
Concrete Results on Abstract Rules

Markus Krötzsch, Despoina Magka, and Ian Horrocks

Department of Computer Science, University of Oxford, UK

Abstract. There are many different notions of “rule” in the literature. A key
feature and main intuition of any such notion is that rules can be “applied” to
derive conclusions from certain premises. More formally, a rule is viewed as a
function that, when invoked on a set of known facts, can produce new facts. In
this paper, we show that this extreme simplification is still sufficient to obtain a
number of useful results in concrete cases. We define abstract rules as a certain
kind of functions, provide them with a semantics in terms of (abstract) stable
models, and explain how concrete normal logic programming rules can be viewed
as abstract rules in a variety of ways. We further analyse dependencies between
abstract rules to recognise classes of logic programs for which stable models are
guaranteed to be unique.

1 Introduction

A large variety of different types of “rules” are considered in logic programming,
knowledge representation, production rule systems, and databases. While many rules
have a common background in predicate logic, there are still important differences be-
tween, say, normal logic programs [13], existential rules [3], and database dependencies
[1]. It is, however, highly desirable to transfer concrete results and insights between
these domains.

This goal is best illustrated by considering a concrete example. In a recent publica-
tion, the authors analyse nonmonotonic existential rules under a stable model semantics
[14]. The work identifies syntactic conditions to guarantee finiteness and uniqueness of
stable models, and shows how this can be applied to improve the performance of rea-
soning over real-world data. To fully exploit these ideas, this approach can be further
extended in at least two ways: (1) other types of logic rules, e.g., normal logic programs,
could be considered; (2) extend the scope of the approach for relevant special forms of
programs, e.g., for equality and datatype reasoning.

In terms of (2), the authors already extended their results by considering integrity
constraints [14]. Unfortunately, even this relatively small change required laborious ex-
tensions of all previous correctness proofs. While the structure of arguments remains
similar, each individual step now needs to take constraints into account. Following this
pedestrian approach, repeated effort is required for each modification in the underlying
language. With the continued elaboration of rule-based languages, important ideas of-
ten remain confined to one sub-area and are rather reinvented than being transferred.
For instance, the notion of rule dependency that was extended to nonmonotonic exis-
tential rules in [14] has first been proposed for conceptual graph rules in 2004 [2] and
rediscovered for databases in 2008 [4].

To address this issue, we propose to take a more abstract view on “rules” that can be
instantiated in many different cases. Our main intuition is that many kinds of rules can
be “applied” in certain sense to derive conclusions from premises. We formalise this by
viewing a rule as a function that, when invoked on a set of known facts, can produce
new facts. This is a rather natural view on rules. Our main contribution is to show that
this extreme simplification is still sufficient to derive interesting results that are easy to
instantiate in concrete cases. Our contributions are organised as follows.

– We define abstract rules and provide them with a semantics in terms of abstract
stable models that agrees with the standard notion of stable model semantics in
concrete cases (Section 2).

– We present operations for constructing abstract rules (Section 3) and establish sev-
eral strong equivalence results to show that these operations preserve our semantics
(Section 4).

– We reformulate the condition of R-stratification from [14] for abstract rules (Sec-
tion 5) and show that this condition leads to a unique stable model even in the
abstract case (Section 6).

– We apply our results to equality reasoning in normal logic programs and propose a
new approach for stratifying programs with equality using constraints (Section 7).

Proofs that are not included here can be found in an accompanying report [10].

2 Abstract Rules and Models

We consider a countable set B of basic logical expressions, which we think of as facts
that might be true or false in a given situation; subsets F ⊆B will therefore be called sets
of (abstract) facts. B contains a distinguished element⊥, which denotes a contradiction.

Definition 1. An abstract rule r is a function r : 2B→ 2B with the following properties.

– r is extensive: r(F)⊇ F for every F ⊆ B
– r is compact (or finitary): for every F ⊆ B and f ∈ r(F), there are finite sets

B+,B− ⊆ B with B+ ⊆ F and B− ∩F = /0, such that f ∈ r(F ′) for every set F ′

with B+ ⊆ F ′ and B−∩F ′ = /0.

If f ∈ r(F), we say that r derives f from F. A pair of minimal sets 〈B+,B−〉 that wit-
nesses the compactness property for the derivation f ∈ r(F) is called an abstract body
of r with respect to f and F.

An abstract program is a countable set of abstract rules, denoted P, possibly with
subscripts or primes. Uncountable rule sets are not considered herein.

A rule is monotone if F1 ⊆ F2 implies r(F1)⊆ r(F2) for all sets of facts F1,F2 ⊆ B,
but this is not required by our definition. For monotone rules, every derivation has a
body 〈B+,B−〉 with B− = /0, as one would expect.

Example 1. A propositional logic programming rule is an expression of form H ←
B1, . . . ,Bn,not Bn+1, . . . ,not Bm, where B1, . . . ,Bm and H are propositional letters. It
can be viewed as an abstract rule r: let B be the set of propositional letters and define
r(F) := F ∪{H} if B1, . . . ,Bn ∈ F and Bn+1, . . . ,Bm /∈ F , and r(F) := F otherwise. An
abstract body is given by the sets B+ = {B1, . . . ,Bn} and B− = {Bn+1, . . . ,Bm}.

Note that this approach does not define a one-to-one correspondence of concrete
rules and abstract rules. For example, the rules A← A or A← A,B both lead to the same
abstract rule with r(F)=F . Thus our abstraction cannot capture any logic programming
semantics where the presence of such rules is relevant.

Example 2. A normal logic programming rule is an expression of form H←B1, . . . ,Bn,
not Bn+1, . . . ,not Bm, where B1, . . . ,Bm and H are predicate-logic atoms over some log-
ical signature. It can be viewed as an abstract rule r: let B be the set of all ground atoms
over the signature (the so-called Herbrand base), let Gr be the set of all ground instanti-
ations of r, and define r(F) :=

⋃
rg∈Gr rg(F), where rg(F) is defined as for propositional

rules in Example 1. An abstract body for a ground fact Hg is obtained as the abstract
body for any ground instance rg that can be used to derive Hg from F .

Example 2 illustrates that abstract bodies may not be unique, since several ground
instantiations of a logic programming rule may have the same head but different bodies.

Example 3. Consider the Herbrand base B = {n(a),n(s(a)),n(s(s(a))), . . .}, and let
B≥1 denote the set B\{n(a)}. Consider the following functions:

r1(F) := F ∪{n(a)} if B≥1 ⊆ F ; r1(F) := F otherwise (1)

r2(F) := F ∪{n(a)} if B≥1 6⊆ F ; r2(F) := F otherwise (2)
r3(F) := F ∪{n(a)} if F is finite; r3(F) := F otherwise (3)

Each of these functions is extensive. Function r1 is not an abstract rule: it is monotone
but depends on an infinite set B≥1 of premises, hence is not compact. Function r2 is
an abstract rule: for any fact f ∈ B≥1 such that f /∈ F , the sets B+ = /0 and B− = { f}
form a body of the derivation n(a) ∈ r2(F). A concrete representation of this rule along
the lines of Example 2 is n(a)← not n(s(X)), although this may not be syntactically
allowed in all logic programming approaches, since X occurs in negated atoms only.
Function r3 is not an abstract rule: it is nonmonotonic but there is no finite negative
body B− for any derivation (for finite F , we would get B+ = /0 and B− = B\F).

We can define the consequence operator TP for abstract rules as usual.

Definition 2. For a set of rules P and a set of facts F, we define TP(F) :=
⋃

r∈P r(F).
Moreover, we set T 0

P (F) := F, T i+1
P (F) := TP(T i

P(F)), and T ∞
P (F) :=

⋃
i≥0 T i

P(F).

Since we do not assume rules to be monotone, different orders of rule applications
might lead to very different sets of derived sets of facts, and in particular T ∞

P (F) may
not capture the desired semantics of the program. The next definition describes types of
derived sets of facts that are more suitable for defining the semantics of abstract rules.

Definition 3. Consider an abstract program P and a set of facts F0. A set of facts F is
well-supported for P and F0 if there is a well-founded partial order ≺ on F such that,
for every fact f ∈ F \F0, there is a rule r f ∈ P with body 〈B+

f ,B
−
f 〉 for f and F, and

f ′ ≺ f for all f ′ ∈ B+
f . We assume that the choice of r f and 〈B+

f ,B
−
f 〉 is part of each

well-supported set (there might be other choices, leading to other well-supported sets).
A set of facts F is an abstract model for a set of rules P and a set of input facts

F0 if ⊥ /∈ F, F0 ⊆ F, and r(F) ⊆ F for every rule r ∈ P. An abstract stable model is a
well-supported abstract model.

For the case of normal logic programming rules, our definition of well-supported
model agrees with that of Fages [7]. Our terminology is justified by Fages’s result that
well-supported models are exactly the (classical) stable models [7, Theorem 2.1]. We
obtain the following theorem as a corollary.

Theorem 1. The abstract stable models of a normal logic program P, viewed as a set
of abstract rules as in Example 2, are exactly the classical stable models of P.

Like in the classical case, TP can be used to compute models, which, however, may
not be well-supported.

Proposition 1. T ∞
P (F) is an abstract model for P and F.

Proof. Suppose for a contradiction that the claim does not hold. Then there is a rule
r ∈ P and a fact f ∈ r(T ∞

P (F)) with f /∈ T ∞
P (F). By compactness, there is a finite set

F ′⊆ T ∞
P (F) such that f ∈ r(F ′′) for every F ′⊆F ′′⊆ T ∞

P (F). By construction of T ∞
P (F),

there is some i such that F ′ ⊆ T i
P(F). But then f ∈ r(T i

P(F)) by compactness, and hence
f ∈ T i+1

P (F)⊆ T ∞
P (F)—a contradiction. ut

The well-founded order ≺ in Definition 3 leaves a lot of flexibility for establishing
that a set is well-supported. Due to compactness, however, it is generally enough to
order facts by a finite rank that can be expressed as a natural number.

Proposition 2. If F is well-supported for P and F0, then this is witnessed by an order
≺ such that 〈F,≺〉 has an order-preserving injection into the natural numbers 〈N,<〉.

Proof. Since F is well-supported, there is an order ≺0 as in Definition 3. For each fact
f ∈ F \F0, there is a rule r f ∈ P and a body 〈B+

f ,B
−
f 〉 as in Definition 3. The order ≺1

on F is the transitive closure of the set { f ′ ≺1 f | f ′ ∈ B+
f }. Clearly, ≺1 ⊆ ≺0, so ≺1

is well-founded. By definition, ≺1 can be used to show that F is well-supported, using
the same choice of rules r f and bodies B+

f as for ≺0.
We claim that for every fact f ∈ F , the set f↓ := { f ′ | f ′ ≺1 f} is finite (∗). Indeed,

by construction, f↓=
⋃

f ′∈B+
f

f ′↓. The claim follows by well-founded induction: if f ′↓
is finite for all f ′ ≺1 f , then f ′↓ is finite for all f ′ ∈ B+

f , and thus f↓ is finite, too.
To construct a total well-founded order ≺ as required in the claim, we re-order

the elements of F as a sequence. Since F is countable, there is an injective mapping
ι : F → N from F to natural numbers. We recursively construct a (possibly infinite)
sequence f1, f2, . . . of facts from F as follows. To select fi, consider the set of ≺1-
minimal elements Mi in the set F \ { f1, . . . , fi−1}. If Mi = /0 then there is no fi and
the construction terminates with a finite sequence. Otherwise, define fi ∈Mi to be the
ι-smallest element of Mi, i.e., ι(fi)≤ ι(f) for all f ∈Mi.

We claim that the constructed sequence S = { f1, f2, . . .} contains exactly the ele-
ments of F . For a contradiction, suppose that there is an element f ∈ F \S. By (∗), the
set { f}∪ f↓ is finite. Consider the set M := { f}∪ f↓\S. By our assumptions, f ∈M,
so M is finite but not empty. Thus there is a ≺1-minimal element f ′ in M, which is also
a ≺1-minimal element of F \ S. As there are only finitely many elements in F that are
≺1-smaller than f ′, there is a finite index j such that f ′ is a ≺1-minimal element of

F \{ f1, . . . , f j}. There are at most ι(f ′)−1 many elements that can be added to S after
f j, before f ′ must also be added. Thus f ′ ∈ S, which contradicts our assumptions.

We define the order≺ on F by setting fi ≺ f j for all i < j. This makes≺ a suborder
of 〈N,<〉, and thus well-founded. Moreover, ≺1 ⊆≺, so ≺ can be used to show that F
is well-supported. ut

3 Constructing Abstract Rules

The examples given so far mainly show that abstract rules can capture normal logic pro-
grams. In this section, we show that they are significantly more general, even on a base
set of facts B that is the Herbrand base of a predicate logic signature. For this purpose,
we introduce various operations for constructing new abstract rules from existing ones,
and show that these operation preserve stable model semantics (Section 4). The basic
operations we consider are union, composition and saturation of rules.

Definition 4. Let P be a program. The union
⋃

P of P is defined by setting (
⋃

P)(F) :=⋃
r∈P r(F) if P 6= /0. For P = /0, we define (

⋃
/0)(F) := F.

The intersection
⋂

P of P is defined as (
⋂

P)(F) :=
⋂

r∈P r(F) if P 6= /0. For P = /0,
we define (

⋂
/0)(F) := B.

Example 4. The abstract rule induced by a normal logic programming rule as in Exam-
ple 2 is the infinite union of the abstract rules obtained from its ground instantiations.
Likewise, the one-step TP operator of Definition 2 is the abstract rule

⋃
P. Intersections

of rules are the abstract counterpart to conjunctions in rule bodies. For example, the in-
tersection of the rules q← p1 and q← p2,not p3 can be expressed as q← p1, p2,not p3.

Intersections of abstract rules do not always result in abstract rules. For example, the
function in (1), which is not compact, can be viewed as the intersection of the infinite
set of all rules n(a)← n(si(a)) with i ≥ 1. However, abstract rules are closed under
infinite unions and finite intersections, as shown next.

Theorem 2. The union
⋃

P of an abstract program P is an abstract rule. If P is finite,
then the intersection

⋂
P is also an abstract rule.

Proof. First consider
⋃

P. For all r ∈ P we find F ⊆ r(F) by extensiveness; hence
F ⊆

⋃
r∈P r(F) =

⋃
P(F) and

⋃
P is extensive. If P = /0 then (

⋃
P)(F) = F , so for any

derivation f ∈ (
⋃

P)(F) the sets B+ = { f} and B− = /0 show compactness of (
⋃

P).
If P 6= /0 then, for any fact f ∈ (

⋃
P)(F), there is a rule r ∈ P such that f ∈ r(F); this

implies the existence of suitable sets B+ and B− to show compactness of
⋃

P.
Now assume that P is finite and consider

⋂
P. Extensiveness of

⋂
P is again im-

mediate from the extensiveness of rules in P. If P = /0 then (
⋂

P)(F) = B, so for any
derivation f ∈ (

⋂
P)(F) the sets B+=B−= /0 show compactness of (

⋂
P). If P 6= /0 then,

for any fact f ∈ (
⋂

P)(F) and any rule ri ∈ P, we find sets B+ and B− by compactness
of the derivation f ∈ ri(F). Thus, the sets

⋃
ri∈P B+

i and
⋃

ri∈P B−i show compactness of
(
⋂

P). In particular, these sets are finite since P is. ut

Another interesting type of operations is based on functional composition.

Definition 5. The composition r2 ◦ r1 of r1 and r2 is the function with (r2 ◦ r1)(F) :=
r2(r1(F)). The n-iteration rn of a rule r is the n-fold composition with itself, i.e., r0

is the identity function and ri+1 = r ◦ ri. The saturation r∞ of r is the union of all its
n-iterations, i.e., r∞ :=

⋃
{ri | i≥ 0}.

Example 5. Iterations of the TP operator of Definition 2 are equivalent to iterations of
abstract rules: T i

P = (
⋃

P)i and T ∞
P = (

⋃
P)∞.

Example 6. In general, composition does not preserve compactness. Consider the rules
r1 : q← p(X) and r2 : r← not q over the infinite base B= {q,r, p(a), p(s(a)), . . .}. The
composition r2 ◦ r1 can be described as

(r2 ◦ r1)(F) = r1(F)∪
{
{r} if p(sn(a)) /∈ F for all n≥ 1
/0 otherwise.

Thus, for every choice of finite sets 〈B+,B−〉, there is a set F ′ with B+ ⊆ F ′ and B−∩
F ′ = /0 such that r /∈ (r2 ◦ r1)(F ′). The function r2 ◦ r1 is not compact.

Theorem 3. Let r1 and r2 be abstract rules. If r2 is monotone, then r2 ◦ r1, rn
2 for all

n≥ 0, and r∞
2 are abstract rules.

Proof. Consider r2 ◦ r1. Extensiveness of r1 and r2 yields F ⊆ r1(F) ⊆ r2(r1(F)) =
(r2 ◦ r1)(F). For compactness, consider some f ∈ (r2 ◦ r1)(F). By compactness of r2,
we find finite sets B+

2 and B−2 for deriving f from r1(F). Since r2 is monotone, we
can assume without loss of generality that B−2 = /0. As B+

2 is finite, it has the form
{ f1, . . . , fm}. For each fi ∈ B+

2 , there are sets B+
1i and B−1i that show compactness of the

derivation fi ∈ r1(F). The sets B+ =
⋃m

i=1 B+
1i and B− =

⋃m
i=1 B−1i show the compactness

of the derivation f ∈ (r2 ◦ r1)(F).
The claim for rn follows by induction: the result is clear for r0, and the induction step

follows from the result for composition. The claim for saturation follows by combining
the results for n-iteration and Theorem 2. ut

4 Strong Equivalence of Abstract Programs

Logic programs P1 and P2 are strongly equivalent if the programs P∪P1 and P∪P2 have
exactly the same stable models for any program P and set of facts F0 [12,16]. We apply
the same definition to abstract logic programs.

Theorem 4. Every abstract logic program P is strongly equivalent to {
⋃

P}.

Proof. To simplify the proof, we use the following auxiliary definition. An abstract
program P1 is subsumed by an abstract program P2, written P1 v P2, if the following
holds: for every rule r1 ∈ P1 and derivation f ∈ r1(F) with a body 〈B+,B−〉, there is
a rule r2 ∈ P2 and derivation f ∈ r2(F) for which 〈B+,B−〉 is also a body. Clearly,
Pv {

⋃
P} and {

⋃
P} v P.

To complete the proof, we show some general properties of subsumption. Consider
a set of facts F0 and abstract programs P1 and P2.

1. If P1 v P2, then every well-supported set for P1,F0 is well-supported for P2,F0.
2. If P2 v P1, then every model of P1,F0 is a model of P2,F0.
3. If P1 v P2 and P2 v P1, then P1 and P2 are strongly equivalent.

The overall claim thus is an immediate consequence of the last item.
Assume that P1 v P2 and that F is well-supported for P1,F0 using the order≺. Then

for every f ∈ F there is a rule r1 ∈ P1 such that f ∈ r1(F) has a body 〈B+,B−〉 in F
with f ′ ≺ f for all f ′ ∈ B+. Since P1 v P2, there is a rule r2 ∈ P2 with f ∈ r2(F) and the
same body.

Assume that P2 v P1 and that F is a model for P1,F0. Suppose for a contradiction
that F is not a model of P2,F0. Then there is a rule r2 ∈ P2 and a fact f ∈ r2(F)\F . By
P2 v P1, there is a rule r1 ∈ P1 with f ∈ r1(F). This contradicts the assumptions that F
is a model of P1,F0.

Assume that P1vP2 and P2vP1, and let P be an arbitrary abstract program. Clearly,
P∪P1 v P∪P2 and P∪P2 v P∪P1. Thus, by the first two properties, every stable model
of P∪P1 and F0 is also a stable model of P∪P2 and F0, and vice versa. ut

It is easy to see that intersection
⋂

P does not lead to strong equivalence. However,
we can establish relevant results for composition, iteration, and saturation. The proof
of the following result uses Proposition 2 to construct the well-founded order that is
needed to show that a model is stable.

Proposition 3. For monotone rules r1 and r2, {r1,r2} is strongly equivalent to {r2◦r1}.

Theorem 5. For a monotone rule r, all of the programs {r}, {rn} for n≥ 2, and {r∞}
are pairwise strongly equivalent.

Proof. The strong equivalence of {r} and {rn} for any n ≥ 2 is shown by induction.
By Proposition 3, {rn+1} is strongly equivalent to {r,rn}. By induction {rn} is strongly
equivalent to {r}, so that {r,rn} is strongly equivalent to {r,r}= {r} as required.

For the limit {r∞}, note that {r∞} =
⋃
{rn | n ≥ 1} is strongly equivalent to {rn |

n≥ 1} by Theorem 4. The result follows as each {rn} is strongly equivalent to {r}. ut

5 Reliances and Stratifications

Stable models can not always be computed by applying rules in a bottom-up fashion.
Due to nonmonotonicity, a rule that was applicable initially may no longer be applicable
after further facts have been derived. Conversely, it can also happen that one rule is
applicable only after another rule has been applied. Both types of relationships between
rules are useful to gain insights about the stable models of a given program and to guide
the computation of stable models.

We are interested in two types of dependencies, which we call reliances to avoid
confusion with existing notions: negative reliance (the application of a rule may inhibit
the application of another rule) and positive reliance (the application of a rule may
enable the application of another rule). In both cases we ask whether this interaction of
rules can occur during a normal derivation, i.e., when considering some set of (already
derived) facts. We could just consider arbitrary sets of facts here, but we can obtain

stronger results if we restrict attention to fact sets which can actually occur during the
derivation of a stable model. For the next definition, recall that the notation r f and
〈B+

f ,B
−
f 〉 was introduced for well-supported sets in Definition 3.

Definition 6. Given a rule r and finite sets B+ and B−, we say that f follows from
〈B+,B−〉 by r if f ∈ r(F) for every set F ⊆ B with B+ ⊆ F and B−∩F = /0.

Let D ⊆ 2B be a set of sets of facts that are admissible as input. A set F ⊆ B is
derivable from D and P if there is a set F0 ∈D such that F is well-supported for P and
F0, and for all f ∈ F \F0 we have: f ′ ∈ r(F ′) for all f ′ that follow from 〈B+

f ,B
−
f 〉 by r f .

Intuitively, derivable sets are well-supported sets that contain all the facts that must
certainly follow when from the rule applications that establish well-supportedness. The
use of D allows us to consider all sets of facts as admissible inputs (if D = 2B) or to
restrict attention to a single input F0 (if D = {F0}). A common restriction in Datalog
rules is that some “intensional” predicate symbols are not allowed in the input, while in
existential rules one does not allow function symbols in input facts, although (skolem)
functions may occur in derivations. When irrelevant or clear from the context, we speak
of derivable sets without mentioning D and P explicitly.

Definition 7. A rule r2 positively relies on a rule r1, written r1
+−→ r2, if there is a

derivable set of facts F with ⊥ /∈ F such that there is a fact f2 ∈ F with r f2 = r2, and a
fact f1 ∈ B+

f2
with r f1 = r1.

A rule r2 negatively relies on a rule r1, written r1
−−→ r2, if there is a derivable set of

facts F, a derivation f2 ∈ r2(F) with body 〈B+
2 ,B

−
2 〉, and a derivation f1 ∈ r1(F)∩B−2

with body 〈B+
1 ,B

−
1 〉, such that ⊥ does not follow from 〈B+

1 ,B
−
1 〉 by r1.

In both cases, ⊥ is taken into account to exclude situations where the application of
r1 leads to an inconsistency.

In practice, it may not always be possible to compute +−→ and −−→ exactly. For ex-
ample, it may be difficult to determine if a certain set is derivable (based on a given
choice of D). However, all of our results remain correct when working with larger rela-
tions instead of +−→ and −−→. Therefore, a practical algorithm may overestimate reliances
without putting correctness at risk.

Example 7. A very simple overestimation of reliances on normal logic programs is
related to the classical notion of stratification. Consider logic programming rules r1 and
r2. We write r1 + r2 if a predicate symbol that occurs in the head of r1 occurs in a
non-negated body atom of r2, and r1 − r2 if a head predicate symbol of r1 occurs in a
negated body atom of r2. It is easy to see that +−→⊆ + and −−→⊆ −.

Example 8. A more elaborate notion of reliance was recently developed for existential
rules by the authors [14]. Existential rules are first skolemised, which leads to normal
logic programs where each function symbol occurs in the head of exactly one rule and
in no rule bodies. Functions are not allowed in input fact sets either. In this special case,
one can find all positive and negative reliances by considering only sets of facts F that
contain no function symbols. It has been shown that, for programs that do not use ⊥,
checking r1

+−→ r2 is NP-complete, while r1
−−→ r2 can be checked in polynomial time

[14]. This is an exact computation of the relations of Definition 7 for this specific case,
not an overestimation.

Definition 8. Consider a program P and a (finite or countably infinite) sequence of
disjoint sets P = 〈P1,P2, . . .〉 with

⋃
Pi∈P Pi = P. P is an R-stratification of P if, for all

rules r1 ∈ Pi and r2 ∈ Pj,

– if r1
+−→ r2 then i≤ j;

– if r1
−−→ r2 then i < j.

If P has an R-stratification then it is called R-stratifiable.

It should be noted how reliances interact with unions of rules. Any R-stratification
of P∪{

⋃
P′} gives rise to an R-stratification of P∪P′, while the converse is not true

in general. This is analogous to the relationship of classical stratification (considering
normal rules as unions of their groundings as in Example 4) to local stratification (con-
sidering stratification on the infinitely many ground instances [15]). It also illustrates
that our approach can capture (and extend) both of these ideas.

6 Computing Stable Models of Stratified Rule Sets

We now show that R-stratified abstract programs have at most one stable model, which
can be obtained by deterministic computation. For programs that have a finite stratifi-
cation, this leads to a semi-decision procedure for entailment, provided that the given
abstract rules are computable functions.

Definition 9. Given a stratification P = 〈P1,P2, . . .〉 of P, we define

S0
P(F) := F, Si+1

P (F) := T ∞
Pi+1

(Si
P(F)), S∞

P (F) :=
⋃

Pi∈P
Si

P(F).

For the remainder of this section, let P denote an R-stratified program with R-
stratification P = 〈P1,P2, . . .〉, and let F denote an admissible set of facts, i.e., F ∈ D .
We use the abbreviations Pm

1 :=
⋃m

i=1 Pi, P0
1 := /0, and Si

P := Si
P(F). The main result that

we will show in this section is the following.

Theorem 6. If⊥ /∈ S∞
P then S∞

P is the unique stable model of P and F. Otherwise, P and
F do not have a stable model.

Lemma 1. For every Pj ∈ P and `≥ 0, if ⊥ /∈ T `
Pj
(S j−1

P) then T `
Pj
(S j−1

P) is derivable.

Proof. For any i ≥ 1 and k ≥ 0, we use the abbreviation T k
i := T k

Pi
(Si−1

P). We define a
well-founded partial order ≺ on S∞

P by setting f1 ≺ f2 for facts f1, f2 ∈ S∞
P iff there are

numbers i,k ≥ 0 such that f1 ∈ T k
i+1 and f2 /∈ T k

i+1.
We proceed by induction over the derivation steps, i.e., we assume that T k

i is deriv-
able for all i,k such that i < j, or i = j and k < `. Consider an arbitrary fact f ∈ T `

j . Let
Pi ∈ P and k ≥ 0 be such that f was first derived in T k

i . If k = 0, then i = 1 and f ∈ F
(since all facts in T 0

i for i > 0 do already occur in an earlier iteration T m
i−1 for some

m≥ 1); in this case, f clearly satisfies the conditions of derivability.
If k > 0, then there is a rule r ∈ Pi such that f ∈ r(T k−1

i). Let 〈B+,B−〉 be a body for
this derivation with respect to T k−1

i . We claim that 〈B+,B−〉 is also a body for f ∈ r(T `
j).

Clearly, B+ ⊆ T k−1
i ⊆ T `

j , and thus f̂ ≺ f for every f̂ ∈ B+. Moreover, we show that
B−∩T `

j = /0. By definition, B−∩T k
i = /0. Now suppose for a contradiction that B−∩T `

j 6=
/0. Then there is a rule r′ ∈ Pi′ and a number k′ such that B−∩ r′(T k′

i′) 6= /0, where either
i < i′, or i = i′ and k ≤ k′, and also i′ < j, or i′ = j and k′ < `. By induction hypothesis,
T k′

i′ is derivable. Since ⊥ /∈ T `
j , we also have ⊥ /∈ r′(T k′

i′). Hence r′ −−→ r; together with
i≤ i′ this contradicts the assumed stratification. Hence 〈B+,B−〉 is a body for f ∈ r(T `

j).
This establishes the conditions for well-supportedness of f . The remaining conditions
for derivability are immediate by construction, since r(T k−1

i)⊆ T `
j . ut

Lemma 2. Consider numbers i ≤ j with Pi,Pj ∈ P, and a rule r ∈ Pi. If ⊥ /∈ S j
P then

r(S j
P)⊆ S j

P.

Proof. By Proposition 1, r(Si
P) ⊆ Si

P. Now consider j > i. Suppose for a contradiction
that r(Si

P) 6⊆ S j
P. There is k > i and ` ≥ 0 with T `

k := T `
Pk
(Sk−1

P) such that r(T `
k) ⊆ S j

P
and r(T `+1

k) 6⊆ S j
P. Thus, there is a fact f ∈ r(T `+1

k) \ S j
P. Let 〈B+,B−〉 be a body for

this derivation.We have B+ 6⊆ T `
k . Thus there is a fact f ′ ∈ B+ \T `

k that is derived by
a rule r′ ∈ Pk from T `

k . By Lemma 1, T `+1
k is derivable, where r f ′ = r′. Since ⊥ /∈ S j

P

and T `+1
k ⊆ S j

P, also ⊥ /∈ T `+1
k . Hence r′ +−→ r. Together with i < j this contradicts the

assumed stratification. ut

Proposition 4. If ⊥ /∈ S∞
P then S∞

P is a stable model of P and F.

Proof. For every r ∈ P and every derivation f ∈ r(S∞
P), there is a body 〈B+,B−〉 by

compactness. Since B+ is finite, there is some n ≥ 0 such that B+ ⊆ Sn
P. By Lemma 2,

f ∈ Sn
P. Hence S∞

P is a model of P and F .
For every n ≥ 0, Sn

P is well-supported by Lemma 1. Let ≺n be an according well-
founded order that is a suborder of 〈N,<〉, which exists by Proposition 2. We construct
a suitable order ≺ to show well-supportedness of S∞

P as follows. For every n≥ 1, let Ln
be the set Sn

P \ Sn−1
P , ordered by the well-founded order ≺n (restricted from Sn

P to Ln).
We now define ≺ to be the transitive closure of the following set:

{ f1 ≺ f2 | f1, f2 ∈ Ln, f1 ≺n f2}∪{ f1 ≺ f2 | f1 ∈ Ln, f2 ∈ Lm,n < m}.

This order is well-founded (it can clearly be embedded into the ordinal ω2, since every
≺i can be embedded into ω). If f1, f2 ∈ Sn

P and f1 ≺n f2, then f1 ≺ f2. Therefore,
the bodies used to show well-foundedness of a fact f ∈ Ln can be used to show well-
foundedness of f ∈ S∞

P . ut

The final ingredient to the proof of Theorem 6 is the following lemma. In the
classical case, an analogous result was shown by taking advantage of the Gelfond-
Lifschitz reduct of P [14]. Since this is not available for abstract rules, we need to
take a very different approach, using an induction over the sets of facts in M for which
well-foundedness is established by a rule from stratum Pk or below.

Lemma 3. If M is a stable model of P and F, then S∞
P = M.

Proof (of Theorem 6). If ⊥ /∈ S∞
P then by Proposition 4, S∞

P is a stable model of P and
F . Together with Lemma 3 this implies that S∞

P is the unique stable model of P and F .
If ⊥ ∈ S∞

P suppose for a contradiction that M is a stable model of P and F . Then by
Lemma 3, S∞

P = M, which contradicts the fact that ⊥ /∈M. ut

7 Stratifying Programs with Equality

In this section, we apply the previous results to show how a normal logic program
with equality may be stratified. Classical logic programming engines support syntactic
(term) equality that is easy to handle: it may only occur in the body of a rule. In contrast,
equality generating dependencies in databases are rules that may infer new equalities
between domain elements [1]. Inferred equality also plays a major role in ontology lan-
guages, which can be processed with answer set programming engines [6]. Fortunately,
the special characteristics of equality can be fully expressed by logic programming
rules, using the following well-known equality theory:

X ≈ X ← (4)
X ≈ Y ← Y ≈ X (5)
X ≈ Z← X ≈ Y,Y ≈ Z (6)

p(X1, . . . ,Y, . . . ,Xn)← X ≈ Y, p(X1, . . . ,X , . . . ,Xn) (7)

where a rule of the form (7) is required for every n-ary predicate p (in a given program
P), and every position of X within that predicate. We call this logic program P≈. While
this approach allows logic programs to support equality without defining a special se-
mantics, it has severe effects on stratification.

Example 9. Consider the program P that consists of the following rules

human(X)← biped(X),not bird(X) (8)
Y ≈ Z← human(X),birthplace(X ,Y),birthplace(X ,Z) (9)

together with a suitable equality theory P≈ for the predicates used therein. Rule r(9)
states that each human has at most one birthplace. Let rbird denote the version of rule
(7) in P≈ for predicate bird. Now P cannot be R-stratified: if all set of ground facts are
allowed as input, we have r(8)

+−→ r(9)
+−→ rbird

−−→ r(8).

The previous example illustrates the fact that the equality theory leads to almost ar-
bitrary reliances between otherwise unrelated rules, thus preventing stratification. This
potential interaction is hardly desirable in this case, since no bird can ever be a birth-
place. In [14] the authors have proposed the use of constraints to reduce the amount of
reliances. We can obtain a similar effect using abstract rules.

Example 10. Consider the constraint r⊥ : ⊥ ← bird(X),birthplace(Y,X) and the pro-
gram P of Example 9. Define the program P′ := {r⊥ ◦ r | r ∈ P}, which immediately
applies the constraint after each rule application. Instead of r(9)

+−→ rbird, we now find
(r⊥ ◦ r(9)) 6

+−→ (r⊥ ◦ rbird) since ⊥ is derived in all cases where the reliance could oc-
cur. Unfortunately, this approach still fails to make P′ R-stratifiable, since we still find
(r⊥ ◦ r(8))

+−→ (r⊥ ◦ r(9))
+−→ (r⊥ ◦ r(5))

+−→ (r⊥ ◦ rbird)
−−→ (r⊥ ◦ r(8)).

The symmetry rule (5) is used in the previous example to ensure that every reliance
can be shown without violating the constraint. This is unfortunate since the program
has only at most one unique stable model: in all situations where the chain of reliances
of the example is mirrored by an actual chain of rule applications, the constraint r⊥
must be violated. This problem can be overcome by incorporating equality reasoning
into each rule application as follows.

Example 11. Let P≈ denote the equality theory for rules (8) and (9). Define a rule r̂ :=
r⊥ ◦(

⋃
P≈)∞, and rules r1 := r̂◦r(8) and r2 := r̂◦r(9). Note that these are indeed abstract

rules by Theorem 3. Admissible input sets D are defined to be all models of r̂. Then the
program {r1,r2} is R-stratified, and the only reliance is r1

+−→ r2. By Theorems 4 and 5,
as well as Proposition 3, the stable models of {r1,r2} are identical to the stable models
of P′ from Example 10. By Theorem 6, P′ thus has a unique stable model whenever it
is satisfiable.

The previous example outlines an interesting general approach to analyse the effects
of equality. More important, however, is the fact that we have defined this extension
and verified its key properties in a few lines. In contrast, the extension with constraints
sketched in Example 10 originally required several pages of correctness proofs [14]. A
major goal of our abstract framework is to extract the common ideas of such proofs,
to provide an easy-to-use toolbox for establishing similar properties for many different
scenarios and kinds of rules.

8 Conclusions

In this work, we proposed an abstract framework for studying logic programs, where
rules are simply viewed as functions over an abstract set of derivable facts. We have
shown that recent results on stratification and stable models can be lifted to this general
case, and how these results can be instantiated to obtain a new approach for dealing with
equality in logic programs. This result also takes advantage of a variety of semantic-
preserving algebraic operations that we have introduced to construct abstract rules.

The purpose of this work is to demonstrate how abstract rules can serve as a power-
ful framework for establishing universal results about rule-based reasoning, which can
readily be instantiated in concrete cases. There are numerous directions into which this
research can be extended next. An obvious step is to define abstract notions of other se-
mantics, such as the well-founded semantics, and to lift other relevant conditions, such
as order consistency [8] and acyclicity [9,4,11]. In each case, new concrete applications
of these results should be established, thus bridging gaps between different areas where
rule languages are considered. Finally, even our basic notion of abstract rule may still
be extended further, e.g., by allowing rules to retract facts. Moreover, our approach does
not cover disjunctive rules, although these can often be simulated using nonmonotonic
negation by rewriting p→ q1∨q2 as p,not q1→ q2 and p,not q2→ q1 [5].

Besides extensions of the abstract rules framework, it is also worthwhile to explore
further application areas for these notions. All examples given herein are based on nor-
mal logic programs. Our treatment of equality shows that this already allows interesting
applications, but it would also be interesting to consider different notions of rules. Pos-
sible candidates are rules that support datatype reasoning and data-related constraints.

Acknowledgements This work was supported by the Royal Society, the Seventh Frame-
work Program (FP7) of the European Commission under Grant Agreement 318338,
‘Optique’, and the EPSRC projects ExODA, Score! and MaSI3.

References

1. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley (1994)
2. Baget, J.F.: Improving the forward chaining algorithm for conceptual graphs rules. In:

Dubois, D., Welty, C.A., Williams, M.A. (eds.) Proc. 9th Int. Conf. on Principles of Knowl-
edge Representation and Reasoning (KR’04). pp. 407–414. AAAI Press (2004)

3. Baget, J.F., Leclère, M., Mugnier, M.L., Salvat, E.: On rules with existential variables: Walk-
ing the decidability line. Artificial Intelligence 175(9–10), 1620–1654 (2011)

4. Deutsch, A., Nash, A., Remmel, J.B.: The chase revisited. In: Lenzerini, M., Lembo, D.
(eds.) Proc. 27th Symposium on Principles of Database Systems (PODS’08). pp. 149–158.
ACM (2008)

5. Eiter, T., Fink, M., Tompits, H., Woltran, S.: On eliminating disjunctions in stable logic
programming. In: Dubois, D., Welty, C.A., Williams, M.A. (eds.) Proc. 9th Int. Conf. on
Principles of Knowledge Representation and Reasoning (KR’04). pp. 447–458. AAAI Press
(2004)

6. Eiter, T., Krennwallner, T., Schneider, P., Xiao, G.: Uniform evaluation of nonmonotonic
DL-programs. In: Lukasiewicz, T., Sali, A. (eds.) Proc. 7th Int. Symposium on Foundations
of Information and Knowledge Systems (FoIKS’12). LNCS, vol. 7153, pp. 1–22. Springer
(2012)

7. Fages, F.: A new fixpoint semantics for general logic programs compared with the well-
founded and the stable model semantics. New Generation Comput. 9(3/4), 425–444 (1991)

8. Fages, F.: Consistency of Clark’s completion and existence of stable models. Meth. of Logic
in CS 1(1), 51–60 (1994)

9. Fagin, R., Kolaitis, P.G., Miller, R.J., Popa, L.: Data exchange: semantics and query answer-
ing. Theoretical Computer Science 336(1), 89–124 (2005)

10. Krötzsch, M., Magka, D., Horrocks, I.: Concrete results on abstract rules. Tech. rep., Univer-
sity of Oxford (2013), available from http://korrekt.org/page/Publications

11. Lierler, Y., Lifschitz, V.: One more decidable class of finitely ground programs. In: Hill,
P.M., Warren, D.S. (eds.) Proc. 25th Int. Conf. on Logic Programming (ICLP’09). LNCS,
vol. 5649, pp. 489–493. Springer (2009)

12. Lifschitz, V., Pearce, D., Valverde, A.: Strongly equivalent logic programs. ACM Trans.
Comput. Logic 2(4), 526–541 (2001)

13. Lloyd, J.W.: Foundations of Logic Programming. Springer (1988)
14. Magka, D., Krötzsch, M., Horrocks, I.: Computing stable models for nonmonotonic ex-

istential rules. In: Proc. 23rd Int. Joint Conf. on Artificial Intelligence (IJCAI’13). AAAI
Press/IJCAI (2013), to appear

15. Przymusinski, T.C.: On the declarative and procedural semantics of logic programs. J. Au-
tom. Reasoning 5(2), 167–205 (1989)

16. Turner, H.: Strong equivalence made easy: nested expressions and weight constraints. TPLP
3(4–5), 609–622 (2003)

http://korrekt.org/page/Publications

	Concrete Results on Abstract Rules
	Introduction
	Abstract Rules and Models
	Constructing Abstract Rules
	Strong Equivalence of Abstract Programs
	Reliances and Stratifications
	Computing Stable Models of Stratified Rule Sets
	Stratifying Programs with Equality
	Conclusions

