(Non-)Succinctness of Uniform Interpolants of General Terminologies in the Description Logic \mathcal{EL}

Nadeschda Nikitinaa,*, Sebastian Rudolphb

a Oxford University, Department of Computer Science
Wolfson Building, Parks Road, Oxford, OX1 3QD, UK
Tel.: +44 (1865) 610747, Fax: +44 (1865) 283531

b Technische Universität Dresden, Fakultät Informatik
Nöthnitzer Straße 46, Dresden, 01062, Germany
Tel.: +49 (351) 463 38516, Fax: +49 (351) 463 32827

Abstract

\mathcal{EL} is a popular description logic, used as a core formalism in large existing knowledge bases. Uniform interpolants of knowledge bases are of high interest, e.g. in scenarios where a knowledge base is supposed to be partially reused. However, to the best of our knowledge no procedure has yet been proposed that computes uniform \mathcal{EL} interpolants of general \mathcal{EL} terminologies. Up to now, also the bound on the size of uniform \mathcal{EL} interpolants has remained unknown. In this article, we propose an approach to computing a finite uniform interpolant for a general \mathcal{EL} terminology if it exists. Further, we show that, if such a finite uniform \mathcal{EL} interpolant exists, then there exists one that is at most triple exponential in the size of the original TBox, and that, in the worst-case, no smaller interpolants exist, thereby establishing tight worst-case bounds on their size.

Keywords: Ontologies, Knowledge Representation, Automated Reasoning, Description Logics, Uniform Interpolation, Forgetting, \mathcal{EL}

$^*This is a revised and extended version of previous work [1].

Corresponding Author

Email addresses: nadejda.nikitina@cs.ox.ac.uk (Nadeschda Nikitina), sebastian.rudolph@tu-dresden.de (Sebastian Rudolph)
1. Introduction

With the wide-spread adoption of ontological modeling by means of the W3C-specified OWL Web Ontology Language [2], description logics (DLs, [3, 4]) have developed into one of the most popular family of formalisms employed for knowledge representation and reasoning [5, 6, 7, 8]. For application scenarios where scalability of reasoning is of utmost importance, specific tractable sublanguages (the so-called profiles [9]) of OWL have been put into place, among them OWL 2 EL which in turn is based on DLs of the \mathcal{EL} family [10, 11].

In view of the practical deployment of OWL and its profiles [12, 13, 14], non-standard reasoning services for supporting modeling activities gain in importance. An example of such reasoning services supporting knowledge engineers in different tasks is that of uniform interpolation: given a theory using a certain vocabulary, and a subset of “relevant terms” of that vocabulary, find a theory (referred to as a uniform interpolant, short: UI) that uses only the relevant terms and gives rise to the same consequences (expressible via relevant terms) as the original theory. Intuitively, this provides a view on the ontology where all irrelevant (asserted as well as implied) statements have been filtered out.

Uniform interpolation has many applications within ontology engineering. For instance, it can help ontology engineers understand existing ontological specifications by visualizing implicit dependencies between relevant concepts and roles, as used, for instance, for interactive ontology revision [15]. In particular for understanding and developing complex knowledge bases, e.g., those consisting of general concept inclusions (GCIs), appropriate tool support of this kind would be beneficial. Another application of uniform interpolation is ontology reuse: given an ontology that is to be reused in a different scenario, most likely not all aspects of this ontology are relevant to the new usage requirements. In combination with module extraction, uniform interpolation can be used to reduce the amount of irrelevant information within an ontology employed in a new context.

For DL-Lite, the problem of uniform interpolation has been investigated [16, 17] and a tight exponential bound on the size of uniform interpolants has been shown. Lutz and Wolter [18] propose an approach to uniform interpolation in expressive description logics such as \mathcal{ALC} featuring general terminologies showing a tight triple-exponential bound on the size of uniform interpolants. For the lightweight description logic \mathcal{EL}, the problem of uniform interpolation has, however, not been solved. To the best of our knowledge, the only existing approach [19] to uniform interpolation in \mathcal{EL} is restricted to terminologies containing each concept symbol at most once on the left-hand side of concept inclusions and ad-
ditionally satisfying particular acyclicity conditions which are sufficient, but not necessary for the existence of a uniform interpolant. Recently, Lutz, Seylan and Wolter [20] proposed an \textsc{ExpTime} procedure for deciding, whether a finite uniform \mathcal{EL} interpolant exists for a particular general terminology and a particular set of relevant terms. However, the authors do not address the actual computation of such a uniform interpolant. Up to now, also the bounds on the size of uniform \mathcal{EL} interpolants have remained unknown.

In this paper, we propose a worst-case-optimal approach to computing a finite uniform \mathcal{EL} interpolant for a general terminology. We compute uniform interpolants by rewriting the terminology, i.e., exchanging explicitly given axioms by other axioms which are logically entailed. Since our rewriting approach operates on the syntactic structure of terminologies, the task can be significantly facilitated by converting the terminology into a simplified form in a semantics-preserving way. For this purpose, we make use of a normalization strategy, wherein fresh vocabulary elements are introduced in order to obtain a syntactically simple terminology that provides for vocabulary elements finite sets of so-called subsumees and subsumers. We show via a proof-theoretic analysis that this representation does indeed capture all consequences of the initial terminology expressed using the set of relevant terms.

This specific normalized form can then be transformed into regular tree grammars, whose corresponding tree languages are used to represent (possibly infinite) sets of consequences. We show that certain finite subsets of the languages generated by these grammars can be transformed into a uniform \mathcal{EL} interpolant of at most triple exponential size, if such a finite uniform \mathcal{EL} interpolant exists for the given terminology and a set of terms. Further, we show that, in the worst-case, no shorter interpolants exist, thereby establishing tight bounds on the size of uniform interpolants in \mathcal{EL}.

The paper is structured as follows: In Section 2, we recall the necessary preliminaries on \mathcal{EL} and regular tree languages/grammars. In Section 3, we introduce a calculus for deriving general subsumptions in \mathcal{EL} terminologies, which is used as a major tool in the proofs of this work. Section 4 formally introduces the notion of inseparability and defines the task of uniform interpolation. Section 5 demonstrates that the smallest uniform interpolants in \mathcal{EL} can be triple exponential in the size of the original knowledge base. In the first part of Section 6, we show that applying flattening to terminologies simplifies tracking of entailed subsumption dependencies. In Section 6.2, we introduce regular tree grammars representing subsumees and subsumers of concept symbols, which are the basis for computing uniform \mathcal{EL} interpolants as shown in Section 6.3. In the same section, we
also show the upper bound on the size of uniform interpolants. After giving an overview of related work in Section 7, we summarize the contributions in Section 8 and discuss some ideas for future work. This is a revised and extended version of our previous paper [1], containing a more detailed argumentation, examples and the full proofs.

2. Preliminaries

In this section, we formally introduce the description logic \mathcal{EL}, and recall some of its well-known properties. Furthermore, we introduce tree grammars, which we will later use as a formal tool to represent infinite sets of \mathcal{EL} concept expressions.

2.1. The Description Logic \mathcal{EL}

Let N_C and N_R be countably infinite and mutually disjoint sets called concept symbols and role symbols, respectively. \mathcal{EL} concepts C are defined by

$$C ::= A \mid \top \mid C \sqcap C \mid \exists r.C$$

where A and r range over N_C and N_R, respectively. In the following, we use symbols A, B to denote concept symbols (i.e., concepts from N_C) or \top and C, D, E to denote arbitrary concepts. We use the term simple concept to refer to a simpler form of \mathcal{EL} concepts defined by $C_s ::= A \mid \exists r.A$, where A and r range over $N_C \cup \{\top\}$ and N_R, respectively.

A terminology or TBox consists of concept inclusion axioms $C \sqsubseteq D$ and concept equivalence axioms $C \equiv D$, the latter used as a shorthand for the mutual inclusion $C \sqsubseteq D$ and $D \sqsubseteq C$.\footnote{While knowledge bases in general can also include a specification of individuals with the corresponding concept and role assertions (ABox), in this paper we do not consider ABoxes, but concentrate on TBoxes.} The signature of an \mathcal{EL} concept C, an axiom α or a TBox \mathcal{T}, denoted by $\text{sig}(C)$, $\text{sig}(\alpha)$ or $\text{sig}(\mathcal{T})$, respectively, is the set of concept and role symbols occurring in it. To distinguish between the set of concept symbols and the set of role symbols, we use $\text{sig}_C(\cdot)$ and $\text{sig}_R(\cdot)$, respectively. Further, we use $\text{sub}(\mathcal{T})$ to denote the set of all subformulae of concepts in \mathcal{T}.

For a concept C, let the role depth of C (denoted by $d(C)$) be the maximal nesting depth of existential restrictions within C. For instance, $d(\exists r. (\exists s. A \sqcap B) \sqcap$
∃s.B) = 2. For a TBox \(T \), the role depth is given by \(d(T) = \max\{d(C) \mid C \in \text{sub}(T)\} \).

Next, we recall the semantics of the DL constructs introduced above, which is defined by the means of interpretations. An interpretation \(\mathcal{I} \) is given by a set \(\Delta^\mathcal{I} \), called the domain, and an interpretation function \(\cdot^\mathcal{I} \) assigning to each concept \(A \in NC \) a subset \(A^\mathcal{I} \) of \(\Delta^\mathcal{I} \) and to each role \(r \in NR \) a subset \(r^\mathcal{I} \) of \(\Delta^\mathcal{I} \times \Delta^\mathcal{I} \). The interpretation of \(\top \) is fixed to \(\Delta^\mathcal{I} \). The interpretation of arbitrary EL concepts is defined inductively via \((C \sqcap D)^\mathcal{I} = C^\mathcal{I} \cap D^\mathcal{I} \) and \((\exists r.C)^\mathcal{I} = \{x \mid (x, y) \in r^\mathcal{I} \text{ and } y \in C^\mathcal{I} \text{ for some } y\} \). An interpretation \(\mathcal{I} \) satisfies an axiom \(C \sqsubseteq D \) if \(C^\mathcal{I} \subseteq D^\mathcal{I} \). \(\mathcal{I} \) is a model of a TBox \(T \), if it satisfies all axioms in \(T \). We say that \(T \) entails an axiom \(\alpha \) (in symbols, \(T \models \alpha \)), if \(\alpha \) is satisfied by all models of \(T \).

The deductive closure of a TBox \(T \) is the set of all axioms entailed by \(T \). For two arbitrary EL concepts \(C, D \) such that \(T \models C \sqsubseteq D \), we call \(C \) a subsumee of \(D \) and \(D \) a subsumer of \(C \).

2.2. Model-Theoretic Properties of EL Concepts

In the following, we provide some results concerning model-theoretic properties of EL concept expressions, which are essentially common knowledge. Nevertheless, to make the paper self-contained, we include the proofs in the appendix.

We first define pointed interpretations as well as homomorphisms between them. Moreover we define the notion of a characteristic interpretation of an EL concept expression. Intuitively, a concept’s characteristic interpretation describes a partial model with one distinguished element which represents necessary and sufficient conditions for a domain element to be an instance of this concept.

Definition 1. A pointed interpretation is a pair \((\mathcal{I}, x) \) with \(x \in \Delta^\mathcal{I} \). Given two pointed interpretations \((\mathcal{I}_1, x_1) \) and \((\mathcal{I}_2, x_2) \), a homomorphism from \((\mathcal{I}_1, x_1) \) to \((\mathcal{I}_2, x_2) \) is a mapping \(\varphi : \Delta^{\mathcal{I}_1} \to \Delta^{\mathcal{I}_2} \) such that

- \(\varphi(x_1) = x_2 \),
- \(x \in A^{\mathcal{I}_1} \) implies \(\varphi(x) \in A^{\mathcal{I}_2} \) for all \(A \in NC \),
- \((x, y) \in r^{\mathcal{I}_1} \) implies \((\varphi(x), \varphi(y)) \in r^{\mathcal{I}_2} \) for all \(r \in NR \).

Given an EL concept expression \(C \), we define its characteristic pointed interpretation \((\mathcal{I}_C, x_C) \) inductively over the structure of \(C \) as follows:

- For \(A \in NC \cup \{\top\} \) we let \(\Delta^{\mathcal{I}_A} = \{x_A\} \) with
\(A^I = \{x_A\},\)
\(B^I = \emptyset\) for all \(B \in N_C \setminus \{A\},\) and
\(r^I = \emptyset\) for all \(r \in N_R.\)

- For \(C \subseteq C_1 \cap C_2,\) we define \(\Delta^I_C = \{x_C\} \cup \bigcup_{i \in \{1, 2\}} (A^I_{C_i} \setminus \{x_{C_i}\}) \times \{i\}\) with
 \(A^I_C = \{x_C \mid x_{C_1} \in A^I_{C_1} \text{ or } x_{C_2} \in A^I_{C_2}\} \cup \bigcup_{i \in \{1, 2\}} (A^I_{C_i} \setminus \{x_{C_i}\}) \times \{i\}\) for all \(A \in N_C,\) and
 \(r^I_C = \{(x_{C}, (y, i)) \mid (x_{C}, y) \in r^I_{C_i}\} \cup \bigcup_{i \in \{1, 2\}} \{((y, i), (y', i)) \mid (y, y') \in r^I_{C_i}, y \neq x_{C_i}\}\) for all \(r \in N_R.\)

- For \(C = \exists r.C',\) we define \(\Delta^I_C = \{x_C\} \cup \Delta^I_{C'}\)

\[\Delta^I_C = \{x_C \mid x_{C_1} \in A^I_{C_1} \text{ or } x_{C_2} \in A^I_{C_2}\} \cup \bigcup_{i \in \{1, 2\}} (A^I_{C_i} \setminus \{x_{C_i}\}) \times \{i\}\]

\(A^I_C = A^I_{C'}\) for all \(A \in N_C,\) and
\(r^I_C = \{(x_{C}, x_{C'}) \mid r' = r\} \cup (r')^{I_{C'}}\) for all \(r' \in N_R.\)

The subsequent lemma shows that characteristic interpretations indeed characterize \(\mathcal{EL}\) concept membership via the existence of appropriate homomorphisms.

Lemma 1 (structurality of validity of \(\mathcal{EL}\) concepts). For any \(\mathcal{EL}\) concept expression \(C\) and any interpretation \(I = (\Delta^I, \mathcal{I})\) and \(x \in \Delta^I\) it holds that \(x \in C^I\) if and only if there is a homomorphism from \((I_C, x_C)\) to \((I, x).\)

The next lemma shows that \(\mathcal{EL}\) concept subsumption in the absence of terminological background knowledge can as well be characterized via homomorphisms between characteristic interpretations.

Lemma 2 (Structurality of \(\mathcal{EL}\) concept subsumption). Let \(C\) and \(C'\) be two \(\mathcal{EL}\) concept expressions. Then \(\emptyset \models C \sqsubseteq C'\) if and only if there is a homomorphism from \((I_C', x_C')\) to \((I_C, x_C).\)

The proofs of both lemmas can be found in Appendix A.

2.3. Regular Tree Grammars

We briefly recall the basics of tree languages and regular tree grammars. A ranked alphabet is a pair \((F, \text{Arity})\) where \(F\) is a finite set and \(\text{Arity}\) is a mapping from \(F\) into \(\mathbb{N}\). We use superscripts to denote the arity \(> 0\) of alphabet symbols, e.g., \(f^2(g^1(a), a)\). The set of ground terms over the alphabet \(F\) (which are also
simply referred to as *trees*) is denoted by \(T(\mathcal{F}) \). Let \(\mathcal{X}_n \) be a set of \(n \) variables. Then, \(T(\mathcal{F}, \mathcal{X}_n) \) denotes the set of terms over the alphabet \(\mathcal{F} \) and the set of variables \(\mathcal{X}_n \). A term \(C \in T(\mathcal{F}, \mathcal{X}_n) \) containing each variable from \(\mathcal{X}_n \) at most once is called a context.

Example 1. Let \(\mathcal{F} = \{ f^2, g^1, a \} \) with non-zero arities of symbols denoted by the subscripts and \(X, Y \) two variables. Terms \(f^2(g^1(a), X), f^2(g^1(Y), X) \) and \(f^2(Y, X) \) are contexts obtained by replacing terminal symbols within the term \(f^2(g^1(a), a) \) with a variable. The term \(f^2(g^1(X), X) \) is not a context, since it contains the variable \(X \) more than once.

A regular tree grammar \(G = (S, \mathcal{N}, \mathcal{F}, R) \) is composed of a start symbol \(S \), a set \(\mathcal{N} \) of non-terminal symbols (non-terminal symbols have arity 0) with \(S \in \mathcal{N} \), a ranked alphabet \(\mathcal{F} \) of terminal symbols with a fixed arity such that \(\mathcal{F} \cap \mathcal{N} = \emptyset \), and a set \(R \) of derivation rules of the form \(N \rightarrow \beta \) where \(N \) is a non-terminal from \(\mathcal{N} \) and \(\beta \) is a term from \(T(\mathcal{F} \cup \mathcal{N}) \). The ranked alphabet \(\mathcal{F} \cup \mathcal{N} \) is considered to be disjoint from the set of variables \(\mathcal{X}_n \). Given a regular tree grammar \(G = (S, \mathcal{N}, \mathcal{F}, R) \), the derivation relation \(\rightarrow_G \) associated to \(G \) is a relation on terms from \(T(\mathcal{F} \cup \mathcal{N}) \) such that \(s \rightarrow_G t \) if and only if there is a rule \(N \rightarrow \alpha \in R \) and there is a context \(C \) such that \(s = C[N/X] \) and \(t = C[\alpha/X] \), where \(X \) is a variable from \(\mathcal{X}_n \). The subset of \(T(\mathcal{F} \cup \mathcal{N}) \) which can be generated by successive derivations starting with the start symbol is denoted by \(L_u(G) = \{ s \in T(\mathcal{F} \cup \mathcal{N}) \mid S \rightarrow^*_G s \} \) where \(\rightarrow^*_G \) is the transitive closure of \(\rightarrow_G \). We omit the subscript \(G \) when the grammar \(G \) is clear from the context. The language generated by \(G \) denoted by \(L(G) = T(\mathcal{F}) \cap L_u(G) \). For the purpose of this paper, we also consider commutative associative closure \(L^*_u(G) \) and \(L^*(G) \) of \(L_u(G) \) and \(L(G) \), respectively.

Example 2. Let \(G = (A, \{ A, B \}, \{ f^2, g^1, a, b \}, R) \) with \(R \) given by the following derivation rules:

- \(A \rightarrow f^2(B, A) \mid a \)
- \(B \rightarrow g^1(A) \mid b \)

Then, \(f^2(g^1(a), a) \in L(G) \), since \(A \rightarrow f^2(B, A) \rightarrow f^2(B, a) \rightarrow f^2(g^1(A), a) \rightarrow f^2(g^1(a), a) \). While \(f^2(a, g^1(a)) \) is not in \(L(G) \), it is contained in \(L^*(G) \) due to commutativity of \(f^2 \).

For further details on regular tree grammars, we refer the reader, for instance, to [21].
3. A Gentzen-Style Proof System for \mathcal{EL}

The aim of this section is to provide a proof-theoretic calculus that is sound and complete for general subsumption in \mathcal{EL}. We will use this calculus in the subsequent sections to prove particular properties of TBoxes of a certain form in the context of consequence-preserving rewriting. The Gentzen-style calculus for \mathcal{EL} is shown in Fig. 1 and is a variation of the calculus given by Hofmann [22].

$$\frac{C \sqsubseteq C}{C \sqsubseteq A \sqcup B}$$ (Ax)
$$\frac{C \sqsubseteq C \sqcap D \sqsubseteq E}{C \sqsubseteq D \sqcap E}$$ (AndL)
$$\frac{C \sqsubseteq E \quad C \sqsubseteq D}{C \sqsubseteq D \sqcap E}$$ (AndR)
$$\frac{C \sqsubseteq D}{\exists r. C \sqsubseteq \exists r. D}$$ (Ex)
$$\frac{C \sqsubseteq E \quad E \sqsubseteq D}{C \sqsubseteq D}$$ (Cut)

Figure 1: Gentzen-style proof system for general \mathcal{EL} terminologies with C, D, E arbitrary concept expressions.

The calculus operates on sequents. A sequent is of the form $C \sqsubseteq D$, where C, D are \mathcal{EL} concepts. The rules depicted in Fig. 1 can be used to derive new sequents from sequents that have already been derived. For instance, if we have derived the sequent $C \sqsubseteq D$, we can derive the sequent $\exists r. C \sqsubseteq \exists r. D$ using rule (EX). A derivation (or proof) of a sequent $C \sqsubseteq D$ is a finite tree with whose nodes are labeled with sequents. The tree root is labeled with the sequent $C \sqsubseteq D$. Within the tree, a parent node is always labeled by the conclusion of a proof rule from Fig. 1 whose antecedent(s) are the labels of the child nodes. The leaves of a derivation are either labeled by axioms from T or conclusions of (Ax) or (AxTop). We use the notation $T \vdash C \sqsubseteq D$ to indicate that there is a derivation of $C \sqsubseteq D$. In our calculus, we assume commutativity of conjunction for convenience. Fig. 2 shows an example derivation of the sequent $\exists r.C_1 \sqsubseteq C_2$ in our calculus w.r.t. the \mathcal{EL} TBox $T_e = \{\exists r.C_1 \sqsubseteq C_1 \sqcap C_2\}$.

8
We show that the above calculus is sound and complete for subsumptions between arbitrary \(\mathcal{EL}\) concepts.

Lemma 3 (Soundness and Completeness). Let \(\mathcal{T}\) be an arbitrary \(\mathcal{EL}\) TBox, \(C, D\) \(\mathcal{EL}\) concepts. Then \(\mathcal{T} \models C \subseteq D\), iff \(\mathcal{T} \vdash C \subseteq D\).

Proof. While the soundness of the proof system (if-direction) can be easily verified for each rule separately, the proof of completeness is more sophisticated. Analogously to other proof-theoretic approaches \([11, 23]\), we show the only-if-direction of the lemma by constructing a model \(\mathcal{I}\) for \(\mathcal{T}\) wherein only the GCIs derivable from \(\mathcal{T}\) are valid. The construction of the model is rather standard (a similar construction is, e.g., given by Lutz and Wolter \([24]\)). The model is defined as follows:

- \(\Delta^\mathcal{I}\) is the set of elements \(\delta_C\) where \(C\) is an \(\mathcal{EL}\) concept expression;
- \(A^\mathcal{I} := \{\delta_C \in \Delta^\mathcal{I} \mid \mathcal{T} \vdash C \subseteq A\}\), where \(A\) ranges over concept symbols;
- \(r^\mathcal{I} := \{(\delta_C, \delta_D) \in \Delta^\mathcal{I} \times \Delta^\mathcal{I} \mid \mathcal{T} \vdash C \subseteq \exists r.D\}\) where \(r\) ranges over role symbols.

We will show that the following claim holds for \(\mathcal{I}\):

For all \(\delta_E \in \Delta^\mathcal{I}\) and \(\mathcal{EL}\) concepts \(F\) it holds that \(\delta_E \in F^\mathcal{I}\) iff \(\mathcal{T} \vdash E \subseteq F\). (*)

This claim can be exploited in two ways: First, we use it to show that \(\mathcal{I}\) is indeed a model of \(\mathcal{T}\). Let \(C \subseteq D \in \mathcal{T}\) and consider an arbitrary concept expression \(G\) with \(\delta_G \in C^\mathcal{I}\). Via (*) we obtain \(\mathcal{T} \vdash G \subseteq C\). Further, \(\mathcal{T} \vdash C \subseteq D\) due to \(C \subseteq D \in \mathcal{T}\). Thus we can derive \(\mathcal{T} \vdash G \subseteq D\) via (CUT) and consequently, applying (*) again, we obtain \(\delta_G \in D^\mathcal{I}\). Thereby modelhood of \(\mathcal{I}\) with respect to \(\mathcal{T}\) has been proved.

Second, we use (*) to show that \(\mathcal{I}\) is a counter-model for all GCIs not derivable from \(\mathcal{T}\) as follows: Assume \(\mathcal{T} \not\vdash C \subseteq D\). From \(\mathcal{T} \vdash C \subseteq C\) and (*) we derive
\[\delta_C \in C^T. \text{ From } \mathcal{T} \not\models C \sqsubseteq D \text{ and (*) we obtain } \delta_C \not\in D^T. \text{ Hence we get } C^T \not\sqsubseteq D^T \text{ and therefore } \mathcal{I} \not\models C \sqsubseteq D. \]

It remains to prove (*). This is done by an induction over the structure of the concept expression \(F \). There are two base cases:

- for \(F = \top \), the claim trivially follows from (AxTop),
- for a concept symbol \(F \), it is a direct consequence of the definition of our model \((F^I := \{ \delta_C \in \Delta^I \mid \mathcal{T} \vdash C \sqsubseteq F \}) \).

we now consider the cases where \(F \) is a complex concept expression

- for \(F = C_1 \sqcap \ldots \sqcap C_n \), we note that \(\delta_E \in F^I \) exactly if \(\delta_E \in C_i^T \) for all \(i \in \{1 \ldots n\} \). By induction hypothesis, this means \(\mathcal{T} \vdash E \sqsubseteq C_i \) for all \(i \in \{1 \ldots n\} \). Finally, observe that \(\{ E \sqsubseteq C_i \mid 1 \leq i \leq n \} \) and \(E \sqsubseteq C_1 \sqcap \ldots \sqcap C_n \) can be mutually derived from each other:
 - \(\{ E \sqsubseteq C_i \mid 1 \leq i \leq n \} \vdash E \sqsubseteq C_1 \sqcap \ldots \sqcap C_n \) is a straightforward consequence of (AndR);
 - To derive \(E \sqsubseteq C_1 \sqcap \ldots \sqcap C_n \vdash \{ E \sqsubseteq C_i \mid 1 \leq i \leq n \} \), we first derive \(C_1 \sqcap \ldots \sqcap C_n \sqsubseteq C_i \) from \(C_i \sqsubseteq C_i \) (obtained using (Ax)) by applying (AndL) multiple times. Since \(\mathcal{T} \vdash E \sqsubseteq C_1 \sqcap \ldots \sqcap C_n \), we can apply (Cut) (with \(E \sqsubseteq C_1 \sqcap \ldots \sqcap C_n \) as the left antecedent and \(C_1 \sqcap \ldots \sqcap C_n \sqsubseteq C_i \) as the right antecedent) to derive \(E \sqsubseteq C_i \).

- for \(F = \exists r. G \), we prove the two directions separately. First assuming \(\delta_E \in F^I \) we must find \((\delta_E, \delta_H) \in r^T \) for some \(H \) with \(\delta_H \in G^T \). This implies both \(\mathcal{T} \vdash E \sqsubseteq \exists r. H \) (by the definition of the model) and \(\mathcal{T} \vdash H \sqsubseteq G \) (via the induction hypothesis). From the latter, we can deduce \(\mathcal{T} \vdash \exists r. H \sqsubseteq \exists r. G \) by (Ex) and consequently \(\mathcal{T} \vdash E \sqsubseteq \exists r. G \). For the other direction, note that by definition, \(\mathcal{T} \vdash E \sqsubseteq \exists r. G \) implies \((\delta_E, \delta_G) \in r^T \). On the other hand, we get \(\mathcal{T} \vdash G \sqsubseteq G \) by (Ax) and therefore \(\delta_G \in G^T \) by the induction hypothesis which yields us \(\delta_E \in F^I \).

Alternatively, the completeness of the calculus could be shown by a reduction to the calculus of Hofmann [22].
4. Uniform Interpolation

Uniform interpolation has many potential applications in ontology engineering due to its ability to reduce the amount of irrelevant information within a terminology while preserving all relevant consequences given the set of relevant signature elements. The task of computing terminologies with such properties is not trivial. For instance, it is not sufficient to simply eliminate axioms containing only irrelevant entities, since it can change the meaning of the relevant entities and cause a loss of relevant information. Example 3 demonstrates the effect of such an elimination.

Example 3. Consider the terminology \(T \) given by

\[
A_{i+1} \sqsubseteq A_i \quad 0 \leq i \leq 3 \tag{1}
\]

\[
A_4 \sqsubseteq \exists r. A_4 \tag{2}
\]

If we are only interested in entities \(A_1, A_4, r \), then we might consider to eliminate all axioms except for those that contain at least one relevant entity, obtaining \(T' = T \setminus \{A_3 \sqsubseteq A_2\} \). However, in this way we would lose the information about the connection between the relevant entities, for instance \(A_4 \sqsubseteq A_1, A_4 \sqsubseteq \exists r. A_1, ... \). Indeed, \(T' \) does not entail any of these statements. Thus, by omitting axioms based only on the absence of relevant entities can lead to a loss of relevant information.

In typical ontology reuse scenarios, it is required to preserve the meaning of the relevant entities while computing a terminology that contains as little irrelevant information as possible. We say that the meaning of relevant entities is preserved, if every logical statement that follows from the original terminology and contains only relevant entities also follows from the resulting terminology. The logical foundation for such a preservation of relevant consequences can be defined using the notion of inseparability. Two terminologies, \(T_1 \) and \(T_2 \), are inseparable w.r.t. a signature \(\Sigma \) if they have the same \(\Sigma \)-consequences, i.e., consequences whose signatures are subsets of \(\Sigma \). Depending on the particular application requirements, the expressivity of those \(\Sigma \)-consequences can vary from subsumption axioms and concept assertions to conjunctive queries. In the following, we consider concept-inseparability of general \(\mathcal{EL} \) terminologies as given, for instance, in [17, 19, 18]:

\[
\text{Definition 2. Let } T_1 \text{ and } T_2 \text{ be two general } \mathcal{EL} \text{ terminologies and } \Sigma \text{ a signature. } T_1 \text{ and } T_2 \text{ are concept-inseparable w.r.t. } \Sigma, \text{ in symbols } T_1 \equiv^c_\Sigma T_2, \text{ if for all } \mathcal{EL}
\]
Due to its usefulness for different ontology engineering tasks, concept-inseparability has been investigated by different authors in the last decade. For instance, in the context of ontology reuse, the notion of inseparability can be used to derive a terminology that is inseparable from the initial terminology and is using only terms from Σ. This is an established non-standard reasoning task called forgetting or uniform interpolation.

Definition 3. Given a signature Σ and a terminology \mathcal{T}, the task of uniform interpolation is to determine a terminology \mathcal{T}' with $\text{sig}(\mathcal{T}') \subseteq \Sigma$ such that $\mathcal{T} \equiv_{\Sigma} \mathcal{T}'$. \mathcal{T}' is also called a uniform Σ-interpolant of \mathcal{T}.

For the TBox \mathcal{T} in Example 3, one possible uniform Σ-interpolant for $\Sigma = \{A_1, A_4, r\}$ would be $\mathcal{T}_{\Sigma} = \{A_4 \sqsubseteq A_1, A_4 \sqsubseteq \exists r.A_4\}$. We see that, by introducing a shortcut axiom $A_4 \sqsubseteq A_1$, we preserve all relevant logical consequences (those expressed using Σ) while eliminating all other logical consequences, e.g., $A_{i+1} \sqsubseteq A_i$ for $0 \leq i \leq 3$.

In practice, uniform interpolants are required to be finite, i.e., expressible by a finite set of finite axioms using only the language constructs of a particular DL. It is well-known (e.g., see [19]) that, in the presence of cyclic concept inclusions, a finite uniform \mathcal{EL} Σ-interpolant might not exist for a particular terminology \mathcal{T} and a particular Σ.

Example 4. Consider the terminology $\mathcal{T} = \{A' \sqsubseteq A, A \sqsubseteq A'', A \sqsubseteq \exists r.A, \exists s.A \sqsubseteq A\}$ and let $\Sigma = \{s, r, A', A''\}$. As consequences, we obtain infinite sequences $A' \sqsubseteq \exists r.\exists r.\exists r....A''$ and $\exists s.\exists s.\exists s....A' \sqsubseteq A''$ which contain nested existential quantifiers of unbounded depth. Those sequences cannot be finitely axiomatized, using only signature elements from Σ.

Lutz, Seylan and Wolter [20] give an EXPTIME procedure for deciding if a finite uniform \mathcal{EL} interpolant exists. In the following, we extend the results and show that, if a finite uniform \mathcal{EL} interpolant exists for the given terminology and signature, then there exists a uniform \mathcal{EL} interpolant of at most triple exponential size. Further, we show that, in the worst-case, no shorter interpolants exist, thereby establishing tight bounds on the size of uniform interpolants in \mathcal{EL}.

concepts C, D with $\text{sig}(C) \cup \text{sig}(D) \subseteq \Sigma$ it holds that $\mathcal{T}_1 \models C \sqsubseteq D$, iff $\mathcal{T}_2 \models C \sqsubseteq D$.

5. Lower Bound

In this section we will establish the lower bound for the size of uniform interpolants of \mathcal{EL} terminologies, in case they exist. It is interesting that, while deciding the existence of uniform interpolants in \mathcal{EL} [20] is one exponential less complex than the same decision problem for the more complex logic \mathcal{ALC} [18], the size of uniform interpolants remains triple-exponential. An intuitive reason for this rather unexpected result can be seen in the unavailability of disjunction, which would allow for a more succinct representation of the interpolants. We show this lower bound by means of a sequence of terminologies (obtained by a slight modification of the corresponding example given in [27] originally demonstrating a double exponential lower bound in the context of conservative extensions).

We start with an intuitive explanation of what the terminology is supposed to express. Assume, given some $n \in \mathbb{N}$ we want to label domain elements with natural numbers $0 \ldots 2^n - 1$ according to the following scheme: domain elements belonging to the concepts A_1 or A_2 are labeled with 0. Further, whenever we find a domain element δ that is linked via an r-role to an ℓ-labeled domain element δ_1 and linked via an s-role to an ℓ-labeled domain element δ_2, then δ will be labeled with $\ell + 1$ (provided $\ell < 2^n - 1$). Finally, we stipulate that every domain element labeled with $2^n - 1$ will belong to the concept B. In order to encode this labeling scheme in a knowledge base whose size is polynomial in n, we encode the number-labels in a binary way as a conjunction of n concepts. Thereby, the concept symbols X_i, \overline{X}_i represent the i^{th} bit of ℓ's binary representation being clear or set.
Definition 4. The EL TBox \mathcal{T}_n for a natural number n is given by

\begin{align*}
A_1 & \sqsubseteq X_0 \cap \ldots \cap X_{n-1} \\
A_2 & \sqsubseteq X_0 \cap \ldots \cap X_{n-1} \\
\bigwedge_{\sigma \in \{r,s\}} \exists \sigma . (X_i \cap X_0 \cap \ldots \cap X_{i-1}) \subseteq X_i & \quad i < n \\
\bigwedge_{\sigma \in \{r,s\}} \exists \sigma . (X_i \cap X_0 \cap \ldots \cap X_{i-1}) \subseteq X_i & \quad i < n \\
\bigwedge_{\sigma \in \{r,s\}} \exists \sigma . (X_i \cap X_j) \subseteq X_i & \quad j < i < n \\
\bigwedge_{\sigma \in \{r,s\}} \exists \sigma . (X_i \cap X_j) \subseteq X_i & \quad j < i < n \\
X_0 \cap \ldots \cap X_{n-1} & \subseteq B
\end{align*}

In the above TBox, Axiom (5) ensures that a clear bit will be set in the successor number, if all lower bits are already set. The subsequent Axiom (6) ensures that a set bit will be clear in the successor number, if all lower bits are also set. Axioms (7) and (8) ensure that in all other cases, bits are not toggled. For instance, Axiom (7) states that, if any of the bits lower than i is clear, then bit i will remain clear also in the successor number.

If we now consider sets C_i of concept descriptions inductively defined by $C_0 = \{A_1, A_2\}$, $C_{i+1} = \{ \exists r.C_1 \cap \exists s.C_2 \mid C_1, C_2 \in C_i \}$, then we find that $|C_{i+1}| = |C_i|^2$ and consequently $|C_i| = 2^{(2^i)}$. Thus, the set C_{2^n-1} contains triply exponentially many different concepts, each of which is doubly exponential in the size of \mathcal{T}_n (intuitively, we obtain concepts having the shape of binary trees of exponential depth, thus having doubly exponentially many leaves, each of which can be A_1 or A_2, which gives rise to triply exponentially many different such trees). Then we will show that for each concept $C \in C_{2^n-1}$ it holds that $\mathcal{T}_n \models C \subseteq B$ and that there cannot be a smaller uniform interpolant with respect to the signature $\Sigma = \{A_1, A_2, B, r, s\}$ than the one containing all these GCIs.

Based on the above definition, we now prove the following result.

Theorem 1. There exists a sequence of EL TBoxes and a fixed signature Σ such that for each TBox (\mathcal{T}_n) within this sequence the following hold:

- the size of \mathcal{T}_n is at most polynomial in n and
the size of the smallest uniform interpolant of \(T_n \) with respect to \(\Sigma \) is at least \(2^{2^{(2^n-1)}} \).

Proof. Obviously, the size of \(T_n \) is polynomially bounded by \(n \). We now consider sets \(C_k \) of concepts defined above. Since \(|C_k| = 2^{(2^k)}\), we find that the set \(C_{2^n-1} \) contains triply exponentially many different concepts, each of which is doubly exponential in the size of \(T_n \).

Obviously, for any \(k \), every concept description from \(C_k \) contains only signature elements from \(A_1, A_2, r, s \).

It is rather straightforward to check that \(T_n \models C \subseteq B \) holds for each concept \(C \in C_{2^n-1} \): by induction on \(k \), we can show that for any \(C \in C_k \) with \(k < 2^n \) it holds that \(T_n \models C \subseteq Y_0^k \sqcap \ldots \sqcap Y_{n-1}^k \) with

\[
y_i^k = \begin{cases} X_i & \text{if } \lfloor \frac{k}{2^i} \rfloor \text{ mod } 2 = 1 \\ X_i & \text{if } \lfloor \frac{k}{2^i} \rfloor \text{ mod } 2 = 0 \end{cases}
\]

i.e., \(Y_i^k \) indicates the \(i \)th bit of the number \(k \) in binary encoding. Then, \(C \subseteq B \) follows via the last axiom of \(T_n \).

Toward the claimed triple-exponential lower bound, we now show that every uniform interpolant of \(T_n \) for \(\Sigma = \{ A_1, A_2, B, r, s \} \) must contain for each \(C \in C_{2^n-1} \) a GCI of the form \(C \sqsubseteq B' \) with \(B' = B \) or \(B' = B \sqcap F \) for some \(F \) (where we consider structural variants – i.e., concept expressions whose characteristic interpretations are isomorphic – as syntactically equal). Toward a contradiction, we assume that this is not the case, i.e., there is a uniform interpolant \(T' \) and a \(C \in C_{2^n-1} \) where \(C \subseteq B' \notin T' \) for any \(B' \) containing \(B \) as a (top-level) conjunct.

Yet, \(C \subseteq B \) must be a consequence of \(T' \), since it is a consequence of \(T_n \) containing only signature elements from \(\Sigma \) and \(T' \) is a uniform interpolant of \(T_n \) w.r.t. \(\Sigma \) by assumption. Therefore, there must be a derivation of it. Looking at the derivation calculus from the last section, the last derivation step must be (ANDL) or (CUT). We can exclude (ANDL) since neither \(\exists r.C'' \subseteq B \) nor \(\exists s.C'' \subseteq B \) is the consequence of \(T' \) for any \(C'' \in C_{2^n-2} \) (which can be easily shown by providing appropriate witness models of \(T' \)). Consequently, the last derivation step must be an application of (CUT), i.e., there must be a concept \(E \neq C \) such that \(T' \models C \subseteq E \) and \(T' \models E \sqsubseteq B \). Without loss of generality, we assume that we consider a derivation tree where the subtree deriving \(C \subseteq E \) has minimal depth.

We now distinguish two cases: either \(E \) contains \(B \) as a conjunct or not.

- First we assume \(E = E' \sqcap B \), i.e. the (CUT) rule was used to derive \(C \subseteq B \)
from $C \sqsubseteq E' \cap B$ and $E' \cap B \sqsubseteq B$. The former cannot be contained in \mathcal{T}' by assumption, hence it must have been derived itself. We can exclude (ANDR) due to the minimality of the proof. Again, it cannot have been derived via (ANDL) for the same reasons as given above, which again leaves (CUT) as the only possible derivation rule for obtaining $C \sqsubseteq E' \cap B$. Thus, there must be some concept G with $\mathcal{T}' \models C \sqsubseteq G$ and $\mathcal{T}' \models G \sqsubseteq E' \cap B$. Once more, we distinguish two cases: either G contains B as a conjunct or not.

- If G contains B as a conjunct, i.e., $G = G' \cap B$, the derivation of $C \sqsubseteq E$ was not depth-minimal since there is a better proof where $C \sqsubseteq B$ is derived from $C \sqsubseteq G' \cap B$ and $G' \cap B \sqsubseteq B$ via (CUT). Hence we have a contradiction.

- If G does not contain B as a conjunct, the original derivation of $C \sqsubseteq E$ was not depth-minimal since we can construct a better one that derives $C \sqsubseteq B$ directly from $C \sqsubseteq G$ and $G \sqsubseteq B$ (the latter being derived from $G \sqsubseteq E' \cap B$ via (ANDR)).

• Now assume E does not contain B as a conjunct.

We construct a specific interpretation (Δ, \mathcal{I}) as follows (ϵ denoting the empty word):

- $\Delta = \{ w \mid w \in \{r, s\}^*, \text{length}(w) < 2^n \}$
- We define an auxiliary function χ associating a concept expression to each domain element: we let $\chi(\epsilon) = C$ (with ϵ being the empty word) and, for every $wr, ws \in \Delta$ with $\chi(w) = \exists r.C_1 \sqcap \exists s.C_2$, we let $\chi(wr) = C_1$ and $\chi(ws) = C_2$.
- the concepts and roles are interpreted as follows:

 * $A_i^\mathcal{I} = \{ w \mid \chi(w) = A_i \}$ for $i \in \{1, 2\}$
 * $B^\mathcal{I} = \{ \epsilon \}$
 * $X_i^\mathcal{I} = \{ w \mid \lfloor \frac{\text{length}(w)}{2^i} \rfloor \text{mod} 2 = 0 \}$ for $i < n$
 * $\overline{X}_i^\mathcal{I} = \{ w \mid \lfloor \frac{\text{length}(w)}{2^i} \rfloor \text{mod} 2 = 1 \}$ for $i < n$
 * $r^\mathcal{I} = \{ \langle w, wr \rangle \mid wr \in \Delta \}$
 * $s^\mathcal{I} = \{ \langle w, ws \rangle \mid ws \in \Delta \}$

It is straightforward to check that \mathcal{I} is a model of \mathcal{T}_n. Furthermore using descending induction on the length of w, we can show that for every $w \in \Delta$
it holds that $w \in (\chi(w))^T$, thus, in particular, $\epsilon \in C^I$. Consequently, due to
our assumption, $\epsilon \in E^I$ must hold. Now we observe that the restriction of
I to the signature elements A_1, A_2, r, s is isomorphic to I_C (with x_C corre-
sponding to ϵ). On the other hand, as $\epsilon \in E^I$ we find by Lemma 1 that there
must be a homomorphism from (I_E, x_E) to (I, ϵ) and hence to (I_C, x_C),
thus we can invoke Lemma 2 to deduce that E is a proper “structural super-
concept” of C, i.e., $\emptyset \models C \subseteq E$ and $\emptyset \not\models E \subseteq C$ must hold.

We now obtain \tilde{E} by enriching E as follows: starting from $k = 0$ and
iteratively incrementing k up to $2^n - 1$, every subconcept G of E satisfying
$\emptyset \models G \subseteq C'$ for some $C' \in C_k$ is substituted by $G \cap Y^k_0 \cap \ldots \cap Y^k_{n-1}$ where,
\begin{align*}
Y^k_i = \begin{cases} X_i & \text{if } \left\lfloor \frac{k}{2^i} \right\rfloor \text{mod } 2 = 1 \\
X_i & \text{if } \left\lfloor \frac{k}{2^i} \right\rfloor \text{mod } 2 = 0
\end{cases}
\end{align*}
i.e., Y^k_i indicates the ith bit of the number k in binary encoding.

Then, \tilde{E}’s characteristic pointed interpretation $(I_{\tilde{E}}, x_{\tilde{E}})$ satisfies that $I_{\tilde{E}}$ is
a model of T_n (following from structural induction on subconcepts of \tilde{E})
and its root individual $x_{\tilde{E}}$ is in the extension of \tilde{E}. Still, we find $x_{\tilde{E}} \not\in C^{I_{\tilde{E}}}$ for the following reason: C does only contain signature elements from
$\{A_1, A_2, B, r, s\}$, and the restriction of $(I_{\tilde{E}}, x_{\tilde{E}})$ to these signature elements
is isomorphic to (I_E, x_E), therefore $x_{\tilde{E}} \in C_{I_{\tilde{E}}}$ iff $x_E \in C^{I_E}$. The latter
is however not the case as this would imply by Lemma 1 that there is a
homomorphism from (I_C, x_C) to (I_E, x_E) and consequently, via Lemma 2
$\emptyset \models E \subseteq C$, contradicting our above finding.

Yet, the root individual $x_{\tilde{E}}$ cannot satisfy any other concept expression
C'' from $C_{2^n-1} \setminus \{C\}$ either, since this, via $\emptyset \models E \subseteq C''$, would imply
$\emptyset \models C \subseteq C''$ which is not the case (by induction on k one can show
that there cannot be a homomorphism between the characteristic pointed
interpretations of any two distinct concepts from any C_k). In particular,
we note that $x_{\tilde{E}} \not\in B^{I_{\tilde{E}}}$. Thus, we have found a model of T_n witnessing
$T_n \not\models E \subseteq B$, contradicting our assumption that $T' \models E \subseteq B$.

Hence we have found a class T_n of TBoxes giving rise to uniform \mathcal{EL} inter-
polants of triple-exponential size in terms of the original TBox.
6. Upper Bound

Now we discuss the upper bound on the size of uniform \mathcal{EL} interpolants as well as their computation. Since, for a TBox \mathcal{T} and a signature Σ, there are in general infinitely many Σ-consequences, in the following, we aim at identifying a subset of such consequences, the deductive closure of which contains the whole set. Interestingly, there exists a bound on the role depth of Σ-consequences such that, for the set $\mathcal{T}_{\Sigma,N}$ of all Σ-consequences of \mathcal{T} with the maximal role depth N the following holds: either $\mathcal{T}_{\Sigma,N}$ is a uniform \mathcal{EL} interpolant of \mathcal{T} with respect to Σ or such a finite uniform \mathcal{EL} interpolant of \mathcal{T} does not exist. This is an easy consequence of results obtained by Lutz, Seylan and Wolter [20] while investigating the problem of existence of uniform \mathcal{EL} interpolants (proof can be found in Appendix B).

Lemma 4 (Reformulation of Lemma 55 from [20]). Let \mathcal{T} be an \mathcal{EL} TBox, Σ a signature. The following statements are equivalent:

1. There exists a uniform \mathcal{EL} Σ-interpolant of \mathcal{T}.
2. There exists a uniform \mathcal{EL} Σ-interpolant \mathcal{T}' of \mathcal{T} for which holds $d(\mathcal{T}') \leq 2^4(|\text{sub}(\mathcal{T})|) + 1$.

However, an upper bound on the role depth is only sufficient for showing a non-elementary upper bound on the size of uniform interpolants for the following reasons. There are 2^n many different conjunctions of n different conjuncts, and, accordingly, for each role, 2^m many different existential restrictions of depth $i + 1$ if m is the number of existential restrictions of depth i. Moreover, for any role depth i, we can find a TBox such that i is the corresponding maximal role depth. Subsequently, the upper bound on the role depth does not suffice to obtain an upper bound for the number i of exponents bounding the size of the uniform interpolant.

In order to obtain a tight upper bound, we need to further narrow down the subset of Σ-consequences required to obtain a uniform interpolant. To this end, we show the following:

- If we “flatten” terminologies, i.e., we reduce the maximal role depth of \mathcal{T} to 1 by recursively introducing fresh concept symbols for all subconcepts occurring in \mathcal{T}, it is sufficient to consider the Σ-consequences stating subsumees and subsumers of all concept symbols referenced by the flattened terminology \mathcal{T}' in order to preserve all consequences;
Lemma 4 can be transferred to flattened TBoxes such that it is sufficient to consider subsumees and subsumers of role depth $2^4(|\text{sub}(T)|) + 1$ in order to preserve all consequences of T;

There is a particular type of subsumees and subsumers that do not add any consequences to the deductive closure, which we call weak subsumees and subsumers. These are subsumees obtained by adding arbitrary conjuncts to arbitrary subconcepts of other subsumees and, accordingly, subsumers obtained from other subsumers by omitting conjuncts from arbitrary subconcepts. When included into the uniform interpolant, weak subsumees and subsumers have a negative impact on its size. Given the exponential bound on the role depth, each concept has non-elementary many weak subsumees. Since weak subsumers and subsumees do not add any new consequences, we can safely exclude them.

We show that, in case a finite uniform \mathcal{EL} interpolant of T with respect to Σ exists, there are at most triple-exponentially many such non-weak subsumers and subsumees of role depth up to $2^4(|\text{sub}(T)|) + 1$. Moreover, we show that each of them is of at most double-exponential size.

6.1. Flattening

Recall that we want to compute the uniform interpolant of a TBox T by rewriting the latter, ensuring that the part of the deductive closure of T consisting of Σ-consequences is preserved throughout the rewriting process. Since rewriting operates on the syntactic structure of T, it is desirable that the syntactic structure has a close relation to the deductive closure of T such that we can easily manipulate the deductive closure via changes of the syntactic structure. As in other syntax-based approaches ([11, 23, 19], we decompose complex axioms into syntactically simple ones. We refer to this process as flattening: assigning a temporary concept symbol to each complex subconcept occurring in \tilde{T}, so that the terminology can be represented without nested expressions, namely using only axioms of the form $A \sqsubseteq B$, $A \equiv B_1 \sqcap \ldots \sqcap B_n$, and $A \equiv \exists r.B$, where A and $B_{(i)}$ are concept symbols or \top and r is a role. For this purpose, we introduce a minimal required set of fresh concept symbols N_D with exactly one equivalence axiom $A' \equiv C'$ for each $A' \in N_D$, where C' is equivalent to a subconcept of T replaced by A'.

In what follows, we assume terminologies to be flattened and all concept symbols from N_D to be in $\text{sig}_C(T) \setminus \Sigma$. W.l.o.g., we also assume that \mathcal{EL} concepts do not contain any equivalent concepts in conjunctions and that whenever
several concept symbols are equivalent in \mathcal{T}, all their occurrences have been replaced by a single representative of the corresponding equivalence class. Concept symbols from Σ are preferred to be selected as representatives. Note that this is a preprocessing step that can be performed in polynomial time as \mathcal{EL} allows for polytime reasoning. The following lemma postulates the close semantic relation between a TBox and its flattening.

Lemma 5 (Model-conservativity). Any \mathcal{EL} TBox \mathcal{T} can be rewritten into a flattened TBox \mathcal{T}' so that each model of \mathcal{T}' is a model of \mathcal{T} and each model of \mathcal{T} can be extended into a model of \mathcal{T}'.

As a result of flattening, each TBox \mathcal{T} can be represented as a subsumee/subsumer relation pair — a pair of binary relations $\langle P^\mathcal{T}_{\sqsupseteq}, P^\mathcal{T}_{\sqsubseteq} \rangle$ on concept expressions where $P^\mathcal{T}_{\sqsubseteq}$ relates concept symbols $B \in \text{sig}_C(\mathcal{T})$ to their subsumees $\{C \mid C \sqsubseteq B \in \mathcal{T}, \sqsubseteq \in \{\equiv, \sqsubseteq\}\}$, and $P^\mathcal{T}_{\sqsubseteq}$ relates concept symbols to their sumers $\{C \mid B \sqsubseteq C \in \mathcal{T}, \sqsubseteq \in \{\equiv, \sqsubseteq\}\}$. If \mathcal{T} is clear from the context, we simply write $\langle P^\mathcal{T}_{\sqsubseteq}, P^\mathcal{T}_{\sqsubseteq} \rangle$. In turn, each subsumee/subsumer relation pair has a corresponding representation by means of a TBox. For the computation of uniform interpolants, we would like to restrict the signature of the resulting TBox constructed from a subsumee/subsumer relation pair. As we will show later on, for the computation of uniform interpolants we use only Σ-subsumees and Σ-subsumers. To ensure that the resulting TBox only contains symbols from Σ, we additionally avoid references to concept symbols not from Σ by forming subsumptions between their subsumees and subsumers directly.

Definition 5. Let \mathcal{T} be an \mathcal{EL} TBox and Σ a signature. Further, let $\langle P^\mathcal{T}_{\sqsubseteq}, P^\mathcal{T}_{\sqsubseteq} \rangle$ be a subsumee/subsumer relation pair for \mathcal{T}. Then,

$$M(P^\mathcal{T}_{\sqsubseteq}, P^\mathcal{T}_{\sqsubseteq}, \Sigma) = \{C \sqsubseteq A \mid A \in \Sigma, (A, C) \in P^\mathcal{T}_{\sqsubseteq}\} \cup \{A \sqsubseteq D \mid A \in \Sigma, (A, D) \in P^\mathcal{T}_{\sqsubseteq}\} \cup \{C \sqsubseteq D \mid \text{there exists } A \notin \Sigma, (A, C) \in P^\mathcal{T}_{\sqsubseteq}, (A, D) \in P^\mathcal{T}_{\sqsubseteq}\}.$$
subsumptions in flattened TBoxes by means of the deduction calculus introduced
in Section 3.

First, we consider the derivation of subsumees. We use the auxiliary function
\(\text{Pre} : \text{sig}_C(T) \to 2^{\text{sig}_C(T)} \) which allows us for any concept symbol \(A \) to refer to
its subsumees of the form \(B_1 \sqcap \ldots \sqcap B_n \), where \(B_{(i)} \) are concept symbols. For each
such conjunction, the set of its conjuncts is an element of \(\text{Pre} \).

Definition 6. Let \(T \) be an \(\mathcal{EL} \) TBox and \(A \in \text{sig}_C(T) \). \(\text{Pre}(A) \) is the smallest set
with the following properties:

- \(\{A\} \in \text{Pre}(A) \).
- For each \(K \in \text{Pre}(A) \) and each \(B \in K \), if there is \(T \models B' \sqsubseteq B \), then also
 \((K/\{B\}) \cup \{B'\} \in \text{Pre}(A) \).
- For each \(K \in \text{Pre}(A) \) and each \(B \in K \), if there is \(B \equiv B_1 \sqcap \ldots \sqcap B_n \in T \),
 then also \((K/\{B\}) \cup \{B_1, \ldots, B_n\} \in \text{Pre}(A) \).

We can show the following closure property of \(\text{Pre} \).

Lemma 6. Let \(T \) be an \(\mathcal{EL} \) TBox and \(A \in \text{sig}_C(T) \). For each \(K \in \text{Pre}(A) \), each
\(B \in K \) and each \(M \in \text{Pre}(B) \), we have \((K/\{B\}) \cup M \in \text{Pre}(A) \).

The above lemma can be shown by an easy induction over the derivation of \(M \)
from \(B \).

In essence, the lemma below implies that, in case of flattened terminologies
explicitly containing all elements of \(\text{Pre} \), we can derive all subsumees of a con-
cept by (1) applying the rule \((\text{Ex}) \) to construct existential restrictions from two
concepts in a subsumption relation and/or (2) replacing concepts occurring within
subsumees by their subsumees.

Lemma 7. Let \(T \) be a flattened \(\mathcal{EL} \) TBox and \(C, D \) two \(\mathcal{EL} \) concepts with \(\text{sig}(C) \cup \text{sig}(D) \subseteq \text{sig}(T) \) such that \(T \models C \sqsubseteq D \). Let
\[
C = \bigsqcap_{1 \leq j \leq n} A_j \sqcap \bigsqcap_{1 \leq k \leq m} \exists r_k.E_k
\]
where \(A_j \) are concept symbols, \(r_k \) are role symbols and \(E_k \) are arbitrary \(\mathcal{EL} \)
concepts. Then, for all conjuncts \(D_i \) of \(D \), the following is true: If \(D_i \) is a concept
symbol, there is a set \(M \in \text{Pre}(D_i) \) of concept symbols from \(\text{sig}_C(T) \) such that at
least one of the conditions \([A1]-[A2] \) holds for each \(B \in M \):

(\text{AI}) There is an \(A_j \) in \(C \) such that \(A_j = B \).
(A2) There are r_k, E_k and there exists $B' \in \text{sig}_C(T)$ such that $T \models E_k \sqsubseteq B'$ and $B \equiv \exists r_k. B' \in T$.

If $D_i = \exists r'. D'$ for a role r' and an EL concept D', at least one of the conditions [A3]-[A4] holds:

(A3) There are r_k, E_k such that $r_k = r'$ and $T \models E_k \sqsubseteq D'$.

(A4) There is $B \in \text{sig}_C(T)$ such that $T \models B \sqsubseteq \exists r'. D'$ and $T \models C \sqsubseteq B$ and for $C \sqsubseteq B$ at least one of the conditions [A1]-[A2] holds.

Proof. We apply induction on the length of the proof. We start with the last applied rule and show for each possibility that the lemma holds. Rules AXTOP, A\X and the case $C \bowtie D \in T$ are the basis of induction, since each proof begins with one of them.

(C $\bowtie D \in T$) In the case that $C \sqsubseteq D \in T$ or $C \equiv D \in T$, the lemma holds due to the flattening. Axioms within T can have the following form:

- $C, D \in \text{sig}_C(T)$. In this case, $\{C\} \in \text{Pre}(D)$. Therefore, condition [A1] holds.
- $C \in \text{sig}_C(T), D = D_1 \cap \ldots \cap D_m$ with $D_1, \ldots, D_m \in \text{sig}_C(T)$. In this case, for each D_i with $1 \leq i \leq m$ holds $\{C\} \in \text{Pre}(D_i)$. Therefore, condition [A1] holds for each D_i.
- $C \in \text{sig}_C(T), D = \exists r'. D'$ with $D' \in \text{sig}_C(T)$. This case corresponds to the condition [A4].

(AXTOP) Since the conjunction is empty in case $D = T$, the lemma holds.

(A\X) Since $C = D$, for each D_i there is a conjunct C_i of C with $C_i = D_i$. If D_i is a concept symbol, condition [A1] of the lemma holds. Otherwise, [A3].

(EX) If EX was the last applied rule, then $D_i = \exists r_k. D'$ and $T \vdash D_k \sqsubseteq D'$. Therefore, [A3] of the lemma holds.

(\ANDL) Assume that $C' \cap C'' = C$ such that $C' \sqsubseteq D$ is the antecedent. By induction hypothesis, the lemma holds for $C' \sqsubseteq D$. Since all conjuncts of C' are also conjuncts of C, the lemma holds also for $C \sqsubseteq D$.

(\ANDR) Assume that $D = D_1 \cap D_2$, therefore, $C \sqsubseteq D_1$ and $C \sqsubseteq D_2$ is the antecedent. By induction hypothesis, the lemma holds for both, $C \sqsubseteq D_1$ and $C \sqsubseteq D_2$. Since all conjuncts of D are from either D_1 or D_2, the lemma also holds for $C \sqsubseteq D$.

22
(CUT) By induction hypothesis, the lemma holds for both elements of the antecedent, \(C \subseteq C_1 \) and \(C_1 \subseteq D \). Let \(C_1 = \prod_{1 \leq p \leq r} A_p \cap \prod_{1 \leq s \leq t} \exists r_s . E'_s \).

1. Assume that \(D_i \) is a concept symbol. Then, there is \(M_1 \in \text{Pre}(D_i) \) such that [A1] or [A2] holds for each \(B_u \in M_1 \). We now consider each \(C \subseteq B_u \) and distinguish three cases, in one of which [A2] holds. In the remaining two cases, we can obtain \(M_{\text{new}} \) by replacing \(B_u \) within \(M_1 \) by the elements of some \(M'_u \in \text{Pre}(B_u) \) such that [A1] or [A2] holds for each \(B' \in M_{\text{new}} \) and \(C \subseteq B' \):

A1 Assume that there is a conjunct \(A_p \) of \(C_1 \) with \(A_p = B_1 \). Then, by induction hypothesis, for \(C \subseteq A_p \), there is \(M'_u \in \text{Pre}(A_p) \) such that [A1] or [A2] holds for each \(B'_u \in M'_u \). We can replace \(B_u \) within \(M_1 \) by the elements of \(M'_u \).

A2 Assume that for \(B_u \) there are \(r_s', E'_s \) and there exists \(B' \in \text{sig}(C(T)) \) such that \(\preceq E'_s \preceq B' \) and \(B \equiv \exists r_s . B' \in T \). Then, for \(C \subseteq \exists r_s . E'_s \) either [A3] or [A4] can hold:

-(A3) There are \(r_k, E_k \) such that \(r_k = r_s' \) and \(\preceq E_k \preceq E'_s \). Then [A2] holds for \(C \subseteq B_u \), since \(\preceq E_k \preceq B' \) and \(B \equiv \exists r_k . B' \in T \).

-(A4) There is \(B'' \in \text{sig}(C(T)) \) such that \(\preceq B'' \preceq \exists r_s . E'_s \), \(T \models C \subseteq B'' \) and there is a set \(M'_u \in \text{Pre}(B'') \) such that for each element \(B' \) of \(M'_u \) at least one of the conditions [A1]-[A2] holds with respect to \(C \subseteq B' \).

Let \(M_{A1} \) be the set of all such \(B_u \in M_1 \) for which [A1] holds and let \(M_{A4} \) be the set of all such \(B_u \in M_1 \) for which [A2] holds and for \(C \subseteq \exists r_s . E'_s \) [A4] holds. Now we replace each \(B_u \) within \(M_1 \) by the elements of the corresponding set \(M'_u \in \text{Pre}(B_u) \) that we have specified above and obtain \(M_{\text{new}} = M_1 \setminus (M_{A1} \cup M_{A4}) \cup \{M'_u \mid B_u \in M_{A1} \cup M_{A4}\} \). Clearly, \(M_{\text{new}} \in \text{Pre}(D_i) \) and [A1] or [A2] holds for each \(B' \in M_{\text{new}} \) with respect to \(C \subseteq B' \), i.e., the lemma holds for \(C \subseteq D_i \).

A3 There are \(r_s', E'_s \) such that \(r' = r'_s \) and \(\preceq E'_s \preceq D' \). Then, for \(C \subseteq \exists r_s . E'_s \) one of [A3], [A4] holds:

-(A3) There are \(r_k, E_k \) such that \(r_k = r'_s \) and \(\preceq E_k \preceq E'_s \). Then [A3] holds for \(C \subseteq D_i \), since \(\preceq E_k \preceq D' \) and \(r_k = r' \).

-(A4) There is a concept symbol \(B'' \) such that \(\preceq B'' \preceq \exists r_s . E'_s \), \(T \models C \subseteq B'' \) and there is a set \(M'' \in \text{Pre}(B'') \) of concept
symbols such that at least one of the conditions [A1]-[A2] holds for each element B' of M'' and $C \subseteq B'$. Since $T \models B'' \sqsubseteq D_i$, [A4] holds for $T \models C \sqsubseteq D_i$.

A4 There is a concept symbol B such that $T \models B \sqsubseteq \exists_r.D'$, $T \models C_1 \sqsubseteq B$ and there is a set $M_1 \in \text{Pre}(B)$ such that at least one of the conditions [A1]-[A2] holds for each element B_u of M_1 and for $C_1 \sqsubseteq B_u$. The argumentation is the same as for 1 (D_i is a concept symbol). We consider each $C \subseteq B_u$ and distinguish three cases, in one of which [A2] holds. In the remaining two cases, we can obtain M_{new} by replacing B_u within M_1 by the elements of some $M_u' \in \text{Pre}(B_u)$ such that [A1] or [A2] holds for each $B' \in M_{\text{new}}$ and $C \sqsubseteq B'$. Therefore, there is $M_1 \in \text{Pre}(B)$ such that either [A1] or [A2] holds for each $B_u \in M_1$. Then, [A4] holds for $C \sqsubseteq D_i$.

The above lemma is focused on the derivation of subsumees. For the computation of uniform interpolants, we additionally need to show that, in flattened terminologies, every subsumption relation with a concept symbol and its subsumer being an existential restriction is derived from an equivalence axiom of the form $B_1 \equiv \exists_r.B_2 \in T$.

Lemma 8. Let T be a flattened EL TBox, $A \in \text{sig}_C(T)$ and $r \in \text{sig}_R(T)$. Let C be an EL concept such that $T \models A \sqsubseteq \exists_r.C$. Then, there are $B_1, B_2 \in \text{sig}_C(T)$ with $B_1 \equiv \exists_r.B_2 \in T$ such that $T \models A \sqsubseteq B_1$, $T \models B_2 \sqsubseteq C$.

Proof. Lemma 16 [27] states that for a general EL TBox T with $T \models C_1 \sqsubseteq \exists_r.C_2$, where C_1, C_2 are EL-concepts one of the following holds:

- there is a conjunct $\exists_r.C'$ of C_1 such that $T \models C' \sqsubseteq C_2$;
- there is a subconcept $\exists_r.C'$ of T such that $T \models C_1 \sqsubseteq \exists_r.C'$ and $T \models C' \sqsubseteq C_2$;

The first condition does not hold in this lemma, since A is a concept symbol.

Moreover, since in our case T is flattened, for each subconcept $\exists_r.C'$ of T containing an existential restriction holds: there is an concept symbol $B_2 \in \text{sig}_C(T)$ such that $B_2 = C'$ and there is an axiom of the form $B_1 \equiv \exists_r.B_2 \in T$ with $B_1 \in \text{sig}_C(T)$. Additionally, from the above Lemma 16 follows $T \models A \sqsubseteq \exists_r.B_2$ and $T \models B_2 \sqsubseteq C$. Since $T \models B_1 \equiv \exists_r.B_2$, it follows that also $T \models A \sqsubseteq B_1$.

\[\square\]
6.2. Grammar Representation of Subsumees and Subsumers

In this section, we show how, for a signature Σ, the sets of Σ-subsumees and Σ-subsumers of each concept symbol in a flattened $\mathcal{E}\mathcal{L}$ TBox \mathcal{T} can be described as languages generated by regular tree grammars on ranked ordered trees. In our definition of grammars, we uniquely represent each concept symbol $A \in \text{sig}_C(\mathcal{T})$ by a non-terminal n_A (and denote the set of all non-terminals by $N^T = \{n_x | x \in \text{sig}_C(\mathcal{T}) \cup \{\top}\}$). In what follows, we use the ranked alphabet $\mathcal{F} = (\text{sig}_C(\mathcal{T}) \cap \Sigma) \cup \{\top\} \cup \{\exists r^1 | r \in \text{sig}_R(\mathcal{T}) \cap \Sigma\} \cup \{\cap^i | 2 \leq i \leq |\text{sig}_C(\mathcal{T})|\}$, where \top and concept symbols in $\text{sig}_C(\mathcal{T}) \cap \Sigma$ are constants, $\exists r^1$ for $r \in \text{sig}_R(\mathcal{T}) \cap \Sigma$ are unary functions and \cap^i are functions of the arity $2 \leq i \leq |\text{sig}_C(\mathcal{T})|$. Due to flattening, $|\text{sig}_C(\mathcal{T})|$ is the highest arity of conjunctions that can occur in our TBox. In the following, it will be convenient to simply write \cap and $\exists r$ if the arity of the corresponding function is clear from the context. Clearly, every $\mathcal{E}\mathcal{L}$ concept C with $\text{sig}(C) \subseteq \Sigma$ and at most $|\text{sig}_C(\mathcal{T})|$ conjuncts in each subconcept has a unique representation by the means of the above functions. We denote such a term representation of C using \mathcal{F} by t_C. For a term t, we denote its concept representation by C_t. Additionally, we use a substitution function $\sigma_{T,F}$: $\{C \mid \text{sig}(C) \subseteq \text{sig}(\mathcal{T})\} \to T(\mathcal{F}, N^T)$ with $\sigma_{T,F}(C) = t_C(n_\top/\top, n_{B_1}/B_1, \ldots, n_{B_n}/B_n)$, where B_1, \ldots, B_n are all concept symbols occurring in C. If the TBox and the set of non-terminals are clear from the context, we will denote such a representation of a concept C simply by $\sigma(C)$.

As mentioned above, weak subsumees and subsumers are not required in order to obtain a uniform $\mathcal{E}\mathcal{L}$ interpolant. In fact, including weak subsumees into our definition of the grammars would lead to a non-elementary upper bound on the generated language despite the bounded role depth. Also weak subsumers lead to an exponential blow-up in the size of the corresponding grammar. Thus, we avoid generating weak subsumees and subsumers by the corresponding grammars.

Definition 7. Let \mathcal{T} be a flattened $\mathcal{E}\mathcal{L}$ TBox, Σ a signature. Further, for each $B \in \text{sig}_C(\mathcal{T}) \cup \{\top\}$, let R^B be given by

(G1) $n_B \rightarrow B$ if $B \in \Sigma \cup \{\top\}$,

(G2) $n_B \rightarrow n_{B'}$ for all $B' \in \text{sig}_C(\mathcal{T}) \cup \{\top\}$ with $\mathcal{T} \models B' \subseteq B$, $B \neq B'$

(G3) $n_B \rightarrow \cap(n_{B_1}, \ldots, n_{B_n})$ for all $B \equiv B_1 \cap \ldots \cap B_n \in \mathcal{T}$,

(G4) $n_B \rightarrow \exists r(n_{B'})$ for all $B \equiv \exists r. B' \in \mathcal{T}$ with $r \in \text{sig}_R(\mathcal{T}) \cap \Sigma$.

25
Let R^\sqsubseteq be given for all $B \in \text{sig}_C(T) \cup \{\top\}$ by

(GR1) $n_B \rightarrow B$ if $B \in \Sigma \cup \{\top\}$,

(GR2) $n_B \rightarrow n_{B'}$ if $B \neq B'$ and either $B' = \top$ or B' is the only concept symbol such that $T \models B \sqsubseteq B'$,

(GR3) $n_B \rightarrow \sqcap(n_{B_1}, \ldots, n_{B_n})$ if $\{B_1, \ldots, B_n\} = \{B' \in \text{sig}_C(T) \mid T \models B' \sqsubseteq B\}$ and $n \geq 2$,

(GR4) $n_B \rightarrow \exists r(n_{B'})$ for all $B \equiv \exists r.B' \in T$ with $r \in \text{sig}_R(T) \cap \Sigma$.

For every $A \in \text{sig}_C(T)$, the regular tree grammar $G^\sqsubseteq(T, \Sigma, A)$ is given by $(n_A, \mathcal{N}^T, F, R^\sqsubseteq)$. Likewise, the regular tree grammar $G^\sqsupset(T, \Sigma, A)$ is given by $(n_A, \mathcal{N}^T, F, R^\sqsupset)$.

We denote the set of tree grammars $\{G^\sqsubseteq(T, \Sigma, A) \mid A \in \text{sig}_C(T)\}$ by $\mathcal{G}^\sqsubseteq(T, \Sigma)$ and the set $\{G^\sqsupset(T, \Sigma, A) \mid A \in \text{sig}_C(T)\}$ by $\mathcal{G}^\sqsupset(T, \Sigma)$. For the construction of grammars the following result holds.

Theorem 2. Let T be a flattened \mathcal{EL} TBox and let Σ be a signature. $\mathcal{G}^\sqsubseteq(T, \Sigma)$ and $\mathcal{G}^\sqsupset(T, \Sigma)$ can be computed from T in polynomial time and are at most polynomial in the size of T.

Proof. Flattening and classification can be done all together in polynomial time [11] and yield an at most polynomial result. From this result, the grammars are constructed in polynomial time.

The following example demonstrates the grammar construction.

Example 5. Let $T = \{A_1 \sqsubseteq \exists r A_2, \exists r B_1 \sqcap B_3 \sqsubseteq B_2, A_2 \sqsubseteq B_1\}$. In order to flatten the given TBox, we introduce fresh concept names for $\exists r A_2, \exists r B_1$ and $B_1' \sqcap B_3$ to obtain T':

$$A_1 \sqsubseteq A'_2 \quad A_2 \sqsubseteq B_1$$

$$B'_2 \sqsubseteq B_2 \quad B'_1 \sqcap B_3 \equiv B'_2$$

$$\exists r B_1 \equiv B'_1 \quad \exists r A_2 \equiv A'_2$$

Let $\Sigma = \text{sig}(T) \setminus \{B_1\}$. Then, we introduce terminals for each concept symbol from Σ and the \top concept according to (GL1) and (GR1):

$$n_{A_1} \rightarrow A_1 \quad n_{A_2} \rightarrow A_2 \quad n_{B_2} \rightarrow B_2 \quad n_{\top} \rightarrow \top$$

(10)
If we only use subsumees given before the classification of T', we obtain the following set of transitions R^\exists for generating subsumees of concept symbols:

\[
\begin{align*}
&n_{A_2'} \rightarrow n_{A_1} \quad n_{B_1} \rightarrow n_{A_2} \\
&n_{B_2} \rightarrow n_{B_2'} \\
&n_{B_1'} \rightarrow \exists r(n_{B_1}) \quad n_{A_2'} \rightarrow \exists r(n_{A_2})
\end{align*}
\] (11)

We see that the subsumee $\exists r.A_2 \sqcap B_3$ of B_2 is not generated by the above set of transitions. If we classify T' before constructing the grammar, we obtain additionally

\[
\begin{align*}
&n_{B_1'} \rightarrow n_{A_2'} \\
&n_{B_2'} \rightarrow n_{A_2'} \\
&n_{B_3} \rightarrow n_{B_2'} \\
&n_{B_2'} \rightarrow \exists r(n_{B_1}') \quad n_{A_1} \rightarrow n_{A_1'}
\end{align*}
\] (14)

Accordingly, R^\subseteq is given by Rules 10,13 and, additionally

\[
\begin{align*}
&n_{A_1} \rightarrow n_\top \quad n_{A_2} \rightarrow n_\top \\
&n_{B_1} \rightarrow n_\top \\
&n_{B_3} \rightarrow n_\top \quad n_{A_2'} \rightarrow n_{B_2} \quad n_{B_2} \rightarrow n_\top \\
&n_{B_1'} \rightarrow n_\top \\
&n_{B_2'} \rightarrow n_\top \quad n_{B_2'} \rightarrow \exists r(n_{B_1}', n_{B_2})
\end{align*}
\] (17)

(18)

In the above example, we can generate all non-weak subsumees using the complete grammar construction, i.e., after including the results of classification in addition to transitions representing explicitly given subsumptions. For instance, the subsumee $\exists r.A_2 \sqcap B_3$ of B_2 can be generated using the first additional rule in 14 as follows: $n_{B_2} \rightarrow n_{B_2'} \rightarrow \sqcap (n_{B_1}', n_{B_3}) \rightarrow \sqcap (n_{A_2}', n_{B_3}) \rightarrow \sqcap (\exists r(n_{A_1}), n_{B_3}) \rightarrow \sqcap (\exists r(A_1), B_3)$.

We now consider various properties of the above grammars that are of interest for the computation of uniform interpolants. The following theorem states that the grammars derive only terms representing Σ-subsumees and Σ-subsumers of the corresponding concept symbol.

Theorem 3. Let T be a flattened \mathcal{EL} TBox, Σ a signature and $A \in \text{sig}_C(T)$.

1. For each $t \in L(G^\exists(T, \Sigma, A)) \cup L(G^\subseteq(T, \Sigma, A))$ it holds that $\text{sig}(C_t) \subseteq \Sigma$.
2. For each $t \in L(G^\exists(T, \Sigma, A))$ it holds that $T \models C_t \subseteq A$.
3. For each $t \in L(G^\subseteq(T, \Sigma, A))$ it holds that $T \models A \sqsubseteq C_t$.
Proof. 1. It is easy to check given Definition 7 that the grammars derive only terms containing concept symbols and roles from Σ, since $n_B \rightarrow B$ only if $B \in \Sigma \cup \{\top\}$ and $n_B \rightarrow \exists r(t')$ only if $r \in \Sigma$. Therefore, for any $A \in \text{sig}_C(\mathcal{T})$ and any $t \in L(G^E(\mathcal{T}, \Sigma, A)) \cup L(G^?(\mathcal{T}, \Sigma, A))$ holds $\text{sig}(C_t) \subseteq \Sigma$.

2. We use an easy induction on the maximal nesting depth of functions in t using the rules given in Definition 7:

- Assume that C_t is a concept symbol B or \top. The term B can only be derived from n_A by n empty transitions (GL2), and, once n_B is derived, the rule (GL1). Let $B_1, ..., B_n$ be such that $n_A \rightarrow n_{B_1} \rightarrow \ldots \rightarrow n_{B_n} \rightarrow n_B$. Then, by Definition 7, for each pair B_i, B_{i+1} holds $\mathcal{T} \models B_i \sqsupseteq B_{i+1}$, for B_n, B holds $\mathcal{T} \models B_n \sqsupseteq B$ and for A, B_1 holds $\mathcal{T} \models A \sqsupseteq B_1$. It follows that also $\mathcal{T} \models A \sqsupseteq B$.

- Assume that $t = \exists r(t')$ for some term t'. Then, the derivation of t from n_A starts with n empty transitions (GL2) such that $n_{B'}$ for some $B' \in \text{sig}_C(\mathcal{T}) \cup \{\top\}$ is derived, and a subsequent application of (GL4) such that n_B for some $B \in \text{sig}_C(\mathcal{T}) \cup \{\top\}$ is derived. As argued above about the applications of empty transitions, $\mathcal{T} \models A \sqsupseteq B'$ holds. Moreover, By Definition 7 (GL4) holds $B' \equiv \exists r.B \in \mathcal{T}$, and, therefore, $\mathcal{T} \models A \sqsupseteq \exists r.B$. Let $C' = C_t$. Then, by induction hypothesis, $\mathcal{T} \models B \sqsupseteq C'$. Therefore, $\mathcal{T} \models A \sqsupseteq \exists r.C'$, while $\exists r.C' = C_t$.

- Assume that $t = \sqcap(t_1, ..., t_n)$ for a set of terms $t_1, ..., t_n$. Then, the derivation of t from n_A starts with m empty transitions (GL2) such that $n_{B'}$ for some $B' \in \text{sig}_C(\mathcal{T}) \cup \{\top\}$ is derived, and a subsequent application of (GL3) such that we derive $\sqcap(n_{B_1}, ..., n_{B_n})$, where $t_i \in L(G^?(\mathcal{T}, \Sigma, n_{B_i}))$ for $1 \leq i \leq n$. As argued above about the applications of empty transitions, $\mathcal{T} \models A \sqsupseteq B'$ holds. Let $C_i = C_{t_i}$. By induction hypothesis, $\mathcal{T} \models B_i \sqsupseteq C_i$. By Definition 7, $B' \equiv B_1 \sqcap \ldots \sqcap B_n \in \mathcal{T}$. Therefore, $\mathcal{T} \models B' \sqsupseteq C_1 \sqcap \ldots \sqcap C_n$ and $\mathcal{T} \models A \sqsupseteq C_1 \sqcap \ldots \sqcap C_n$ with $C_1 \sqcap \ldots \sqcap C_n = C_t$.

3. The proof of soundness of $\mathcal{G}^E(\mathcal{T}, \Sigma)$ can be done in the same manner, i.e., by induction on the maximal nesting depth of functions in t:

- Assume that C_t is a concept symbol B or \top. The term B can only be derived from n_A by n empty transitions (GR2), and, once n_B is derived, the rule (GR1). Let $B_1, ..., B_n$ be such that $n_A \rightarrow n_{B_1} \rightarrow \ldots \rightarrow n_{B_n} \rightarrow n_B$. Then, by Definition 7, for each pair B_i, B_{i+1} holds
The lemma can be shown by an easy induction on the depth of derivation.

Proof. Assume that \(t = \exists r(t') \) for some term \(t' \). Then, the derivation of \(t \) from \(n_A \) starts with \(n \) empty transitions (GR2) such that \(n_{B'} \) for some \(B' \in \sigma_C(T) \cup \{ \top \} \) is derived, and a subsequent application of a non-empty transition (GR4) such that \(\exists r.n_B \) for some \(B \in \sigma_C(T) \cup \{ \top \} \) is derived. As argued above about the applications of empty transitions, \(T \models A \subseteq B' \) holds. Moreover, By Definition 7, it holds that \(T \models B' \equiv \exists r.B \), and, therefore, \(T \models A \subseteq \exists r.B \). Let \(C' = C_\nu \). By induction hypothesis, \(T \models B \subseteq C' \). Therefore, \(T \models A \subseteq \exists r.C' \) with \(C_t = \exists r.C' \).

Assume that \(t = \sqcap(t_1, ..., t_n) \) for a set of terms \(t_1, ..., t_n \). Then, the derivation of \(t \) from \(n_A \) starts with \(m \) empty transitions (GR2) such that \(n_{B'} \) for some \(B' \in \sigma_C(T) \cup \{ \top \} \) is derived, and a subsequent application of (GR3) such that we derive \(\sqcap(n_{B_1}, ..., n_{B_n}) \), where \(t_i \in L(G^\exists(T, \Sigma, n_{B_i})) \) for \(1 \leq i \leq n \) and \(n \geq 2 \). As argued above about the applications of empty transitions, \(T \models A \subseteq B' \) holds. Let \(C_i = C_{t_i} \). By induction hypothesis, \(T \models B_i \subseteq C_i \). By Definition 7, \(T \models B' \subseteq B_1 \sqcap ... \sqcap B_n \). Therefore, \(T \models B' \subseteq C_1 \sqcap ... \sqcap C_n \) and \(T \models A \subseteq C_1 \sqcap ... \sqcap C_n \) with \(C_1 \sqcap ... \sqcap C_n = C_t \).

To be able to show completeness of the grammars, we first show that the commutative associative closure of the generated \(G^\exists \) language contains all elements of \(\text{Pre} \).

Lemma 9. Let \(T \) be flattened \(\mathcal{E}L \) TBox and \(\Sigma \) a signature. Let \(G = G^\exists(T, \Sigma, A) \) and, for a concept symbol \(A \), let \(K \in \text{Pre}(A) \). Then, \(\sigma(\sqcap_{B \in K} B) \in L_u^*(G^\exists(T, \Sigma, A)) \).

Proof. The lemma can be shown by an easy induction on the depth of derivation of \(K \) from \(A \). We distinguish three cases for the last derivation step.

- If \(K = \{ A \} \), then the lemma is a direct consequence of Definition 7 (GL1).

- Assume that \(K \) has been obtained from \(K' \in \text{Pre}(A) \) by replacing some \(B \) by some \(B' \) such that \(T \models B' \subseteq B \). By induction hypothesis, \(\sigma(\sqcap_{B'' \in K} B'') \in L_u^*(G^\exists(T, \Sigma, A)) \). By Definition 7 (GL2), we have \(n_B \rightarrow n_{B'} \in R^\exists \). Thus, also \(\sigma(\sqcap_{B \in K} B) \in L_u^*(G^\exists(T, \Sigma, A)) \).
Theorem 4. Let \mathcal{T} be a flattened \mathcal{EL} TBox, Σ a signature and A a concept symbol.

1. For each C with $\text{sig}(C) \subseteq \Sigma$ such that $\mathcal{T} \models C \subseteq A$ there is a concept C' with $t_{C'} \in L^*(G^\mathcal{T}(\mathcal{T}, \Sigma, A))$ such that C can be obtained from C' by adding arbitrary conjuncts to arbitrary subconcepts.

2. For each C with $\text{sig}(C) \subseteq \Sigma$ such that $\mathcal{T} \models A \subseteq C$ there is a concept C' with $t_{C'} \in L^*(G^\mathcal{T}(\mathcal{T}, \Sigma, A))$ such that C can be obtained from C' by removing \top conjuncts from arbitrary subconcepts.

Proof. The theorem is proved by induction on the role depth of C using the properties of the flattening, for instance, stated in Lemmas 7, in addition to Definition 7 and Lemma 9. Let

$$C = \prod_{1 \leq j \leq n} A_j \cap \prod_{1 \leq k \leq m} \exists r_k. E_k,$$

where A_j are concept symbols, r_k are role symbols and E_k are arbitrary \mathcal{EL} concepts. W.l.o.g., we can assume that all A_j are pairwise different.

1. We prove the first claim as follows:

- Assume role depth $= 0$. Then, C is a conjunction of concept symbols, i.e., $C = \prod_{1 \leq j \leq n} A_j$. By Lemma 7, there is a set $M' \in \text{Pre}(A)$ of concept symbols such that, for each $B \in M'$, there is an A_j with $A_j = B$. By Lemma 9, $\sigma(\prod_{B \in M'} B) \in L^*(G^\mathcal{T}(\mathcal{T}, \Sigma, A))$. Since each $B \in M'$ is in Σ, by Definition 7 (GL1), $n_B \rightarrow B \in R^\mathcal{T}$. It follows that $t_C \in L^*(G^\mathcal{T}(\mathcal{T}, \Sigma, A))$.

- Assume that the role depth is greater than 0. As in the case above, there is a set $M' \in \text{Pre}(A)$ of concept symbols such that, for each $B \in M'$, [A1] or [A2] holds. Let M'_1 be the subset of M' where [A1] holds, i.e., $M'_1 = M' \cap \{A_1, \ldots, A_n\}$, and let $M'_2 = M' \setminus M'_1$. In accordance with this separation of M' into M'_1 and M'_2, we can also identify the
two corresponding sub-conjunctions of C: Let $C_1' = \prod_{B \in M_1} B$, and $C_2' = \prod_{1 \leq i \leq p} \exists r_f. E_f$ such that for each f there is a corresponding $B_f \in M_2$.

For each f it holds that there exists a concept symbol B_f' with $T \vdash E_f' \subseteq B_f'$ and $B_f \equiv \exists r.B_f' \in T$. By induction hypothesis, for each f there exists a concept E_f'' such that $t_{E_f''} \in L^*(G^\Sigma(T, \Sigma, B_f'))$ and E_f' can be obtained from E_f'' by adding arbitrary conjuncts to arbitrary subconcepts. By Definition 7 (GL4), $n_{B_f} \rightarrow \exists r_f'(n_{B_f'}) \in R^\Sigma$. Therefore, $\exists r_f'(t_{E_f''}) \in L^*(G^\Sigma(T, \Sigma, B_f'))$ and $\exists r_f'. E_f'$ can be obtained from $\exists r_f'. E_f''$ by adding arbitrary conjuncts to arbitrary subconcepts.

Since each $B \in M_1$ is in Σ, we have $n_B \rightarrow B \in R^\Sigma$ by Definition 7 (GL1). By Lemma 9, $\sigma(\prod_{B \in M_1} B) \in L^*(G^\Sigma(T, \Sigma, A))$. Thus, we obtain a concept expression $C'' = \prod_{B \in M_1} B \prod_{B_f \in M_2} \exists r_f'. E_f''$ with $t_{C''} \in L^*(G^\Sigma(T, \Sigma, A))$ such that C can be obtained from it by adding arbitrary conjuncts to arbitrary subconcepts.

2. We proceed with showing that for each such general C with $\text{sig}(C) \subseteq \Sigma$ such that $T \vdash A \subseteq C$ there is a concept C' such that $t_{C'} \in L^*(G^\Sigma(T, \Sigma, A))$ and C can be obtained from C' by removing \top conjuncts from arbitrary subconcepts. For each A_j, we know that $T \vdash A \subseteq A_j$ and $A_j \in \Sigma \cup \{\top\}$. By Definition 7 (GR1) $n_{A_j} \rightarrow A_j \in R^\Sigma$ for all A_j. Assume a role depth 0.

- Assume that $n = 1$, i.e., $C = A_1$, and assume that A_1 is the only concept symbol such that $T \vdash A \subseteq A_1$. By Definition 7 (GR2) $n_A \rightarrow n_{A_1} \in R^\Sigma$. Thus, $t_C \in L^*(G^\Sigma(T, \Sigma, A))$.

- Assume that there are more than one concept symbol A_i such that $T \vdash A \subseteq A_i$. By Definition 7 (GR3), $n_A \rightarrow \cap(n_{A_1}, \ldots, n_{A_x}) \in R^\Sigma$ for some $x \geq n$. By Definition 7 (GR2), there is $n_{A_i} \rightarrow n_\top \in R^\Sigma$ for all A_i. By applying (GR1) for all A_j and $n_{A_i} \rightarrow n_\top \rightarrow \top$ for all $i > n$, we obtain a term $t_{C \cap C'}$, where C' is a conjunction of $x - n$ concepts \top. Thus, the theorem holds for role depth 0.

Assume a role depth > 0. For each $\exists r_k E_k$, it follows from Lemma 8 that there are $B_k, B''_k \in \text{sig}_C(T)$ with $B_k \equiv \exists r_k.B''_k \in T$ such that $T \vdash A \subseteq B_k, T \vdash B''_k \subseteq E_k$. By Definition 7 (GR4), $n_{B_k} \rightarrow \exists r_k(n_{B''_k}) \in R^\Sigma$. By induction hypothesis, there is a concept E_k' such that $t_{E_k'} \in L^*(G^\Sigma(T, \Sigma, B''_k))$ and E_k can be obtained from E_k' by removing \top conjuncts from arbitrary subconcepts.
• Assume that there is the only one concept symbol B' such that $T \models A \subseteq B'$. Then, $C = \exists r_1.E_1$ and $B_1 = B'$. By Definition 7 (GR2) $n_A \rightarrow n_{B'} \in R^\equiv$. Thus, $t_{\exists r_1.E_1} \in L(G^\equiv(T, \Sigma, A))$ and $\exists r_1.E_1$ can be obtained from $\exists r_1.E_1'$ by removing \top conjuncts from arbitrary subconcepts.

• Assume that there are more than one concept symbol B' such that $T \models A \subseteq B'$. By Definition 7 (GR3), $n_A \rightarrow \cap(n_{B'_1}, \ldots, n_{B'_{n'}}) \in R^\equiv$ for some $x \geq n + m$ such that $B'_{j} = A_j$ for $1 \leq j \leq n$ and $B'_{n + k} = B_k$ for $1 \leq k \leq m$. By Definition 7 (GR2), there is $n_{B'_{1}} \rightarrow n_{\top} \in R^\equiv$ for all B'_{i}. Now, we derive the term $t_{C \cap C'}$ from n_A by first applying $n_A \rightarrow \cap(n_{B'_1}, \ldots, n_{B'_{n'}})$ and then proceeding as follows:

 - from each B'_i with $i > n + m$, we derive \top by applying $n_{B'_i} \rightarrow n_{\top}$, $n_{\top} \rightarrow \top$;
 - from each $B'_j = A_j$ with $1 \leq j \leq n$, we derive A_j by applying $n_{B'_j} \rightarrow A_j$;
 - from each $B'_{n + k} = B_k$ with $1 \leq k \leq m$, we derive $t_{\exists r_k.E'_k}$.

We obtain a term $t_{C \cap C'} \in L(G^\equiv(T, \Sigma, A))$, where C' is a conjunction of concepts \top and $C'' = \bigcap_{1 \leq j \leq n} A_j \cap \bigcap_{1 \leq k \leq m} \exists r_k.E'_k$. Clearly, C can be obtained from C'' by removing \top conjuncts from arbitrary subconcepts. Thus, C can be obtained from $C'' \cap C'$ by removing \top conjuncts from arbitrary subconcepts. □

6.3. From Grammars to Uniform Interpolants

Now we show that, as a consequence of Lemma 4 and Theorem 4, in case a finite uniform interpolant exists, we can construct it from the subsumers and subsumers of maximal depth $N = 2^{4 \cdot |\text{sub}(T)|} + 1$ generated by the grammars $G^\equiv(T, \Sigma), G^\equiv_\Sigma(T, \Sigma)$. Given the grammars, the corresponding subsumer/subsumer relation pair (L_\exists, L_\subseteq) is given by $L_{\bowtie} = \{(A, C) \mid t_C \in L(G^\bowtie(T, \Sigma, A)), d(C) \leq N\}$ for $\bowtie \in \{\exists, \subseteq\}$ and $A \in \text{sig}_C(T)$. Note that, if all subsumers and subsumers are using only concepts and roles from Σ (follows from Theorem 3), then $\text{sig}(M(L_\exists, L_\subseteq)) \subseteq \Sigma$. We obtain the following result concerning the size of uniform \mathcal{EL} Σ-interpolants:

Theorem 5. Let T be a flattened version of an \mathcal{EL} TBox T_{nf} and Σ a signature with $\Sigma \cap \text{sig}(T) \subseteq \text{sig}(T_{nf})$. For $N = 2^{4 \cdot |\text{sub}(T_{nf})|} + 1$, $\bowtie \in \{\exists, \subseteq\}$ and $A \in \text{sig}_C(T)$, let $L_{\bowtie}(A) = \{C \mid t_C \in L(G^\bowtie(T, \Sigma, A)), d(C) \leq N\}$. The following statements are equivalent:
1. There exists a uniform \mathcal{EL} Σ-interpolant of T_{nf}.

2. $M(L_{\sqsubseteq}, L_{\sqsupseteq}, \Sigma) \equiv^\mathcal{EL} L_{\sqsubseteq}$ T_{nf}

3. There exists a uniform \mathcal{EL} Σ-interpolant T' of T_{nf} with $|T'| \in O(2^{|T_{nf}|})$.

Proof. We prove the implications $1 \Rightarrow 2$ and $2 \Rightarrow 3$. All other implications are either trivial or follow from the others. For convenience, let T_Σ denote the TBox $M(L_{\sqsubseteq}, L_{\sqsupseteq}, \Sigma)$.

1 \Rightarrow 2: First, note that the statement $T_\Sigma \equiv^\mathcal{EL} L_{\sqsubseteq}$ T_{nf} follows from Lemma 5 and the fact that $\Sigma \cap \text{sig}(T) \subseteq \text{sig}(T_{nf})$. Thus, it is sufficient to prove $T_\Sigma \equiv^\mathcal{EL} T$. By Definition 2, the statement $T_\Sigma \equiv^\mathcal{EL} T$ consists of two directions: (1) for all \mathcal{EL} concepts C, D with $\text{sig}(C) \cup \text{sig}(D) \subseteq \Sigma$ holds $T_\Sigma \models C \sqsubseteq D \Rightarrow T \models C \sqsubseteq D$ and (2) for all \mathcal{EL} concepts C, D with $\text{sig}(C) \cup \text{sig}(D) \subseteq \Sigma$ holds $T_\Sigma \models C \sqsubseteq D \Leftarrow T \models C \sqsubseteq D$.

(1) The first direction follows from Theorem 3 and Definition 5. Theorem 3 ensures that the subsumee/subsumer relation pair $\langle L_{\sqsubseteq}, L_{\sqsupseteq} \rangle$ does not contain any subsumees or subsumers not being entailed by T and that it consists only of symbols from $\Sigma \cup \{\top\}$. Definition 5 ensures that T_Σ does not contain any concepts that do not occur in $\langle L_{\sqsubseteq}, L_{\sqsupseteq} \rangle$.

(2) For the second direction, assume that there exists a uniform \mathcal{EL} Σ-interpolant of T_{nf} and, subsequently, T. Then, by Lemma 4, there exists a uniform \mathcal{EL} Σ-interpolant T' of T_{nf} and T with $d(T') \leq N$. It is sufficient to show that for each $C \sqsubseteq D \in T'$ holds $T_\Sigma \models C \sqsubseteq D$. Assume that $C \sqsubseteq D \in T'$. We prove by induction on maximal role depth of C, D that also $T_\Sigma \models C \sqsubseteq D$. Let $D = \prod_{1 \leq i \leq l} D_i$ and

$$C = \prod_{1 \leq j \leq n} A_j \sqcap \prod_{1 \leq k \leq m} \exists r_k.E_k$$

where A_j are concept symbols, r_k are role symbols and E_k are arbitrary \mathcal{EL} concepts. Clearly, $T \models C \sqsubseteq D$, iff $T \models C \sqsubseteq D_i$ for all i with $1 \leq i \leq l$.

- If D_i is a concept symbol, then, it follows from Theorem 4 that there is a concept C' such that $t_{C'} \in L^\Sigma(G^\mathcal{EL}(T, \Sigma, A))$ and C' can be obtained from C'' by adding arbitrary conjuncts to arbitrary subconcepts. Since $d(C) \leq N$, also $d(C') \leq N$. Therefore, $T_\Sigma \models C \sqsubseteq D_i$.

33
• If \(D_i = \exists r.D' \) for some \(r, D' \), then, by Lemma 7, one of the following is true:

(A3) There are \(r_k, E_k \) in \(C \) such that \(r_k = r \) and \(T \models E_k \subseteq D' \).

Since \(d(E_k) < N \) and \(d(D') < N \), by induction hypothesis holds \(T_{\Sigma} \models E_k \subseteq D' \). It follows that \(T_{\Sigma} \models \exists r_k.E_k \subseteq D_i \) and \(T_{\Sigma} \models C \subseteq D_i \).

(A4) There is a concept symbol \(B \in \text{sig}_C(T) \) such that

\[
T \models B \subseteq \exists r.D' \quad \text{and} \quad T \models C \subseteq B.
\]

Then, it follows from Theorem 4 that there is a concept \(C'_1 \) such that \(t_{C'_1} \in L^*(G^\subseteq(T, \Sigma, A)) \) and \(C \) can be obtained from \(C'_1 \) by and adding arbitrary conjuncts to arbitrary subconcepts. Since \(d(C) \leq N \), also \(d(C'_1) \leq N \). Therefore, \((B, C''_1) \in L_{\Sigma} \) for some associative commutative variant \(C''_1 \) of \(C'_1 \).

– it follows from Theorem 4 that there is a concept \(C'_2 \) such that \(t_{C'_2} \in L^*(G^\subseteq(T, \Sigma, B)) \) and \(\exists r.D' \) can be obtained from \(C'_2 \) by removing \(\top \) conjuncts from arbitrary subconcepts. Since \(d(\exists r.D') \leq N \), also \(d(C'_2) \leq N \) and it follows that \((B, C''_2) \in L_{\Sigma} \) for some associative commutative variant \(C''_2 \) of \(C'_2 \).

By Definition 5, \(C''_1 \subseteq C''_2 \in T_{\Sigma} \), and, therefore, \(T_{\Sigma} \models C \subseteq D_i \).

2 \(\Rightarrow \) 3: Observe that \(G_1, G_2 \) have \(n = |\text{sig}_C(T)| \) non-terminals and \(n \) is also the maximal arity of \(\sqcap \). Now we consider the stepwise generation of terms in \(L(G^\sqcap(T, \Sigma, A)) \) and \(L(G^\subseteq(T, \Sigma, A)) \). Initially, terms are given by transitions. Assume that \(m \) is the maximal number of transitions in \(G_1, G_2 \), where is polynomial in \(n \). Each of these outgoing transitions has at most \(n \) occurring non-terminals. For a term \(t \) of role depth \(x \), we can obtain a term of the role depth \(x + 1 \) by first applying transition rules of type GL1-GL3 (GR1-GR3 in case of subsumer terms) to replace non-terminals \(n \) by terms \(t' \) and then applying transitions of type GL4 (GR4). In case of subsumees, we can assume that it is sufficient to consider terms \(t' \) with a maximal function depth \(m \) (maximal number of transitions), since a repeated application of the same transition of type GL3 generates a weak subsumee that is not required for the construction of the uniform interpolant. The total maximal depth of function nestings in subsume terms is then \(N \cdot m \). In case of subsumers, the
term of the role depth $x + 1$ is obtained by applying at most one rule of type
GR3 for each non-terminal, since the corresponding conjunctions in GR3
contain all non-terminals that can be obtained by infinitely many successive
applications of GR1-GR3. The total maximal depth of function nestings in
subsumer terms is then $N \cdot 2$. Given the maximal function depth $N \cdot m$, the
maximal arity n of functions and the number n of different non-terminals,
we obtain at most $n^{N \cdot m}$ different terms. Since in $N \in O(2^n)$, the size of
terms is in $O(2^{2^n})$ while the number of terms is in $O(2^{2^{2^n}})$.

These complexity results correspond to the size and number of axioms in Example
4 used to demonstrate the triple-exponential lower bound.

7. Related Work

In addition to the already discussed results on uniform interpolation in de-
scription logics [19, 18, 20, 28, 29, 16, 17], in this section we discuss the work on
inseparability and conservative extensions. The latter two notions form the foun-
dation for module extraction, e.g., [30, 17, 26], and decomposition of ontologies
into modules, e.g., [31, 32, 33]. The notion of a conservative extension is defined
using inseparability: A TBox \mathcal{T}_1 is called a Σ-conservative extension of a TBox
\mathcal{T}_2 if \mathcal{T}_1 is Σ-inseparable from \mathcal{T}_2 and $\mathcal{T}_1 \subseteq \mathcal{T}_2$.

Ghilardi, Lutz and Wolter [34] investigate modularity of ontologies based on
concept-inseparability. They show that deciding if a subontology is a module in
the description logic \mathcal{ALC} is 2ExpTime-complete. In a subsequent work, Lutz,
Walter and Wolter [35] show that the same problem is 2ExpTime-complete for
\mathcal{ALCQI}, but undecidable for \mathcal{ALCQIO}. The authors also investigate a stronger
notion of inseparability and conservative extensions defined directly on models
instead of entailed consequences: given two TBoxes \mathcal{T}_1 and \mathcal{T}_2, \mathcal{T}_1 is a model-
conservative extension of \mathcal{T}_2 iff for every model \mathcal{I} of \mathcal{T}_2, there exists a model
of \mathcal{T}_1 which can be obtained from \mathcal{I} by modifying the interpretation of symbols
in $\text{sig}(\mathcal{T}_1) \setminus \text{sig}(\mathcal{T}_2)$ while leaving the interpretation of symbols in $\text{sig}(\mathcal{T}_2)$ fixed.

The authors show that the corresponding problem based on the latter notion is
undecidable for \mathcal{ALC}.

In a more recent work, Konev, Lutz, Walter and Wolter [26] consider the de-
cidability of the above problem based on model-conservative extensions for \mathcal{ALC}
under different additional restrictions, e.g., restriction of the relevant signature to
concept names, and obtain complexity results ranging from Π^p_2 to undecidable.
Further, the authors consider the problem for acyclic \mathcal{EL} terminologies. It is in-
teresting that, in contrast to acyclic \mathcal{ALC} terminologies, for which the problem
remains undecidable, for acyclic \mathcal{EL} terminologies the complexity goes down to PTIME. In a later work [36], the above authors present a full complexity picture for \mathcal{ALC} and its common extensions. They investigate a broad range of query languages (languages in which the relevant consequences are expressed), starting with the language allowing for expressing inconsistency only and ending with Second Order Logic. More recently, Lutz and Wolter [27] show that the above notion of model-conservative extensions is undecidable also for such a lightweight logic as \mathcal{EL}.

Kontchakov, Wolter and Zakharyaschev [37] investigate the above decision problem for two representatives of the DL-Lite family of description logics as ontology languages and existential Σ-queries as a query language. They show that, for DL-Lite$_\text{horn}$, the problem is coNP-complete, and for DL-Lite$_\text{bool}$ Π^p_2-complete.

The high complexity results for already rather simple logics have lead to a development of alternative ways to extract modules not requiring checking inseparability. For instance, Cuenca Grau, Horrocks, Kazakov and Sattler [30], propose a tractable algorithm for computing modules from OWL DL ontologies based on the notion of syntactic locality [38] that defines the locality of an axiom on the syntactic level, i.e., states syntactic conditions for the potential logical relevance of axioms. It is guaranteed that the extracted module preserves all relevant consequences, but the obtained modules are not necessarily minimal.

8. Summary and Outlook

In this article, we have discussed the task of uniform interpolation, which guarantees a preservation of the relevant subset of the deductive closure while eliminating all references to irrelevant entities.

We provided an approach to computing uniform interpolants of general \mathcal{EL} terminologies based on proof theory and regular tree languages. Moreover, we showed that, if a finite uniform \mathcal{EL} interpolant exists, then there exists one of at most triple exponential size in terms of the original TBox, and that, in the worst-case, no shorter interpolant exists, thereby establishing a tight triple exponential bound. This is an important foundational insight, since it reveals the effect of structure sharing in the basic logic \mathcal{EL}.

The result brings about some insights when it comes to the practical applicability of uniform interpolation for module extraction and related tasks. In order to prevent a triple exponential blowup in the worst-case, we need to impose restrictions on rewriting, in that certain signature elements are kept even if not
considered relevant. For instance, in [39], we obtain first, preliminary results in
this direction. We show that, despite the worst-case triple exponential blowup,
uniform interpolation can be very useful as a basis for rewriting aiming at an
elimination of irrelevant information from ontologies.

On the other hand, the results of this article reveal the potential of structure
sharing for improving the conciseness of ontologies. By introducing a reverse op-
eration to uniform interpolation, namely the elimination of structural redundancy
from ontologies via vocabulary extension, we maybe able to “compress” ontolo-
gies in a semantics-preserving way, obtaining up to triple-exponentially more con-
cise representations of \(\mathcal{EL} \) ontologies in the best case. This raises a new practi-
cally relevant research question, which is particularly interesting for improving
reasoning efficiency.

Acknowledgments

This work was supported by the project ExpresST funded by the German Re-
search Foundation (DFG).

Appendix A. Model-Theoretic Properties of \(\mathcal{EL} \) Concepts

In Section 2, we characterize \(\mathcal{EL} \) concept membership and \(\mathcal{EL} \) concept sub-
sumption in the absence of terminological background knowledge. In this section,
we include the according proofs.

Lemma 1. For any \(\mathcal{EL} \) concept expression \(C \) and any interpretation \(\mathcal{I} = (\Delta^\mathcal{I}, \cdot^\mathcal{I}) \)
and \(x \in \Delta^\mathcal{I} \) it holds that \(x \in C^\mathcal{I} \) if and only if there is a homomorphism from
\((\mathcal{I}_C, x_C) \) to \((\mathcal{I}, x) \).

Proof. We prove both directions by structural induction over \(C \).

1. For \(C = \top \), the case is trivial.

2. For \(C = A \in N_C \), we find \(x_A \in A^\mathcal{I}_A \), therefore the existence of the homo-
morphism ensures that \(x = \varphi(x_A) \in A^\mathcal{I} \).

3. For \(C = C_1 \cap C_2 \), we find that \(\varphi_1 : \Delta^{\mathcal{I}_{C_1}} \to \Delta^\mathcal{I} \) defined by
 \[
 \varphi_1(y) = \begin{cases}
 x & \text{if } y = x_{C_1} \\
 \varphi(y') & \text{if } y = (y', i)
 \end{cases}
 \]
for $i \in \{1, 2\}$ are homomorphisms from $(\mathcal{I}_{C_1}, x_{C_1})$ to (\mathcal{I}, x) and $(\mathcal{I}_{C_2}, x_{C_2})$ to (\mathcal{I}, x), respectively. Invoking the induction hypothesis, we conclude that $x \in C_1^\mathcal{T}$ as well as $x \in C_2^\mathcal{T}$ and thus $x \in C_1^\mathcal{T} \cap C_2^\mathcal{T} = (C_1 \cap C_2)^\mathcal{T}$.

- Considering $C = \exists r.C_1$, we find that $\varphi' = \varphi|_{\Delta_{x_{C_1}}}$ is a homomorphism from $(\mathcal{I}_{C_1}, x_{C_1})$ to $(\mathcal{I}, \varphi(x_{C_1}))$. Invoking the induction hypothesis, we conclude $\varphi'(x_{C_1}) = \varphi(x_{C_1}) \in C_1^\mathcal{T}$. On the other hand, by construction of \mathcal{I}_C we find $(x_{C}, x_{C_1}) \in I_{\mathcal{I}_C}$ and thus, since φ is a homomorphism $(x, \varphi(x_{C_1}) = (\varphi(x_{C}), \varphi(x_{C_1}) \in I_{\mathcal{I}_C}$. Together, this allows to conclude $x \in (\exists r.C_1)^\mathcal{T}$.

We proceed with the only-if direction.

- For $C = \top$, the case is trivial.

- For $C = A \in N_C$, the mapping $\varphi = \{x_A \mapsto x\}$ is the required homomorphism since by assumption it holds that $x \in A^\mathcal{T}$.

- For $C = C_1 \cap C_2$, we have by assumption $x \in C^\mathcal{T} = C_1^\mathcal{T} \cap C_2^\mathcal{T}$ therefore $x \in C_1^\mathcal{T}$ and $x \in C_2^\mathcal{T}$. Invoking the induction hypothesis we find homomorphisms φ_1 from $(\mathcal{I}_{C_1}, x_{C_1})$ to (\mathcal{I}, x) and φ_2 from $(\mathcal{I}_{C_2}, x_{C_2})$ to (\mathcal{I}, x). Consequently, by construction of \mathcal{I}_C, the mapping $\varphi : \Delta_{\mathcal{I}_C} \to \Delta^\mathcal{I}$ defined by

$$\varphi(y) = \begin{cases} x & \text{if } y = x_C \\ \varphi_1(y') & \text{if } y = (y', 1) \\ \varphi_2(y') & \text{if } y = (y', 2) \end{cases}$$

is a homomorphism from (\mathcal{I}_C, x_{C}) to (\mathcal{I}, x).

- For $C = \exists r.C_1$, we find by assumption $x \in (\exists r.C_1)^\mathcal{T}$ thus there exists an $x' \in \Delta^\mathcal{I}$ with $(x, x') \in I^\mathcal{I}$ and $x' \in C_1^\mathcal{T}$. Invoking the induction hypothesis, we find a homomorphism φ' from $(\mathcal{I}_{C_1}, x_{C_1})$ to (\mathcal{I}, x'). Consequently the mapping $\varphi : \Delta_{\mathcal{I}_C} \to \Delta^\mathcal{I}$ with $\varphi = \varphi' \cup \{x_{C} \mapsto x\}$ is a homomorphism from (\mathcal{I}_C, x_{C}) to (\mathcal{I}, x).

\[\blacksquare\]

Lemma 2. Let C and C' be two \mathcal{EL} concept expressions. Then $\emptyset \models C \subseteq C'$ if and only if there is a homomorphism from $(\mathcal{I}_{C}, x'_{C})$ to (\mathcal{I}_{C}, x_{C}).

Proof. For the if-direction, let φ be the homomorphism from $(\mathcal{I}_{C}, x'_{C})$ to (\mathcal{I}_{C}, x_{C}). Now let \mathcal{I} be an interpretation and pick an arbitrary $x \in \Delta^\mathcal{I}$ with $x \in C^\mathcal{T}$. By
Lemma 1, there exists a homomorphism \(\varphi' \) from \((I_C, x_C) \) to \((I, x)\). Then \(\varphi' \circ \varphi \) is a homomorphism from \((I_{C'}, x_{C'})\) to \((I, x)\) and by the other direction of Lemma 1, we can conclude \(x \in C' \). Thus \(C^I \subseteq C'^I \) for all interpretations \(I \) and therefore \(\emptyset \models C \sqsubseteq C' \).

For the only-if-direction, assume \(\emptyset \models C \sqsubseteq C' \). Now consider the pointed interpretation \((I_C, x_C)\). As the identity on \(\Delta^I_C \) is a homomorphism from \((I_C, x_C)\) to itself, we use Lemma 1 to conclude \(x_C \in C^I_C \). By \(\emptyset \models C \sqsubseteq C' \) we can infer that \(x_C \in C'^I_C \). Invoking the if-direction of Lemma 1, we find that there must be a homomorphism from \((I'_C, x'_C)\) to \((I_C, x_C)\).

\[\square \]

Appendix B. \(\mathcal{EL} \) Automata

In this appendix section, we recall core notions on \(\mathcal{EL} \) automata [20] before giving the proof of Lemma 4.

Definition 11 [20]. An \(\mathcal{EL} \) automaton (EA) is a tuple \(A = (Q, P, \Sigma_N, \Sigma_E, \delta) \), where \(Q \) is a finite set of bottom up states, \(P \) is a finite set of top down states, \(\Sigma_N \subseteq N_C \) is the finite node alphabet, \(\Sigma_E \subseteq N_R \) is the finite edge alphabet, and \(\delta \) is a set of transitions of the following form:

\[
\begin{align*}
\text{true} & \rightarrow q & p & \rightarrow p_1 & \quad (B.1) \\
A & \rightarrow q & p & \rightarrow \langle r \rangle p_1 & \quad (B.2) \\
q_1 \land \ldots \land q_n & \rightarrow q & p & \rightarrow A & \quad (B.3) \\
\langle r \rangle q_1 & \rightarrow q & p & \rightarrow \text{false} & \quad (B.4) \\
q & \rightarrow p & \quad (B.5)
\end{align*}
\]

where \(q, q_1, \ldots, q_n \) range over \(Q \), \(p, p_1 \) range over \(P \), \(A \) ranges over \(\Sigma_N \), and \(r \) ranges over \(\Sigma_E \).

Definition 12 [20]. Let \(I \) be an interpretation and \(A = (Q, P, \Sigma_N, \Sigma_E, \delta) \) an EA. A run of \(A \) on \(I \) is a map \(\rho: \delta \rightarrow 2^{Q \cup P} \) such that for all \(d \in \Delta^I \), we have:

1. if \(\text{true} \rightarrow q \in \delta \), then \(q \in \rho(d) \);
2. if \(A \rightarrow q \in \delta \), and \(d \in A^I \), then \(q \in \rho(d) \);
3. if \(q_1, \ldots, q_n \in \rho(d) \) and \(q_1 \land \ldots \land q_n \rightarrow q \in \delta \), then \(q \in \rho(d) \);
4. if \((d, e) \in r^I \), \(q_1 \in \rho(e) \) and \(\langle r \rangle q_1 \rightarrow q \in \delta \), then \(q \in \rho(d) \);
5. if \(q \in \rho(d) \) and \(q \rightarrow p \in \delta \), then \(p \in \rho(d) \);

39
6. if \(p \in \rho(d) \) and \(p \rightarrow p_1 \in \delta \), then \(p_1 \in \rho(d) \);
7. if \(p \in \rho(d) \) and \(p \rightarrow \langle r \rangle p_1 \in \delta \), then there is an \((d,e) \in r^\mathcal{T} \) with \(p_1 \in \rho(e) \);
8. if \(p \in \rho(d) \) and \(p \rightarrow A \in \delta \), then \(d \in A \mathcal{T} \);
9. if \(p \rightarrow \text{false} \in \delta \), then \(p \not\in \rho(d) \).

The following Proposition specifies how the corresponding EA \(\mathcal{A} \) for any TBox \(\mathcal{T} \) can be constructed such that \(\mathcal{T}_{\Sigma}(\mathcal{A}) \equiv_{\Sigma}^{\mathcal{E}\mathcal{L}} \mathcal{T} \) for any \(\Sigma \).

Construction from Proposition 13 [20] Let \(\mathcal{T} \) be a TBox, \(s(\mathcal{T}) \) subconcepts of \(\mathcal{T} \) and \(\mathcal{A} = (Q, \mathcal{P}, \text{sig}_C(\mathcal{T}), \text{sig}_R(\mathcal{T}), \delta) \) with \(Q = \{ q_C | C \in s(\mathcal{T}) \} \), \(\mathcal{P} = \{ p_C | C \in s(\mathcal{T}) \} \) and \(\delta \) given by

- \(\text{true} \rightarrow q_T \) if \(\top \in s(\mathcal{T}) \);
- \(A \rightarrow q_A \) and \(q_A \rightarrow p_A \) for all \(A \in \text{sig}_C(\mathcal{T}) \);
- \(q_C \land q_D \rightarrow q_{C \land D} \);
- \(\langle r \rangle q_C \rightarrow q_{\exists r.C} \) and \(q_{\exists r.C} \rightarrow \langle r \rangle p_C \) for all \(\exists r.C \in s(\mathcal{T}) \);
- \(q_C \rightarrow q_D \) for all \(C, D \in s(\mathcal{T}) \) with \(\mathcal{T} \models C \subseteq D \);
- \(p_A \rightarrow A \) for all \(A \in \text{sig}_C(\mathcal{T}) \);
- \(p_{\exists r.C} \rightarrow \langle r \rangle p_C \) for all \(\exists r.C \in s(\mathcal{T}) \);
- \(p_C \rightarrow p_D \) for all \(C, D \in s(\mathcal{T}) \) with \(\mathcal{T} \models C \subseteq D \);
- \(p_{\bot} \rightarrow \text{false} \) if \(\bot \in s(\mathcal{T}) \).

An EA \(\mathcal{A} \) is said to entail a subsumption \(C \subseteq D \) if every model accepted by \(\mathcal{A} \) satisfies \(C \subseteq D \). Subsequently, an EA \(\mathcal{A} \) and a TBox \(\mathcal{T} \) are \(\mathcal{E}\mathcal{L} \Sigma \)-inseparable, in symbols \(\mathcal{A} \equiv_{\Sigma}^{\mathcal{E}\mathcal{L}} \mathcal{T} \), if \(\mathcal{A} \models C \subseteq D \) iff \(\mathcal{T} \models C \subseteq D \) for all \(\mathcal{E}\mathcal{L} \Sigma \)-inclusions \(C \subseteq D \). Further, for a signature \(\Sigma \), \(\mathcal{T}_\Sigma(\mathcal{A}) = \{ C \subseteq D \mid \mathcal{A} \models C \subseteq D, \text{sig}(C) \cup \text{sig}(D) \subseteq \Sigma \} \). For a natural number \(m \), \(\mathcal{T}_\Sigma^m(\mathcal{A}) = \{ C \subseteq D \mid C \subseteq D \in \mathcal{T}_\Sigma(\mathcal{A}), d(C) \leq m \text{ and } d(D) \leq m \} \).

Excerpt from Lemma 55 [20]. Let \(\mathcal{A} \) be an EA and \(M_\mathcal{A} = 2^{\text{|\mathcal{P} \cup Q|}} \). The following conditions are equivalent:

1. There exists \(k > M_\mathcal{A}^2 + 1 \) such that \(\mathcal{T}_\Sigma^{M_\mathcal{A}^2 + 1} \not\models \mathcal{T}_\Sigma^k \);
4. There does not exist an \(\mathcal{E}\mathcal{L} \mathcal{T}\text{Box} \mathcal{T} \) with \(\mathcal{A} \equiv_{\Sigma}^{\mathcal{E}\mathcal{L}} \mathcal{T} \).
Lemma 4. Let \mathcal{T} be an \mathcal{EL} TBox, Σ a signature. The following statements are equivalent:

1. There exists a uniform \mathcal{EL} Σ-interpolant of \mathcal{T}.
2. There exists a uniform \mathcal{EL} Σ-interpolant \mathcal{T}' of \mathcal{T} for which holds $d(\mathcal{T}') \leq 2^{4 \cdot (|\text{sub}(\mathcal{T})|)} + 1$.

Proof. Assume that a uniform \mathcal{EL} Σ-interpolant of \mathcal{T} exists and let $M = 2^{(2^{2^{2^{M^2}}})}$. Then, by Lemma 55 [20], there is no $k > M^2 + 1$ such that $\mathcal{T}_\Sigma^{M^2+1}(\mathcal{A}) \not\models \mathcal{T}_\Sigma^k(\mathcal{A})$, where \mathcal{A} is the corresponding \mathcal{EL} automaton for \mathcal{T}. Then $\mathcal{T}_\Sigma^{M^2+1}(\mathcal{A}) \models \mathcal{T}_\Sigma(\mathcal{A})$. Therefore, $\mathcal{T}_\Sigma^{M^2+1}(\mathcal{A}) \equiv_{\Sigma} \mathcal{T}$, i.e., $\mathcal{T}_\Sigma^{M^2+1}(\mathcal{A})$ is a uniform \mathcal{EL} Σ-interpolant \mathcal{T}' of \mathcal{T} with $d(\mathcal{T}') \leq M^2 + 1$. We can replace $M^2 + 1$ by $2^{4 \cdot (|\text{sub}(\mathcal{T})|)} + 1$ and obtain $d(\mathcal{T}') \leq 2^{4 \cdot (|\text{sub}(\mathcal{T})|)} + 1$. \hfill \Box
References

