An Ideal of Software Engineering

C. A. R. Hoare

September 1, 1995

In 1980, the well-known electronic instrumentation company Tek-
tronix, suddenly woke up to the fact that they were a software Com-
pany. More than half of the professional engineers they employed were
now programmers. And yet all their middle and senior management
were electronics engineers, risen from the ranks, with no understand-

_ ing of software or how to manage or control it. They took immediate

e -actlon sending the manager iwho could soonest and easiest be spaxed'. '

to a one—week software engmeermg tutorial.

“ 7Y am afraid it was 1ot cnough Soon after the Company (%%«,Idedh
that they could spare the manager altogether and so began a period
of relative decline in fortune, from which now they have emerged. "This
story has a converse.

A Company like IBM, which long ago realised that it was a soft-
ware company and took appropriate measures, now finds new life as
an aircraft company. I believe the prime contractor for the supply of
helicopters to the British Royal Navy is IBM.

These are two examples of what I call the software revolution. The
same revolution has rapidly overtaken the traditional telecommunica-
tions industries. With a certain element of exaggeration, you could say
that everything that this industry regards as its own preserve, all that
vast network of hardware - handsets, displays, wires, fibres, switches,
links, antennae, satellites - everything except the physical holes in the
ground and the towers in the air - is controlled by software or soon
will be; they are just peripheral equipment, as it were, to the comput-

ers which run the programs. Software is the magic ingredient which

1

realises the growing potential of recent and predicted advances in the
hardware. It is softw_are that adds value, that assembles the components
into saleable systems, products and services. Hardware components will
be manufactured in increasing volumes and supplied at reducing cost to
all the players in the communications marketplace opened up by dereg-
ulation. It is the software that will determine cofnpetitive advantage,
and distinguish the winners from the losers.

So what is this discipline of Software Engineering? How does it
compare and differ from other Engineering disciplines? And how far can
it be regarded as mature? These are the questions that I shall address
this afternoon; and I will end with an appeal to the communications
industries and to higher education to collaborate even more closely in
seeking the answers.

The most strikingly visible difference between software and other en-
gineering products is the almost total invisibility of software. There is
absolutely nothing photogenic about software, and absolutely no joy in
building scale models of its operation. And even less can it be touched,
felt, heard, smelled or tasted. It seems to be nothing more than the
abstract disembodiment of pure complexity. As a corollary, software is
a product where the cost and time required for manufacture and distri-
bution are close to absolute zero. All the expense and delay is in design
and development - and later in marketing and sales. Historically, this
has made software a very difficult area in which to gain recognition for
sound research in Universities, or in which to exercise sound planning,
management, and control in Industry.

But of course the cruder parameters of software can readily be mea-
sured. Over the last ten years, such measurements often show that
the length of computer programs embodied in a typical product have
grown, perhaps by a factor of ten; that they have cost ten times as much
to develop, that they are proportionately more likely to contain errors
detected in service, and each error could potentially be ten times fnore
damaging in its effect. Hardware has in the same time made equally

rapid progress but fortunately in the opposite direction. It is now ten

times smaller, faster, cheaper, and more reliable, I really shouldn’t have
embarked on this comparison, so dreadfully unfavourable and unfair to
software engineers.

Let’s chaﬁge the subject quickly, and concentrate on the much more
important similarities between software and other branches of engineer-
ing. Firstly we share the same goals; they were nicely defined for Civil
Engineering by Thomas Tredgold in 1828 - "the art of directing the
great sources of power in Nature for the use and convenience of man”.
Secondly, the success of any engineering project requires full attention
to the implications of marketing, commerce, accountancy, management,
and even politics. But the single feature that differentiates all of engi-
neering and science from all these other important practical concerns is
the explicit, crucial and pervasive use of the techniques and notations

of mathematics. Each branch of science seeks mathematical theories, or

.. - models of selected aspects of physical reality. The scientist uses math—

s, . ematics to predict from the theory its observable consequences, which

3. -are then checked by careful experiment. The engineer on the other hand L

(-5
T

uses a validated scientific theory to check the performance parameters B
of a design before it is put into production. That for example, is why
our buildings and bridges no longer blow down very often.

In a mature engineering discipline the direction of the mathematical
calculations is reversed. Start with a mathematical model of the cus-
tomer’s requirements. Decide the general strategy and structure of the
solution; and then with the aid of calculation derive the content and
detail of the design, including optimisation of relevant parameters. The
design now needs no further test or check - it is correct by construction.
This reversal from bottom-up predictive mathematics to top-down de-
sign calculations is the goal of all research into engineering method, in
all branches of engineering, and especially software engineering.

But this simple story has ignored the incredible complexity of the
symbolic and numerical calculations required by modern science and
engineering. To limit this complexity, science presents not just a single

model of reality, but rather a whole hierarchy of models, dealing with

phenomena at differing scales, at differing degrees of granularity, and
at differing levels of abstraction. For example, starting at the level of

chemistry, physics offers the hierarchy
¢ molecular dynamics,
o atomic theory,
¢ clementary particles,
e chromodynamics.

Each level has its own auftonomous concepts and its own model,
which can be understood and used independently of the others. It is
the general goal of the pure scientist to secure the links between the
levels, defining the concepts at each level in terms of the previous one,
and then proving its axioms as theorems in the previous theory.

A similar hierarchy of levels of abstraction is equally necessary in

engineering. For example in design of computer hardware we separate
@ instruction set
e register path
¢ microcode and control
¢ combinational design
e switch level design
» circuit electronics.

Here again, at each level there is a different conceptual framework, a
different notation, and a different calculus of design. A complete design
at each level of abstraction serves as a specification for the design at
the next lower level. It is the particular goal of the practising engineer
to ensure that a specification at each level is correctly and efficiently
implemented by the selected design at the next lower level,

Communications engineers engaged in the design of protocols are

familiar with the famous seven levels of the international standard

o Application
o Presentation
¢ Session

o Network

e Transport

¢ Data link

o Physical level.

The general principle of the hierarchy has been very successful. At.
the higizer levels, there has been some delay in finding and agreeing
on the appropriate abstract concepts for formulating the standard; but
this kind of conceptual engineering is the necessary condition for break-
through in any bw,nch of smence or indeed any kind of mtellectual

endeavour. Just saying that is never gomg to make the dlscovery easy

- . to make, however simple it may seem afterwards. At the lower levels

of the protocol hierarchy, maintenance of the design structure through—
out the implementation can cause problems of efficiency; but these are
solved with the aid of correctness-preserving transformations, which
combine the benefits of structured specification and design with highly
optimised implementation. Software engineers can learn a lot from this
transformational approach to specification and design.

Software engineers also have a hierarchy based on scale and granu-
larity. They talk of

¢ systems

modules

classes

objects or processes

functions and subroutines

straight line code

e individual instructions.

The mathematical theories which are useful for design calculations at
each level have been to a large extent developed by software engineering
research, and the transitions at the lower levels have been successfully
formalised and even automated. The results of this research are being
gradually assimilated into industrial practice. Progress is slowed by a
general antipathy to mathematics among software engineers - but this
feeling is yet another characteristic which is shared with other branches
of engineering, and indeed with most of management, and with the
general population, - '

Mathematics itself provides an outstanding example of the control of ,
complexity by structure and abstraction. Its branches can be arranged
in a hierarchy like those of physics - topology abstracts from analysis;
analysis provides the basis for calculus; and calculus can be used by
engineers who understand nothing of the more abstract foundations.
Even within a siﬂgle branch of mathematics, a lemma can be safely
used without sﬁud’ying the complexity of its proof, a theorem abstracts
from the complexity of its lemmas, and a theory from the collection of
its separate theorems. '

Similar structures are observable in good programming practice,
! where larger programs use smaller ones as subroutines, or subobjects,
or subprocesses. But this analogy is good only if the formal statement
of the function and purpose of each subroutine is as simple and com-
plete as that of a mathematical theorem, and an order of magnitude
simpler than the code which implements it. Furthermore, the reliabil-
ity of the code must also approach that of a mathematical theorem.
A large system constructed from even slightly unreliable components
can rapidly collapse, either before or after delivery. Reliability is the
very essence of engineering, and it is achieved by explicit appeal to the
concepts, methods, abstractions and structures of mathematics.

But, ironically, it is not to the traditional applied branches of con-
tinuous mathematics that the software engineer turns for guidance, but

rather to the traditionally pure branches of discrete mathematics, - set

theory, algebra, and even category theory. The reason is that software
engineering deals very largely with discrete phenomena, transitions,
events, values and structures. At the lowest level we have just the
two discrete Boolean values, zero and one. In a large program if just
one of these digits is changed, even only for just one millisecond, the
consequences for the whole program, indeed the whole system, are in
practice quite unpredictable, and in principle potentially disastrous.

This means that the software engineer cannot rely on smoothness
or continuity in the control of tolerances or error. Numerical approxi-
mation is simply not available as a technique to simplify calculations.
Since there is no appropriate metric, worst case analysis and worst case
testing are just not available. For the same reason there is no freedom
to get it nearly right; even if there were, there is no way that this would
simplify the task of design and implementation. Approximation, even
to the extent of order-of-magnitude calculation, is the stock- in-trade
of the engineer, the most important way of maintaining intellectual
-, control at the early stages of design and throughout the later imple- -
- mentation. In the discrete branches of engineering, for these purposes
we have to rely almost wholly on structure and abstraction.

The gap between continuous and discrete engineering is one that
pufs nearly all modern telecommunications and electronic hardware
design on the same side as software engineering - certainly all of network
design down to the individual switch, and all of VLSI design, down to
the individual logic gate. To cover this range of disciplines perhaps I
should use a more neutral term like Discrete Systems Engineering, or
a more fashionable one like Information Engineering. Under whatever
title, I believe that we will see by the year 2000, a strong convergence in
the practice of engineering of software, hardware and communications.
The communications industries will be the first to realise and benefit
by this convergence.

This convergence of communications, hardware, and software en-
gineering is simply and elegantly illustrated in mathematical theories

known as process algebras, developed over the last twenty years by basic

research in Universities. The theory combines the concepts of conven-
tional sequential programming with the kind of concurrency which is
embodied automatically in every combination of hardware components,
and the kind of communication which occurs almost naturally whenever
hardware components are connected by wires. The theory has already
served as the basis of a draft international standard (LOTOS) for the
definition of protocols, for the design of a programming language (OC-
CAM), and a microprocessor (the transputer), and the design of several
silicon compilation languages. But the mathematical theory is much
more general; with slight variations, it can be applied on every scale
and at every level of abstraction and every level of granularity, from
the customer’s view of the services required of the system as a whole,
through the design of the major components of the network and the in-
terfaces between them, down to their implementation on a collection of
processors and special purpose application specific hardware, interact-
ing with each other at any distance. It is this appeal to abstraction that
permits theories tested in the Laboratory to be cautiously scaled up for
industrial application. The uniformity of the mathematical foundation
permits all stages of the design and implementation to be related by
calculation and proof. Many of the stages of adapté.tion and optimisa-
tion can be codified and carried out (or at least checked) by automatic
transformation systems. If is this that promises not only an increase
in the quality and reliability of the product, but also a reduction in the
time to market.

It is experience with this kind of practically applicable theory that
leads me to predict that discrete systems engineering is making rapid
progress towards the status of a mature engineering discipline and
maybe will reach it by the year 2000. A fully mature discipline will

have the following characteristics.
e It puts the customer first.
¢ It codifies corporate strategy.

¢ It puts management in control.

e It magnifies human intellect.

e It builds its own tools.

¢ It is the language for professionals.
e [t is transmitted by education.

A mature engineering discipline puts the customer first. It starts
with a scientific investigation of the actual characteristics and behaviour
of the customer population, not just as individuals but as members of
their societies; in the workplace, school or home. It takes full advan-
tage of the methods and results of the human sciences, - physiology,
psychology, linguistics, sociology. It analyses stated requirements and
stated assumptions until a clear picture emerges of some desirable fu-
ture product or development that .will satisfy the true requirements,
. which have often been left unstated. The mlsma.tch between perceived
and actual quulrement is one whmh must be overcormie by good mar-
ketlng Meanwhlle, the engmeel must attempt ,as soon as and as far
as poss1ble, to construct a faxthful mathematlcal model of both the nu-
merical and discrete plopertles of the pro;ected and desired 1nteract10ns
between the commumty of customers and the prOJected product or ser-
vice. This is the first and most important interface to define; it is the
basis of all subsequent engineering design, and any lapse of judgment
here could lead to a product that is undeliverable or unusable. The
pace of change is no longer driven solely by technology: in software
especially, the technology must be driven by the customer.

A mature engineering discipline formulates strategic policy. No large
enterprise can afford to design and deliver a single product at a time,
no matter how advanced the technology or how timely its introduction
to the market. The real challenge is to design an architecture for a
family of products, covering not one but a range of markets, with not
just one product in each market but a series of complementary, sup-
plementary, enhanced and eventually replacement products, stretching
into the foreseeable future. The strategy must be presentable in ab-

stract terms at Board level, so that it can be correlated with financial

management, marketing, resource planning, and ultimately with the
image that the enterprise wishes to have of itself. The engineering
discipline must provide the appropriate abstractions and theories to
define the structure and interfaces of the entire family long before any
of the detailed design begins; and this must be backed by enterprise-
wide engineering standards which give assurance that the strategy can
be implemented as planned. The days of innovation as adventure are
over. In the framework of strategic policy, innovation is routine.

A mature engineering putsl management in control. Each level and
branch of management can understand, within a self-contained intellec-
tual framework, all the objectives and activities of subordinate levels,
and can take confident responsibility for the way in which these con-
tribute to the goals of superior levels. The confidence is based upon
abstract but precise formalisation both of the vertical and of the hori-
~ zontal interfaces throughout the management hierarchy. The confidence

is justified by mathematical calculations, which establish in advance of

- -implementation that if each subordinate goal is met, the superior goal

‘is guaranteed. Complexity is controlled by correlating levels of man-
agement with levels of abstraction, so that problems and delays can no
longer be hidden under a morass of technical detail. In spite of the
intangibility of software, signs of trouble are immediately visible, and
if change is required in the design or in the interfaces, the manager
can explore and report all the wider consequences of the change before
authorising it. As a result, there are few last-minute surprises. When
the components are delivered, they slot together without prolonged in-
tegration testing, they can be delivered immediately with minimal risk
of feature interactions discovered in service. ”Design right first time”
is no longer a slogan but has become a habit.

A mature engineering discipline releases the full potential of the
human intellect. Because specifications are expressed at the highest
possible level of abstraction, they give the widest possible scope for
exercise in design skill, ingenuity and inventiveness of the human en-

gineer. The mathematical theory defines the boundaries of the design

10

space, and provides the method by which it may be thoroughly ex-
plored. As new ideas emerge, they can be crystallised with the aid of
mathematical formulae, which can be objectively discussed, evaluated,
justified or even admired. Finally when the design is frozen, it can be
made sufficiently precise for reliable implementation by teams of less
experienced or inventive engineérs or technicians.

A mature engineering discipline constructs its own design tools. The
validity of the methods which transform specification to design and de-
sign to implementation is assured by their basis on the well-established
scientific theories which underlie the discipline. Only parts of the tool
are fully automatic; at all crucial stages, guidance is needed from the
skilled and experienced engineer, who has the understanding and in-
ventive talents to direct the design towards a cost-effective solution.
The only contribution of the tool will be to calculate of few parame-
ters, and to organise the mass of associated detail in a manner which
ensures correctness by construction. In future, the programming of in-
dividual lines of C-code will seem as archaic as laying out individual
transistors and wires on a silicon chip. But even when a tool is really
successful, the general impression should be that it only does the easy
bits.

A mature engineering discipline provides a language for communi-
cation ‘among professionals specialising in its various branches. The
underlying mathematical theory not only explains their common foun-
dations, but explains why and for what purposes it is necessary to
differentiate them. There is no longer any need for clamorous conflict
between the various branches of software engineering, each claiming ex-
clusive merit for a single computational paradigm: the functional pro-
grammers, the logic programmers, the object-oriented programmers,
and the no- nonsense hewers of hardware or hackers of C. Any large
system will have components constructed from a variety of technolo-
gies; and the interfaces between the technologies, which is where most
of the problems of engineering arise, are controlled by the abstractions

of the underlying general theory.

11

Finally, a mature engineering discipline is transmitted to future geﬁ-
erations of engineers by further education. Its theoretical foundations,
their abstraction and elegance, can be taught as a free-standing math-
ematical discipline at University or even at school. Its methods and
principles can be illustrated on a small scale by student demonstra-
tions, experiments and exercises. By repeated exposure at many dif-
ferent levels to the transition between abstraction of specification and
details of implementation, the student comes to understand how the
techniques generalise to an industrial scale of application. When this
education has been complemented by a period of industrial experience,
the educated engineer is intellectuaily equippéd to rise through the
management hierarchy to the very highest levels.

This brief and idealised account of engineering education contrasts
strongly with the training on the job, which was the only training avail-
. able when I entered the profession in 1960, and is still the norm today.
We learnt programming in a wholly operational fashion, by $rying to un-
. derstand the behaviour of the computer which is executing the program.
Execution traces are the only means we had of understanding and re-
moving errors. Errors were regarded as inevitable, because we had no
technology to avoid them, even in principle. We hardly recognised the
i)ossibility that a complex program might have a simple specification,
of far greater benefit to the customer than the implementor. Lengthy
and total immersion in operational detail actually inhibited progress
towards understanding of the necessary simplifying abstractions.

When it became necessary to learn a new programming language
or use a new operating system, training was based on the voluminous
manuals which accompany the software. Because there was no com-
mon culture or education in the understanding of abstraction, these
manuals too have to be based on the lowest level of operational detail,
Their volume, complexity, and structural deficiencies absorb all the in-
tellectual energy of the student; and yet they were so incomplete or
even inconsistent in detail that, when used in earnest, the only way of

finding out what the software will actually do is by experimental trial

12

and error. The tool which should be helping has become part of the
problem. -

The absence or even conscious avoidance of mathematical abstrac-
tion in programming education explains why many programmers have
often been regarded more like craftsmen or technicians than engineers.
They are wonderful people, with experience and skills greatly to be
admired and valued. But they work best in isolation on self-contained
tasks. They have no language to discuss, explain and justify their work
to their colleagues and superiors. Documentation is their bane. They
do not read the technical literature to keep abreast of their field. On
promotion, they find it difficult to establish or maintain intellectual
control of the work of their teams. That is why it is rare for the best
programmers to rise fo the higher levels of management. Yet it is not
conducive to the health of the enterprise when the worse ones do.

The transition between a craft and a mature engineering discipline is
always fraught with confusion, difficulty, animosity and charlatanism;
and the intangibility of software has certainly prolonged the agony.
Most of industry and commerce in Britain is prepared to wait for magic
solutions to emerge, and then to buy them in from across the Atlantic.
But the more far-sighted enterprises can see the competitive advantage
to be obtained by rapid transition to an engineering attitude towards
software. Among them, the telecommunications industries, for mo-
tives which have been explained at this meeting, are playing a leading
role. It is essential to them to raise the educational level of their soft-
ware engineers, by in-service courses for experienced programmers and
their managers, by promoting the quality and relevance of the subject
in higher education, by promoting research at the interfaces between
~ technologies; and by attracting the very best of the graduate popula-
tion into their teams and eventually into their management. Divergence
of culture between traditional communications engineers and the new
software engineers educated at leading Universities must not be allowed
to hinder the flow.

13

