
Reasoning-Supported Interactive Revision of Knowledge Bases

Nadeschda Nikitina and Sebastian Rudolph and Birte Glimm
Karlsruhe Institute of Technology, DE
{nikitina,rudolph}@kit.edu

Oxford University Computation Laboratory, UK
birte.glimm@comlab.ox.ac.uk

Abstract
Quality control is an essential task within ontology
development projects especially when the knowl-
edge formalization is partially automatized. In
this paper, we propose a reasoning-based, interac-
tive approach to support the revision of formalized
knowledge. We state consistency criteria for revi-
sion states and introduce the notion of revision clo-
sure, based on which the revision of ontologies is
partially automatized. Additionally, we propose a
notion of axiom impact which is used to determine
a beneficial order of axiom evaluation in order to
further increase the effectiveness of ontology revi-
sion. Finally, we develop the notion of decision
spaces, which are structures for calculating and up-
dating the revision closure and axiom impact. The
use of decision spaces saves on average 75% of the
costly reasoning operations during a revision.

1 Introduction
Manual knowledge formalization for real-world knowledge-
intensive applications is highly time-consuming. An applica-
tion of (semi-)automatic knowledge acquisition methods such
as ontology learning or matching is, therefore, often consid-
ered a reasonable way to reduce the cost of ontology devel-
opment. Automatically acquired knowledge usually has to be
manually inspected; either partially, to estimate the overall
quality, or even fully, to maintain high quality standards.

Belief revision can be used to remove an acquired axiom
that is undesired. Techniques such as axiom pinpoiting can
then be used to also remove axioms that imply the undesired
axiom. We propose, however, a different process: before
adding the acquired axioms to the ontology, we inspect them
and only add axioms that are desired. Once a decision (add
or not, .i.e, accept or decline) has been made, we determine
which other axioms can be evaluated automatically. We call
our process ontology revision, but stress that the process is
reverse to standard belief revision.

We illustrate the main challenges with an example in which
we have already confirmed that the axioms

∀x.(Metal(x)→ Chemical Element(x)) (1)
∀x.(Chemical Element(x)→ Material(x)) (2)

belong to the desired consequences, while the following ax-
ioms are still to be evaluated:

∀x.(Copper(x)→ Material(x)) (3)
∀x.(Copper(x)→ Chemical Element(x)) (4)
∀x.(Copper(x)→ Metal(x)) (5)

If Axiom (3) is declined, we can immediately also decline
Axioms (4) and (5) since accepting the axioms would im-
plicitly lead to the undesired consequence (3). Similarly, if
Axiom (5) is approved, Axioms (3) and (4) are implicit con-
sequences, which can be approved automatically. If we start,
however, with declining Axiom (5), no automatic evaluation
can be performed. It can be observed that

• a high grade of automation requires a good order for
evaluating the axioms, and that
• approval and decline of an axiom has a different impact.

Which axioms have the highest impact on decline or approval
and which axioms can be automatically evaluated once a de-
cision has been made can be determined with the help of
algorithms for automated reasoning. Even for not very ex-
pressive knowledge representation formalisms, reasoning is
an expensive task and in an interactive setting it is crucial to
minimize the amount of reasoning tasks while maximizing
the number of automated decisions. We reduce the number of
reasoning tasks by transferring ideas for ontology classifica-
tion [Shearer and Horrocks, 2009] to our problem. For this,
we introduce the notion of decision spaces, which exploit the
characteristics of the logical entailment relation between ax-
ioms to maximize the amount of information gained by rea-
soning. From the evaluation of our prototypical system, it can
be observed that a considerable proportion of axioms can be
evaluated automatically. Furthermore, decision spaces signif-
icantly reduces the number of required reasoning operations,
resulting in a considerable performance gain.

In the next section, we formalize the basic notions; in Sec-
tion 3, we define decision spaces, how they can be updated,
and how they help to determine a beneficial axiom order. Our
evaluation is presented in Section 4. We discuss related ap-
proaches in Section 5 and conclude in Section 6.

2 Revision of Knowledge Bases
The approach proposed here is applicable for any logic where
taking all consequences is a closure operation, i.e., extensive

({ϕ} |= ϕ), monotone (Φ |= ϕ implies Φ ∪ Ψ |= ϕ), and
idempotent (Φ |= ϕ and Φ∪ {ϕ} |= ψ imply Φ |= ψ). More-
over, we presume the existence of a decision procedure for
logical entailment.

The revision of a knowledge baseK aims at a separation of
its axioms (i.e., logical statements) into two disjoint sets: the
set of intended consequences K|= and the set of unintended
consequences K 6|=. This motivates the following definitions.
Definition 1 (Revision State) A revision state is defined as a
tuple (K,K|=,K 6|=) of knowledge bases with K|= ⊆ K,K 6|= ⊆
K, andK|=∩K 6|= = ∅. Given two revision states (K,K|=

1 ,K
6|=
1)

and (K,K|=
2 ,K

6|=
2), we call (K,K|=

2 ,K
6|=
2) a refinement of

(K,K|=
1 ,K

6|=
1), if K|=

1 ⊆ K
|=
2 and K 6|=

1 ⊆ K
6|=
2 . A revision state

is complete, if K = K|= ∪ K 6|=, and incomplete otherwise.
An incomplete revision state (K,K|=,K 6|=) can be refined by
evaluating a further axiom α ∈ K \ (K|= ∪ K 6|=), obtaining
(K,K|=∪{α},K 6|=) or (K,K|=,K 6|=∪{α}). We call the result-
ing revision state an elementary refinement of (K,K|=,K 6|=).
Since we expect that the deductive closure of the intended
consequences in K|= must not contain unintended conse-
quences, we introduce the notion of consistency for revision
states. If we want to maintain consistency, a single evaluation
decision can predetermine the decision for several yet uneval-
uated axioms. These implicit consequences of a refinement
are captured in the revision closure.
Definition 2 (Revision State Consistency and Closure)
A (complete or incomplete) revision state (K,K|=,K 6|=)
is consistent if there is no α ∈ K 6|= such that K|= |= α.
The revision closure clos(K,K|=,K 6|=) of (K,K|=,K 6|=)
is (K,K|=

c ,K 6|=
c) with K|=

c := {α ∈ K | K|= |= α} and
K 6|=
c := {α ∈ K | K|= ∪ {α} |= β for some β ∈ K 6|=}.

We can show the following useful properties of the closure of
consistent revision states:
Lemma 1 For (K,K|=,K 6|=) a consistent revision state,

1. clos(K,K|=,K 6|=) is consistent,
2. every elementary refinement of clos(K,K|=,K 6|=) is con-

sistent,
3. every consistent complete refinement of (K,K|=,K 6|=) is

a refinement of clos(K,K|=,K 6|=).
Proof. The first claim is immediate by the definition
of consistency and closures of revisions. For the sec-
ond claim, (K,K|=,K 6|=) is consistent by assumption and
clos(K,K|=,K 6|=) is the consistent (by the first claim). Since
clos(K,K|=,K 6|=) is a closure of (K,K|=,K 6|=), we have
clos(K,K|=,K 6|=) = (K, {α ∈ K | K|= |= α}, {α ∈ K |
K|= ∪ {α} |= β for some β ∈ K 6|=}). Since an elementary
revision of clos(K,K|=,K 6|=) has to be for an axiom α ∈ K \
({β | K|= |= β} ∪ {β | K 6|= ∪ β |= γ for some γ ∈ K 6|=}), we
immediately get that the elementary refinement is consistent.
For the last claim, if clos(K,K|=,K 6|=) is already complete,
the claim trivially holds. Otherwise, since (K,K|=,K 6|=) is
consistent, we cannot make elementary refinements that add
an axiom α ∈ {β | K|= |= β} to K 6|= since this would result
in an inconsistent refinement, neither can we add an axiom
α ∈ {β | K 6|= ∪ β |= γ for some γ ∈ K 6|=} to K|=. Thus, a
complete and consistent refinement of (K,K|=,K 6|=) is a re-
finement of clos(K,K|=,K 6|=). 2

Algorithm 1 employs the above properties to implement a
general methodology for interactive knowledge base revision.

Algorithm 1 Interactive Knowledge Base Revision
Input: (K,K|=

0 ,K
6|=
0) a consistent revision state

Output: (K,K|=,K 6|=) a complete and consistent
revision state

1: (K,K|=,K 6|=)← clos(K,K|=
0 ,K

6|=
0)

2: while K|= ∪ K 6|= 6= K do
3: choose α ∈ K \ (K|= ∪ K 6|=)
4: if expert confirms α then
5: (K,K|=,K 6|=)← clos(K,K|= ∪ {α},K 6|=)
6: else
7: (K,K|=,K 6|=)← clos(K,K|=,K 6|= ∪ {α})
8: end if
9: end while

Instead of starting with empty sets for K|=
0 and K 6|=

0 , we can
initialize the latter sets with approved and declined axioms
from a previous revision or add axioms of the knowledge base
that is being developed to K|=

0 . We can further initialize K 6|=
0

with axioms that express inconsistency and unsatisfiability of
predicates (i.e. of classes or relations) inK, which we assume
to be unintended consequences.

In line 3, an axiom is chosen that is evaluated next. As
motivated in the introduction, a random decision can have a
detrimental effect on the amount of manual decisions. Ideally,
we want to rank the axioms and choose one that allows for a
high number of consequential automatic decisions. For this
purpose, we introduce the following notion of axiom impact.

Definition 3 (Impact) Let (K,K|=,K 6|=) be a consistent revi-
sion state with α ∈ K and let ?(K,K|=,K 6|=) := |K \ (K|= ∪
K 6|=)|. The approval impact of α is defined as:
impact+(α) = ?(K,K|=,K 6|=)− ?(clos(K,K|= ∪ {α},K 6|=))

and the decline impact as:
impact−(α) = ?(K,K|=,K 6|=)− ?(clos(K,K|=,K 6|= ∪ {α})).
The guaranteed impact of α is:

guaranteed(α) = min(impact+(α), impact−(α))

The approval (decline) impact of an axiom α is determined
by the number of automatically evaluated axioms in case α is
approved (declined), while the guaranteed impact is the min-
imum of the two impact functions. For instance, in the exam-
ple used within the last section the axioms 3, 4 and 5 have an
approval impact of 0,1 and 2, a decline impact of 2,1 and 0,
and a guaranteed impact of 0,1 and 0, respectively. As we will
show in the evaluation, the beneficial impact function for the
revision of a particular axiom set must be chosen depending
on the expected validity ratio within this axiom set.

Since computing such an impact as well as computing the
closure after each evaluation (lines 1, 5, and 7) can be con-
sidered very expensive, we next introduce decision spaces,
auxiliary data structures which significantly reduce the cost
of computing the closure upon elementary revisions and pro-
vide an elegant way of determining high impact axioms.

3 Decision Spaces
Intuitively, the purpose of decision spaces is to keep track of
the dependencies between the axioms in such a way, that we
can read-off the consequences of revision state refinements
upon an approval or a decline of an axiom, thereby reducing
the required reasoning operations. Furthermore, we will show
how we can update these structures after a refinement step
avoiding many costly recomputations.

Definition 4 (Decision Space) Given a revision state
(K,K|=,K 6|=) with K 6|= 6= ∅, the according decision space
D(K,K|=,K 6|=) = (K?, E, C) contains the set

K? := K\ ({α | K|= |= α}∪{α | K|=∪{α} |= β, β ∈ K 6|=})
of unevaluated axioms together with two binary relations E
(read: entails) and C (read: conflicts) defined by

• αEβ iff K|= ∪ {α} |= β
• αCβ iff K|= ∪ {α, β} |= γ for some γ ∈ K 6|=

The requirement that K 6|= 6= ∅ is without loss of generality
since we can always add an axiom that expresses a contra-
diction (an inconsistency), which is clearly undesired. As a
direct consequence of this definition, we have D(K,K|=,K 6|=) =
Dclos(K,K|=,K 6|=). Also the following properties are immediate
from the above definition:

Lemma 2 Given D(K,K|=,K 6|=) = (K?, E, C) for a revision
state (K,K|=,K 6|=) with K 6|= 6= ∅, then

P1 (K?, E) is a quasi-order (i.e., reflexive and transitive),

P2 C is symmetric,

P3 αEβ and βCγ imply αCγ for all α, β, γ ∈ K?, and

P4 if αEβ then αCβ does not hold.

Proof. For P1, due to the required properties of the underly-
ing logic we have {α} |= α (extensivity) and K|= ∪ {α} |= α
(monotonicity) and it follows that E is reflexive. Given
K|= ∪ {α} |= β and K|= ∪ {β} |= γ, idempotence ensures
K|=∪{α} |= γ, henceE is transitive. For P2, symmetry of C
is an immediate consequence from its definition. For showing
P3, suppose K|= ∪ {α} |= β and K|= ∪ {β, γ} |= δ for some
δ ∈ K 6|=. Monotonicity allows to get K|= ∪ {α, γ} |= β from
the former and K|= ∪ {α, β, γ} |= δ from the latter, whence
K|= ∪ {α, β, γ} |= δ follows via idempotence. To see that E
and C are mutually exclusive (P4), assume the contrary, i.e.,
K|= ∪ {α} |= β and K|= ∪ {α, β} |= γ for some γ ∈ K 6|=

hold simultaneously. Yet, idempotency allows to conclude
K|= ∪ {α} |= δ. However then α cannot be contained in
K? by definition, which gives a contradiction and proves the
claim. 2

On the other hand, the properties established in the preced-
ing lemma are characteristic:1

Lemma 3 Let V be finite set and let E,C ⊆ V × V be rela-
tions for which (V,E) is a quasi-order, C = C−, E ◦C ⊆ C
and E ∩ C = ∅. Then there is a decision space D(K,K|=,K 6|=)

isomorphic to (V,E,C).

1As usual, we let R− = {(y, x) | (x, y) ∈ R} as well as R◦S =
{(x, z) | (x, y) ∈ R, (y, z) ∈ S for some y}.

Proof. As a very basic formalism, we choose propositional
logic as KR language. Let K contain one atomic proposition
pv for every v ∈ V , let K|= = {pv → pv′ | vEv′} ∪ {¬pv ∨
¬pv′ | vCv′} and letK 6|= = {false}. First observe thatK? =
K. Next, we claim that the function f : V → K with v 7→
pv is an isomorphism between (V,E,C) and D(K,K|=,K 6|=).
Clearly, f is a bijection. Moreover, vEv′ implies pvEpv′
by modus ponens since pv → pv′ ∈ K|=. Likewise, vCv′
implies pvCpv′ due to ¬pv ∨ ¬pv′ ∈ K|=. The two other
directions are shown indirectly.

To show that pvEpv′ implies vEv′ assume there are pv, pv′
with pvEpv′ , but vEv′ does not hold. Now, consider the
propositional interpretation mapping pṽ to true whenever
ṽ ∈ ↑v and to false otherwise. It can be easily verified that
this interpretation is a model of K|= and additionally satisfies
pv as well as ¬pv′ , henceK|=∪{pv} 6|= pv′ and consequently
pvEpv′ cannot hold, so we have a contradiction.

To show that pvCpv′ implies vCv′ assume there are pv, pv′
with pvCpv′ , but vCv′ does not hold. Now, consider the
propositional interpretation mapping pṽ to true whenever
ṽ ∈ ↑v ∪ ↑v′ and to false otherwise. It can be easily veri-
fied that this interpretation is a model of K|= and additionally
satisfies pv as well as pv′ , hence K|= ∪ {pv, pv′} 6|= false and
consequently pvCpv′ cannot hold, so we have a contradic-
tion. 2

The following lemma shows how decision spaces can be
used for calculating closures of updated revision states and
impacts of axioms. As usual for (quasi)orders, we define
↑α = {β | αEβ} and ↓α = {β | βEα}. Moreover, we
let oα = {β | αCβ}.

Lemma 4 Given D(K,K|=,K 6|=) = (K?, E, C) for a re-
vision state (K,K|=,K 6|=) such that (K,K|=,K 6|=) =
clos(K,K|=,K 6|=) with K 6|= 6= ∅ and α ∈ K?, then

1. clos(K,K|= ∪ {α},K 6|=) = (K,K|= ∪ ↑α,K 6|= ∪ oα) and

2. clos(K,K|=,K 6|= ∪ {α}) = (K,K|=,K 6|= ∪ ↓α).

3. impact+(α) = |↑α|+ |oα|
4. impact−(α) = |↓α|

Proof.
1. By definition of closures, we have

clos(K,K|= ∪ {α},K 6|=)
= (K, {β ∈ K | K|= ∪ {α} |= β},
{β ∈ K | K|= ∪ {α, β} |= γ for some γ ∈ K 6|=}).

By definition of the entails and conflicts relation
= (K,K|= ∪ {β ∈ K? | αEβ},K 6|= ∪ {β ∈ K? | αCβ})

and by definition of ↑α and oα
= (K,K|= ∪ ↑α,K 6|= ∪ oα).

2. Since (K,K|=,K 6|=) is already closed, we have
clos(K,K|=,K 6|= ∪ {α})

= (K,K|=, {β ∈ K | K|= ∪ {β} |= γ
for some γ ∈ (K 6|= ∪ {α})})

= (K,K|=,K 6|= ∪ {β ∈ K? | K|= ∪ {β} |= α}).
By definition of the conflicts relation, we have
= (K,K|=,K 6|= ∪ {β ∈ K? | αCβ}),
which by definition of ↓α gives
= (K,K|=,K 6|= ∪ ↓α).

3. By Definition 3 we have impact+(α)
= ?(K,K|=,K 6|=)− ?(clos(K,K|= ∪ {α},K 6|=))
by Definition 2
= ?(K,K|=,K 6|=)− ?(K, {β ∈ K | K|= ∪ {α} |= β},
{β ∈ K | K|= ∪ {α, β} |= γ for some γ ∈ K 6|=})

by the definition of ?(·) (Definition 3)
= |K \ (K|= ∪ K 6|=)|−
|K \ ({β ∈ K | K|= ∪ {α} |= β}∪
{β ∈ K | K|= ∪ {α, β} |= γ for some γ ∈ K 6|=})|

by definition of the entails and conflicts relations
= |K \ (K|= ∪ K 6|=)| − |K \ (K|= ∪ {β ∈ K? | αEβ}
∪K 6|= ∪ {β ∈ K? | αCβ})|

by definition of ↑ and o
= |K \ (K|= ∪ K 6|=)| − |K \ (K|= ∪ ↑α ∪ K 6|= ∪ oα)|
= |K| − (|K|=|+ |K 6|=|)
−(|K| − (|K|=|+ |↑α|+ |K 6|=|+ |oα|))

= |↑α|+ |oα|

4. By Definition 3 we have impact−(α)
= ?(K,K|=,K 6|=)− ?(clos(K,K|=,K 6|= ∪ {α}))
by Definition 2
= ?(K,K|=,K 6|=)− ?(K,K|=,
K 6|= ∪ {β ∈ K | K|= ∪ {β} |= α})

by the definition of ?(·) (Definition 3)
= |K \ (K|= ∪ K 6|=)|−
|K \ (K|= ∪ K 6|= ∪ {β ∈ K | K|= ∪ {β} |= α})|

by definition of the entails relation
= |K \ (K|= ∪ K 6|=)|
−|K \ (K|= ∪ K 6|= ∪ {β ∈ K? | βEα})|

by definition of ↓
= |K \ (K|= ∪ K 6|=)| − |K \ (K|= ∪ K 6|= ∪ ↓α)|
= |K| − (|K|=|+ |K 6|=|)
−(|K| − (|K|=|+ |K 6|=|+ |↓α|))

= |↓α|
2

Hence, the computation of the revision closure (lines 5
and 7) and axiom impacts does not require any entailment
checks if the according decision space is available. For the
computation of decision spaces, we exploit the structural
properties established in Lemmas 2 and 3 in order to reduce
the number of required entailment checks in cases where the
relations E and C are partially known. For this purpose, we
define the rules R0 to R9, which describe the connections
between the relations E and C and their complements E
and C. The rules can serve as production rules to derive
new instances of these relations thereby minimizing calls to
costly reasoning procedures.

R0 → E(x, x) reflexivity of E
R1 E(x, y) ∧ E(y, z)→ E(x, z) transitivity of E
R2 E(x, y) ∧ C(y, z)→ C(x, z) (P3)
R3 C(x, y)→ C(y, x) symmetry of C
R4 E(x, y)→ C(x, y) disjointness of E and C
R5 C(x, y)→ C(y, x) symmetry of C
R6 E(x, y) ∧ C(x, z)→ C(y, z) (P3)
R7 C(x, y)→ E(x, y) disjointness of E and C
R8 C(x, y) ∧ C(y, z)→ E(x, z) (P3)
R9 E(x, y) ∧ E(x, z)→ E(y, z) transitivity of E

An analysis of the dependencies between the rules R0
to R9 reveals an acyclic structure (indicated by the order of

the rules). Therefore E,C,C, and E can be saturated one af-
ter another. Moreover, the exhaustive application of the rules
R0 to R9 can be condensed into the following operations:

E ← E∗

C ← E ◦ (C ∪ C−) ◦ E−

C ← E− ◦ (C ∪ Id ∪ C
−
) ◦ E

E ← E− ◦ (C ◦ C ∪ E) ◦ E−

The correctness of the first operation (where (·)∗ denotes
the reflexive and transitive closure) is a direct consequence
of R0 and R1. For the second operation, we exploit the rela-
tionships

E◦C◦E− R2
⊆ C◦E− R3

⊆ C−◦E− R2
⊆ C−

R3
⊆ C

E◦C−◦E− R2
⊆ E◦C− R3

⊆ E◦C R2
⊆ C

that can be further composed into
E◦C◦E− ∪ E◦C−◦E− = E ◦ (C ∪ C−) ◦ E− ⊆ C

Conversely, iterated backward chaining for C w.r.t. R2
and R3 yields E ◦ (C ∪C−) ◦E− as a fixpoint, under the as-
sumption E = E∗. The correctness of the last two operations
can be shown accordingly.

Algorithm 2 realizes the cost-saving identification of the
complete entailment and conflict relations of a decision space.
Maintaining sets of known entailments (E), non-entailments
(E), conflicts (C) and non-conflicts (C), the algorithm always
closes these sets under the above operations before it cau-
tiously executes expensive deduction checks to clarify miss-
ing cases. First, the initially known (non-)entailments and
(non-)conflicts are closed in the aforementioned way (lines
1–7). There and in the subsequent lines, we split computa-
tions into several ones where appropriate in order to minimize
the size of sets subject to the join operation (◦). Lines 8–26
describe the successive clarification of the entailment rela-
tion (for cases where neither entailment nor non-entailment is
known yet) via deduction checks. After each such clarifica-
tion step, the sets E,E,C, and C are closed. Thereby, we ex-
ploit known properties of intermediate results such as already
being transitive or symmetric to avoid redoing the accord-
ing closure operations unnecessarily (transupdatediff
computes, for a relation R and a pair of elements (α, β),
the difference between the reflexive transitive closure of R
extended with (α, β) and R∗, i.e., (R ∪ {(α, β)})∗ \ R∗)).
Likewise, we also avoid redundant computations and reduce
the size of the input sets for the join operations by explicitly
bookkeeping sets E′,C ′,C

′
, and E

′
containing only the in-

stances newly added in the current step. Lines 27–38 proceed
in the analog way for stepwise clarification of the conflicts
relation.

Since the complexity of entailment checking will almost
always outweigh the complexity of the other operations in
Algorithm 2, we first analyse the complexity of the algorithm
under the assumption that entailment checking is done by a
constant time oracle. We then show how entailment checking
can be factored in.

Lemma 5 Let (K,K|=,K 6|=) be a revision state with K 6|= 6= ∅
and E,E,C,C (possibly empty) subsets of the entailment
and conflicts relations. We denote the size |K| of K with

Algorithm 2 Decision Space Completion

Input: (K,K|=,K 6|=) a consistent revision state; E,E,C,C
subsets of the entailment and conflict relations and their
complements

Output: (K?, E, C) the corresponding decision space
1: E ← E∗

2: C ← E ◦ C ◦ E−
3: C ← C ∪ C−
4: C ← E− ◦ C ∪ IdK? ◦ E
5: C ← C ∪ C−

6: E ← (C ◦ C) ∪ E
7: E ← E− ◦ E ◦ E−
8: while E ∪ E 6= K? ×K? do
9: pick one (α, β) ∈ K? ×K? \ (E ∪ E)

10: if K|= ∪ {α} |= β then
11: E′ ← transupdatediff(E, (α, β))
12: E ← E ∪ E′
13: C ′ ← (E′ ◦ C) \ C
14: C ′ ← C ′ ∪ (C ′ ◦ E′−) \ C
15: C ← C ∪ C ′
16: C

′ ← (E′− ◦ C) \ C
17: C

′ ← C
′ ∪ (C

′ ◦ E′) \ C
18: C ← C ∪ C ′

19: E
′ ← ((C

′ ◦ C) ∪ (C ◦ C ′)) \ E
20: E ← E ∪ E′

21: E
′ ← ((E′− ◦ E) ∪ (E− ◦ E′)) \ E

22: E ← E ∪ E′ ∪ (E
′ ◦ E−) ∪ (E ◦ E′−)

23: else
24: E ← E ∪ (E− ◦ {(α, β)} ◦ E−)
25: end if
26: end while
27: while C ∪ C 6= K? ×K? do
28: pick one (α, β) ∈ K? ×K? \ (C ∪ C)
29: if K|= ∪ {α, β} |= γ for some γ ∈ K 6|= then
30: C ′ ← E ◦ {(α, β), (β, α)} ◦ E−
31: C ← C ∪ C ′
32: E ← E ∪ (E− ◦ C ◦ C ′ ◦ E−)
33: else
34: C

′ ← (E− ◦ {(α, β), (β, α)} ◦ E) \ C
35: C ← C ∪ C ′

36: E ← E ∪ (E− ◦ C ′ ◦ C ◦ E−)
37: end if
38: end while

n. Given (K,K|=,K 6|=) and E,E,C,C as input, Algorithm 2
runs in time bounded by O(n5) and space bounded by O(n2)
if we assume that entailment checking is a constant time op-
eration.

Proof. We first note that K? is bounded by n since |K?| =
|K| − (|K|=| + |K 6|=|). Similarly, the size of each relation
E,E,C, and C is bounded by n2 since the relations are bi-
nary relations over axioms in K. We first analyze the indi-
vidual operations. Computing the transitive reflexive closure
of a relation can be done in cubic time, i.e., for E∗ with E
a relation over at most n axioms, we get a bound of n3. The
computation of transupdatediff is in the worst case the

same as computing the reflexive transitive closure. For a bi-
nary join operation (◦), the output is again a binary relation
over K of size bounded by n2. Each binary join can be com-
puted in at most n3 steps. Note that multiple joins can be
seen as several binary joins since each intermediate relation
is again over axioms from K and is of size at most n2. The
union operation (∪) corresponds to the addition of axioms.
Each of the while loops is executed at most n2 times and re-
quires a fixed number of join operations and possibly in one
case the computation of transupdatediff, which gives
an upper bound of O(n2 · n3) = O(n5) for the both while
loops. Together with the reflexive transitive closure and the
fixed number of join operations before the while loops, we
have that the time complexity of Algorithm 2 isO(n5) and its
space complexity is O(n2) assuming that entailment check-
ing is a constant time operation. 2

Lemma 6 Let L be a logic where taking all consequences
is a closure operation and such that there is a decision pro-
cedure for logical entailment of complexity c(n) for n the
size of the input to the entailment checking procedure. Let
(K,K|=,K 6|=) be a revision state with K 6|= 6= ∅, |K| := n
and where the axioms in K are expressible in L, and let
E,E,C,C be (possibly empty) subsets of the entailment and
conflicts relations. There is a polynomial p such that the run-
time of Algorithm 2, given (K,K|=,K 6|=) and E,E,C,C as
input, is bounded by p(n) · c(n).

Proof. The input to the entailment checking algorithm is in all
cases of size n. Both while loops perform at most n2 entail-
ment checks, which together with the analysis from Lemma 5
give the desired result. 2

3.1 Updating Decision Spaces
We proceed by formally describing the change of the decision
space as a consequence of approving or declining one axiom
with the objective of again minimizing the required number
of entailment checks. We first consider the case that an expert
approves an axiom α ∈ K?, and hence α is added to the set
K|= of wanted consequences.

Lemma 7 Let D(K,K|=,K 6|=) = (K?, E, C), α ∈ K? and
D(K,K|=∪{α},K 6|=) = (K?

new, E
′, C ′). Then

• K?
new = K? \ (↑α ∪ oα),

• βEγ implies βE′γ for β, γ ∈ K?
new, and

• βCγ implies βC ′γ for β, γ ∈ K?
new.

Essentially, the lemma states that all axioms entailed by α
(as witnessed by E) as well as all axioms conflicting with α

Algorithm 3 Decision Space Update on Approving α
Input: D(K,K|=,K 6|=) a decision space, α ∈ K? an axiom
Output: D(K,K|=∪{α},K 6|=) the updated decision space

1: K? ← K? \ (↑α ∪ oα)
2: E ← E ∩ (K? ×K?)
3: C ← C ∩ (K? ×K?)
4: C ← E− ◦ E
5: E ← E− ◦ C ◦ C ◦ E−
6: execute lines 8–38 from Alg. 2

(indicated byC) will be removed from the decision space if α
is approved. Moreover due to monotonicity, all positive infor-
mation about entailments and conflicts remains valid. Algo-
rithm 3 takes advantage of these correspondences when fully
determining the updated decision space.

Lemma 8 Let D(K,K|=,K 6|=) be a decision space, α ∈ K?

an axiom. We denote the size |K| of K with n. Given
D(K,K|=,K 6|=) and α as input, Algorithm 3 runs in time
bounded by O(n5) and space bounded by O(n2) if we as-
sume that entailment checking is a constant time operation.

Proof. The executions in the first part of Algorithm 3 can be
performed in cubic time and quadratic space using the same
arguments as in Lemma 5. By Lemma 5, executing lines 8–
38 from Algorithm 2 under the assumption that entailment
checking is a constant time operation can be done in time
O(n5), which proves the claim. 2

The next lemma considers changes to be made to the deci-
sion space on the denial of an axiom α by characterizing it as
unwanted consequence.

Lemma 9 Let D(K,K|=,K 6|=) = (K?, E, C), α ∈ K? and
D(K,K|=,K 6|=∪{α}) = (K?

new, E
′, C ′). Then

• K?
new = K? \ ↓α,

• βEγ exactly if βE′γ for β, γ ∈ K?
new, and

• βCγ implies βC ′γ for β, γ ∈ K?
new.

The lemma shows that the updated decision space can
be obtained by removing all axioms that entail α. Further-
more entailments between remaining axioms remain unal-
tered whereas the set of conflicts may increase. Algorithm 4
implements the respective decision space update, additionally
exploiting that new conflicts can only arise from derivability
of the newly declined axiom α.

Algorithms 3 and 4 have to be called in Alg. 1 after the
accept (line 5) or decline revision step (line 7), respectively.

Algorithm 4 Decision Space Update on Declining α
Input: D(K,K|=,K 6|=) a decision space, α ∈ K? an axiom
Output: D(K,K|=,K 6|=∪{α}) the updated decision space

1: K? ← K? \ ↓α,
2: E ← E ∩ (K? ×K?)
3: E ← E ∩ (K? ×K?)
4: C ← C ∩ (K? ×K?)
5: C ← E− ◦ E
6: while C ∪ C 6= K? ×K? do
7: pick one (β, γ) ∈ K? ×K? \ (C ∪ C)
8: if K|= ∪ {β, γ} |= α then
9: C ← C ∪ (E ◦ {(β, γ), (γ, β)} ◦ E−)

10: else
11: C ← C ∪ (E− ◦ {(β, γ), (γ, β)} ◦ E)
12: end if
13: end while

Lemma 10 Let D(K,K|=,K 6|=) be a decision space, α ∈ K?

an axiom. We denote the size |K| of K with n. Given
D(K,K|=,K 6|=) and α as input, Algorithm 4 runs in time

bounded by O(n5) and space bounded by O(n2) if we as-
sume that entailment checking is a constant time operation.

Proof. The executions in the first part of Algorithm 4 be-
fore the while loop can be performed in quadratic space and
cubic time using the same arguments as in Lemma 5. We ex-
ecute the operations within the while loop at most n2 times,
and under the assumption that entailment checking is a con-
stant time operation, we find that the operations can again be
performed in cubic time and quadratic space resulting in an
overall bound for the time complexity of O(n5) and O(n2)
space complexity. 2

4 Evaluation
For a first evaluation of the developed methodology, we
choose a scenario motivated by ontology-supported literature
search. The hand-crafted NanOn ontology models the scien-
tific domain of nano technology, including substances, struc-
tures, procedures used in that domain. The ontology, denoted
here with O, is specified in the Web Ontology Language
OWL DL [OWL Working Group, 2009] and comprises 2,289
logical axioms. The project associated to NanOn aims at de-
veloping techniques to automatically analyze scientific doc-
uments for the occurrence of NanOn concepts. When such
concepts are found, the document is automatically annotated
with NanOn concepts to facilitate topic-specific information
retrieval on a fine-grained level. Since total accuracy of the
automatically added annotations (which can be seen as log-
ical axioms expressing factual knowledge) cannot be guar-
anteed, they need to be inspected by human experts, which
provides a natural application scenario for our approach.

For our evaluation, we employed tools for automated tex-
tual analysis to produce a set of document annotations, the
validity of which was then manually evaluated. This pro-
vided us with sets of valid and invalid annotation facts (de-
noted by A+ and A−, respectively). To investigate how the
a priori quality of each axiom set influences the results, we
created six distinct annotation sets S1 to S6 using different
annotation methods. The different methods result in different
validity ratios |A+|/(|A+|+ |A−|) of the datasets, where |S|
denotes the cardinality of a set S. The size of each set as well
as the corresponding validity ratio in percent are shown in the
headers of Table 1.

We then applied our methodology starting from the re-
vision state (O ∪ O− ∪ A+ ∪ A−,O,O−) with O con-
taining the axioms of the NanOn ontology and with O−
containing axioms expressing inconsistency and concept un-
satisfiability. We then obtained a complete revision state
(O ∪ O− ∪ A+ ∪ A−,O ∪ A+,O− ∪ A−) where on-the-
fly expert decisions about approval or decline were simulated
according to the membership in A+ or A−. For computing
the entailments, we used the OWL reasoner HermiT.2

For each set, Table 1 shows the effects of the different
choice functions impact+, guaranteed , impact− by measur-
ing the reduction of expert decisions compared to evaluating
the whole set manually (1st column for each set), followed by
the number of necessary reasoner calls with and without the

2http://www.hermit-reasoner.com

use of decision spaces (2nd and 3rd column, respectively). As
a baseline, we also include the reduction of expert decision
when choosing axioms randomly. We did not use decision
spaces for the calculation of the baseline, since axiom impact
is not taken into account. The upper bound for the manual ef-
fort reduction was obtained by applying the “impact oracle”
function defined by

KnownImpact(α) =

{
impact+(α) if α ∈ A+,
impact−(α) if α ∈ A−.

S1 (54, 94%) S2 (60, 100%)
impact+ 69% 4,677 36,773 83% 2,584 18,702
guaranteed 48% 11,860 51,677 65% 8,190 55,273
impact− 9% 17,828 46,461 12% 20,739 67,625
upper bound 74% 4,110 11,399 83% 2,645 27,850
random 45% - 1,291 60% - 1,090

S3 (40, 45%) S4 (35, 48%)
impact+ 20% 3,137 26,759 29% 2,198 15,601
guaranteed 43% 3,914 27,629 43% 3,137 18,367
impact− 28% 9,947 46,461 31% 7,309 10,217
upper bound 48% 3,509 13,202 51% 2,177 7,002
random 31% - 764 31% - 534

S5 (26, 26%) S6 (72, 12%)
impact+ 8% 1,778 11,443 13% 9,352 212,041
guaranteed 39% 1,290 6,647 54% 8,166 99,586
impact− 54% 954 1,438 76% 6,797 16,922
upper bound 54% 801 1,989 76% 5,219 19,861
random 41% - 212 57% - 1,065

Table 1: Revision results for different axiom choosing strate-
gies

The results of the evaluation show that:

• Decision spaces save on average 75% of reasoner calls,
which leads to a considerable overall performance gain
given that, on average, 88% of computation time in our
experiments is spent within the methods of the reasoner
according to our profiling measurements. The experi-
ments with the same datasets took on average 8 times
longer without an application of decision spaces.

• Compared to an all manual revision, a significant effort
reduction of on average 44% is already achieved when
axioms are chosen randomly for each expert decision by
automatically approving and declining axioms based on
the computed revision closure. However it leaves space
for improvement. The “impact oracle” manages to re-
duce the manual effort of revision on average by 64%.

• If the ratio of approved axioms is rather high or rather
low, impact+ or impact−, respectively, perform best.

• If the ratios of approved and declined axioms are more
or less equal, the guaranteed impact is the best choice.

Therefore, the appropriate axiom choosing strategy has to be
selected based on the expected ratio of valid axioms. We see

that an application of the most suitable axiom choosing strat-
egy for each validity ratio, listed in grey rows, yields on av-
erage an effort reduction of 61%, which is 15% higher than
the performance of random and only 3% less than the effort
reduction achieved by the “impact oracle”.

5 Related Work
In our previous work [Nikitina, 2010], we proposed an ap-
proach for determining a beneficial order of axiom evaluation
under the assumption of a high validity ratio within the ax-
iom set under revision. The latter approach aims at reducing
the manual effort of revision by eliminating the redundancy
within the corresponding axiom set, which is the major factor
leading to automatic axiom evaluation under the assumption
of a high validity ratio. For this purpose, a minimal set of ax-
ioms entailing the total set of axioms is identified before the
interactive revision and is then reviewed by the expert thereby
not requiring the expensive computation of the axiom impact
after each expert decision.

In addition to our own work, we are aware of two ap-
proaches for supporting the revision of ontological data
based on logical appropriateness: Meilicke et al. [2008] and
Jiménez-Ruiz et al. [2009] propose two approaches, both of
which are applied in the context of mapping revision. In these
approaches, dependencies between evaluation decisions are
determined based on a set of logical criteria, each of which
is a subset of the criteria that can be derived from the no-
tion of revision state consistency introduced in Definition 1.
Similarly to our approach, Meilicke et al. aim at reducing the
manual effort of mapping revision by relying on a heuristic
notion of impact. The approach is, however, difficult to gen-
eralize to the revision of ontologies since the notion of impact
is based on the hypothetically possible number of mapping
axioms for two ontologies O1 and O2 and further relies on
the assumption that the set of possible mapping axioms and
the set of axioms inO1∪O2 are mostly disjoint. This assump-
tion is justified in case of mapping revision, since axioms in
O1 (O2) usually refer only to entities from O1 (O2), while
mapping axioms link entities from O1 and O2. For ontology
revision in general, however, the axioms that are to be revised
are typically not disjoint from the already evaluated axioms.

The focus of ContentMap [Jiménez-Ruiz et al., 2009] lies
within the visualization of consequences and user guidance
in case of difficult evaluation decisions, while the minimiza-
tion of the manual and computational effort required for the
revision is out of scope. ContentMap selectively materializes
and visualizes the logical consequences caused by the axioms
under investigation and supports the revision of those conse-
quences. ContentMap requires an exponential number of rea-
soning operations in the size of the ontology under revision
since dependencies between the consequences are determined
by comparing their justifications (sets of axioms causing the
entailment aka minAs). Our approach, however, requires at
most a polynomial number of entailment checks.

Another strand of work starting from [Rudolph, 2004]
is related to the overall motivation of enriching knowledge
bases with additional expert-curated knowledge in a way that
minimizes the workload of the human expert: based on the

attribute exploration algorithm from formal concept analy-
sis (FCA), several works have proposed structured interactive
enumeration strategies of inclusion dependencies or axioms
of certain fragments of description logics which then are to
be evaluated by the expert. While similar in terms of the
workflow, the major difference of these approaches to ours
is that the axioms are not pre-specified but created on the fly
and therefore, the exploration may require (in the worst case
exponentially) many human decisions.

6 Conclusions and Future Work
In this paper, we proposed a methodology for supporting on-
tology revision based on logical criteria. We stated consis-
tency criteria for revision states and introduced the notion of
revision closure, based on which the revision of ontologies
can be partially automatized.

Even though a significant effort reduction can be achieved
when axioms are chosen randomly for each expert decision,
an evaluation of axioms in an appropriate order usually yields
a higher effort reduction. We introduced the notion of axiom
impact which is used to determine a beneficial order of eval-
uation. Depending on the expected ratio of approved axioms,
impact+, impact− or the guaranteed impact can be employed
in order to achieve a higher effort reduction. In fact, in three
out of six cases during the evaluation, the maximum possi-
ble effort reduction was achieved when employing the best
suitable axiom choosing strategy.

Moreover, we provided an efficient and elegant way of
determining the revision closure and axiom impact by com-
puting and updating structures called decision spaces which
saved 75% of reasoner calls during our evaluation.

In our future work, we will investigate how the axiom
choosing strategy can be adjusted according to the current
ratio of approved axioms. Another open question is how the
axioms under investigation can be efficiently partitioned into
sets that can be reviewed independently.
Acknowledgments This work is supported by the German
Federal Ministry of Education and Research (BMBF) under
the SAW-project NanOn and by the EPSRC project HermiT:
Reasoning with Large Ontologies.

References
[Jiménez-Ruiz et al., 2009] Ernesto Jiménez-Ruiz,

Bernardo Cuenca Grau, Ian Horrocks, and Rafael Berlanga
Llavori. Ontology integration using mappings: Towards
getting the right logical consequences. In Proceed-
ings of the 6th European Semantic Web Conference
(ESWC 2009), volume 5554 of LNCS, pages 173–187.
Springer-Verlag, 2009.

[Meilicke et al., 2008] Christian Meilicke, Heiner Stucken-
schmidt, and Andrei Tamilin. Supporting manual mapping
revision using logical reasoning. In Proceedings of the
23rd Conference on Artificial Intelligence (AAAI 2008),
pages 1213–1218. AAAI Press, 2008.

[Nikitina, 2010] Nadejda Nikitina. Semi-automatic revision
of formalized knowledge. In Helder Coelho, Rudi Studer,
and Michael Wooldridge, editors, ECAI, volume 215 of

Frontiers in Artificial Intelligence and Applications, pages
1097–1098. IOS Press, 2010.

[OWL Working Group, 2009] W3C OWL Working Group.
OWL 2 Web Ontology Language: Document Overview.
W3C Recommendation, 27 October 2009. Available at
http://www.w3.org/TR/owl2-overview/.

[Rudolph, 2004] Sebastian Rudolph. Exploring relational
structures via FLE. In Conceptual Structures at Work:
12th International Conference on Conceptual Structures,
volume 3127 of LNCS, pages 196–212. Springer-Verlag,
2004.

[Shearer and Horrocks, 2009] Rob Shearer and Ian Hor-
rocks. Exploiting partial information in taxonomy con-
struction. In 8th International Semantic Web Conference
(ISWC 2009), volume 5823, pages 569–584, 2009.

