normal, vB→M -interference-free
and vB→M -abstractly-correct and hence B can be vB→M -abstracted to a high-level
bundle B̂.

We perform a case analysis on the penetrator p, as follows.

p is destructive Therefore, p must either be a vB→T -Learn or Receive3 subpath
for c. Suppose p is a Learn subpath; the proof when p is a Receive is almost
identical and is therefore elided. Consider p in vB→M . We aim to construct
a penetrator path p̂ in a bundle of the middle strand space such that p̂ is a
high-level transport-layer penetrator subpath of the same type.

By Lemma 8.16, p = p′ˆp′′ where p′ is a vB→M -Learn or Receive subpath, as
illustrated in Figure 8.5. Hence, by Definition 4.21, p′ can be vB→M -abstracted
to a LN or RV strand. Therefore, we define two high-level nodes in B̂, n̂1 and

3Whilst no practical transport-layer protocol will prohibit RV strands, there is no reason math-
ematically why they cannot.

143



n̂1

n̂2

p′

p′′p

LN/RV
p̂

β̂2

β̂2 β̂1

B̂

B

Figure 8.5: An illustration of the case of Proposition 8.20 where p is destructive.
In the above, dotted lines indicate the relation that relates the nodes of the two
bundles.

n̂2 , such that p′(2 ) ψ̂ n̂1
4, p ′(|p ′| − 1 ) ψ̂ n̂2 (cf. Definition 4.21) and 〈n̂1 , n̂2 〉

is a LN or RV strand, as appropriate.

We now construct a high-level subpath p̂ that abstracts p. Note that since
p ′ is a Learn or Receive subpath, p′(1 ) is a positive regular node and p′(|p|)
is a negative penetrator node. Further, as p is a Learn subpath, p′′(|p′′|) is a
negative penetrator node. Thus, p is as follows:

p′(1 )→ p ′(2 )⇒+ p ′(3 )→ . . . p ′(|p ′|)⇒+ p′′(1 )→ . . .→ p ′′(|p ′′|).

We therefore define p̂ by: p̂(1 ) =̂ n̂1 , p̂(2 ) =̂ n̂2 and, for 1 ≤ i ≤ |p ′′|, p̂(1 + i)
is defined according to the definition of β̂1 (cf. Definition 4.13). The remainder
of B̂ is constructed according to Proposition 4.31.

We now prove that p̂ is a HL-Learn subpath, by proving that (1)–(5) of the
definition of a HL-Learn subpath hold, according to Definition 8.13:

1. p̂ is destructive by definition of p̂.
2. By Definition 4.21, msg(p̂(1 )) = vB→M .α̂B(msg(p(1 ))) and therefore, by

Definition 8.6 (5), msg(p̂(1 )) ∈ T̂payload , as required.
3. Note that by Lemma 8.10:

vB→T .α̂(msg(n1)) = χ̂(vB→M .α̂(msg(n1))) = χ̂(msg(p̂(1))).

Therefore, by definition of χ̂ and vB→T .α̂, ŝender(msg(p̂(1 )) =
vB→T .sender(msg(n1 )). Hence, since vB→T .sender(msg(n1 )) ∈ Ireg (as
p is Learn subpath), ŝender(msg(p̂(1 ))) ∈ Ireg , as required.

4. As above, it follows that ̂recipient(msg(n̂1 )) = vB→T .recipient(msg(n1 )).
Thus, since vB→T .recipient(msg(n1 )) ∈ Ireg (as p is Learn subpath),
̂recipient(msg(p̂(1 ))) ∈ Ireg .

4This is not p′(1 ) since, by definition of a Learn subpath, p′(1 ) is a regular node.

144



5. Hence, we need to prove that p̂ ̂app-extracts p̂(1 ), i.e. êxpath (p̂) =
̂expathc (ĉ). By definition of p̂: êxpath (p̂) = 〈Payload〉ˆêxpath (p̂ [3 . . .]).
Further, since p̂ [3 . . .] is related to p′′ by β̂1 , it follows by
Lemma 8.19 that êxpath (p̂ [3 . . .]) = expath (p′′). Hence, êxpath (p̂) =

〈Payload〉ˆexpath (p′′) and therefore, letting 〈Payload〉ˆes = ̂expathc (ĉ):

expathc
(

̂transport(ĉ)
)

ˆes

= expathc (c) 〈By Definition 8.6 (2)〉
= expath (p) 〈As p is a vB→T -Learn subpath〉
= expath

(
p′
)
ˆexpath

(
p ′′
)

〈By definition of p′ and p′′〉

= expathc
(

̂transport(ĉ)
)

ˆexpath
(
p′′
)

〈p′ is a vB→M -Learn or Receive subpath〉

Thus it follows that es = expath (p′′), hence êxpath (p̂) = ̂expathc (ĉ) and
thus p̂ ̂app-extracts p̂(1 ).

Therefore, p̂ is a high-level transport-layer penetrator subpath of the same
type as p. Thus, by Definition 8.6 (3) it follows that p̂ is also disallowed by
the definition of ĉ and hence B̂ is not abstractly correct, as required.

p is constructive Therefore p is a Fake or Send subpath. The proof of this case is
similar to the above case and is therefore elided.

p is normal Therefore p is a vB→T -Hijack, Hijack-Renumber, Renumber or Transmit
subpath. As above, consider p in vB→M . We aim to construct a high-level
penetrator path p̂ in a bundle of the middle strand space such that p̂ is a high-
level transport-layer penetrator subpath of the same type. Firstly, we prove
by case analysis, using Lemma 8.18, that p can be abstracted to a normal
penetrator subpath p̂ such that p̂ is either, Case (1), a normal penetrator
strand, or, Case (2), transports the high-level application-layer message.

For Case (1), suppose p is also a normal vB→M -transport-layer penetrator sub-
path of some type. By Definition 4.21, p can be vB→M -abstracted to a normal
penetrator strand of the same type as the vB→M -transport-layer penetrator
subpath (which may not be the same type as p in vB→T ). Thus, we define two
high-level nodes in B̂, n̂1 and n̂2 , such that p(2 ) ψ̂ n̂1 , p(|p| − 1 ) ψ̂ n̂2 and
〈n̂1 , n̂2 〉 is a normal high-level strand of the type as p in vB→M . In this case,
p̂ is defined as 〈n̂1 , n̂2 〉 and thus, p̂ is a normal penetrator strand, as required.

For Case (2), as illustrated in Figure 8.6, p = p1 ˆpdˆpcˆp2 where p1 is a vB→M -
Learn or Receive penetrator subpath, pd is a destructive penetrator path, pc is
a constructive penetrator path, p2 is a vB→M -Fake or Send penetrator subpath,
and expath (pd ) = expath∼ (pc). Therefore, we abstract p1 to a high-level LN
or RV strand in an identical fashion to the abstraction performed in the case
when p is destructive. p2 is abstracted to a high-level SD or FK strand, as
per the the case for p being constructive. Lastly, pd and pc are abstracted
according to Definition 4.13 (i.e. under β̂1 ) to high-level penetrator paths p̂d

and p̂c . p̂ can then be defined as the concatenation of the destructive high-level

145



LN/RV SD/FK

p̂d p̂c

p1

pd pc

p2

p

p̂′d p̂′c

β̂1

β̂1 β̂1

β̂1

β̂2 β̂2

B̂

B

Figure 8.6: An illustration of the case of Proposition 8.20 where p is normal, and is
not a normal vB→M -transport-layer penetrator subpath.

strand, the normal penetrator paths p̂d and p̂c , and the constructive high-level
strand.

We now prove that p̂ transports the application-layer message. Firstly,
note that since expath (pd ) = expath∼ (pc), by Lemma 8.19, êxpath (p̂d ) =

êxpath
∼

(p̂c). Further, by construction there exists p̂′d and p̂′c such that
p̂ = p̂′dˆp̂′c , where p̂′d is destructive, p̂′c is constructive (i.e. p̂′d is a LN or RV
strand followed by p̂d , and similarly for p̂′c) and such that:

êxpath
(
p̂′d
)

= 〈Payload〉ˆexpath (pd) = 〈Payload〉ˆexpath∼ (pc) = êxpath
∼ (
p̂′c
)
.

Thus, all that remains to prove is that êxpath (p̂′d ) ≤ ̂expathc (ĉ). By Defini-
tion 8.6 (2), there exists es such that expathc (c) = expathc

(
̂transport(ĉ)

)
ˆes

where 〈Payload〉ˆes = ̂expathc (ĉ). Since p transports the application-
layer message, expath (p1 ˆpd ) ≤ expathc (c) and thus, as expath (p1 ) =

expathc
(

̂transport(ĉ)
)
, pd ≤ es. However, by construction, expath (pd ) =

êxpath (p̂d ), and thus it follows that êxpath (p̂d ) ≤ es. Therefore:

êxpath
(
p′d
)

= 〈Payload〉ˆêxpath (p̂d )

≤ 〈Payload〉ˆes

= expathc
(

̂transport(ĉ)
)
.

Hence, p̂ transports the high-level application-layer message.

In both cases the rest of the high-level bundle is constructed according to
Proposition 4.31. We now prove that p̂ is a prohibited high-level transport-

146



layer penetrator subpath of the same type as p. Firstly, note that p̂ is nor-
mal by construction and that, by Definition 8.6 (5), msg(p̂(1 )),msg(p̂(|p̂|)) ∈
T̂payload . Further, by construction, either, Case (1), p̂ is a normal penetra-
tor strand or, Case (2) p̂ = p̂′dˆp̂′c where p̂′d is destructive, p̂′c is constructive
and êxpath (p̂′d ) = êxpath

∼
(p̂′c) ≤ ̂expathc (ĉ) so p̂ transports the high-level

application-layer message. Lastly, since msg(p̂(1 )) = vB→M .α̂(msg(p(1 ))), it
follows by Lemma 8.10 that vB→T .α̂B(msg(p(1 ))) = χ̂(msg(p̂(1 ))). Hence:

• ŝender(msg(p̂(1 ))) = vB→T .sender(msg(p(1 )));

• ̂recipient(msg(p̂(1 ))) = vB→T .recipient(msg(p(1 )));

• ŝeqno(msg(p̂(1 ))) = vB→T .seqno(msg(p(1 )));

• ̂appmsg(msg(p̂(1 ))) = vB→T .appmsg(msg(p(1 )));

• ĉhan(msg(p̂(1 ))) = ĉ and c = vB→T .chan(msg(p(1 ))).

Further, since similar results hold for p̂(|p̂|) and p(|p|), it follows, by Defini-
tion 8.13, that p̂ is a normal high-level transport-layer penetrator subpath of
the same type as p.

Note that in order to apply the above proposition, both views (i.e. vB→M and
vB→T ) of the low-level strand space must be well-defined low-level strand spaces.
Whilst it is reasonable to assume that vB→M satisfies the assumptions (since we
are abstracting away from bottom transport-layer), it is not reasonable to assume
that vB→T does since this is defined partially in terms of the middle transport-layer.
Therefore, we now consider how to easily prove that vB→T satisfies the necessary
assumptions, assuming vB→M does.

Firstly, observe Assumptions 4.4, 4.5 and 4.6 are essentially defining the low-
level strand space, and thus impose no real proof obligations. Assumption 4.8 is
a simple disjointness condition, and is a proof obligation on the user of the results
to ensure that they only use the protocol in situations where it holds. Lastly, As-
sumption 4.10 specifies various conditions on the transport-layer terms, including
that regular strands use distinct channel ends etc. Clearly, such conditions do im-
pose proof obligations, and further, they would be more easily proven in the middle
strand space than in the bottom strand space. Hence, we formalise this assump-
tion as an assumption on the middle strand space and then prove that this implies
Assumption 4.10 holds in vB→T .

Definition 8.21. A high-level channel ĉ in a middle strand space Σ̂ is defined
correctly iff:

1. For all bundles B̂ of Σ̂ , and terms t1 , t2 ∈ T̂ ĉ
payload sent on ĉ:

(a) name(ŝender B̂(t1 )) = ? iff name(ŝender B̂(t2 )) = ?;

(b) end(ŝender B̂(t1 )) = ? iff end(ŝender B̂(t2 )) = ?;

(c) name( ̂recipient B̂(t1 )) = ? iff name( ̂recipient B̂(t2 )) = ?;

(d) end( ̂recipient B̂(t1 )) = ? iff end( ̂recipient B̂(t2 )) = ?;

(e) ŝeqnoB̂(t1 ) = iff ŝeqnoB̂(t2 ) = ;

147



(f) If ŝeqnoB̂(t1 ) 6= then end(ŝender B̂(t1 )) 6= ? and end( ̂recipient B̂(t1 )) 6=
? (and similarly for t2 ).

2. For all bundles B̂ and strands st and st ′ in B̂, if st 6= st ′ then ênds
′
B̂(st) ∩

ênds
′
B̂(st ′) = ∅ (cf. Equation 3.1), where ênds

′
B̂ is formally defined as5:

ênds
′
B̂(st) =̂ {end(ŝenderB(n)) | n ∈ NB̂ ∧msg(n) ∈ T̂ ĉ

payload

∧ sign(n) = + ∧ n is on st}

∪ {end( ̂recipientB(n)) | n ∈ NB̂ ∧msg(n) ∈ T̂ ĉ
payload

∧ sign(n) = − ∧ n is on st}.

3. For all bundles B̂ and for all regular strands st in Σ̂ , the function thst
B̂ : C×C →

S∗, which returns the list of sequence numbers sent between two channel ends
on a strand, is defined by:

thst
B̂ (ĉ, ψ, φ) =̂ 〈ŝeqnoB̂(msg(st , i)) | i ∈ 〈1 ..〉, i ≤ |st |,n ∈ NB̂,

msg(n) ∈ T̂ ĉ
payload , end(ŝender B̂(msg(st , i))) = ψ,

end( ̂recipient B̂(msg(st , i))) = φ〉.

For all regular strands st , and all ψ, φ ∈ C, either thst(ĉ, ψ, φ) ≤ 〈1 ..〉, or
thst(ĉ, ψ, φ) ∈ { }∗.

Using the above we now prove that this implies Assumption 4.10 holds in any
corresponding bottom strand space.

Lemma 8.22. Let Σ be a low-level strand space, c be a channel and ĉ be a high-
level channel such that c is an explicit layering of ĉ on ̂transport(ĉ). If ĉ is defined
correctly, then Σ satisfies Assumption 4.10 in vB→T with respect to c.

Proof. This follows immediately from Definition 8.21, Assumption 4.10 and the def-
inition of α̂.

8.4 Disjoint Encryption

In the previous section we proved that, subject to vB→M -interference-freedom, if
the middle transport-layer protocol is correct in the middle strand space, then it is
correct in the bottom strand space. In this section we use the results of Chapter 5 to
replace the semantic condition with a statically-checkable condition. In particular,
we replace the requirement that each bundle is interference-free with a requirement
that the strand space satisfies layer-disjoint encryption, as per Definition 5.8.

Firstly, we prove that if a low-level bundle of the bottom strand space contains
a prohibited transport-layer penetrator subpath for the combined transport-layer
protocol, then providing the strand space satisfies layer-disjoint encryption (with
respect to vB→M ) then there exists a bundle of the middle strand space that also
contains a prohibited transport-layer penetrator subpath.

5Note this definition differs from that given in Definition 3.4, since the latter does not consider
which bundle the strand is in.

148



Lemma 8.23. Let Σ be a low-level strand space that satisfies vB→M -layer-disjoint
encryption, c be a channel and ĉ be a high-level channel such that c is an explicit
layering of ĉ on ̂transport(ĉ). Further, let B be a low-level bundle such that c is
not vB→T -abstractly correct and Σ̂E be a high-level strand space that contains ĉ
and that abstracts the low-level strand space ΣE according to Definition 5.15. Then,
there exists a high-level bundle B̂ of Σ̂E such that B̂ abstracts B and in which ĉ is
not abstractly correct.

Proof. Let Σ , c, ĉ, B and Σ̂E be as per the lemma. Since c is not vB→T -abstractly
correct in Σ , there must exist a transport-layer penetrator subpath p that is pro-
hibited by the definition of c. By Proposition 5.34, there exists a normal, vB→M -
interference-free bundle B′ of the enlarged strand space ΣE such that B D B′. In
order to apply Proposition 8.20 it is necessary to show that ΣE is not abstractly
correct, i.e. the transformations performed by Proposition 5.34 should not remove
the prohibited penetrator subpath. Thus, we consider the penetrator subpaths that
are removed by each of the transformations performed, as follows.

Lemma 5.20: In this lemma a new M strand is connected to a pre-existing message-
construction path (Definition 5.4), replacing an existing crossing path (Defini-
tion 5.10). The only way this could have an effect is if p traversed a crossing
path in a way that meant it was removed by the transformation. If p is a
constructive transport-layer penetrator subpath, then it must be a suffix of
the message-construction path and is hence unaffected. If p is a destructive
transport-layer penetrator subpath then it is unaffected since the join happens
in the constructive section. Otherwise, p must be a normal transport-layer
penetrator subpath and therefore must be the crossing path. However, this
contradicts the definition of a crossing path: all normal transport-layer pene-
trator subpaths require that the extraction path for the destructive portion is
a prefix of the channel extraction path, which is explicitly not the case for a
crossing path.

Lemma 5.23: This lemma only removes crossing paths, as above.

Lemma 5.24: This lemma does not remove any penetrator paths, but does alter
them by adding redundant S and C strand pairs. If p is a destructive or
constructive transport-layer penetrator subpath, then this transformation has
no effect. If p is a normal penetrator subpath, then the transformation again
has no effect since the values of sender etc are left unchanged and, further,
since the S and C strands are introduced in pairs, any extraction paths that
are required to be equivalent will remain equivalent. Clearly, if too many extra
S and C strand pairs were added this could cause the penetrator path to not
transport the application-layer message. However, since the extra S and C
strands are added only to reveal Send and Receive subpaths, it immediately
follows that the path still transports the application-layer message.

Lemma 5.30: This lemma only adds extra S and C strand pairs, as above.

Proposition 5.34: This proposition applies the above lemmas, but also applies
Lemma 5.6 to obtain a normal bundle. Note that normalising a bundle will
not remove p. Clearly, if p is already a normal penetrator path, then since

149



it is between two regular nodes it will not be removed. If p is a destructive
transport-layer penetrator subpath, starting at a regular node, then again, the
transformation can leave the path unaltered. Lastly, if p is a constructive path,
it will end at a regular node and can again be preserved by the transformation.

Hence, ΣE is not vB→T -abstractly correct and thus Proposition 8.20 can be applied
to deduce that there exists a high-level bundle of Σ̂E such that B̂ abstracts B and in
which ĉ is not abstractly correct, as required.

Using the above we can now prove our main result. In particular, we prove that if
the middle strand space contains no prohibited high-level penetrator subpaths, then
the bottom strand space contains no prohibited penetrator subpaths. In particular,
this means that we can now analyse protocols in the middle strand space and be
confident that this is sound.

Proposition 8.24. Let Σ be a low-level strand space that satisfies vB→M -layer-
disjoint encryption, c be a channel and ĉ be a high-level channel such that c is
an explicit layering of ĉ on ̂transport(ĉ). Further, let Σ̂E be a high-level strand
space that contains ĉ and that abstracts the low-level strand space ΣE according to
Definition 5.15. Then, if ĉ is abstractly correct in Σ̂E then c is abstractly correct in
Σ .

Proof. Let Σ , c, ĉ, B and Σ̂E be as per the lemma. Suppose, for a contradiction that
c is not abstractly correct in Σ . Then it follows that there exists a bundle B that is
not vB→T -abstractly correct with respect to c. Thus, Lemma 8.23 can be applied to
deduce that there exists a high-level bundle B̂ of Σ̂E such that B̂ abstracts B and in
which ĉ is not abstractly correct, contradicting the abstract correctness of Σ̂E .

8.5 Examples

In this section we present two simple examples of multi-layer protocols and prove
them correct. In Section 8.5.1 we consider the running example of a middle transport-
layer that ensures messages cannot be reordered. Secondly, in Section 8.5.2 we prove
the correctness of the middle transport-layer that converts a unilateral channel into
a bilateral channel by use of a username/password exchange, as described in the
introduction to this chapter.

8.5.1 Sequence Numbers

In this section we prove the correctness of the running example throughout this
chapter. Firstly, we formally define the transport-layer protocol that we are going
to verify.

Definition 8.25. The anti-renumbering high-level channel, denoted, S, is defined
by:

• ̂transport(S) is defined as an arbitrary channel that satisfies AC and that au-
thenticates the sender and recipient (i.e. if t ∈ Â and chan(t) = ̂transport(S),
then end(sender(t)) 6= ?? and end(recipient(t)) 6= ??);

150



• S satisfies AC;

• T̂ Spayload is defined as the set of all high-level terms of the form
(Aψ, Bφ, , iˆm, ̂transport(ĉ));

• ̂expathc (ĉ) =̂ 〈Payload, 2 〉;

• For each high-level bundle B̂, ŝeqno
S
B̂(Aψ, Bφ, , iˆm, ̂transport(ĉ)) =̂ i ;

• For each high-level bundle B̂, and for all t ∈ Â, ŝender
S
B̂(t) =̂ sender(t) and

̂recipient
S
B̂(t) =̂ recipient(t).

• S satisfies AC.

We now make an assumption that ensures regular strands are correctly checking
sequence numbers, as required by any implementation involving sequence numbers.

Assumption 8.26. Let Σ̂ be a high-level strand space containing S. Then, for all
regular strands st and all channel ends ψ and φ, thst

B̂ (S, ψ, φ) = 〈1 ..〉 (cf. Defini-
tion 8.21).

Using this we can now prove that S is defined correctly in any middle strand
space. In light of Lemma 8.22, this means that if a particular user wishes to use S
as a middle transport-layer, this reduces the proof obligations required to show that
vB→T satisfies the necessary assumptions.

Lemma 8.27. S is defined correctly in any middle strand space Σ̂ .

Proof. This follows from the fact that apart from ŝeqno, all other values, such as
ŝender and ̂recipient , are lifted directly from the underlying transport-layer and
thus Definition 8.21 (1) and (2) hold. Further, by Assumption 8.26, it follows that
sequence numbers are also correctly defined and thus Definition 8.21 (3) holds, as
required.

We now prove that any high-level bundle of the middle strand space does not
contain any prohibited high-level transport-layer penetrator subpaths on ĉ, i.e. the
only high-level penetrator subpaths that a high-level bundle contains must be HL-
Send, HL-Receive and HL-Transmit subpaths. We prove this via a series of lemmas,
several of which are applicable to other middle-transport-layer protocols.

Firstly, we prove if a high-level channel obtains its recipient directly from the
underlying transport layer (i.e. ̂recipient = recipient), and the underlying channel
satisfies C, then any high-level bundle cannot contain any HL-Learn subpaths. This
follows from the fact that a HL-Learn subpath for such a channel must be built using a
LN strand for the bottom transport-layer, since ̂recipient = recipient . However, such
strands are prohibited by the definition of C. Note that this lemma is not specific
to S.

Lemma 8.28. Let B̂ be a normal high-level bundle and ĉ be a high-level channel
such that ̂recipient

ĉ

B̂(t) = recipient(t). If ̂transport(ĉ) satisfies C and, for all t ∈
̂transport(ĉ), recipient(t) 6= ??, then B̂ contains no HL-Learn subpaths.

151



Proof. Let B̂, ĉ be as per the lemma. Suppose, for a contradiction, that B̂ con-
tains a HL-Learn subpath p. Thus, p ̂app-extracts p(1 ) and, since ̂transport(ĉ) 6= ⊥
(by definition of a high-level channel), it follows that p must start with a RV or
LN strand. Since ̂transport(ĉ) satisfies C it follows that only a RV strand is per-
mitted and therefore, recipient(p(1 )) ∈ Ipen . Since p is a HL-Learn subpath it fol-
lows that ̂recipient(p(1 )) ∈ Ireg . Further, since, by assumption, ̂recipient(p(1 )) =
recipient(p(1 )), it follows that recipient(p(1 )) ∈ Ireg . However, this is a contradic-
tion since Ireg ∩ Ipen = ?? but, by assumption, recipient(p(1 )) 6= ??. Therefore, B̂
contains no HL-Learn subpaths, as required.

We now prove another lemma that is independent of S and show that, if a
high-level channel obtains its sender directly from the underlying transport-layer
(i.e. ŝender = sender), and the underlying channel satisfies A, then no high-level
bundle contains any HL-Fake subpaths. As above, this follows from the fact that any
such HL-Fake subpath must start with a FK for the underlying channel, which are
prohibited by the definition of A.

Lemma 8.29. Let B̂ be a normal high-level bundle and ĉ be a high-level channel such
that ŝender

ĉ

B̂(t) = sender(t). If ̂transport(ĉ) satisfies A and, for all t ∈ ̂transport(ĉ),
sender(t) 6= ??, then B̂ contains no HL-Fake subpaths.

Proof. Let B̂, ĉ be as per the lemma. Suppose, for a contradiction, that B̂ contains
a HL-Fake subpath p. Thus, p ̂app-packages p(|p|), and since ̂transport(ĉ) 6= ⊥
(by definition of a high-level channel), it follows that p must start with a SD or
FK strand. Since ̂transport(ĉ) satisfies C, it follows that only a SD strand is per-
mitted and therefore, sender(p(|p|)) ∈ Ipen . Since p is a HL-Fake subpath it fol-
lows that ŝender(p(|p|)) ∈ Ireg . Further, since, by assumption, ŝender(p(|p|)) =
sender(p(|p|)), it follows that sender(p(|p|)) ∈ Ireg . However, this is a contradiction
since Ireg∩Ipen = ?? but, by assumption, sender(p(|p|)) 6= ??. Therefore, B̂ contains
no HL-Fake subpaths, as required.

We now prove that no high-level bundle contains any prohibited high-level
transport-layer penetrator subpaths for S. This can be proven relatively simply,
given the above definitions. In particular, the only type of high-level penetrator
subpath that does not consist almost entirely of a high-level strand from the bottom
transport-layer is a HL-Renumber subpath.

Lemma 8.30. Let B̂ be a normal high-level bundle. Then, S is abstractly correct
in B̂.

Proof. Let B̂ and ̂transport(S) be as per the lemma. Suppose, for a contradic-
tion, that B̂ is not abstractly correct and therefore contains a prohibited high-level
transport-layer penetrator subpath p. Clearly p cannot be a HL-Receive, HL-Send
or HL-Transmit subpath, since these are not prohibited. Further, by Lemma 8.28
and Lemma 8.29, p also cannot be a HL-Learn or HL-Fake subpath. Hence, p must
not be an innocuous high-level subpath and be either a HL-Hijack, HL-Renumber or
HL-Hijack-Renumber penetrator subpath.

Therefore, either p is a normal penetrator strand, or p transports the high-level
application-layer message. Suppose the former holds. However, since ̂transport(S)
satisfies AC no normal penetrator strands are permitted.

152



Hence, p must transport the high-level application-layer message. Since
chan(p(1 )) = ̂transport(S) satisfies AC, it follows that chan(p(1 )) 6= ⊥ and
hence the only penetrator strand that p can possibly start with is a RV strand.
Hence, since ̂transport(S) satisfies C, recipient(p(1 )) ∈ Ipen . Further, since
chan(p(|p|)) = chan(p(1 )) it follows that somewhere along p the penetrator must
resend the application-layer message using a SD or FK strand. As chan(p(1 ))
satisfies AC, this has to be using a SD strand which, since p is normal, must
come at the end of p. Therefore, sender(p(|p|)) ∈ Ipen and hence, since
ŝender(p(|p|)) = sender(p(|p|)) and ̂recipient(p(1 )) = recipient(p(1 )), it follows
that ŝender(p(|p|)), ̂recipient(p(1 )) ∈ Ipen . Hence, p is a innocuous high-level sub-
path, contradicting the fact that p was a prohibited transport-layer penetrator sub-
path. Hence, B̂ contains no high-level penetrator subpaths on ĉ.

Whilst the above lemma proves that no normal bundles contain any HL-Renumber
subpaths, it does not show that an arbitrary high-level bundle does not contain any
HL-Renumber subpaths. In the following lemma we prove that this is indeed the
case. Note that the following lemma is not specific to S and can therefore be used
for other high-level channels too.

Lemma 8.31. Let Σ̂ be a high-level strand space and ĉ be a high-level channel. If
every normal bundle of Σ̂ that does not contain TX or HJRN strands contains no
prohibited high-level transport-layer penetrator subpath on ĉ, then no bundle of Σ̂
contains a prohibited high-level transport-layer penetrator subpath on ĉ.

Proof. Let Σ̂ and ĉ be as per the lemma. Suppose, for a contradiction, that every
normal bundle of Σ̂ that does not contain TX or HJRN strands contains no prohibited
high-level penetrator subpath on ĉ, but that some bundle B̂ of Σ̂ does. Firstly, we
normalise B̂. Note that all normal high-level transport-layer penetrator subpaths are
normal paths between regular nodes, by definition, and hence will be present in any
normalised bundle. If p is a destructive penetrator path then it immediately follows
that, since p starts at a regular node, p can remain in any normal form of B̂. Thus,
p must be a constructive penetrator path. However, in this case it follows p ends at
a regular node and, therefore, p will be present in any normal form. Thus, it follows
that any normalised version of B̂ must contain the prohibited penetrator path p.
Hence, Lemma 3.13 can be applied to deduce the existence of a normal bundle B̂′
that contains p. Further, note that the transformation specified in Lemma 4.16
will not remove p: they may alter p by removing TX strands, for example, but the
overall effect of p will remain the same. Thus, it follows that there exists a high-
level bundle B̂′′ that is normal, contains no TX or HJRN strands, but contains a
prohibited transport-layer penetrator subpath p, contradicting the assumption that
no such bundles exist. Hence, all bundles of Σ̂ contain no prohibited penetrator
subpaths on ĉ.

Lastly, we combine the results of the above lemma and prove that if c is a
combined protocol with S as the middle-layer-transport protocol then it is abstractly
correct in every low-level strand space.

Proposition 8.32. Let Σ be a low-level strand space such that vB→M and vB→T

are valid views, and such that Σ satisfies vB→M -layer-disjoint encryption. Further,

153



let c be a channel that is an explicit layering of S on an abstractly-correct channel
c′ that satisfies AC and authenticates the sender. Then, c is abstractly correct in Σ .

Proof. Let Σ , c, and c′ be as per the lemma. Let Σ̂E be an arbitrary high-level
strand space that abstracts the low-level strand space Σ̂E , which is defined according
to Definition 5.15. By Lemma 8.30 it follows that all normal bundles of Σ̂E contain
no prohibited transport-layer penetrator subpaths for S. Further, by Lemma 8.31
it follows that all bundles of Σ̂E contain no prohibited transport-layer penetrator
subpaths for S and, hence, S is abstractly correct in Σ̂ . Thus, by Proposition 8.24,
c is abstractly correct in ΣE . Further, since the bundles of Σ are a subset of those
of ΣE , it immediately follows that c is abstractly correct in Σ .

8.5.2 Username and Password Protocol

In this section we prove the correctness of a middle transport-layer protocol that
authenticates the user using a username and password combination. In particular,
this protocol can be used in conjunction with unilateral TLS to authenticate the
client to the server and thus create a bilateral TLS-like connection. For example, a
client C can login to a server S and send an application-layer message m by sending
the following messages:

1 . ?ψ→ Sφ : C ˆpasswdS (C )
2 . ?ψ→ Sφ : m

The primary complication when defining the username and password channel is
how to extract the username that is being used by the client. For example, the
second message of the above example needs to be abstracted to the high-level term
(Cψ, Sφ, m, UP), but note that C is not contained anywhere within the second
message. We solve this in the following definition by defining a function over channel
ends that gives the username that was used to login to the server. Thus, in the above
example, the function would associate ψ with C . We formalise this function, and its
domain, as follows.

Definition 8.33. CUP ⊆ C is defined as the set of all channel ends that are used by
clients running the username and password protocol (e.g. given the example in the
introduction, ψ ∈ CUP).

For each high-level bundle B̂, the function username forB̂ : (CUP , CUP)→ Tnames

gives the username sent as the first message from the first to the second channel end.
Formally, username forB̂(ψ, φ) is defined as C if there exists n, S such that:

n ∈ NB̂ ∧ (n is regular ∨ ∃n ′ ∈ NB̂ · n →B̂ n ′)

∧msg(n) = +(?ψ, Sφ, 1 , C ˆpasswdS (C ), ̂transport(UPC→S))
(8.1)

or is defined as an arbitrary member of T pen
names , denoted by N⊥.

In Assumption 8.36, we make assumptions that ensure username for is well de-
fined, before proving that it is indeed well defined in Lemma 8.38. The definition
of username forB̂ can be explained as follows. Suppose ψ is a channel end in CUP .
Then, assuming that the agent is correctly implementing the username and password
protocol (we formalise this assumption in Assumption 8.36), it follows that the first

154



message sent from ψ (formalised by the last clause) must be the message to login to
the server, i.e. C ˆpasswdS (C ). Thus, the above function correctly associates ψ with
C . In order to ensure that username for is well defined, we also require the login
message to actually be received by another agent (i.e. the n → n ′ clause). If we did
not have this clause then it follows that username for in a bundle that contained
lots of SD strands that are not connected to anything, each sending a login message,
could have many different usernames.

We now formalise the username and password protocol as a high-level chan-
nel UP. As with TLS , we actually define two channels: one from the client to
the server, denoted UPC→S , and one from the server to the client, UPS→C . This is
necessary because, in particular, the definition of ŝender and ̂recipient are direction
dependant. For example, from the client to the server, ŝender needs to extract the
username for the channel end, whilst from the server to the client ŝender promotes
the value from the layer below. We start by defining the channel from the client to
server, leaving the definition of UPS→C until Definition 8.43.

Definition 8.34. The client to server username and password high-level channel
UPC→S , is defined by:

1. ̂transport(UPC→S) is defined as an arbitrary channel that satisfies AC and such

that for all t ∈ T ̂transport(UPC→S )
payload , end(sender(t)) 6= ?, name(recipient(t)) 6= ?

and end(recipient(t)) 6= ?.

2. T̂ UPC→S

payload is defined as the set of all high-level terms of the form
(Aψ, Sφ, i , m, ̂transport(UPC→S)) where ψ ∈ CUP and i 6= 1 .

3. ̂expathc (UPC→S) =̂ 〈Payload〉.

4. For each high-level bundle B̂, ŝeqno
UPC→S

B̂ (t) = seqno(t)− 1 .

5. For each high-level bundle B̂, ̂recipient
UPC→S

B̂ (t) =̂ recipient(t).

6. ŝender
UPC→S

B̂ (t) =̂ (username forB̂(ψ, end(recipient(t))), ψ) where ψ =
end(sender(t))).

7. UPC→S satisfies AC.

We now prove that UPC→S is defined correctly in any middle strand space. Again,
in light of Lemma 8.22 this reduces the proof obligations required to show that vB→T

satisfies the necessary assumptions if UPC→S is used.

Lemma 8.35. UPC→S is defined correctly in any middle strand space Σ̂ .

Proof. This follows immediately from the definition of UPC→S , Assumptions 3.5 and
3.3, and Equation 3.1.

In order to prove that the username and password channel is correct we require
several assumptions on the strand space. In particular, we require:

155



1. The penetrator does not initially posses any passwords for regular agents.
Clearly if this is not the case the penetrator can trivially impersonate regular
agents.

2. If ψ ∈ CUP is used to send a message from a regular node n, then there must be
a node that precedes n in which the username and password are sent. Further,
such a node must be unique. This is required to make sure that regular clients
are correctly implementing the protocol by logging on exactly once, as the first
message.

3. If ψ ∈ CUP is used to receive a message at a node n, then there must be a node
that precedes n in which the valid username and password were received (and
hence, checked). Further, such a node must be unique. As above, this ensures
that regular servers are correctly implementing the protocol.

4. Usernames and passwords for regular agents are sent only as part of the login
message. This is necessary to ensure that the penetrator cannot obtain the
username and password via other means.

These are formalised as (1)–(5) below.

Assumption 8.36. Σ̂ satisfies the following properties:

1. If U ,S ∈ T reg
names then passwdS (U ) /∈ A∗P and passwdS (U ) is an atom.

2. For all ψ ∈ CUP , for all positive regular nodes n ∈ NB̂: if end(sender(n)) =
ψ then there must exist a positive n ′ such that n ′ ⇒∗ n, msg(n ′) =
+(?ψ, Sφ, 1 , C ˆpasswdS (C ), ̂transport(UPC→S)) for some C ∈ T reg

names .

3. For all ψ ∈ CUP , for all negative regular nodes n ∈ NB̂: if end(sender(n)) =
ψ then there must exist a negative n ′ such that n ′ ⇒∗ n, msg(n ′) =
−(?ψ, Sφ, 1 , C ˆpasswdS (C ), ̂transport(UPC→S)).

4. For all positive regular nodes n in Σ̂ , if passwdS (C ) v appmsg(n) for some C ∈
T reg

names and S ∈ T reg
names then name(recipient(n)) 6= ?, name(recipient(n)) ∈

T reg
names and chan(n) must satisfy C.

Note that the fourth assumption above does not preclude the user from using the
same password for multiple honest servers. However, it does prevent the user from
using the same password at an honest and a dishonest server.

We now prove that the password for a honest user logging into an honest server
is confidential according to Definition 3.14.

Lemma 8.37. If C ,S ∈ T reg
names then passwordS (C ) is confidential in all high-level

bundles B̂.
Proof. Let C and S be as per the lemma and let B̂ be an arbitrary high-level bun-
dle. By Assumption 8.36 (1), passwdS (C ) /∈ A∗P . We now prove that passwdS (C )

is sent confidentially in B̂. Hence, let n be a node of B̂ such that msg(n) =
(Aψ, Bφ, i , m, c) where passwdS (C ) v m. If n is regular then, by Assump-
tion 8.36 (4), chan(n) satisfies C, name(recipient(n)) 6= ? and name(recipient(n)) ∈
T reg

names . Therefore, passwdS (C ) is sent confidentially from positive regular nodes.
Thus, by Definition 3.17, t is a safe atom and therefore, by Lemma 3.18, passwdS (C )
is confidential in B̂.

156



We now prove that username for is well defined. For regular channel ends
this follows from Assumption 8.36 (2), which ensures that the login message is
always sent as the first message. For penetrator channel ends, this is ensured
by Assumption 8.36 (3), which ensures that the login message is the first mes-
sage received by the server. In the following, we use the function ends(B̂) which
returns the set of channel ends used in a bundle and is defined by: ends(B̂) =
{end(sender(n)), end(recipient(n)) | n ∈ NB̂}.

Lemma 8.38. Let B̂ be a normal high-level bundle. Then, username forB̂(ψ, φ) is
well-defined on all ψ ∈ ends(B̂) ∩ CUP and φ ∈ ends(B̂).

Proof. Let B̂ be as per the lemma. Firstly, note that, by definition username forB̂ is
defined on all ψ and φ. Hence, it suffices to show that username forB̂ is uniquely de-
fined. Given the definition of username forB̂, it follows that if username forB̂(ψ, φ) =
N⊥, then it is by definition uniquely defined. Hence, suppose there exists
n1 such that: msg(n1 ) = +(?ψ, Sφ, 1 , C ˆpasswdS (C ), ̂transport(UPC→S))
and either n1 is regular or there exists n ′1 such that n1 →B̂ n ′1 . We prove
that n1 is uniquely defined by supposing there exists n2 such that msg(n2 ) =
+(?ψ, S ′φ′ , 1 , C ′ˆpasswd ′S (C ′), ̂transport(UPC→S)) and either n2 is regular or there
exists n ′2 such that n2 →B̂ n ′2 . We prove that n1 = n2 by a case analysis on n1 .

Firstly, suppose n1 is a regular node. Then it must be the case that ψ ∈ Creg and
thus, since ψ 6= ? (by Definition 8.34 (1)), by Equation 3.1, n2 must lie on the same
strand as n1 . Therefore, since seqno(n1 ) = seqno(n2 ), by Assumption 3.5, n1 = n2

and thus username forB̂ is well defined.
Otherwise, suppose n1 is a penetrator node. Thus, ψ ∈ Cpen and therefore, since

ψ 6= ?, it follows that n2 must also be a penetrator node (as no positive regular
node sends messages from a penetrator channel end). Further, since SD strands
can only be used to send messages to regular channel ends, it follows that n ′1 and
n ′2 must be regular nodes. By definition, end(recipient(n ′1 )) = end(recipient(n ′2 ))
and therefore, by Equation 3.1, n ′1 and n ′2 must lie on the same strand. Since
Assumption 8.36 (3) requires that seqno(msg(n1 )) = 1 and seqno(msg(n2 )) = 1 , it
follows by Assumption 3.5 that n ′1 = n ′2 . Hence, as n1 →B̂ n ′1 and n2 →B̂ n ′2 = n ′1 ,
n1 = n2 . Therefore, username forB̂ is well defined.

Recall that ŝender
UPC→S

B̂ (t) is defined as username forB̂(ψ, φ) where ψ =

end(sender(t)), and φ = end(recipient(t)). Thus, in order for ŝender to be well
defined, it has to return a value in I, which is defined as the union of Ireg and Ipen .
This means that ŝender is only well defined if ψ ∈ Creg iff username forB̂(ψ, φ) ∈ Creg .
This can be proven as follows.

Lemma 8.39. Let B̂ be a normal high-level bundle, ψ ∈ CUP and φ ∈ C. Then,
ψ ∈ Creg ∩ ends(B̂) iff username forB̂(ψ, φ) ∈ T reg

names .

Proof. Let B̂ and ψ be as per the lemma. There are two cases to consider.

1. Firstly, suppose ψ ∈ Creg ∩ ends(B̂). Then, by definition of ends there
must exist a regular node n such that end(sender(msg(n))) = ψ. We
prove that username forB̂(ψ, φ) ∈ T reg

names . By Assumption 8.36 (2), it fol-
lows that there must exist a positive node n ′′ ⇒∗ n such that msg(n ′′) =

157



n ′0 n0

SD

n1 n ′′

SD

n n ′

(?ψ , Sφ, 1 , C ˆpasswdS (C ), ĉ)

(?, ?, C ˆpasswdS (C ), ⊥)

Figure 8.7: An illustration of the second case of Lemma 8.39 (where n is a penetrator
node). In the above, ĉ = ̂transport(UPC→S).

+(?ψ, Sφ, 1 , C ˆpasswdS (C ), ̂transport(UPC→S)) for some C ∈ T reg
names .

Thus, by Definition 8.33 and Lemma 8.38, username forB̂(ψ) = C and thus
username forB̂(ψ) ∈ T reg

names , as required.

2. Otherwise, ψ ∈ Cpen ∩ ends(B̂). There are two cases to consider. Firstly, if
there exists no n and S such that Equation 8.1 holds, then it immediately
follows that username forB̂(ψ, φ) = N⊥ ∈ T pen

names , as required. Otherwise,
there exists n and S such that Equation 8.1 holds. Then, it follows that n is
a penetrator node and thus there exists a node n ′ such that n → n ′. Since
̂transport(UPC→S) 6= ⊥ and satisfies AC, it follows that n can only be the

positive node on a SD strand. Thus, it follows that sender(msg(n)) ∈ Ipen ,
recipient(msg(n)) ∈ Ireg and hence ψ ∈ Cpen and S ∈ T reg

names .

As recipient(msg(n)) ∈ Ireg it immediately follows that n ′ is a regular node.
By Assumption 8.36 (3), it follows that there must exist a negative node n ′′ ⇒∗
n ′ such that msg(n ′′) = −(?ψ, Sφ, 1 , C ˆpasswdS (C ), ̂transport(UPC→S));
this is illustrated in Figure 8.7. Let n1 be such that n1 → n ′′. Since
ψ ∈ Cpen (as sender(msg(n)) ∈ Ipen) it follows that n1 must be a pos-
itive node on a penetrator strand. Further, since n1 → n ′′, msg(n1 ) =
+(?ψ, Sφ, 1 , m, C ˆpasswdS (C )), as required. Hence, passwdS (C ) is not
confidential in B̂. Therefore, C /∈ T reg

names , since by Lemma 8.37 passwdS (C ) is
confidential for all S ,C ∈ T reg

names . Thus, C ∈ T pen
names , as required.

We now prove the correctness of UPC→S by proving that it is abstractly correct
in an arbitrary high-level bundle. We do this in a series of lemmas. Firstly, we
prove that no high-level bundle contains any HL-Hijack, HL-Renumber or HL-Hijack-
Renumber subpaths.

Lemma 8.40. Let B̂ be a normal high-level bundle. Then B̂ contains no prohibited
HL-Hijack, HL-Renumber or HL-Hijack-Renumber subpaths on UPC→S .

Proof. Let B̂ be as per the lemma. Suppose, for a contradiction, that B̂ contains a
HL-Hijack, HL-Renumber or HL-Hijack-Renumber subpath p on UPC→S . Thus, either
p is a normal penetrator strand, or p transports the high-level application-layer
message. If p is a normal penetrator strand, it follows that p must either be a HJ or
RN strand. However, since ̂transport(UPC→S) satisfies AC, p cannot be a RN or HJ
strand.

158



Thus, p must transport the high-level application-layer message. Hence, there
exists pd , pc such that p = pdˆpc and expath (pd ) = expath∼ (pc). Clearly pd and
pc must be non-empty, otherwise a renumber or a hijack is not possible. Hence,
since ̂transport(UPC→S) 6= ⊥, pd must start with a LN or RV strand and pc must end
with a SD or FK strand. Since ̂transport(UPC→S) satisfies AC it follows that only RV
and SD strands are permitted and therefore, recipient(p(1 )), sender(p(|p|)) ∈ Ipen .
Thus, as ̂recipient(p(1 )) = recipient(p(1 )), ̂recipient(p(1 )) ∈ Ipen . Further,
since end(ŝender(p(|p|))) = end(sender(p(|p|))), it follows by Lemma 8.39, not-
ing that end(sender(p(|p|))) ∈ CUP since p is a high-level penetrator path on
̂transport(UPC→S), that ŝender(p(|p|)) ∈ Ipen . Therefore, p is a high-level innocuous

penetrator subpath, contradicting the assumption that p is a prohibited subpath.
Hence, B̂ contains no prohibited HL-Hijack, HL-Renumber or HL-Hijack-Renumber
subpaths, as required.

We now prove that UPC→S is abstractly correct in every normal bundle. Given
the above lemma and Lemma 8.28, we are able to prove this simply by proving that
there are no HL-Fake subpaths. This follows simply from Lemma 8.39.

Lemma 8.41. Let B̂ be a normal high-level bundle. Then, UPC→S is abstractly
correct in B̂.

Proof. Let B̂ and ̂transport(UPC→S) be as per the lemma. Suppose, for a contradic-
tion, that B̂ is not abstractly correct and therefore contains a prohibited high-level
transport-layer penetrator subpath p. Clearly p cannot be a HL-Receive, HL-Send
or HL-Transmit subpath, since these are not prohibited. Further, by Lemma 8.28, p
also cannot be a HL-Learn subpath and by Lemma 8.40, p cannot be a HL-Renumber,
HL-Hijack or HL-Hijack-Renumber penetrator subpath. Hence, p must be a HL-Fake
subpath. Thus, as ̂transport(UPC→S) 6= ⊥, p must end with either a SD or FK
strand. Further, since p is a HL-Fake subpath, ŝender(p(|p|)) ∈ Ireg and thus, by
Lemma 8.39, and the definition of ŝender , sender(p(|p|)) ∈ Ireg . Therefore, p ends
with a FK strand, contradicting the fact that ̂transport(UPC→S) satisfies A. Thus, p
is abstractly correct in B̂.

Lastly, we use the above lemma and Proposition 8.24 to prove that if c is a
combined protocol with UPC→S as the middle-layer-transport protocol, then it is
abstractly correct in every low-level strand space.

Proposition 8.42. Let Σ be a low-level strand space that satisfies vB→M -layer-
disjoint encryption, c be a channel that is an explicit layering of UPC→S on an
abstractly correct channel c′ that satisfies the appropriate properties. Then, c is
abstractly correct in Σ .

Proof. Let Σ , c, and c′ be as per the lemma. Let Σ̂E be an arbitrary high-level
strand space that abstracts the low-level strand space Σ̂E , which is defined accord-
ing to Definition 5.15. By Lemma 8.41 it follows that all normal bundles of Σ̂
contain no prohibited transport-layer penetrator subpaths for UPC→S . Further, by
Lemma 8.31 it follows that all bundles of Σ̂ contain no prohibited transport-layer
penetrator subpaths for UPC→S and, hence, UPC→S is abstractly correct in Σ̂ . Thus,
by Proposition 8.24, c is abstractly correct in ΣE . Further, since the bundles of Σ

159



are a subset of those of ΣE , it immediately follows that c is abstractly correct in
Σ .

Recall that the above proposition only proves that the channel from the client to
the server is secure, not that the corresponding channel from the server to the client
is. Thus, we now consider the latter. Firstly, we formally define the channel from
the server to the client, UPS→C , similarly to Definition 8.34.

Definition 8.43. The server to client username and password high-level channel
UPS→C , is defined by:

1. ̂transport(UPS→C ) is defined as an arbitrary channel that satisfies AC and such

that for all t ∈ T ̂transport(UPS→C )
payload , end(recipient(t)) 6= ?, name(sender(t)) 6= ?

and end(sender(t)) 6= ?.

2. T̂ UPS→C

payload is defined as the set of all high-level terms of the form
(Aψ, Sφ, i , m, ̂transport(UPS→C )) where ψ ∈ CUP and i 6= 1 .

3. ̂expathc (UPS→C ) =̂ 〈Payload〉.

4. For each high-level bundle B̂, ŝeqno
UPS→C

B̂ (t) = seqno(t)− 1 .

5. For each high-level bundle B̂, ŝender
UPS→C

B̂ (t) =̂ sender(t).

6. ̂recipient
UPS→C

B̂ (t) =̂ (username forB̂(ψ, end(sender(t))), ψ), where ψ =
end(recipient(t))).

7. UPS→C satisfies AC.

We now prove that UPS→C is abstractly correct. We elide the full proof since
it, and the required subsidiary lemmas, are almost identical to those that prove the
correctness of UPC→S .

Proposition 8.44. Let Σ be a low-level strand space that satisfies vB→M -layer-
disjoint encryption, c be a channel that is an explicit layering of UPS→C on an
abstractly correct channel c′ that satisfies the appropriate properties. Then, c is
abstractly correct in Σ .

Proof. This can be proven by trivially adapting the proofs of Lemma 8.40,
Lemma 8.41 and Proposition 8.42 to UPS→C .

8.6 Summary

In this chapter we have developed a model in which protocols that consist of an
arbitrary number of layers can be proven correct. In particular, we have developed
a way of proving that a middle transport-layer protocol is abstractly correct, whilst
abstracting away from the transport-layer that it is layered on. Therefore, it follows
that the composition of an arbitrary number of layers can be proven by inductively
applying the results of this chapter.

160



In order to do this, we firstly defined, in Section 8.1, the concept of a high-
level channel, and what it means for a high-level channel to be abstractly correct
in a high-level bundle. This can be used to analyse the correctness of the middle
transport layer in the high-level strand spaces model, thus abstracting away from the
underlying transport layer. In Section 8.2 we defined what it means for a low-level
channel to be the composition of a low-level channel and a high-level channel.

In Section 8.3 we proved the soundness of our approach, subject to a semantic
condition. In particular, we proved that if a high-level channel is abstractly correct
in a high-level strand space, and it is layered on an abstractly-correct transport layer,
then any low-level composition of the two transport layers is abstractly correct. In
Section 8.4 we extended the results of Chapter 5 and proved that our approach is
sound subject to a statically-checkable condition.

In Section 8.5 we demonstrated the effectiveness of our technique by proving the
correctness of two simple examples of multi-layer protocols. The first is a transport-
layer protocol that adds sequence numbers to an underlying transport-layer protocol
that does not have sequence numbers. The second example proved that a username
and password layered on a unilateral-TLS-like transport-layer provides a channel
that is bilateral-TLS-like, by authenticating the user to the server. This example is
particularly important, given the number of websites and services that make use of
this protocol.

Related Work Whilst there has been a reasonable amount of work on verifying
when the composition of precisely two layers is secure, there has been surprisingly
little on verifying the correctness of an arbitrary number of layers. In particular, rel-
atively few authors have considered the problem of trying to prove that a transport-
layer protocol that depends on a second transport-layer protocol is secure, other than
by considering their explicit concatenation. We outline the only related work that
we are aware of as follows.

In [GM11] Groß and Mödersheim consider how to verify arbitrary stacks of pro-
tocols. In this they differentiate between three different types of protocol. Concrete
application protocols are application-layer protocols that have been explicitly com-
posed with a transport-layer protocol, and are verified independently of the frame-
work. This is essentially equivalent to an application-layer protocol that implements
its own transport-layer security and therefore sends all messages over ⊥. Abstract
application protocols are like our regular application-layer protocols (i.e. of the top
strand space), and require a transport-layer in order to ensure security. Lastly, chan-
nel protocols are equivalent to our high-level channels, and correspond to the middle
transport-layer. As noted in Section 7.4, they only permit transport-layer protocols
that establish symmetric keys, and thus do not permit the full range of transport-
layers that we do. Our proof approaches also share some similarities. We define
what it means for a low-level channel to be the combined channel in Definition 8.6,
whilst [GM11] defines the realise composition of an abstract application protocol and
a channel protocol.

In [MV11], as discussed in Section 7.4, the authors define a statically-checkable
condition for when protocols can be securely layered. The authors do not explicitly
state that their model supports arbitrary stacks of protocols, but there is no obvious
reason why it could not be extended if it does not. The authors do consider the

161



example of turning a unilateral TLS channel into a bilateral TLS channel using a
username and password, but only sketch how it could be considered in their model.
As discussed in Section 7.4, their model does not actually permit TLS to be analysed
in full.

162



Chapter 9

Conclusions

In this thesis we have presented the high-level strand spaces model that models the
guarantees provided by a wide variety of transport-layer protocols. In particular,
it supports both unilateral and bilateral transport-layer protocols that, optionally,
can group messages into sessions and may also prevent message reordering. We
have also given and proven the correctness of a number of proof rules that allow
application-layer protocols to be easily proven correct by abstracting away from the
underlying transport-layer protocol. We illustrated the effectiveness of these proof
rules by proving the correctness of WebAuth.

The second contribution of this thesis is the soundness proof of the high-level
strand spaces model. We have proven that, subject to certain assumptions, whenever
there exists a low-level bundle that does not satisfy a protocol correctness property,
then there exists a high-level bundle that also does not satisfy the property. There-
fore, if a protocol can be proven correct at the high-level, then it is guaranteed to be
correct at the low-level. We have also proven how TLS can be transformed to satisfy
our assumptions. Thus, given the results of this thesis, it is now possible to deduce
that WebAuth, when layered on top of TLS, is secure in the sense of the propositions
of Section 3.3.

The soundness result was proven by firstly, in Chapter 4, proving that all
interference-free bundles can be abstracted. In Chapter 5 we proved that a bundle B
of a strand space Σ that satisfies disjoint-layered encryption can be transformed to
an interference-free bundle B′ of a strand space ΣE such that B D B′. In Chapter 6
we defined a logic of protocol-correctness properties, before proving that whenever B
does not satisfy a correctness property φ and B D B′, then B′ also does not satisfy φ.
Lastly, we proved that whenever B̂′ abstracts B′ and B′ does not satisfy a property
φ, then B̂′ also does not satisfy φ.

As a result of this contribution, it is now possible to assert the correctness of
application-layer protocols when explicitly layered on TLS, or other protocols for
which formal results have been deduced, providing the application-layer protocol has
been proven correct in the high-level strand spaces model.

We have also extended the high-level strand spaces model to allow protocols that
consist of an arbitrary number of layers to be proven correct. In particular, we
defined how to model secondary transport-layer protocols in the high-level strand
spaces model. We then defined high-level penetrator subpaths that correspond to
each of the transport-layer penetrator strands. We also proved the soundness of the

163



approach by adapting the results from Chapter 4 and Chapter 5. In particular, we
proved that if a channel has been proven correct in the high-level model, then its
explicit combination with any channel in the low-level model is guaranteed to also
be secure. Lastly, we demonstrated the effectiveness of this technique by proving
the correctness a transport-layer protocol that turns a unilaterally authenticating
secure transport protocol into a bilaterally authenticating secure transport protocol
by authenticating the user to login using a username and password.

One particular benefit of the multi-layer model that we have defined in this thesis
is that each layer is abstracted. This means that the correctness proofs for each layer
are completely independent and therefore arbitrary stacks can be composed together
without any extra proof. Further, the correctness proofs are simpler to construct
since only one layer has to be proven correct at a time.

As discussed in Section 3.4, the high-level strand spaces model appears to sup-
port the guarantees provided by a wider range of transport-layer protocols than
any other technique that proves protocols correct by abstraction. As mentioned in
Section 7.4, our model appears to be the first model that proves layered protocols
correct by abstraction, and has a formally proven soundness result that depends only
on statically-checkable conditions. Lastly, as discussed in Section 8.6, relatively few
techniques have explicit support for verifying protocols that consist of an arbitrary
number of layers. Further, we are not aware of any techniques that have formally
proven soundness results that both permit TLS and can be checked statically.

9.1 Future Work

Whilst the high-level strand spaces model is able to analyse a wide variety of
application-layer protocols, there are several extensions that could be made to en-
hance the range of protocols that it can model. For example, consider an application-
layer protocol that allows two users to login to a server and then request a secure
channel be setup between them, to allow them to exchange messages. One way of
modelling the above protocol would be to have the server send each of the partici-
pants in the session a channel end for a secure channel. At the moment, the high-level
strand spaces model cannot model such a protocol, since it has no way of commu-
nicating channel ends in messages and it provides no way of migrating channel ends
from one strand to another. In particular, recall that Equation 3.1 explicitly requires
that no channel ends are shared between distinct regular strands. Thus, it would be
interesting to extend the high-level strand spaces model to allow channel ends to be
mobile (in the sense of the pi-Calculus [Mil99]), in that they can be sent between
different agents. This might be an interesting way of verifying some peer-to-peer
protocols in which the users authenticate to a central sever, but communicate data
directly from one user to another.

Whilst the proof rules that we have developed in this thesis make proofs of cor-
rectness relatively easy to construct, the amount of required knowledge is still a
barrier to wider use. Further, the proofs require lots of small details to be tracked
(such as which parts of which messages are equal), which makes them difficult to
construct. Therefore, it would be useful to develop a tool that automates the con-
struction of these proofs. Gavin Lowe has developed a prototype of such a tool that
is able to construct the correctness proofs for WebAuth automatically. The tool

164



proceeds by firstly attempting to prove the safety of atoms, along the lines of Def-
inition 3.17. It then applies the authentication proof rules in order to deduce how
the strands are related to each other. Currently, the tool requires user input in order
to decide which rule to apply. More work is required in order to allow the tool to
automatically apply the correct proof rule.

It would be useful to expand the above tool to allow the correctness of protocols
that consist of arbitrarily many layers to be analysed. This tool would be composed
of two parts. Firstly, the tool would need to be extended to allow high-level channels
to be specified and to allow the tool to prove the absence of the required high-level
penetrator subpaths. Further, the tool could also be extended to automatically prove
the correctness of an arbitrary number of layers by automatically applying the rules
inductively.

Given the complexity of the assumptions of Section 5.2, it would be useful to
construct a tool that would check if the assumptions are satisfied. In particular, the
tool should take as input the list of low-level transport-layer protocols that are being
used, and the list of high-level application-layer protocols that are being abstracted,
and then check if the various disjointness conditions are satisfied. This will likely
require certain domain-specific assumptions to be specified, in order for the disjoint-
ness conditions to be satisfied. In fact, it would be helpful if the tool were able to
suggest sufficient disjointness conditions for the assumptions to be satisfied. The de-
velopment of this tool would require a sophisticated way of reasoning about protocols
syntactically; this would likely be the most challenging aspect of the research.

It would be useful if the tools that are developed above could each produce a
certificate of correctness, in the form of a machine-checkable proof. For example,
suppose we have a tool that essentially proves the correctness of a application-layer
protocol by applying the proof rules of this thesis. One way of producing a certificate
is to formalise the high-level strand spaces model and the proof techniques we have
developed for it in a theorem prover (e.g. Coq [Tea04] or Isabelle [NWP02]). Then,
it should be possible to make the tool output a script that details which proof rules
were applied when, which could then be checked by a theorem prover. This approach
would be similar to [MCB13] where the authors develop a tool to automatically
construct proofs for Isabelle [NWP02] based on a custom protocol security model
that supports secrecy and authentication properties.

165



Bibliography

[ACC07] Alessandro Armando, Roberto Carbone, and Luca Compagna. LTL
Model Checking for Security Protocols. In Computer Security Founda-
tions Symposium, pages 385–396, 2007.

[ACC+08] Alessandro Armando, Roberto Carbone, Luca Compagna, Jorge Cuel-
lar, and Llanos Tobarra. Formal Analysis of SAML 2.0 Web Browser
Single Sign-On: Breaking the SAML-based Single Sign-On for Google
Apps. In Formal Methods in Security Engineering, 2008.

[ACG+08] Suzana Andova, Cas J F Cremers, Kristian Gjøsteen, Sjouke Mauw,
Stig F Mjølsnes, and Saša Radomirović. A framework for compositional
verification of security protocols. Information and Computation, 206(2–
4):425–459, 2008.

[BF08] Michele Bugliesi and Riccardo Focardi. Language Based Secure Com-
munication. In Computer Security Foundations Symposium, pages 3–16,
2008.

[Bla01] Bruno Blanchet. An Efficient Cryptographic Protocol Verifier Based
on Prolog Rules. In Computer Security Foundations Workshop, 2001.
Proceedings. 14th IEEE, pages 82–96, 2001.

[Bla09] Bruno Blanchet. Automatic Verification of Correspondences for Security
Protocols. Journal of Computer Security, 17(4):363–434, 2009.

[BLP03] Giampaolo Bella, Cristiano Longo, and Lawrence C Paulson. Verifying
Second-Level Security Protocols. In Theorem Proving in Higher Order
Logics, pages 352–366. 2003.

[BM10] A D Brucker and S A Mödersheim. Integrating Automated and Inter-
active Protocol Verification - Springer. Formal Aspects in Security and
Trust, 2010.

[CC10] Stefan Ciobâcă and Véronique Cortier. Protocol composition for arbi-
trary primitives. In Computer Security Foundations Symposium, 2010.

[CD08] Véronique Cortier and Stéphanie Delaune. Safely composing security
protocols. Formal Methods in System Design, 34(1):1–36, 2008.

[Cre08a] Cas J F Cremers. The Scyther Tool: Verification, falsification, and
analysis of security protocols. Computer Aided Verification, 2008.

166



[Cre08b] Cas J F Cremers. Unbounded verification, falsification, and character-
ization of security protocols by pattern refinement. In CCS ’08: Pro-
ceedings of the 15th ACM conference on Computer and communications
security, pages 119–128, 2008.

[DDMR07] Anupam Datta, Ante Derek, John C Mitchell, and Arnab Roy. Protocol
Composition Logic (PCL). Electronic Notes in Theoretical Computer
Science, 172:311–358, 2007.

[DGT07] S Doghmi, Joshua Guttman, and F Javier Thayer. Searching for Shapes
in Cryptographic Protocols. In Tools and Algorithms for the Construc-
tion and Analysis of Systems, 2007.

[Dil11] Christopher Dilloway. On the Specification and Analysis of Secure
Transport Layers. DPhil Thesis, University of Oxford, 2011.

[DL08] Christopher Dilloway and Gavin Lowe. Specifying Secure Transport
Channels. In Computer Security Foundations Symposium, pages 210–
223, 2008.

[DR08] T Dierks and E Rescorla. The TLS Protocol: Version 1.2, 2008.

[DY83] D Dolev and A Yao. On the Security of Public Key Protocols. IEEE
Transactions on Information Theory, 29(2):198–208, 1983.

[FRH+] Brad Fitzpatrick, David Recordon, Dick Hardt, Johnny Bufu, and Josh
Hoyt. OpenID Authentication 2.0.

[GM11] Thomas Groß and Sebastian Mödersheim. Vertical Protocol Composi-
tion. In Computer Security Foundations Symposium, 2011.

[GRL11] Thomas Gibson-Robinson and Gavin Lowe. Analysing Applications
Layered on Unilaterally Authenticating Secure Transport Protocols. In
Formal Aspects in Security and Trust, 2011.

[GT00] Joshua Guttman and F Javier Thayer. Protocol independence through
disjoint encryption. In Computer Security Foundations Workshop, pages
24–34, 2000.

[GT02] Joshua Guttman and F Javier Thayer. Authentication Tests and the
Structure of Bundles. Theoretical Computer Science, 283(2):333–380,
2002.

[Hoa85] Tony Hoare. Communicating Sequential Processes. Prentice Hall Inter-
national, University of Oxford, 1985.

[Hoy12] Jonathan Hoyland. Analysing The OAuth Protocol. BA Thesis, Uni-
versity of Oxford, 2012.

[JH12] Michael B Jones and Dick Hardt. The OAuth 2.0 Authorization Frame-
work, 2012.

167



[Kam10] Allaa Kamil. The Modelling and Analysis of Layered Security Architec-
tures in Strand Spaces. DPhil Thesis, University of Oxford, 2010.

[KL09] Allaa Kamil and Gavin Lowe. Specifying and Modelling Secure Chan-
nels in Strand Spaces. In Formal Aspects in Security and Trust, 2009.

[KL10] Allaa Kamil and Gavin Lowe. Understanding Abstractions of Secure
Channels. In Formal Aspects in Security and Trust, 2010.

[KL11] Allaa Kamil and Gavin Lowe. Analysing TLS in the Strand Spaces
Model. Journal of Computer Security, 2011.

[KR05] Eldar Kleiner and A W Roscoe. Modelling unbounded parallel sessions
of security protocols in CSP. Journal of Computer Security, 2005.

[LBLM+04] Paul J Leach, Tim Berners-Lee, Jeffrey C Mogul, Larry Masinter, Roy T
Fielding, and James Gettys. Hypertext Transfer Protocol – HTTP/1.1,
2004.

[LLM07] Brian LaMacchia, Kristin Lauter, and Anton Mityagin. Stronger se-
curity of authenticated key exchange. In Willy Susilo, Joseph K. Liu,
and Yi Mu, editors, Provable Security, volume 4784 of Lecture Notes in
Computer Science, pages 1–16. Springer Berlin Heidelberg, 2007.

[Low95] Gavin Lowe. An attack on the Needham-Schroeder public-key authen-
tication protocol. Information Processing Letters, 56(3):131–133, 1995.

[Low97] Gavin Lowe. Casper: A Compiler for the Analysis of Security Protocols.
In CSFW, pages 18–30, 1997.

[Low98] Gavin Lowe. Casper: A Compiler for the Analysis of Security Protocols.
Journal of Computer Security, 6(1-2):53–84, 1998.

[MCB13] Simon Meier, Cas J F Cremers, and David Basin. Efficient Construc-
tion of Machine-Checked Symbolic Protocol Security Proofs. Journal of
Computer Security, 2013.

[Mil99] Robin Milner. Communicating and Mobile Systems: the Pi-Calculus.
Cambridge University Press, June 1999.

[MV09a] Sebastian Mödersheim and Luca Viganò. Secure pseudonymous chan-
nels. In European Symposium on Research in Computer Security, 2009.

[MV09b] Sebastian Mödersheim and Luca Viganò. The Open-Source Fixed-Point
Model Checker for Symbolic Analysis of Security Protocols. In Founda-
tions of Security Analysis and Design V, pages 166–194. Springer Berlin
Heidelberg, Berlin, Heidelberg, 2009.

[MV11] Sebastian Mödersheim and Luca Viganò. Sufficient Conditions for Ver-
tical Composition of Security Protocols. Technical report, IMM-TR-
2011-18, DTU Informatics, 2011.

168



[NS78] R Needham and M Schroeder. Using Encryption for Authentication in
Large Networks of Computers. Communications of the ACM, 1978.

[NWP02] Tobias Nipkow, Markus Wenzel, and Lawrence C Paulson. Is-
abelle/HOL: a proof assistant for higher-order logic. Isabelle/HOL: a
proof assistant for higher-order logic, January 2002.

[Pau98] Lawrence C Paulson. The Inductive Approach to Verifying Crypto-
graphic Protocols. Journal of Computer Security, 1998.

[Res00] E Rescorla. HTTP Over TLS, 2000.

[Ros10] Bill Roscoe. Understanding Concurrent Systems. Springer-Verlag New
York Inc, May 2010.

[SA09] Roland Schemers and Russ Allbery. WebAuth Technical Specification
v.3, 2009.

[SMCB12] B. Schmidt, S. Meier, C. Cremers, and D. Basin. Automated analysis of
diffie-hellman protocols and advanced security properties. In Computer
Security Foundations Symposium, pages 78–94, 2012.

[Tea04] The Coq Development Team. The Coq proof assistant reference manual.
LogiCal Project, 2004.

[TFHG99] F Javier Thayer Fábrega, Jonathan Herzog, and Joshua Guttman.
Strand spaces: Proving Security Protocols Correct. Journal of Com-
puter Security, 1999.

169



Appendix A

Index of Notation

t1 ves t2 Equivalent to t1 = extract(t2 , es) (Definition 4.2)..

B D B′ Denotes that the two bundles are equivalent and � relates no-more regular
nodes (Definition 5.5)..

A Indicates that a channel is authenticated (Definition 3.10)..

AC Indicates that a channel is both authenticated and confidential..

Ac
app The subterm-closure of T c

app together with the set of all encryption keys (both
the key and its inverse) for terms in T c

app (Definition 5.1)..

AP The set of all terms initially known to the penetrator (Definition 2.1)..

pd app-extracts n Denotes that the destructive penetrator path pd extracts the
application-layer message sent from n (Definition 4.17)..

Dapp B Dapp B′ iff the bundles are application-layer-equivalent and � relates no-
more regular application-layer nodes (Definition 7.3)..

appmsg(t) Gives the application-layer message of the high-level term t (Defini-
tion 3.2)..

pc app-packages n Denotes that the constructive penetrator path pc packages the
application-layer message received at n (Definition 4.17)..

C The set of all channel ends (Definition 3.1)..

C Indicates that a channel is confidential (Definition 3.9)..

chan(t) Gives the channel of the high-level term t (Definition 3.2)..

Channels The set of all transport-layer channels (Definition 3.1)..

E The set of all encryptions (Definition 5.2)..

Ec
app The set of encryptions that occur within the application-layer in messages sent

along channel c (Definition 5.2)..

170



endpoints(st) Returns the set of channel endpoints that the regular strand st uses
(Definition 3.4)..

ends(st) Returns the set of channel ends that the regular strand st uses (Defini-
tion 3.4)..

EP The set of all extraction paths (Definition 4.2)..

Ec
trpt The set of transport-layer encryptions that enclose application-layer messages

sent on channel c (Definition 5.2)..

Ec
trpt-non-msg The set of transport-layer encryptions that do not enclose application-

layer messages on channel c (Definition 5.2)..

expath (pd ) The extraction path corresponding to the destructive penetrator path
pd (Lemma 4.3)..

expath∼ (pc) The extraction path corresponding to the constructive penetrator path
pc (Lemma 4.3)..

expathc (c) The extraction path that extracts the application-layer message from a
transport-layer payload term (Assumption 4.5)..

extract(t , es) Extracts the term t using the extraction path es (Definition 4.2)..

heightB̂(st) The B̂-height of the strand st ..

I The set of all endpoints (Definition 3.1)..

ingredient t1 ingredient t2 iff t1 is required in order to construct t2 ..

Npayload The set of regular nodes that send application-layer messages (Assump-
tion 4.4)..

Ntrpt The set of regular nodes that send application-layer messages over a channel
other than ⊥ (Assumption 4.4)..

N⊥ The set of regular nodes that send application-layer messages over ⊥ (Assump-
tion 4.4)..

recipient(t) Gives the recipient of the high-level term t (Definition 3.2)..

S The set of all sequence numbers (Definition 3.1)..

sender(t) Gives the sender of the high-level term t (Definition 3.2)..

seqno(t) Gives the sequence number of the high-level term t (Definition 3.2)..

T c
app The set of application-layer messages sent along channel c (Definition 5.1)..

TLSC→S The type of a unilateral TLS channel from client to server (Definition 3.4)..

TLSS→C The type of a unilateral TLS channel from server to client (Definition 3.4)..

171



T c
non-msg The subterm-closed set of terms that appear in the transport-layer packag-

ing of channel c (Definition 5.1)..

T c
non-payload The set of transport-layer non-payload (e.g.handshake terms) terms for

channel c (Assumption 4.5)..

T c
payload The set of transport-layer terms that contain application-layer messages for

channel c (Assumption 4.5)..

172



Appendix B

Index of Assumptions

Assumption 3.3 This requires that there is a format for high-level terms on a
particular high-level channel. For example, two high-level terms on a channel
c must either both have a sequence number, or neither must have.

Assumption 3.5 Regular agents in high-level bundles must correctly use sequence
numbers, in that they must send and receive consecutively numbered messages.

Assumption 3.12 All channels in a high-level strand space must be sensible, in
that if they prohibit a certain combination of strands, they must prohibit all
equivalent combinations.

Assumption 3.21 This details the assumptions necessary to prove the correctness
of WebAuth.

Assumption 4.4 The set of regular nodes is partitioned between nodes that send
and receive transport-layer payload messages, and those that manipulate
transport-layer non-payload messages (e.g.handshake terms).

Assumption 4.5 For each low-level channel, this requires the existence of various
sets of terms, such as Tpayload .

Assumption 4.6 This ensures the existence of various functions, such as sender ,
that extract components of low-level transport-layer messages.

Assumption 4.8 This assumption ensures that all low-level channels have disjoint
sets of transport-layer payload terms.

Assumption 4.10 This assumption is a low-level analogue of Assumptions 3.3 and
3.5, along with Equation 3.1. In particular, it ensures that low-level transport-
layer terms have a well-defined and consistent format.

Assumption 4.15 All channels permit TX and HJRN strands iff they permit equiv-
alent combinations of HJ and RN strands..

Assumption 5.9 Formalises the main statically checkable assumption that Σ sat-
isfies layer-disjoint encryption.

173



Assumption 5.18 This ensures that all channel types are sensible in that when-
ever a HJ strand is prohibited, then so to must the equivalent LN and FK
combination).

Assumption 5.32 Assumes that any innocuous non-expanded subpath in a low-
level bundle can be expanded.

Assumption 6.10 The sets of regular strands Rolek and R̂olek are well-defined, in
that they consist of strands related using an abstraction function.

Assumption 8.26 Regular agents in a high-level strand space use sequence num-
bers correctly when using the high-level channel S.

Assumption 8.36 Defines the assumptions that are required to prove the user-
name/password channel correct.

174


	Introduction
	Related Work
	Outline

	Introduction to Strand Spaces
	Term Algebra
	Strand Spaces
	The Penetrator
	Penetrator Efficiency

	Verifying Protocols by Abstraction
	The High-Level Strand Spaces Model
	Basic Definitions
	The Penetrator
	High-Level Normality

	Verifying Layered Protocols
	Example: The WebAuth Protocol
	The Protocol
	Strand Space Definition
	Verification of WebAuth

	Summary

	Soundness of the Abstraction
	Preliminaries
	Relating Regular Nodes
	Relating Penetrator Nodes
	Interference Freedom and Abstract Correctness
	Interference Freedom
	Abstract Correctness

	Soundness of The Abstraction
	Summary

	Disjoint Encryption
	Preliminaries
	Encryption Sets
	Message Sending
	Bundle Correctness Properties

	Formulating the Assumption
	Crossing-Paths
	Preliminaries
	Enlarging the Strand Space
	Abstract Correctness Preserving Transformations
	Removing Crossing-Paths

	Interference Freedom
	Restricting the Penetrator Paths
	Making Nodes Abstractly Constructible
	Making Nodes Interference-Free

	Summary

	Abstracting Correctness Properties
	A Logic of Correctness Properties
	High-Level Semantics
	Low-Level Semantics
	Unique Origination
	The Semantics

	Term Equivalence
	Logical Equivalence
	Origination
	Confidentiality
	Causal Precedence
	The Main Result

	Proofs by Abstraction
	High-Level Proofs

	Summary

	TLS
	The Transformation
	Bundle Predicate Preservation
	Summary
	Related Work

	Multi-Layer Protocol Analysis
	High-Level Channels
	Defining Layering of Channels
	High-Level Penetrator Subpaths

	High-Level Abstract Correctness
	Disjoint Encryption
	Examples
	Sequence Numbers
	Username and Password Protocol

	Summary

	Conclusions
	Future Work

	Index of Notation
	Index of Assumptions

