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Abstract. We discuss the problem of minimizing TBoxes expressed in the light-
weight description logic EL, which forms a basis of some large ontologies like
SNOMED, Gene Ontology, NCI and Galen. We show that the minimization of
TBoxes is intractable (NP-complete). While this looks like a bad news result,
we also provide a heuristic technique for minimizing TBoxes. We prove the cor-
rectness of the heuristics and show that it provides optimal results for a class of
ontologies, which we define through an acyclicity constraint over a reference re-
lation between equivalence classes of concepts. To establish the feasibility of our
approach, we have implemented the algorithm and evaluated its effectiveness on
a small suite of benchmarks.

1 Introduction

It is well-known that the same facts can be represented in many different ways, and that
the size of these representations can vary significantly. This is also reflected in ontology
engineering, where the syntactic form of ontologies can be more complex than neces-
sary. For instance, throughout the development (and the life-cycle) of an ontology, the
way in which concepts and the relationship between them are represented within the
ontology are constantly changing. For example, a name for a complex concept expres-
sion is often introduced only after it has been used several times and has proved to be
important. Another example are dependencies between concepts that evolve over time,
resulting in new subsumption relations between concepts (A1 v A2). As a result, previ-
ously reasonable concept expressions may become unnecessarily complex. In the given
example, A1 uA2 becomes equivalent to A1.

Clearly, unnecessary complexity impacts on the maintenance effort as well as the
usability of ontologies. For instance, keeping track of dependencies between complex
concept expressions and relationships between them is more cumbersome when it con-
tains unnecessarily complex or unnecessarily many different concept expressions. As
a result, the chance of introducing unwanted consequences is higher. Moreover, unin-
tended redundancy decreases the overall quality of the ontology.

Removing unnecessary syntactic complexity from ontologies by hand is a difficult
task: for the average ontology, it is almost impossible to obtain the minimal represen-
tation without tool support. Thus, automated methods that help to assess the current
succinctness of an ontology and generate suggestions on how to increase it would be
highly valued by ontology engineers.

It is easy to envision scenarios that demonstrate the usefulness of rewriting for re-
ducing the cognitive complexity of axioms. For instance, when a complex concept C is



frequently used in the axioms of an ontology and there is an equivalent atomic concept
AC , the ontology will diminish in size when occurrences of C are replaced by AC .

Example 1. Consider the following excerpt from the ontology Galen [1]:

Clotting v ∃ actsSpecificallyOn.(Blood u ∃ hasPhysicalState. (1)

(PhysicalState u ∃ hasState.liquid))u
∃hasOutcome.(Blood u ∃ hasPhysicalState.solidState)

LiquidState ≡ PhysicalState u ∃ hasState.liquid (2)

LiquidBlood ≡ Blood u ∃ hasPhysicalState.LiquidState (3)

Given concepts defined in Axioms 2 and 3 above, we can easily rewrite Axiom 1 to obtain the
following, simpler axiom containing only 6 references to concepts and roles (as opposed to 10
references in Axiom 1):

Clotting v ∃ actsSpecificallyOn.LiquidBloodu (4)

∃hasOutcome.(Blood u ∃ hasPhysicalState.solidState)

In description logics [2], few results towards simplifying ontologies have been ob-
tained so far. Grimm et al. [3] propose an algorithm for eliminating semantically redun-
dant axioms from ontologies. In the above approach, axioms are considered as atoms
that cannot be split into parts or changed in any other way. With the specific goal of
improving reasoning efficiency, Bienvenu et al. [4] propose a normal form called prime
implicates normal form for ALC ontologies. However, as a side-effect of this transfor-
mation, a doubly-exponential blowup in concept size can occur.

In this paper, we investigate the succinctness for the lightweight description logic
EL. The tractable OWL 2 EL profile [5] of the W3C-specified OWL Web Ontology
Language [6] is based on DLs of the EL family [7]. We consider the problem of finding
a minimal equivalent representation for a given EL ontology. First, we demonstrate
that we can reduce the size of a representation by up to an exponent even in the case
that the ontology does not contain any redundant axioms. We show that the related
decision problem (is there an equivalent ontology of size ≤ k?) is NP-complete by
a reduction from the set cover problem, which is one of the standard NP-complete
problems. We also show that, just as for other reasoning problems in EL, ontology
minimization becomes simpler under the absence of a particular type of cycles. We
identify a class of TBoxes, for which the problem can be solved in PTIME instead
of NP and implement a tractable algorithm that computes a minimal TBox for this
class of TBoxes. The algorithm can also be applied to more expressive and most cyclic
TBoxes3, however without a guarantee of minimality. We apply an implementation of
the algorithm to various existing ontologies and show that their succinctness can be
improved. For instance, in case of Galen, we managed to reduce the number of complex
concepts occurrences by 955 and the number of references to atomic concepts and roles
by 1130.

3 The extension to general TBoxes is a trivial modification of the algorithm



The paper is organized as follows: In Section 2, we recall the necessary preliminar-
ies on description logics. Section 3 demonstrates the potential of minimization. In the
same section, we also introduce the basic definitions of the size of ontologies and for-
mally state the corresponding decision problem. In Section 4, we derive the complexity
bounds for this decision problem. Section 5 defines the class of TBoxes, for which the
problem can be solved in PTIME instead of NP and presents a tractable algorithm that
computes a minimal TBox for this class of TBoxes. In Section 6, we present experimen-
tal results for a selection of ontologies. Finally, we discus related approaches in Section
7 before we conclude and outline future work in Section 8.

2 Preliminaries

We recall the basic notions in description logics [2] required in this paper. Let NC
and NR be countably infinite and mutually disjoint sets of concept symbols and role
symbols. An EL concept C is defined as

C ::= A|>|C u C|∃r.C,

where A and r range over NC and NR, respectively. In the following, we use sym-
bols A,B to denote atomic concepts and C,D,E to denote arbitrary concepts. A ter-
minology or TBox consists of concept inclusion axioms C v D and concept equiv-
alence axioms C ≡ D used as a shorthand for C v D and D v C. The signa-
ture of an EL concept C or an axiom α, denoted by sig(C) or sig(α), respectively,
is the set of concept and role symbols occurring in it. To distinguish between the set
of concept symbols and the set of role symbols, we use sigC(C) and sigR(C), re-
spectively. The signature of a TBox T , in symbols sig(T ) (correspondingly, sigC(T )
and sigR(T )), is defined analogously. Additionally, we denote the set of subconcepts
occurring in a concept C as sub(C) and the set of all subconcepts including part-
conjunctions as subu(C). For instance, forC = ∃r.(A1uA2uA3) we obtain sub(C) =
{∃r.(A1 u A2 u A3), A1 u A2 u A3, A1, A2, A3} and subu(C) = {∃r.(A1 u A2 u
A3), A1 uA2 uA3, A1 uA2, A1 uA3, A2 uA3, A1, A2, A3}. Accordingly, we denote
the set of subconcepts occurring in a TBox T as sub(T ) and the set of all subconcepts
including part-conjunctions as subu(T ).

Next, we recall the semantics of the above introduced DL constructs, which is de-
fined by means of interpretations. An interpretation I is given by the domain ∆I and a
function ·I assigning each concept A ∈ NC a subset AI of ∆I and each role r ∈ NR
a subset rI of ∆I × ∆I . The interpretation of > is fixed to ∆I . The interpretation
of an arbitrary EL concept is defined inductively, i.e., (C u D)I = CI ∩ DI and
(∃r.C)I = {x | (x, y) ∈ rI , y ∈ CI}. An interpretation I satisfies an axiom C v D
if CI ⊆ DI . I is a model of a TBox, if it satisfies all of its axioms. We say that a TBox
T entails an axiom α (in symbols, T |= α), if α is satisfied by all models of T . A TBox
T entails another TBox T ′, in symbols T |= T ′, if T |= α for all α ∈ T ′. T ≡ T ′ is a
shortcut for T |= T ′ and T ′ |= T .



3 Reducing the Complexity of Ontologies

The size of a TBox T is often measured by the number of axioms contained in it (|T |).
This is, however, a simplified view of the size, which neither reflects cognitive com-
plexity, nor the reasoning complexity. In this paper, we measure the size of a concept,
an axiom, or a TBox by the number of references to signature elements as stated in the
definition below.

Definition 1. The size of an EL concept D is defined as follows:

– for D ∈ sig(T ) ∪ {>}, ∫(D) = 1;
– for D = ∃r.C, ∫(D) = ∫(C) + 1 where r ∈ sigR(T ) and C is an arbitrary

concept;
– for D = C1 u C2, ∫(D) = ∫(C1) + ∫(C2) where C1, C2 are arbitrary concepts;

The size of an EL axiom (one of C1 v C2, C1 ≡ C2) and a TBox T is accordingly
defined as follows:

– ∫(C1 v C2) = ∫(C1) + ∫(C2) for concepts C1, C2;
– ∫(C1 ≡ C2) = ∫(C1) + ∫(C2) for concepts C1, C2.
– ∫(T ) =

∑
α∈T ∫(α) for a TBox T .

The above definition, for instance, can serve as a basis for computing the average size
of axioms (∫(T ) ÷ |T |) within an ontology. In addition to the above measure of size,
the number of distinct complex concept expressions sub(T ) and the overall number of
occurrences of such concept expressions (with the corresponding values related to |T |)
can serve as an indication of how complex are concept expressions within the ontology.
In the following example, we demonstrate the difference between the two measures |T |
and ∫(T ) and show how the complexity of an ontology can be reduced in principle (by
up to an exponent for ontologies without redundant axioms, i.e., axioms that can be
omitted without losing any logical consequences).

Example 2. Let concepts Ci be inductively defined by C0 = A, Ci+1 = ∃r.Ci u
∃s.Ci. Intuitively, Ci of concepts have the shape of binary trees with exponentially
many leaves. Clearly, the concepts grow exponentially with i, since ∫(Ci) = 2 + 2 ·
∫(Ci−1). For a natural number n, consider the TBox Tn:

Cn−1 v B
Bi ≡ Ci 1 ≤ i ≤ n− 1

While Tn does not contain any redundant axioms, it can easily be represented in a more
compact way by recursively replacing each Ci by the corresponding Bi, yielding T ′n:

Bn−1 v B
B1 ≡ C1

Bi+1 ≡ ∃r.Bi u ∃s.Bi 1 ≤ i ≤ n− 1

While the number of axioms is the same in both cases, the complexity of Tn is clearly
lower. E.g., for n = 5, we obtain ∫(Tn) = 134 and ∫(T ′n) = 24.



We now consider the problem of finding the minimal equivalent EL representation
for a given TBox. The corresponding decision problem can be formulated as follows:

Definition 2 (P1). Given an EL TBox T and a natural number k, is there an EL TBox
T ′ with ∫(T ′) ≤ k such that T ′ ≡ T .

In general, the corresponding minimal result is not unique. We denote the set {T ′ |
T ′ ≡ T } by [T ]. Note that the minimality of the result is trivially checked by deciding
P1 for a decreasing number k until the answer is negative.

In literature, there are different variations of the ontology minimization problem
that cover specific cases. Perhaps the simplest examples for avoidable non-succinctness
are axioms that follow from other axioms and that can be removed from the ontology
without losing any logical consequences. While some axioms including the last axiom
in the above example can be removed in any representations, in general, subsets of
axioms can be exchangeable.

Example 3. Consider the ontology T :

C v ∃r.C ∃r.D v D
C v D ∃r.C v ∃r.D

T has two subset ontologies, T1 = {C v ∃r.C, ∃r.C v ∃r.D, ∃r.D v D} and
T2 = {C v ∃r.C,C v D,∃r.D v D}. Neither of the two contains any axioms that
are entailed by the remainder of the ontology. There are also no sub-expressions that can
be removed. However, T2 is less complex than T1, because C v D is simpler (shorter)
than ∃r.C v ∃r.D.

While the above problem is already known to be non-tractable and can have many
solutions, the ability to rewrite axioms of the ontology can further increase the difficulty
and the number of possible solutions: While in the above cases a minimal ontology con-
tains only subconcepts sub(T ) of the original ontology T , in general, a minimal ontol-
ogy can introduce new concept expressions as demonstrated in the following example.

Example 4. Consider the following TBox T :

C1 v A2 A2 v C3

∃r.D v D ∃s.C1 v D
∃s.C3 v ∃r.(∃s.C1)

Assume that ∫(C1) and ∫(C3) are large. Then the axiom ∃s.C1 v D needs to be
exchanged by ∃s.A2 v D to obtain a smaller TBox. The TBox Tm given below is a
minimal representation of T .

C1 v A2 A2 v C3

∃r.D v D ∃s.A2 v D
∃s.C3 v ∃r.(∃s.C1)

We notice that the original ontology T does not contain the expression ∃s.A2 ∈ sub(Tm).

We can conclude that considering subsumption relations between subconcepts sub(T )
of T is not sufficient when looking for a minimal equivalent representation. In the next
section, we show that the corresponding decision problem P1 is in fact NP-complete.



4 NP-Completeness

In this section, we first show the NP-hardness of the problem and then establish its NP-
completeness. We show NP-hardness by a reduction from the set cover problem, which
is one of the standard NP-complete problems. For a given set S = {S1, S2, . . . , Sn}
with carrier set S =

⋃n
i=1 Si, a cover C ⊆ S is a subset of S, such that the union of the

sets in C covers S, i.e., S =
⋃
C∈C C.

The set cover problem is the problem to determine, for a given set S = {S1, S2, . . . ,
Sn} and a given integer k, if there is a cover C of S with at most k ≥ |C| elements. We
will use a restricted version of the set cover problem, which we call the dense set cover
problem (DSCP). In the dense set cover problem, we require that

– neither the carrier set S nor the empty set is in S,
– all singleton subsets (sets with exactly one element) of S are in S, and
– if a non-singleton set S is in S, so is some subset S′ ⊆ S, which contains only one

element less than S (|S r S′| = 1).

Lemma 1. The dense set cover problem is NP-complete.

Proof. Inclusion in NP is inherited from the set cover problem, of which it is a special
instance.

We now reduce solving the set cover problem to solving the dense set cover prob-
lem. We start with a set cover problem for a given S and k, and first check if the carrier
set S is contained in S (if so, the problem is solved). If it is not the case, we identify
the size l of the largest set in S, initialise S ′ to S and extend S ′ using the following
algorithm:

– while l > 1 do
• for all S ∈ S ′, choose an s ∈ S and join S ′ with S r {s}
• decrement l by one.

After this, we join S with {{s} | s ∈ S}, and remove the empty set from S if applicable.
Note that S ′ can easily be constructed in polynomial time. Now we show that there is
a cover C of size ≤ k of S exactly if there is a cover C′ of size ≤ k of S ′. W.l.o.g., we
can assume that ∅ 6∈ C, since we always obtain a cover from any cover C by removing
∅ from it. Since S ⊆ S ′ ∪ {∅}, any cover of S is a cover of S ′. Let C′ be a cover of
size ≤ k of S ′. We can construct a cover C of S by replacing each S′ ∈ C′ by the
corresponding superset S ∈ S. ut

Given the above NP-completeness result, we show that the size of minimal equiv-
alents specified in P1 is a linear function of the size of the minimal cover. To this end,
we use the lemma below to obtain a lower bound on the size of equivalents. Intuitively,
it states that for each entailed non-trivial equivalence C ≡ A, the TBox must contain at
least one axiom that is at least as large as C ′ ≡ A for some C ′ with T |= C ≡ C ′:

Lemma 2. Let T be an EL TBox, A ∈ sig(T ) and C,D EL concepts such that T |=
C ≡ A, T |= A v D (the latter is required for induction). Then, one of the following
is true:



1. A is a conjunct of C (including the case C = A);
2. there exists an EL concept C ′ such that T |= C ≡ C ′ and C ′ ./ A ∈ T or
C ′ ./ A uD′ ∈ T for some ./∈ {≡,v} and some concept D′.

Proof. We use the sound and complete proof system for general subsumption in EL
terminologies introduced in [8] (Fig. 1) and prove the lemma by induction on the depth
of the derivation of C v A u D. W.l.o.g., we can assume that the proof has minimal
depth. We consider the possible rules that could have been applied last to derive C v
A uD.

Basecase: C v A u D ∈ T or (AX) was the last applied rule, in which case
C = A uD and condition 1 of the lemma holds.

Assume that C v A u D 6∈ T and C 6= A u D. The rules (EX), and (AXTOP)
cannot be the last rules due to the form of C v A uD.

If (ANDL) was the last applied rule, then there is some sub-conjunction D′ of C
such that T |= D′ v A u D. Since also T |= C v D′, we obtain T |= D′ ≡ A. We
apply induction hypothesis and obtain:

1. A is a conjunct of D′, in which case it is also a conjunct of C;
2. there exists an EL concept C ′ such that T |= D′ ≡ C ′ and C ′ ./ A ∈ T or C ′ ./
AuD′′ ∈ T for some ./∈ {≡,v} and some concept D′′. Since T |= D′ ≡ C, the
second condition of the lemma holds.

If (CUT) was the last applied rule, then there exists a conceptE such that T |= C v
E and T |= E v A. Thus, T |= E ≡ A. Once more, we apply induction hypothesis
and obtain:

1. A is a conjunct of E, in which case E = A u E′ for some E′ with T |= A v E′

and we can apply induction hypothesis to C v A u E′, immediately obtaining the
lemma;

2. there exists an EL concept C ′ such that T |= E ≡ C ′ and C ′ ./ A ∈ T or
C ′ ./ AuD′′ ∈ T for some ./∈ {≡,v} and some conceptD′′. Since T |= E ≡ C,
the second condition of the lemma holds.

ut
We now show how to encode the dense set cover problem as an ontology minimiza-

tion problem. Consider an instance of the dense set cover problem with the carrier set
A = {B1, . . . , Bn}, the set S = {A1, . . . , Am, {B1}, . . . , {Bn}} of subsets that can
be used to form a cover. By interpreting the set and element names as atomic concepts,
we can construct TSbase as follows:

TSbase = {A′′ ≡ A′ uB | A′′, A′ ∈ S, B ∈ A,A′′ = A′ ∪ {B}, A′′ 6= A′}.

Observe that the size of TSbase is at least 3m. Clearly, TSbase |= Ai ≡
d
B∈Ai

B.
Let TS = TSbase ∪ {A ≡

d
B∈AB}. We establish the connection between the size of

TS equivalents and the size of the cover of S as follows:

Lemma 3. TS has an equivalent of size ∫(TSbase)+k+1 if, and only if, S has a cover
of size k.



C v C (AX)
C v > (AXTOP)

D v E
C uD v E (ANDL)

C v E C v D
C v D u E (ANDR)

C v D
∃r.C v ∃r.D (EX)

C v E E v D
C v D (CUT)

Fig. 1. Proof system for general subsumption in EL terminologies introduced in [8].

Proof. For the if-direction, assume that S has a cover of size k. We construct T ′S of size
∫(TSbase) + k + 1 as follows: T ′S = TSbase ∪ {A ≡

d
A′∈C A

′}. Clearly, T ′S ≡ TS .
For the only-if-direction, we assume that k is minimal and argue that no equivalent

T ′ ∈ [TS ] of size ≤ ∫(TSbase) + k can exist. Assume that T is a minimal TBox with
T ∈ [TS ]. With the observation, that the m+n atomic concepts that represent elements
of S are pairwise not equivalent with each other or the concept A that represents the
carrier set, we can conclude that no two atomic concepts are equivalent. From Lemma
2 it follows that, for each Ai with i ∈ {1, . . . ,m}, there is an axiom Ci ≡ C ′i ∈ T or
Ci v C ′i ∈ T such that T |= Ci ≡ Ai and Ai is a conjunct of C ′i or Ai = C ′i. Since
there are no equivalent atomic concepts and Ci 6= Ai due to the minimality of T , the
size of each such axiom is at least 3 and none of these axioms coincide. Additionally,
since TS 6|= Ai v A, A cannot occur as a conjunct of Ci or as a conjunct of C ′i;

Finally, we estimate the size of the remaining axioms and show that their cumulative
size is > k. It also follows from Lemma 2 that there exists an axiom C ≡ C ′ ∈ T or
C v C ′ ∈ T such that T |= C ≡ A and A is a conjunct of C ′ or A = C ′. It
holds that T |= C ≡

d
B∈AB. We also know that for no proper subset S′ ( A holds

T |=
d
B∈S′ B v C. Thus, we have found a cover of S and the size of the axiom must

be ≥ k + 1. Thus, the overall size of T must be ≥ ∫(TSbase) + k + 1. ut

Theorem 1. P1 is in NP.

Proof. We ask the non-deterministic algorithm to guess a TBox of the size ≤ k. It
remains to verify T ′ ≡ T , which can be done in PTIME [7]. ut

Theorem 2. P1 is NP-complete.

Proof. The problem is NP-hard as an immediate consequence of Lemmas 3 and 1.
Given the result of Theorem 1, we establish NP-completeness of the problem. ut

5 Minimizing Acyclic TBoxes

In this section, we develop an algorithm for minimizing TBoxes in polynomial time,
which is guaranteed to provide a minimal TBox for a class of EL TBoxes satisfying a



certain type of acyclicity conditions. The algorithm can also be applied to more expres-
sive and some cyclic TBoxes, however without the guarantee of minimality.

5.1 Acyclicity Conditions

In this subsection, we introduce equivalence classes on concepts and discuss cyclic
dependencies between equivalence classes and their impact on computing minimal rep-
resentations. Let T be an EL TBox and let C be a concept in sub(T ). We use the
notation [C]T = {C ′ ∈ sub(T ) | T |= C ≡ C ′} to denote the equivalence class of the
concept C and CT = {[C]T | C ∈ sub(T )} to denote the set of all equivalence classes
over the set sub(T ). In case T is clear from the context, we omit the index. We base
the acyclicity conditions on the following reference relations, which use both syntactic
and semantic dependencies between equivalence classes:

Definition 3. Let T be an EL TBox. The reference relations ≺v,≺w and ≺s, all sub-
sets of C × C, are given as follows:

– [C] ≺s [C ′] if, for some C1 ∈ [C], C2 ∈ [C ′], it holds that C2 occurs in C1;
– [C] ≺v [C ′] if, for some C1 ∈ [C], C2 ∈ [C ′], it holds that [C1] ≺s [C2] or
T |= C1 v C2;

– [C] ≺w [C ′] if, for some C1 ∈ [C], C2 ∈ [C ′], it holds that [C1] ≺s [C2] or
T |= C1 w C2.

We call a TBox cyclic, if any of the above relations ≺v,≺w,≺s is cyclic. We say
that a TBox T is strongly cyclic if ≺s is cyclic. The algorithm presented in this paper
is applicable for TBoxes not containing strong cycles. Most of the large bio-medical
ontologies including Galen, Gene Ontology and NCI do not contain strong cycles. This
was also the case for earlier versions of SNOMED, e.g., the one dated 09 February
2005 [9]. Note that asking for the absence of cycles in ≺s is a weaker requirement than
for ≺v or ≺w, as ≺s⊆≺v ∩ ≺w. But the reverse relationship between the conditions
holds. In the remainder of this section, we use the following sufficient but not necessary
criterion for cyclicity.

Lemma 4. Let T be an EL TBox and C,C ′ two concepts such that C ′ contains C
within the scope of an existential restriction and there is D ∈ sub(T ) with T |= D ≡
C. Then T is cyclic, if T |= C v C ′ or T |= C ′ v C and no conjuncts can be removed
from C ′ without invalidating the statement T |= C ′ v C.

Proof Sketch. If C 6∈ sub(T ), we obtain the witness reference path for cyclicity by
considering the subsumption betweenD and the conceptD′, which is obtained from C ′

by replacing C by D. We consider the grammars introduced in [8]. Since D ∈ sub(T ),
there is a corresponding initial non-terminal, starting from which we can generate D′.
Since each subsumee (subsumer) grammar transition corresponds to a subsumee (sub-
sumer) reference relation, the derivation of D′ in the grammar is a witness reference
path for cyclicity. ut

In some cases, TBoxes contain cycles that are caused by redundant conjuncts and
can easily be removed.



Example 5. {A u B v C,A v B} has a cyclic ≺w relation due to a cycle between
A uB and A. It can be transformed into an acyclic TBox {A v C,A v B}.

We call conjunctions C ′ u C ′′ in sub(T ) such that T |= C ′ v C ′ u C ′′ subsumer-
containing conjunctions. We can easily eliminate subsumer-containing conjunctions
in TBoxes before applying the algorithm: for each subsumer-containing conjunction
C ′ uC ′′ in sub(T ) with T |= C ′ v C ′ uC ′′, we replace C ′ uC ′′ in T by C ′, and add
the axiom C ′ v C ′′ to T . We can show that the closure of each equivalence class [C] of
an acyclic TBox T is finite if we exclude subsumer-containing conjunctions. We denote
such a closure with [C]∗ = {C ′ | T |= C ≡ C ′ and C ′ is not a subsumer-containing
conjunction}. It can be shown that, for an acyclic TBox, each [C]∗ is free of conjunc-
tions. We denote the extended set of subconcepts of T by sub(T )∗ =

⋃
[C]∈C [C]

∗.
Another kind of removable cyclic dependencies are conjunctions on the right-hand

side. We use a simple decomposition, in which all conjunctions on the right-hand side
of axioms are replaced by separate inclusion axioms for each conjunct. We obtain the
decomposed version T ′ of a TBox T by replacing each C v D1 u D2 ∈ Tm by
C v D1, C v D2 until a fixpoint is reached. Composition is the dual transformation:
we replace any two axioms C v D1, C v D2 by C v D1 u D2 until a fixpoint is
reached.

Unless we state otherwise, we assume in the following that TBoxes are decomposed
and do not contain subsumer-containing conjunctions.

5.2 Uniqueness of Minimal TBoxes

Acyclic TBoxes are better behaved not only with respect to the complexity of mini-
mization, but they also have a unique minimal TBox modulo replacement of equivalent
concepts by one another (if we assume that the TBox with the lower number of equiva-
lence axioms should be preferred in case of equally large TBoxes).

To be able to determine a unique syntactic representation of a TBox T , we choose
a representative C ′ ∈ [C]∗ for each equivalence class [C] ∈ C and denote it using the
representative selection function r : C → sub(T )∗ with r([C]) = C ′. We say that r is
valid, if for all [C], [D] ∈ C with [C] 6= [D] it holds that C ′ ∈ [C]∗ occurs in r([D])
only if C ′ = r([C]), i.e., representatives can only contain other representatives, but not
other elements of equivalence classes.

Let ./∈ {≡,v}. We say that T is aligned with r, if for each C ./ D ∈ T one of
the following conditions hold:

– if T 6|= C ≡ D, then C = r([C]) and D = r([D]);
– if T |= C ≡ D, then for each C ′ such that C ′ 6= C, C ′ 6= D and C ′ occurs in C or
D it holds that C ′ = r([C ′]).

In other words, the only axioms, in which we allow an occurrence of a non-representative
C are axioms relating C with concepts equivalent to it.

Since minimal TBoxes can sometimes contain subsumption axioms relating two
equivalent concepts with each other, the otherwise unique TBox result can vary in the
choice between subsumption and equivalence axioms. For the sake of uniqueness, we



assume that, whenever we have a choice between equivalence (≡) and subsumption
axioms (v) in the resulting TBox, we prefer subsumption axioms.

We call a TBox non-redundant, if there is no α ∈ T such that T r{α} |= α. In order
to show how to compute a minimal equivalent TBox for an acyclic initial TBox, we first
show that we do not need new equivalence classes or new relations between them to ob-
tain any non-redundant, decomposed, equivalent TBox. In other words, non-redundant,
decomposed axioms encoding relations between equivalence classes are unique up to
exchanging equivalent concepts.

Lemma 5. Let T1, T2 be two non-redundant, acyclic EL TBoxes such that T1 ≡ T2.
Let C v D ∈ T2 such that T2 6|= C ≡ D. Then there is C ′ v D′ ∈ T1 such that
T1 |= C ′ ≡ C, T1 |= D′ ≡ D.

Proof. Since T1 ≡ T2, it holds that T1 |= C v D. We prove the lemma by induction
on the structure of a proof of C v D from T1 using the EL deduction calculus in
Fig.1. W.l.o.g., we assume that proofs have minimal depth. We can show that, within
this proof, there is a sequent C ′ v D′ with the following properties:

a. T1 |= C ≡ C ′ and T1 |= D ≡ D′;
b. eitherC ′ v D′ is a leaf within the derivation or the sequents used to deriveC ′ v D′

do not satisfy [a];
c. the last rule applied to derive C ′ v D′ was not EX;
d. the last rule applied to derive C ′ v D′ was not AX;
e. C ′ v D′ can only be derived from T2 using the axiom C v D.

Such a sequent exists for the following reasons:
The sequent C v D is part of the proof. Thus, there is always at least one sequent

satisfying [a]. Since the derivation is a finite tree, we can show that there is always a
sequent satisfying [a] and [b].

For [c], [d], [e], let us assume that we have a sequent C ′ v D′ for which [a] and
[b] hold, but not [c] or not [d] or not [e]. In order to show the opposite, we consider the
rest of the derivation, namely the derivation path between the two sequents C v D
and C ′ v D′. In principle, this derivation path can involve ANDL, CUT, EX and
ANDR. Since both TBoxes are acyclic, they cannot contain any conjunctions. Thus,
we can assume that our depth-minimal proof does not use ANDL or ANDR. If EX
is involved somewhere on this derivation path, then the TBox is cyclic by Lemma 4
due to T1 |= C ≡ C ′ and T1 |= D ≡ D′; (we can construct a witness concepts
containing C ′ and D′ within existential restrictions by removing each CUT from the
derivation path, i.e., replacing concepts on the right (left) by the concepts on the left
(right) throughout the derivation path until it consists of EX only; we then find the
witness concepts in the place of C and D). Thus, we can exclude EX from this deriva-
tion path. As a consequence, the derivation path only contains CUT. We consider se-
quents used in CUT rules: there is a sequence of concepts C1, . . . , Cn and D1, . . . , Dm

with T2 |= Ci v Ci+1, T2 |= C v C1, T2 |= Cn v C ′ and T2 |= Di+1 v Di,
T2 |= D′ v D1, T2 |= Dm v D. Since T1 ≡ T2, each of the above subsumptions is
also derivable in T2. If all of the subsumptions above can be derived from T2 without
using the axiom C v D, then T2 is redundant because we can remove C v D from T2



without losing any consequences. Thus, at least one of the above subsumptions must
only be derivable from T2 using C v D, i.e., it must satisfy [e].

We now show that if one of [c], [d] does not hold for one of the avobe subsumptions,
then nor does [e]. First, we consider C ′ v D′. In case of AX, we have C ′ = D′, which
can be derived in any TBox and, thus, without usingC v D. In case of EX,C ′ = ∃r.C ′′
and D′ = ∃r.D′′ for some role r and concepts C ′′, D′′ with T1 |= C ′′ v D′′. Assume
for a contradiction that C ′′ v D′′ cannot be derived in T2 without using C v D. Also
here, we can consider the depth-minimal derivation path from C v D to C ′′ v D′′.
The path can be extended by applying EX to derive C ′ v D′. Again, we can construct
witness concepts for cyclicity of T by Lemma 4 containing C and D within the scope
of an existential restriction (by excluding ANDL or ANDR and removing CUT from the
derivation path). We conclude that [e] can only hold if all three conditions ([c],[d],[e])
hold.

Now, we show the claim for the subsumptions on the left or right of C ′ v D′. As-
sume that one of the sequents left from C ′ or right from D′ is only derivable from T2
using C v D, e.g., Ci v Ci+1. Once again we consider the corresponding derivation
path (T2). Since both TBoxes are acyclic, they cannot contain any conjunctions. Thus,
we can assume that our depth-minimal proof does not use ANDL or ANDR. We can ex-
clude EX for the same reasons as above: If EX is involved somewhere on this derivation
path, then we can construct corresponding subsumee and subsumer concepts containing
C andD within the scope of existential restrictions. Then, the TBox T2 would be cyclic
by Lemma 4. We can conclude that T2 |= D v Ci+1 and T2 |= Ci v C. Thus, we have
found a sequent, which satisfies [a], [b] and [d],[e]. If the last applied rule for deriving
Ci v Ci+1 was EX, then both TBoxes are cyclic: by assumption, Ci v Ci+1 is only
derivable from T2 using C v D. Then, also the preceding sequent (before EX) can only
be derived from T2 using the axiom C v D. If this is the case, we can again construct
witness concepts containing C and D within the scope of existential restrictions. Thus,
Ci v Ci+1 also satisfies [c]. If we instead assume that one of the sequents right from
D′ can only be derived from T2 using the axiom C v D, then the argumentation is the
same as above to show that it satisfies all five conditions.

Let C ′ v D′ be such a sequent that satisfies [a], [b], [c],[d] and [e]. We now show
that C ′ v D′ ∈ T1 by excluding the remaining cases. We consider the last applied rules
of the derivation of C ′ v D′. We have excluded EX,AX. We can exclude ANDL or
ANDR, since both TBoxes are acyclic and they cannot contain any conjunctions. We
can exclude CUT: assume C ′ v C ′′ and C ′′ v D′ are the sequents before C ′ v D′. If
we assume that C ′ v D′ is only derivable using C v D and T1 is not cyclic, we can
show that either T1 |= C ′′ ≡ D′ or T1 |= C ′′ ≡ C ′. Thus, [b] does not hold as assumed.
We can also exclude AXTOP due to [e] and the non-redundancy of T2. ut

While the above lemma addresses relations between equivalence classes in non-
redundant, decomposed TBoxes, it does not allow us to draw conclusions about axioms
representing relations within equivalence classes. The purpose of the below lemma is
to determine the part of the TBox that encodes relations between equivalent concepts
within equivalence classes. For this, we divide the TBox T into partitions: one for non-
equivalence axioms T 0 = {C v D ∈ T | T 6|= C ≡ D} and one for axioms encoding
relations within each equivalence class: T [C′] = {C ≡ D ∈ T | C,D ∈ [C ′]} for each



[C ′] ∈ C. We denote the set of all subsumption dependencies holding within a partition
by T full,[C′] = {C v D | C,D ∈ [C ′]}. In each (equivalence class) partition, a part
of dependencies can be deducible from the remainder of the TBox.

Example 6. Consider the TBox T = {A v B, ∃r.A ≡ ∃r.B}. For the equivalence
class {∃r.A, ∃r.B}, the subsumption ∃r.A v ∃r.B follows from A v B.

We denote entailed dependencies for an equivalence class [C ′] by T red,[C′] = {C v
D ∈ T full,[C′] | T r T full,[C′] |= C v D}. We now consider alternative repre-
sentations of each partition T [C′], all of which are subsets of T full,[C′]. We first show
that, in any acyclic TBox T aligned with some valid r, we can determine the entailed
dependencies T red,[C′] within each T full,[C′] based on T 0.

Lemma 6. Let T be a non-redundant, acyclic EL TBox aligned with a valid represen-
tative selection function r. Then, for each non-singleton equivalence class [C ′′] ∈ C(T )
and each pair C,D ∈ [C ′′], it holds that C v D ∈ T red,[C′′] exactly if one of the fol-
lowing conditions is true:

1. D = >
2. there are concepts C ′, D′ such that C = ∃r.C ′, D = ∃r.D′ and T |= C ′ v D′,
T 6|= C ′ ≡ D′.

Proof. We start with the if-direction. Assume that D = >. For each C and each T , it
always holds that T r T full,[C′′] |= C v D. Thus, also C v D ∈ T red,[C′′]. Assume
that the second condition holds: there are concepts C ′, D′ such that C = ∃r.C ′, D =
∃r.D′ and T |= C ′ v D′, T 6|= C ′ ≡ D′. Since T 6|= C ′ ≡ D′, there is an axiom
r[C ′] v r[D′] ∈ T 0. Additionally T [C′] |= r[C ′] ≡ C ′ and T [D′] |= r[D′] ≡ D′.
Thus, T [C′]∪T [D′]∪T 0 |= C v D and, due to acyclicity of T , (T [C′]∪T [D′]∪T 0)r
T full,[C′′] |= C v D. Therefore, C v D ∈ T red,[C′′].

For the only-if-direction, we assume that C v D ∈ T red,[C′′] and show that one of
the above two cases is true. To be able to use induction, we prove a more general version
of the statement: we show that one of the above two cases is true for all C v D ∈
T red,[C′′]∗ = {C v D ∈ T full,[C′]∗ | T rT full,[C′]∗ |= C v D} (C v D ∈ T red,[C′′]

is a special case thereof). Let C v D ∈ T red,[C′′]∗ . Then, T r T full,[C′]∗ |= C v D.
For brevity, we denote T r T full,[C′]∗ by T1. We prove the claim by induction on
the structure of a proof of C v D from T1 using the EL deduction calculus in Fig.1.
W.l.o.g., we assume that proofs have minimal depth. We start with three cases that are
the basis of inducting.

– We can exclude the case C v D ∈ T1, since C v D ∈ T full,[C′]∗ .
– Since C,D ∈ [C ′′]∗ are assumed to be different, we can also exclude AX.
– If the sequent has been derived by applying AXTOP, then D = >, which corre-

sponds to the first case of our lemma.

Since T is acyclic, C,D and the TBox itself cannot contain any conjunctions. Thus, we
can assume that our depth-minimal proof does not use ANDL or ANDR. It remains to
consider CUT and EX.



CUT In this case, there is a concept C ′ such that T |= C v C ′ and T |= C ′ v D. We
conclude that T |= C ≡ C ′ and T |= C ′ ≡ D. Both of these sequents are also in
T red,[C′′]∗ , since they follow from T1. By induction hypothesis, we can conclude
that one of the two above cases holds for each of them. However, the only valid
combination of cases is when the second condition holds for both sequents. Thus,
there are concepts C ′1, D

′
1, D

′
2 such that C = ∃r.C ′1, C ′ = ∃r.D′1, D = ∃r.D′2 and

T |= C ′1 v D′1,T |= D′1 v D′2. Additionally, it holds that T 6|= C ′1 ≡ D′1 and
T 6|= D′1 ≡ D′2. It follows that T |= C ′1 v D′2 and T 6|= C ′1 ≡ D′2. Thus, the
second case is true for C,D.

EX In this case, there are concepts C ′, D′ such that C = ∃r.C ′, D = ∃r.D′ and T |=
C ′ v D′. It remains to show that T 6|= C ′ ≡ D′. Since T is aligned with r and
T |= C ′ ≡ D′, it follows that C,D cannot be both in [C ′′] at the same time unless
r[C ′] = C ′ = D′. The latter case is not possible due to C 6= D.

ut
As a consequence, each equivalence class partition can be considered independently

from other equivalence class partitions. In particular, this implies that, for any syntactic
representation T [C] of a partition for equivalence class [C], we can obtain T full,[C]

from T [C] ∪ T red,[C] by computing its transitive closure 4.

Lemma 7. Let T be a non-redundant, acyclic EL TBox aligned with a valid represen-
tative selection function r. Then, for each equivalence class [C] ∈ C(T ) it holds that
(T [C] ∪ T red,[C])∗ = T full,[C].

Proof. (T [C] ∪ T red,[C])∗ ⊆ T full,[C] follows from the transitivity of v and the in-
clusion T [C] ∪ T red,[C] ⊆ T full,[C]. For (T [C] ∪ T red,[C])∗ ⊇ T full,[C], we consider
an inclusion C v D ∈ T full,[C] and show by induction on the structure of a depth-
minimal derivation T ` C v D that C v D ∈ (T [C] ∪ T red,[C])∗. We start with three
cases that are the basis of inducting.

– In the case that C v D ∈ T , C v D ∈ T [C] and therefore in (T [C] ∪ T red,[C])∗.
– Since C,D ∈ [C] are assumed to be different, we can exclude AX.
– If the sequent has been derived by applying AXTOP, then D = >. It follows that
C v D ∈ T red,[C] by Lemma 6 and therefore C v D is in (T [C] ∪ T red,[C])∗.

Since T is acyclic, C,D and the TBox itself cannot contain any conjunctions. Thus, we
can assume that our depth-minimal proof does not use ANDL or ANDR. It remains to
consider CUT and EX.

EX: In this case, there are concepts C ′, D′ such that C = ∃r.C ′, D = ∃r.D′ and T |=
C ′ v D′. It remains to show that T 6|= C ′ ≡ D′. Since T is aligned with r and
T |= C ′ ≡ D′, it follows that C,D cannot be both in [C ′′] at the same time unless
r[C ′] = C ′ = D′. The latter case is not possible due to C 6= D. It follows that
C v D ∈ T red,[C] by Lemma 6 and therefore C v D is in (T [C] ∪ T red,[C])∗.

4 For a set T of axioms, the transitive closure (T )∗ is obtained by including C v D for any
C,D such that there exists C′ with T |= {C v C′, C′ v D}.



CUT: In this case, we apply induction hypothesis: there is a concept C ′ such that T |=
C v C ′ and T |= C ′ v D. We conclude that T |= C ≡ C ′ and T |= C ′ ≡ D.
Additionally, it can be shown that, if C,D ∈ sub(T ), any sequent involved in a
depth-minimal proof of C v D from T is also in sub(T ). Thus, both of these
sequents are in (T [C] ∪ T red,[C])∗ by induction hypothesis. Due to transitivity of
v, we conclude that also C v D is in (T [C] ∪ T red,[C])∗.

ut
Since our implementation operates on ontologies represented in the OWL Web On-

tology Language, we consider here an important detail of this language. In addition
to constructs mentioned in preliminaries, OWL Web Ontology Language allows for
OwlEquivalentClassesAxioms - axioms, in which we can specify a set of equivalent
concepts. With the exception of equivalence classes containing >, for which there ex-
ists an equally small representation without an OwlEquivalentClassesAxiom, this is
clearly the smallest representation for equivalence class partitions.

Let [C]nonred = [C] r {C ′ ∈ [C] | C ′ v D′1 and C ′ w D′2 ∈ T red,[C] for
some D′1, D

′
2}. Let T nonred,[C] be the corresponding OWLEquivalentClassesAxiom

with [C]nonred as the set of equivalent concepts. Note that, according to the seman-
tics of OwlEquivalentClassesAxioms, it holds that T nonred,[C] |= T full,[C]nonred . Thus,
T nonred,[C] ∪ T red,[C] |= T full,[C]. Note that ∫(T nonred,[C]) =

∑
C′∈[C]nonred ∫(C ′).

Lemma 8. Let T be a non-redundant, acyclic EL TBox aligned with a valid represen-
tative selection function r. Then, ∫(T nonred,[C]) ≤ ∫(T [C]) for each equivalence class
[C] ∈ C(T ).

Proof Sketch. ∫(T nonred,[C]) =
∑
C′∈[C]nonred ∫(C ′). As for ∫(T [C]), we can show

using Lemma 7 that each C ′ ∈ [C]nonred occurs in it at least once. Additionally, we can
show that there are no C1, C2 ∈ [C] such that C1 occurs in C2 due to the acyclicity of
T . Thus, ∫(T [C]) ≥

∑
C′∈[C]nonred ∫(C ′). ut

Based on the above lemmas, we can show that, in the acyclic case, we can compute
a minimal TBox by eliminating redundant axioms, fixing the representative selection
function r to some minimal value, constructing the core representation T nonred,[C] for
each non-singleton equivalence class [C] and composing T again. We say that r is
minimal, if for each [C] ∈ C holds: there is no C ′ ∈ [C]∗ such that ∫(C ′) < ∫(r([C])).

Theorem 3. Let T be a non-redundant, acyclic EL TBox and r a minimal, valid rep-
resentative selection function. Let the TBox Tn = T 0 ∪

⋃
[C]∈C,|[C]|≥2 T nonred,[C] be

aligned with r. Let T ′n be a composed version of Tn. Then, for any minimal TBox Tm
with Tm ≡ T it holds that ∫(Tm) = ∫(T ′n).

Proof Sketch. We decompose Tm and obtain Td. We now divide Td into partitions
T 0
d ,T [Ci]

d for Ci ∈ C(Td). The following hold:

– Td contains no conjunctions.
– For each C v D ∈ T 0

d , there is C ′ v D′ ∈ T 0
n such that T |= C ≡ C ′ and

T |= D ≡ D′ and it holds that ∫(C v D) ≥ ∫(C ′ v D′).
– Every acyclic non-redundant TBox T ′ has exactly one minimal composed version,

i.e., a representation obtained by composing axioms with equal terms on the left-
hand side until no compositions are possible.



Algorithm 1: Rewriting Tin
Data: Tin acyclic decomposed TBox
Result: Tout minimal equivalent TBox

1 Call ← C;
2 CTODO ← Call;
3 Tout ← remove equivalence axioms from Tin;
4 while CTODO 6= ∅ do
5 for [C] ∈ leaves(CTODO) do
6 choose minimal representative r([C]);
7 replace C′ ∈ [C] in Tout by r([C]);
8 replace C′ ∈ [C] in CTODO \ {[C]} by r([C]);
9 replace C′ ∈ [C] in Call \ {[C]} by r([C]);

10 CTODO ← CTODO \ {[C]};

11 Te ←
⋃

[C]∈Call,|[C]|≥2 T
nonred,[C];

12 for α ∈ Tout do
13 if Tout ∪ Te \ {α} |= α then
14 Tout ← Tout \ {α};

15 Tout ← Tout ∪ Te ;
16 Tout ← compose(Tout);

– Composition affects only axioms from T 0
d and T 0

n .
– After composition, it holds that |T 0

m| ≥ |T ′0n | (due to alignment with r).
– After composition, it holds that ∫(T 0

m) ≥ ∫(T ′0n ).
– For each T [C]

d with C ∈ C(Td) holds: ∫(T [C]
d ) ≥ ∫(T nonred,[C]).

– ∫(Tm) ≥ ∫(T ′n).

Due to our assumption of minimality for Tm, it follows that ∫(Tm) = ∫(T ′n). ut
Algorithm 1 implements the iterative computation of (a minimal) r and the minimal

TBox T ′n. It takes an acyclic decomposed TBox Tin and computes the corresponding
minimal equivalent TBox Tout. Line 3 is not strictly necessary, but allows for a more
efficient processing. In Lines 4-10, a minimal representative selection function r is it-
eratively determined – for one equivalence class at a time – and all data structures
are aligned with r. We distinguish two versions of equivalence classes: CTODO contains
equivalence classes, for which the minimal representative has not been selected yet. In
each iteration, we process the leaves in CTODO ordered with the reference relation≺s and
remove those equivalence classes from CTODO. Call contains all equivalence classes that
are stepwise aligned with a minimal representative selection function r. In each step, we
also align axioms Tout corresponding to the partition T 0 with r by replacing concepts
with the representative r([C]) fixed in Line 6.

In Line 11, we build partitions for non-singleton equivalence classes. In Lines 12-
14, we compute the non-redundant part of Tout. The function compose(Tout) in Line
16 composes subsumption axioms with identical left-hand sides into a single axiom.

Clearly, Algorithm 1 runs in PTIME. Note that the algorithm remains tractable only
assuming the tractability of reasoning in the underlying logic. Otherwise, the complex-



ity of reasoning dominates. In principle, the result could be obtained after computing
the representatives for each equivalence class by simply selecting all subsumption re-
lations between classes. However, this would result in a less efficient implementation
with large intermediary results.

Theorem 4. Let T be an acyclic EL TBox. Algorithm 1 computes a minimal equivalent
TBox in PTIME.

Proof Sketch. The minimality of the resulting TBox follows from Theorem 3 if we
show that the computed representative selection function r is indeed minimal and valid.
This can be shown by induction on the structure of our reference relations. By assump-
tion, this structure is finite and acyclic. The basis of induction is the case that all equiv-
alence classes that do not reference any other equivalence classes. For such equivalence
classes it holds that C∗ = C, i.e., all class elements are known and a minimal element
can effectively be chosen. Additionally, it is impossible to choose a value that would
make r invalid. Thus, r is minimal and valid. This reflects the initial computation state,
where we choose values of r for equivalence classes that do not reference any other
equivalence classes. At a later stage we choose a value for an equivalence class [C] af-
ter choosing the values of r for all classes referenced from it. Assuming that the values
of r for all classes directly or indirectly referenced from [C] are valid and minimal, also
any minimal value in [C] is valid and minimal, since T and all equivalence classes have
been iteratively aligned with the already fixed values of r. ut

6 Experimental Results

For our evaluation, we have implemented the algorithm using the latest version of OWL
API and Hermit reasoner. We have used an optimized version of Algorithm 1, where
entailment checking is done in two phases, the first of which can be run by several
threads.

A selection of publicly available ontologies (as shown in Table 1) that vary in
size and expressivity have been used in the experiments5. Table 2 shows the number
|CONo(T )| of occurrences of complex concepts CON(T ) = sub(T ) r sigC(T ) in the
first two columns (the original value followed by the new value relative to the original
one). The two subsequent columns show the number of pairwise different complex con-
cepts |CON(T )|. The last two columns show ∫(T ) – the size of each ontology measured
as the number of occurrences of entities in sig(T ).

The implementation was first applied to Snomed [10]. However, the available fully-
fledged reasoners Pellet and Hermit run out of heap space when classifying the ontol-
ogy even with 10 GB memory assigned to the corresponding Java process. The ELK
reasoner [11] is capable of classifying Snomed, but it does not currently implement
entailment, which is essential for our implementation.

From the ontologies used in our experiments, only Snomed did not satisfy the
acyclicity conditions for≺s sufficient to guarantee termination of our algorithm. On the

5 The wine ontology can be retrieved from http://www.w3.org/TR/2003/ PR-owl-guide-
20031209/wine. All other ontologies used can be found in the TONES ontology repository
at http://owl.cs.manchester.ac.uk/repository



|T | ∫(T )/|T | CON(T )/|T | CONo(T )/|T | Logic

Snomed 83,259 4.99 1.14 2.57 EL++
Gene Ontology 42656 3.37 1.20 0.27 EL++
NCI 97811 1.10 0.00 0.14 ALCH(D)
Galen 4735 2.81 0.52 1.13 ALEHIF+
Adult Mouse 3464 2.48 0.15 0.48 EL++
Wine 657 1.03 0.21 0.40 SHOIN (D)
Nautilus 38 2.18 0.29 0.40 ALCHF(D)
Cell 1264 2.16 0.09 0.16 EL++
DOLCE-lite 351 1.42 0.13 0.14 SHIF
Software 238 25.21 2.60 7.26 ALHN (D)
Family Tree 36 6.19 1.02 1.33 SHIN (D)
General Ontology 8803 0.48 0.03 0.03 ALCHOIN (D)
Substance 609 2.33 0.22 0.36 ALCHO(D)
Generations 38 1.87 0.58 1.21 ALCOIF
Periodic Table 58 1.38 0.38 0.43 ALU

Table 1. Properties of ontologies used in experiments.

one hand, Snomed contains cyclic concept definitions. For instance, Mast cell leukemia
is defined by means of the corresponding equivalence axiom as

Leukemia disease u
Mast cell malignancy u
∃ RoleGroup.

(∃ Associated morphology. Mast cell leukemia u
∃ Finding site. Hematopoietic system structure)) u

∃ RoleGroup.(
∃ Has definitional manifestation. White blood cell finding)

On the other hand, Snomed contains a cyclic reference relation between the concepts
Wound and Wound finding, which is the only cyclic dependency with more than one
element.

We have manually evaluated how the rewriting has affected ontologies. In all cases
where concepts became smaller, the improvement has been achieved by either elimina-
tion of redundant axioms or exchanging complex expressions by atomic concepts.

In case of the Galen ontology [1], the algorithm managed to reduce the number
of occurrences of complex concepts by 955, which is 17%. The size of the ontology
in number of references was reduced by 1130 (9%). The number of distinct complex
concepts used in the ontology was reduced by 76 (3%). The situation is similar for the
NCI [12] ontology.

The other large medical ontology – Gene Ontology [13] – does not contain any
equivalent concepts, i.e., each equivalence class has only one element. The current al-
gorithm did not find any possibility to rewrite the ontology. The same holds for Adult
Mouse and Periodic Table ontologies.



CONo(T ) |CON(T )| ∫(T )
Snomed 213,856 – 95,315 – 415,541 –
Gene Ontology 11,686 1 8,508 1 143,900 1
NCI 13,961 0.87 4,000 0.99 107,841 0.94
Galen 5,368 0.83 2,475 0.97 13,285 0.91
Adult Mouse 1,649 0.99 507 1 8,575 0.99
Wine 262 0.89 141 0.98 677 0.93
Nautilus 15 1 11 1 83 0.86
Cell 206 0.87 114 0.96 2,732 0.96
DOLCE-lite 49 0.92 46 0.98 497 0.66
Software 1,728 0.81 620 1 6,001 0.81
Family Tree 48 0.77 37 0.78 223 0.83
General Ontology 281 0.83 278 0.83 4,182 0.83
Substance 221 1 135 1 1,417 0.95
Generations 46 0.65 22 1 71 0.90
Periodic Table 25 1 22 1 80 1

Table 2. Minimization results for different ontologies.

Results for the other, relatively small ontologies are similar to those of Galen and
in some cases more prominent (Table 2). The highest improvement (66% of ∫(T )) was
achieved in the DOLCE-Lite ontology [14].

7 Related Work

The work on knowledge compilation [15] is closely related to the work presented in
this paper. Knowledge compilation is a family of approaches, in which a knowledge
base is transformed in an off-line phase into a normal form, for which reasoning is
cheaper. The hope is that the one-off cost of the initial preprocessing will be justified by
the computational savings made on subsequent reasoning. One of such normal forms
proposed in description logics is the prime implicates normal form for ALC ontolo-
gies [4]. Prime implicates of a logical formula are defined to be their strongest clausal
consequences. Concepts in the prime implicates normal form are expected to be easier
to read and understand. Reasoning is also expected to be more efficient for knowledge
bases in this normal form. For example, concept subsumption can be tested in quadratic
time. However, the problem with such normal forms is the blowup caused by the trans-
formation. For ALC ontologies, a doubly-exponential blowup in the concept size can
occur. Given that reasoning in ALC is PSPACE-complete [16], such a transformation
can be disadvantageous in general.

Grimm et al. [3] propose two different algorithms for eliminating semantically re-
dundant axioms from ontologies, which is one of the sources of non-succinctness. How-
ever, as shown in Section 3, it does not guarantee that we obtain a minimal TBox in
[(]T ). The advantage of this restricted approach to improving succinctness is that the
result contains only axioms that are familiar to the users of the ontology.

Work on laconic and precise justifications [17] (minimal parts of the ontology im-
plying a particular axiom or axioms) is also related to this paper. The authors propose



an algorithm for computing laconic justifications – justifications that do not contain
any logically superfluous parts. Laconic justifications can then be used to derive precise
justifications – justifications that consist of flat, small axioms, and are important for the
generation of semantically minimal repairs.

Nikitina et al. [18] propose an algorithm for an efficient handling of redundancy in
inconsistent ontologies during their repair. Similarly to the approach by Grimm et al.
axioms are considered as atoms that cannot be further separated into parts.

8 Summary and Outlook

We have considered the problem of finding minimal equivalent representations for on-
tologies expressed in the lightweight description logic EL. We have shown that the task
of finding such a representation (or rather: its related decision problem) is NP-complete.
Further, we have identified a class of TBoxes for which the problem is tractable. We
have implemented a polynomial algorithm for minimizing the above class of TBoxes.
For general TBoxes, the algorithm can be used as a heuristic. We have implemented the
algorithm and presented experimental results, which show that the complexity of vari-
ous existing ontologies can be improved. For instance, in case of Galen, the number of
complex concepts occurrences could be reduced by 955 and the number of references
to atomic concepts and roles by 1130.

There are various natural extensions of this work. Inspired by recent results on uni-
form interpolation in EL [8], the problem can be extended to finding minimal represen-
tations for ontologies using a signature extension. The results in [8] imply that, even for
the minimal equivalent representation of an ontology, an up to triple-exponentially more
succinct representation can be obtained by extending its signature. Auxiliary concept
symbols are therefore important contributors towards the succinctness of ontologies,
e.g., used as shortcuts for complex EL concepts or disjunctions thereof. The results of
our evaluation indicate that there are many complex concept expression that occur re-
peatedly in ontologies but do not have an equivalent atomic concept that could be used
instead. Therefore, introducing names for such frequently used concepts could yield a
further decrease of the ontology’s complexity.

The results obtained within this paper can be transferred to the context of ontology
reuse, where rewriting is applied to obtain a compact representation of the facts about
a subset of terms [19], in particular in its extended form as suggested above.

Finally, minimizing representations is an interesting problem for knowledge repre-
sentation formalisms in general, and similar questions can (and should) be asked for
more expressive ontology languages.
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