Tony Hoare

From: Tony Hoare

Sent: 02 July 2000 19:11
To: Tony Hoare
ACCEPTANCE SPEECH

Advanced Technology

Tony Hoare

]

Your Imperial Highnesses, Ladies and Gentlemen:

It is a great honour for me in the year 2000 to receive the Kyoto prize in Advanced Technology. Tam proud
to be numbered among the outstanding thinkers, scientists and artists who have received a similar honour
from the Inamori Foundation in the century now brought to a close. In its choice of prize-winners, the
Foundation continues to show its confidence in Computer Science, not only as an intellectually challenging
branch of human endeavour, but as a contributor to its noble ideals of the betterment of the whole of
mankind. It is this that serves as a strong encouragement to my friends, students and colleagues in
extending the boundaries of our understanding of programming theory, and also to the larger numbers of
members and future entrants to professional practice in programming.

For me myself, this prize is a wonderful extra. I have already been fully rewarded by a working lifetime of
excitement and achievement, spanning almost the whole of the computer era. My chosen subject of
programming has interesting roots in the thinking of philosophers and logicians throughout the ages. But
programming as we know it today was brought into existence by the invention and development of the
stored-program digital computer. In the forty years that I have spent working both in University and in
Industry, T have seen a doubling every two years of the capacity and power of computer hardware, and a
similar reduction in cost. In forty years, that multiplies up to an overall improvement of a million fold, and
there is still no end in sight. Such continuous improvement throws up a succession of new applications, new
challenges, and new opportunities for the programmer. And yet, because my research interests and
experience lie in the scientific principles of programming, and because these are inspired by the engineering
ideals of integrity of structure and accuracy of detail, my early work has retained much of its relevance,
while expanding in its range enormously, and enjoying vastly increased potential for application.

The growth in application of computers is even more amazing and even more important. In the beginning,
most of the computer power of the world was devoted to military applications - nuclear weapon simulation,
decryption of codes, battlefield logistics, and early warning of missile attack. Gradually civilian computers
took over, and became indispensable tools for science, industry, commerce, government and
communication. Now at last computer power is primarily in the hands of individuals, who have come to use
the world wide web as their preferred medium of personal, cultural, intellectual and social interchange.
More than just by the money to be made by electronic commerce, I am impressed by the generosity and
altruism of those who freely populate the web-servers with useful and reliable information. Even more
generous are those who freely offer their own expert advice and assistance by electronic correspondence
with individual enquirers whom they will never meet. Ican only applaud current initiatives to make access
to the web available to people in the poorer parts of the world, so that the benefits of this altruism can be
extended to the whole of mankind, enabling all individuals to participate and contribute in the exchange of
ideas, information, education, discovery, and artistic creation. In this way, I hope that in the present century
we will see how computing has contributed to the eternal and universal ideals which inspire the founder and
the awarders of the Kyoto prize, and all who receive it.

Assertions. Tony Hoare’s Laureate Lecture for the Workshop, November 12, 2000.

Summary: an assertion is a Boolean formula written in the text of a program, which the programmer
asserts will always be true when that part of the program is executed. It specifies an internal interface
between all of the program that comes before it and all that follows it. In the software industry today,
assertions are conditionally compiled in test runs of a program, and help in the detection -and diagnosis
of errors. Alan Turing first proposed assertions as a means of checking a large routine. They were
rediscovered independently by Naur as generalised snapshots, and by Floyd, who used them to assign
meanings to programs. Floyd suggested that if the internal assertions were strong enough, they would
constitute a formal proof of the correctness of a complete program. In this lecture, I will summarise
the subsequent development of the idea, and describe some of its practical impact.

In the early seventies, I developed an axiomatic approach for proofs of programs, covering all the
main constructions of a high-level programming language — iterations, local variables, procedures and
parameters, recursion, and even jumps. Following Dijkstra, I always took a top-down view of the task
of software construction, with assertions formulated as part of program specification, and with proofs
conducted as part of program design. Ihoped that this research would help to reduce the high costs of
programming error, and the high risks of using computers in critical applications. But the real
attraction for me was that the axioms underlying program proofs would provide an objective and
scientific test of the quality of programming language design: a language described by a small
collection of obvious rules, easily applied, would be better than one that required many rules with
complex side-conditions. In collaboration with Wirth, we tried out the idea on the Pascal language;
and later it inspired the design of Euclid by a team in Xerox PARC.

In scaling proof methods from small sequential algorithms to large software systems, it was necessary
to extend the power of the assertion language. The Z specification language was developed by Abrial
on the basis of Zermelo’s set theory, which Frankel showed to be essentially adequate for expression
of all concepts known to mathematics. It should therefore be adequate to express all the abstractions
useful to computing, and prove the correctness of their representations. Dijkstra dealt with non-
determinism, by imagining the choice to be exercised maliciously by a demon. Jones and his fellow
designers of VDM included initial as well as final values of program variables. All these ideas were
successfully tested by IBM in specifying the internal interfaces of a large system, CICS.

The next challenge was to extend the technology to concurrent programs. Milner suggested that their
meaning could be specified by the collection of tests which they passed. Following Popper’s criterion
of falsifiability, Roscoe and Brookes concentrated on failures of a test, and constructed a non-
deterministic model of concurrency, following the paradigm of Communicating Sequential Processes.
This was applied industrially by the British start-up microchip Company Inmos in the design of the
occam programming language, and the architecture of the transputer which implemented it. Finally,
Hehner showed how Roscoe’s results could be coded directly in the language of assertions, so that any
kind of program, concurrent as well as sequential, could be interpreted as the strongest assertion that
describes all its possible behaviours.

This insight has inspired all my subsequent research. With the aid of He Jifeng, it has been applied to
wider varieties of programming paradigm and language, including hardware and software, parallel and
sequential, declarative and procedural. Ignoring radical differences in syntax, and abstracting from
implementation technology, very similar definitions and mathematical laws apply in many different
paradigms; perhaps Computing Science has achieved a level of maturity to undertake the challenge
that drives the progress of many other sciences, namely unification of theories of programming.

Tony Hoare’s Laureate Lecture for the Workshop, November 12, 2000.
Title: Assertions.

Summary: an assertion is a Boolean formula written in the text of a program, which the
programmer asserts will always be true when that part of the program is executed. It

specifies an internal interface between all of the program that comes before it and all that

follows. Turing first proposed assertions as a means of checking a large routine. They were
rediscovered independently by Naur (as generalised snapshots) and by Floyd, who used them :
to assign meanings to programs. Floyd suggested that if the assertions were strong enough, it
would be possible to give a formal proof of the correctness of the program. In this lecture, I

will summarise the results of subsequent development of the idea, and describe some of their
impact in practice.

In my early research papers, I developed a formal axiomatic approach for proofs of programs
that use all the main constructions of a high-level programming language — iterations, local
variables, procedures and parameters, recursion, and even jumps. Following Dijkstra, T
always took a top-down view of the task of software construction, with assertions formulated
as part of program specification, and with proofs conducted as part of program design. 1
hoped that this research would help to reduce the high costs of programming error, and the
high risks of using computers in critical applications. But the real attraction for me was that
the axioms underlying program proofs would provide an objective and scientific test of the
quality of programming language design: a language described by a small collection of
obvious rules, easily applied, would be better than one that required many rules with complex
side-conditions. These ideals were pursued in the design of the Pascal language, and later
Euclid. :

In attempting to scale the proof methods from small sequential algorithms to large software
systems, it was nécessary to extend the power of the assertion language. VDM showed how
to include initial as well as final values of program variables; and this idea was successfully
tested by IBM on the internal interfaces of a large system, CICS. Dijkstra showed how to
deal with non-determinism, by imagining the choice to be exercised maliciously by a demon.
Milner suggested that the meaning of a concurrent program could be specified by the '
collection of tests that could be made on it. Following Popper’s criterion of fﬂlgi,ﬁgbﬂity,
Roscoe and Brookes concentrated on failures of a test, and constructed a formal non-
deterministic model of concurrency, following the paradigm of Communicating Sequential
Processes. This was applied industrially by Tnmos in the design of the occam programming
language, ‘and the architecture of the transputer which implemented it. Finally, Hehner
showed how Roscoe’s results could be coded directly in the language of assertions, so that
any kind of program could be interpreted as the strongest assertion that describes alt its -
possihle behaviours. ' '

This insight has inspired all my subsequent research. With the constant aid of He Jifeng, I
have tried to apply it to wider varigties of programming paradigm and language, including
both hardware and software, paraﬁél and sequential, declarative and procedural. On ignoring
radical differences in syntax and in implementation technology, it appears that very similar
definitions and mathematical laws apply in many different paradigms; this has led us to
suggest that Computing Science has achieved such a level of maturity that it makes sense to
formulate the same challenge that drives the progress of many other sciences, and to embark
upon the process of unifying theories of programming,

Date of Birth:

Education:

1948-1952
1952-1956

1956-1958
1958-1959
1994-1996

Employment:

1960-1968

1960-1962
1968

1968-1977
1968-1970
1973

1976-1977
1977-1999

CURRICULUM VITAE

CHARLES ANTONY RICHARD HOARE

11th January, 1934

Scholar and Senior Scholar, The King's School, Canterbury

Exhibitioner, Merton College, Oxford

1st Class Honours, Classical Latin and Greck

2nd Class Honours, Philosophy and Ancient History.

National Service, Royal Navy. Civil Service Interpretor's qualification in Russian
Certificate in Statistics (with distinction)

British Council Visiting Student,.Moscow Statc University

Elliott Bros. (London) Ltd. Programmer, Sentor Programmer,

Chief Engincer, Technical Manager, Chief Scientist

Project Leader in the implementation of ALGOL 60

Chief Consultant, The National Computing Centre, Manchester

Professor of Computing Science, The Queen's University of Belfast

Director of the University Computer Laboratory

Visiting Profgssor, Stanford University

SERC Seniof Fellow '

Professor of Computation, then James Martin Professor of Computing at Oxford University

1984-1986, 1991-1993, 1996, 1997, 1997-1998 Director of the University Computing Laboratoty

1994-1996
1999-

Consultancies:

Admiral R. Inman Centennial Chair in Computing Theory, University of Texas at Austin.
Senjor Researcher, Microsoft Rescarch, Cambridge

Computer Technology Ltd.; GEC Computers Ltd.; International Computers Ltd.; Imperial College London; Syracuse
University, New York; US/European Rescarch Office, London; Burroughs Corporation; IDA, Washington, US.A;
S.R.L, California, U.S.A.; Cll Honeywell Bull, France; INMOS Ltd., Bristol; Rolls Royce Associates, Derby; IBM
Ltd., Hursley, MCC Austin, Texas, U.S.A.; European Community Commission, Brussels; CWL, Amsterdam; BNR,
Maidstone; DEC Nashua, U.S.A.; Microsoft Research, Cambridge

Research Contracts:

1969-1971
1969-1971
1974-1977
1974-1977
1978-1987
1981-1987
1985-1986
1986-1988
1989-1996
1989-1995
19891993
1990-1993
1993-1996
1994-1996
1994-1995
1995-1998
Service:

ICL/ACTP: "Operating System Techniques”
SERC: "Proofs of Programs”

SERC: "Application Orientated Languages”

SERC: "Program Proving Techniques"

SERC: "Software Engincering”

SERC: "Distributed Computing"

Computer Board: "The use of computer facilities in teaching”
SERC: "Industrial Software Engineering Unit"

EEC: Esprit BRA "Provably Correct Systems"

EEC: Esprit BRA "Concurrency: Unification and Extension”
SERC: "Safemos”

SERC: "Formal Methods in Medical Diagnosis"

SERC: "Provably Correct Hardware/ Software Design”
SERC: " A Design Calculus for the Resource Analysis of' Real-Time System”
SERC: "Models Algebra & Mechanical Support in W

EPSRC: "Linking Theories of Computing Science”

Member of SERC Computing Science Commiitee 1970-1973, Distributed Computing Pancl 1977 — 1981; Member of
EPSRC College, Computing and Communications 1993-1996 ; Editor of APIC Series in Data Processing (Academic Press)
1968-1977 ; Member of Editorial Boards of: Acta Informatica; TEEE Transactions in Software Engineering; Computer
Programming Languages; Computer J ournal; Fifth Generation Computing; Mathematical Structures in Computing Science

Member of Board of Directors, IRISA, Rennes, 1976-1978; Chairman, BCS Symposium on Software Engincering, Belfast,
1976 ; Program Co-chairman for International Conference on Reliable Software, Los Angeles, April 1975; Member IFIP
W.G. 2.1 (ALGOL) 1962-1974 and W.G. 2.3 (Programming Methodology), 1969- ; Chairman ECMA TC10 (PL/1
standardisation) 1967-1971 (approx); Organiser Royal Society discussion meetings: Mathematical Logic and Programming
Languages 1982; Scientific Application of Multiprocessors; Mechanised Reasoning and Hardware Design.

Member of Royal Society Sectional Commitiee 1 (1981-1984) and Sectional Committee 4 (1995/1998) and Industrial
Fellowships Panel (1995-); Editor Prentice Hall International Series in Computer Science 1977-1998 (over 100 books
published); Director Marktoberdorf Summer School, 1982- ; Director: UT Year of Programming, Austin Texas 1987
Director of the Smith Institute 1996- ; Member of Academic Council, AWE Aldermaston 1998-

Lectures:

Lecturer at International Summer Schools in Villard-de-lans; Le Breau sans Nappe;, Marktoberdorf (twelve occasions); Santa
Cruz (twice); Newcastle; Belfast; Cambridge; Wollongong; Jindabyne; Moscow, Beijing Graduate School

Visiting Lecturer at Universitics of Copenhagen, Oslo, Zurich, Chapel Hill, Austin, Wollongong, Amsterdam, Pisa.

Tnvited speaker at BCS branch meotings: Belfast, London, Glasgow, Stoke-on-Trent, Newecastle (Co. Down), York, Reading
Invited speaker at ACM branches and specialist groups: Boston, Mass., Phoenix, Arizona, Washington D.C.

Distinguished Lecturer: MIT Boston, Mass., US.A., 1976; Wang Institute, 1983; Software Engincering Institute, 1989;
Organick Memorial Lectures, Utah 1989; Lee Kuan Yew Distinguished Visitor, Singapore 1992; Intel Lecturer, Jerusalem,
1993; Capstone Lecturer, Ada, Oklahoma, 1993; USC Distinguished Lecturer, 1993; Kliegel Distinguished Lecturer, Caltech,
1993; Huygens Lecture, The Hague 1998

Invited Keynote Speaker: Conference on Software Engineering, Atlanta 1978, International Conference on Foundations of
Computing Science, Delhi 1985; First Turing Memorial Lecture, Glasgow 1985; Workshop on Mathematical Foundations of
Programming Semantics, Boulder, 1988; Symposinm on Logic in Computer Science, Edinburgh 1988; CERN School of
Coraputing, Oxford 1988; TAPSOFT Barcelona 1989; Fifth Generation Computer Systoms, Tokyo 1992; World Transputer
Congress 1993 (Aachen); Fifth International Forum on the Frontier of Telecommunications Technology, Tokyo 1993; Nordic
Workshop on Program Correctness, Turku 1993; Foundations of Software Engincering, Los Angeles 1993; Programming
Languages and System Architectures, Zurich 1994; Third International Symposium, FTRTFS, Libeck 1994; Euromicro,
Liverpool 1994; Newton Institute, 1995; International Software Engineering Conference, Berlin 1996 ; Third International
Symposium on Formal Methods Eurape 1996; BCS Refinement Workshop, Bath 1996; Euro-Par, Passan 1997, POPL99 San
Antonio Texas; Formal Methods International Congress 1999. ECOOQP, Lisbon 1999; ACSW Canberra 2000; IFIP World
Computer Congress, Beijing 2000; ICFEM, York 2000; BAAS Testival of Science 2000; TFM, Schlass Diigstuhl, 2000.
Seminar speaker at Universities and other establishments in: London, Coleraine, Dublin, Glasgow, Edinburgh, Newcastle,
Warwick, Swansea, Sheffield, Bath, Cardiff, Moscow, Rehovet, Leningrad, Stanford, Berkeley, Caltech, Denver, Los Angeles,
Rennes, Paris, Lisbon, Imperial College, Reading, Oxford, Cambridge.

Prizes:

ACM Programming Systems and Languages Award, 1973

Kyoto Prize, 2000

Distinctions:

Distinguished Fellow of British Computer Society, 1978; Doctor of Science honoris causa., University of Southern California,
1979; ACM Turing Award, 1980; AFIP Harry Goode Memorial Award, 1981; Flected Fellow of the Rovyal Society, 1982;
IEE Faraday Medal, 1985; Honorary Doctor of Science, Warwick University, 1985, Pennsylvania University, 1986, Queen's
University of Belfast, 1987; Foreign Member, Accademia dei Lincei, 1988; Honorary Doctor of the University of York, 1989,
University of Essex, 1991; Member, Academia Europaca, 1989; IEE Computer Pioncer Award, 1991; Lee Kuan Yow
Distinguished Visitor, Singapore 1992; Honorary Doctor of Science, University of Bath, 1993; Honorary Member of the
Oxford Innovation Society, 1993; Corresponding Member of the Bavarian Academy of Sciences, 1997; Honorary Deactor of
Oxford Brookes University, 2000; Knight Batchelor 2000 ‘

Books ‘ ' ‘

[1] Structured Programming. (With E-W. Dijkstra, and 0-J. Dahl) Academic Press 1972.
[2] Communicating Sequential Processecs. Prentice Hall International 1985.

[3] Essays in Computing Science. Prentice Hall International 1989.

[4] Unifying Theories of Programming. (With He Jifeng) Prentice Hall International, 1998.
Festschrift '
A Classical Mind. Prentice Hall International 1994.

ACCEPTANCE SPEECH
Advanced Technology
Tony Hoare

Your Imperial Highnesses, Ladies and Gentlemen:

1t is a great honour for me in the year 2000 to receive the Kyoto prize in
Advanced Technology. T am proud to be numbered among the outstanding thinkers,
scientists and artists who have received a similar honour from the Inamori Foundation
in the century now brought to a close. In its choice of prize-winners, the Foundation
continues to show its confidence in Computer Science, not only as an intellectually
challenging branch of human endeavour, but as a contributor to its noble ideals of the
betterment of the whole of mankind. It is this that serves as a strong encouragement
to my friends, students and colleagues in extending the boundaries of our
understanding of programming theory, and also to the larger numbers of members and
future entrants to professional practice in programming,

For me myself, this prize is a wonderful extra. Thave already been fully
rewarded by a working lifetime of excitement and achievement. My subject has
interesting roots in the thinking of philosophers and logicians throughout the ages.
But programming as we know it today was brought into existence by the invention
and development of the stored-program digital computer. In the forty years that I
have spent working both in University and in Industry, T have seen a doubling every
two years of the capacity and power of computer hardware, and a similar reduction in
cost. That means an overall improvement of a million fold, and there is still no end in
sight. Such continuous improvement throws up a succession of new applications, new
challenges, and new opportunities for the programmer. And yet, because my research
interests and experience lie in the scientific principles of programming, and because
these are inspired by the engineering ideals of integrity of structure and accuracy of
detail, my early work has retained much of its relevance, while expanding in its range
and enjoying vastly increased potential for application.

The expansion in application of computers is even more amazing and even
more important. In the beginning, most of the computer power of the world was
devoted to military applications — nuclear weapon simulation, decryption of codes,
logistics, and early warning of missile attack. Gradually computers became)
indispensable tools in science, industry, commerce, government and communication.
But computer power is now primarily in the hands of individuals, who have come to
use the world wide web as their preferred medium of personal, cultural, intellectual
and social interchange. More than by the money to be made by electronic commerce,
I am impressed by the generosity and altruism of those who freely populate the web-
servers with useful and reliable information, and even more by those who freely offer
expert advice and assistance by électronic correspondence with individual enquirers
whom they will never meet. I can only applaud current initiatives to make access to
the web available to people in the poorer parts of the world, so that the benefits of this
altruism can be extended to the whole of mankind, enabling all individuals to
participate and contribute in the exchange of ideas, information, education, discovery,
and artistic creation. Tn this way, I hope that in the present century we will see how
computing has contributed to the eternal and universal ideals which inspired the
foundation of the Kyoto prize.

Profile of laureate Tony Hoare.

1.

I am the eldest of a family of five: three boys and two girls. My elder brother
Howard has worked all his life as a mathematician at Birmingham University.
My younger brother trained as an Engineer at Cambridge, and worked as an
industrial manager, and then as a Consultant. My elder sister is a teacher of
mathematics, and my younger sister taught religious studies, but is now a
priest in the Church of England.

As a child, I was studious and a bit unsociable. My school-fellows gave me
the premature nickname of .Professor’, which was not always meant kindly. I
was a fast and voracious reader. Ilearnt a lot about the world of science by
reading a Children’s Encyclopedia, edited by Arthur Mee. My mother taught
me typing, Mah Jongg and Bridge at an early age, and I enjoyed playing those
games in the family, and also chess. But I never enjoyed physical sport. 1
learnt knitting, and kaitted elaborately patterned woollen dresses for both my
sisters when they were babies.

I was born in Colombo, Ceylon (now Sri Lanka), but during World War II,
white women and children were evacuated from the country. With my mother
and brothers, we spent time in Gwelo, Southern Rhodesia (now Zimbabwe),
and Durban in South Africa. Towards the end of the war we returned to
Ceylon, and shortly after the war my whole family moved to England, where
we stayed. My most vivid memories are of travel between these places.

My early education was much disrupted. On return to England at age eleven, I
went with my brothers to the same primary school, the Dragon School, as my
father. There I started learning Latin, Greek, French, and mathematics. After
two weeks, I was doing so badly that I had to be put down into a lower year,
and even then T was bottom of the class (how proud the family was at the first
weekly report that I was no longer bottom!). By the end of term I had reached
the top of that class, and in each subsequent term I was promoted to a higher
class, till by the beginning of the next year I reached the top class in all
subjects. But I was never the top of that. Because of this experience, perhaps [
have been less reluctant than some to learn new ideas and languages.

My mother raised five children in hard times, and when my cousins were_

orphaned, she raised three more. She remained an active traveller into old age,

and regularly visited her children’s families. She left the family house as a

legacy to be shared between her seventeen grandchildren; several of them still

live in.

Like me, my father was a classical scholar at Merton College, Oxford,
studying Latin, Greek, philosophy and ancient history. He made his career in
the British colonial Civil Service. When Ceylon became independent in 1947,
he accepted the offer of early retirement on half pension, and took a series of
jobs in England, as a civil servant, as the manager of a Charity for the relief of
Leprosy, and as a teacher. He qualified as a Lay preacher in the English
Church, and when he retired from all other occupations, he continued to help
the priest in our local parish.

7.

10.

11.

As a child, I wanted to be an inventor. As a schoolboy, I wanted to be a
writer. As a student, I wanted to be a philosopher. But when I took a job as a
computer programmer with the Company Elliott Brothers, I never wanted to
be anything else. Writing programs is the purest form of invention, and I
remember my joy at the discovery of the sorting algorithm quicksort, and the
design of a translator for the programming language ALGOL 60. When I
moved to academic life, with the aid of excellent joint authors, I wrote over a
hundred articles and three books. And in all my thinking and research, I have
been inspired by the teachings of the great philosophers. 1think, in
unexpected ways, Lhave satisfied all my childhood ambitions.

I met my wife Jill at my first job, where she did much of the programming for
the ALGOL translator. Our younger son Matthew had a happy childhood, and
died twenty years ago of leukaemia; our memories of him are still happy. Our
daughter Joanna studied Philosophy and English at Edinburgh University, and
has a qualification in Psychotherapy, specialising in the application of
Buddhist teaching. She has emigrated recently to set up practice in
Wellington, New Zealand. Qur elder son Tom studied Engineering Science at
Oxford University. He is now a programmer with the British telecoms
Company, Marconi in Coventry. His wife Kindy Sandhu is a programiming
manager in the same Company. They have two daughters, Jhansi and Maya;,
they are a great joy to their grandparents.

My interest in computers was aroused by their implications for philosophy.
Perhaps they would throw light on age-old questions of human knowledge,
understanding, and reason. Their capabilities as logical machines were
fascinating; perhaps they were even capable of doing mathematics or
understanding natural language. In my job at Elliott’s our main concern was
to simplify and extend the practical application of computers in science,
commerce, and industrial process control. But even in these practical
contexts, the design of computer software and languages is perhaps closer to

philosophical speculation than any other branch of technology. Inow suspect

that the contribution of philosophy to computing is just as interesting as the
other way round.

As a youngster, my interest in philosophy was roused by Bertrand Russell.

His moral philosophy was appealingly unconventional, and his writing style
was clear and amusing. His theory of knowledge was highly analytic, and
fostered the constructive inclinations of a future computer scientist. Later, I
came to appreciate his achievement in the foundation of mathematics. When I
became a programmer at Elliott’s, my strongest (and continuing) inspiration
was the programming language ALGOL 60, for which I designed a compiler.

I am now again pursuing my favourite research topics, the principles of
programming, and their application in the design of programming tools and
languages. I am particularly interested in the practical use of assertions in
programming, a topic which 1 first developed when I moved from Industry to
take up a Professorship at the Queen’s University, Belfast. Since retiring from
my post as Professor at Oxford, I have returned to industrial employment at

12.

13.

14.

15.

Microsoft Research in Cambridge. Working with a group of brilliant
colleagues, we have unique opportunities to promote exploitation within the
Company of the results of past research of the whole community of scientists
working in this field, and to direct our present and future research to goals of
long-term benefit of all users of computers.

In 1960, when I was a graduate student at Moscow State University, I received
an invitation from the National Physical Laboratory to join a British group
working on the machine translation of Russian into English. At that time,
dictionaries were held on magnetic tape, and for efficient look-up it was
necessary to sort the words of a sentence info alphabetical order before
scanning the tape. I wondered how a computer would do this. My first idea
was simple, but too slow. My second idea was the algorithm which later
became famous as quicksort. In my research life, I have frequently had to
investigate and reject a dozen bad ideas before reaching one that I could
recommend for study or implementation to others. It is the ideas that came
quickly to me that I recall with greatest pleasure.

The advice that most influenced my scientific life came from my old friend
Edsger W. Dijkstra. Computer Scientists work in a field where fashionable
buzz-words have often attracted the most immediate attention, and the most
generous research funding. But he has always insisted that the role of
scientists in Universities is to be detached {rom political financial and
managerial concerns; they must pursue knowledge and understanding for their
own sake, and be satisfied with nothing Iess than excellence. In all my
writing, I think of him as the reader over my shoulder, constantly monitoring
the clarity of my thinking and my writing style. I still follow his central
advice: in selection of research topics, do not compete in the popular races, but
choose goals and methods which you alone are qualified to bring to success.

For recreation, I read novels, varying between modem thrillers and classical
authors like Jane Austen and Charles Dickens. I also fill in crosswords. 1
enjoy walking in the countryside, sometimes open-air swimming, and on rare
occasions when it freezes, open-air skating. And I have travelled in all
continents of the world except South America and Antarctica.

I admire the Japanese as the heirs to an ancient civilisation, disjoint from the
European tradition, but embodying many social and personal virtues that we
share, and a tolerance of variety in religion, which Europe has frequently
lacked. In Japanese personal etiquette, I infer precise and elegant codes of
behaviour, which I fear [often fail to follow. In Japanese classical arts and
music, and even in gardening, the pursuit of elegance and precision is
paramount, and shows itself in modern times in the design of innovative
electronic products, exported throughout the world. I have enjoyed three visits
to Tokyo, and especially side trips to Kamakura and to Nara; and I have every
good reason to look forward to my next visit to Kyoto and later to Kagoshima.

Stories from a life in interesting times. Commemorative lecture by Tony Hoare: summary.

T have lived in interesting times. My stories will recount the twists of fate and circumstance
that moulded my thinking and my career as an information scientist. My deep thanks for the
award of the Kyoto prize for the year 2000 will be best expressed if any of my listeners is
warned by my mistakes or inspired by my success to contribute further to the goals of the
founder of the prize — the betterment of mankind and society.

Born in Sri Lanka in 1934, T spent several years of the last world war in Zimbabwe and South
Africa. In 1946, my father retired to England, and I made a late start on a traditional English
education. I specialised in classical Greek and Latin, including the languages and the
literature, and graduated in1956 from Oxford University in these subjects, together with
ancient history and philosophy, which was always my favourite. The Russian language I learnt
during two years’ national service in the Royal Navy. Then I returned to Oxford as a graduate
student for the Certificate in Statistics — my only official scientific or professional
qualification. I was attracted to the subject by its implications for the philosophical questions
of human knowledge and uncertainty. My final year as a student I spent at Moscow State
University, in Kolmogorov’s school of probability. There I invented the quicksort algorithm,
and investigated the state of the art in computer translation of natural languages. This was the
topic of my first scientific article, written and published in Russian.

Back in England in 1960, I decided to stop studying and start working. T joined a small
computer manufacturing Company as a programmer. Again, [was attracted to computing by
its philosophical implications, though I thought (how wrongly!) that the period of major
expansion of the subject was already over. Idesigned a transiator for an artificial language, the
international algorithmic language, ALGOL 60. Promoted beyond my capabilities, I then
supervised the development of an operating system that never worked, and a machine
architecture that was never built. The Company was absorbed into two larger Companies, and
Ireturned to academic life as Professor of Computing Science at the Queen’s University,
Belfast, to teach the subject that I had learnt by eight years of hard experience in industry.

1968 was just the start of the intensive period of the civil disturbances in Northern Ireland that
are only now subsiding. In spite of this, I was able to recruit a strong team to the computing
department, to meet a rapidly expanding demand for education in the subject. My research had
a practical goal: I wanted to understand the reasons for the success and the failure of my earlier
projects in industry. In tackling the problems, I took a long-term, almost philosophical view. 1
planned a research agenda that would last throughout my academic life, because 1 knew its
results would hardly be ripe for application in industry until after my retirement some thirty
years ahead. In 1977, I moved to the chair of Computation at Oxford, where again, from
smaller beginnings, I assembled the funds and recruited a team to introduce the subject of
computing into the curricula of the University. I retired last year as senior Professor in the
Faculty of Mathematics, to move back into industry.

I am now working as a senior researcher for Microsoft Research at Cambridge. Here I will
pursue my early hope that the results of pure research, my own and that of others, may be
applied by those engaged in the writing of large-scale computer software, for the benefit of the
increasing numbers of those who use it. Perhaps in the years to come, that will be the whole of
mankind.

Stories from a life in interesting times. Commemorative lecture by Tony Hoare: summary.

I have lived in interesting times. My stories will recount the twists of fate and circumstance
that moulded my career as an information scientist. My deep thanks for the award of the
Kyoto prize for the year 2000 will be best expressed if any of my listeners is warned by my
mistakes or inspired by my success to contribute further to the goals of the founder of the prize
— the betterment of mankind and society.

Born in Sri Lanka in 1934, I spent several years of the last world war in Zimbabwe and South
Africa. In 1946, my father retired to England, and I made a late start on a traditional English
education. I specialised in classical. Greek and Latin, including the languages and the
literature, and graduated in1956 from Oxford University in these subjects, together with
ancient history and philosophy, which was always my favourite. The Russian language I learnt
during two years’ national service in the Royal Navy. Then I returned to Oxford as a graduate
student for the Certificate in Statistics — my only official scientific or professional
qualification. I was attracted to the subject by its implications for the philosophical questions
of human knowledge and uncertainty. My final year as a student I spent at Moscow State
University, in Kolmogorov’s school of probability. There I invented the quicksort algorithm,
and investigated the state of the art in computer translation of natural languages. This was the
topic of my first scientific article, written and published in Russian.

Back in England in 1960, I decided to end my student days by joining a small computer
manufacturing Company as a programmer. Again, T was attracted to computing by its
philosophical implications, though I thought (how wrongly!) that the period of major
expansion of the subject was already over. Idesigned a translator for an artificial language, the
international algorithmic language, ALGOL 60. Promoted beyond my capabilities, I then
supervised the development of an operating system that never worked, and a machine
architecture that was never built. The Company was absorbed into two larger Companies, and
I returned to academic life as Professor of Computing Science at the Queen’s University,
Belfast, to teach the subject that I had learnt by eight years of hard experience in industry.

1968 was just the start of the intensive period of the civil disturbances in Northern Ireland that
are only now subsiding. In spite of this, I was able to recruit a strong team to the computing
department, to meet a rapidly expanding demand for education in the subject. My research
had a practical goal: I wanted to understand the reasons for the success and the failure of my
carlier projects in industry. In tackling the problems, I took a long-term, almost philosophical
view. I was thinking of research agenda that would last throughout my academic life, because
I knew it$ results would hardly be ripe for application in industry until after my retirement
some thirty years ahead. In 1977, I moved to the chair of Computation at Oxford, where again,
from smaller beginnings, I assembled the funds and recruited a strong team to introduce the
subject of computing into the curricula of the University. Iretired last year as senior Professor
in the Faculty of Mathematics, to move back into industry.

I am now working as a senior researcher for Microsoft Research at Cambridge. Here I will
pursue my early hope that the results of pure research, my own and that of others, may be
applied by those engaged in the writing of large-scale computer software, for the benefit of the
increasing numbers of those who use it. Perhaps in the years to come, that will be the whole of
mankind.

CURRICULUM VITAE

CHARLES ANTONY RICHARD HOARE

Date of Birth; 11th January, 1934 ‘
|

Education:

1947-1952 Scholar and Senior Scholar, The King's School, Canterbury |

1952-1956 Exhibitioner, Merton College, Oxford

1st Class Honours, Classical Latin and Greek

2nd Class Honours, Philosophy and Ancient History.

1956-1958 National Service, Royal Navy. Civil Service Interpreter's qualification in Russian

1958-1959 Certificate in Statistics (with distinction)

1959-1960 British Council Visiting Student, Moscow State University

Employment:

1960-1968 Elliott Bros. (I.ondon) Ltd. Programmer, Senior Programmer,

Chief Engineer, Technical Manager, Chief Scientist

1960-1962 Project Leader in the implementation of ALGOL 60

1968 Chief Consultant, The National Computing Centre, Manchester

1968-1977 Professor of Computing Science, The Queen's University of Belfast

1968-1970 Director of the University Computer Laboratory

1973 Visiting Professor, Stanford University

1976-1977 SERC Senior Fellow

1977-1999 Professor of Computation, then James Martin Professor of Computing at Oxford University

1984-1986, 1991-1993, 1996, 1997, 1997-1998 Director of the University Computing Laboratory

1994-1996 Admiral R. Inman Centennial Chair in Computing Theory, University of Texas at Austin.

Currently Senior Researcher, Microsoft Research, Cambridge

Consultancies:

Computer Technology Ltd.; GEC Computers Ltd.; International Computers Ltd.; Imperlal College London; Syracuse
University, New York; US/European Research Office, London; Burroughs Corporation; IDA, Washington, U.S.A.;
S.R.I, California, U.S.A.; CII Honeywell Bull, France; INMOS Ltd., Bristol; Rolls Royce Associates, Derby; IBM
Ltd., Hursley; MCC Austin, Texas, U.S.A.; European Community Commission, Brussels; CWI, Amsterdam; BNR,
Maidstone; DEC Nashua, U.S.A.; Microsoft Research, Cambridge

Research Contracts:

1969-1971 ICL/ACTP: "Operating System Techniques"; 1969-1971 SERC: "Proofs of Programs"; 1974-1977 SERC:
"Application Orientated Languages™; 1974-1977SERC: "Program Proving Techniques"; 1978-1987 SERC: "Software
Engineering”; 1981-1987 SERC: "Distributed Computing"; 1985-1986 Computer Board: "The use of computer
facilities in teaching"; 1986-1988 SERC: "Industrial Software Engineering Unit"; 1989-1996 EEC: Esprit BRA
"Provably Correct Systems™; 1989-1995 EEC: Esprit BRA "Concurrency: Unification and Extension”; 1989-1993
SERC: "Safemos"; 1990-1993 SERC: "Formal Methods in Medical Diagnosis"; 1993-1996 SERC: "Provably
Correct Hardware/ Software Design'; 1994-1996 SERC: " A Design Calculus for the Resource Analysis of’
Real-Time System’; 1994-1995 SERC: "Models Algebra & Mechanical Support in W”; 1995-1998 EPSRC: "Linking
Theories of Computing Science"

Service:

Member of SERC Computing Science Committee 1970-1973, Distributed Computing Panel 1977 — 1981; Member of
EPSRC College, Computing and Communications 1993-1996 ; Editor of APIC Series in Data Processing (Academic Press)
1968-1977 ; Member of Editorial Boards of: Acta Informatica; IEEE Transactions in Software Engineering; Computer
Programming Languages; Computer Journal; Fifth Generation Computing; Mathematical Structures in Computing Science
Member of Board of Directors, IRISA, Rennes, 1976-1978; Chairman, BCS Symposium on Software Engineering, Belfast,
1976 ; Program Co-chairman for International Conference on Reliable Software, Los Angeles, April 1975; Member IFIP
W.G. 2.1 (ALGOL) 1962-1974 and W.G. 2.3 (Programming Methodology), 1969- ; Chairman ECMA TC10 (PL/1
standardisation) 1967-1971 (approx); Organiser Royal Society discussion meetings: Mathematical Logic and Programming
Languages 1982; Scientific Application of Multiprocessors; Mechanised Reasoning and Hardware Design.

Member of Royal Society Sectional Committee 1 (1981-1984) and Sectional Committee 4 (1995/1998) and Industrial
Fellowships Panel (1995-); Editor Prentice Hall International Series in Computer Science 1977-1998 (over 100 books
published); Director Marktoberdorf Summer School, 1982- ; Director: UT Year of Programming, Austin Texas 1987
Director of the Smith Institute 1996- ; Member of Academic Council, AWE Aldermaston 1998-

Lectures:

Lecturer at International Summer Schools in Villard-de-lans; Le Breau sans Nappe; Marktoberdorf (twelve occasions);
Santa Cruz (twice); Newcastle; Belfast; Cambridge; Wollongong; Jindabyne; Moscow; Beijing Graduate School
Visiting Lecturer at Universities of Copenhagen, Oslo, Zurich, Chapel Hill, Austin, Wollongong, Amsterdam, Pisa.
Invited speaker at BCS branch meetings: Belfast, London, Glasgow, Stoke-on-Trent, Newcastle (Co. Down), York,
Reading . Invited speaker at ACM branches and specialist groups: Boston, Mass., Phoenix, Arizona, Washington D.C.

Distinguished Lecturer: MIT Boston, Mass., U.S.A., 1976; Wang Institute, 1983; Software Engineering Institute, 1989;
Organick Memorial Lectures, Utah 1989; Lee Kuan Yew Distinguished Visitor, Singapore 1992; Intel Lecturer, Jerusalem,
1993; Capstone Lecturer, Ada, Oklahoma, 1993; US(:: Distinguished Lecturer, 1993; Kliegel Distingnished Lecturer,
Caltech, 1993; Huygens Lecture, The Hague 1998

Invited Keynote Speaker: Conference on Software Engineering, Atlanta 1978; International Conference on Foundations
of Computing Science, Delhi 1985; First Turing Memorial Lecture, Glasgow 1985; Workshop on Mathematical
Foundations of Programming Semantics, Boulder, 1988; Symposium on Logic in Computer Science, Edinburgh 1988;
CERN School of Computing, Oxford 1988; TAPSOFT Barcelona 1989; Fifth Generation Computer Systems, Tokyo 1992;
World Transputer Congress 1993 (Aachen); Fifth International Forum on the Frontier of Telecommunications Technology,
Tokyo 1993; Nordic Workshop on Program Correctness, Turku 1993; Foundations of Software Engineering, Los Angeles
1993; Programming Languages and System Architectures, Zurich 1994; Third International Symposium, FTRTES, Liibeck
1994; Buromicro, Liverpool 1994; Newton Institute, 1995; International Software Engineering Conference, Berlin 1996 ;
Third Interpational Symposium on Formal Methods Europe 1996; BCS Refinement Workshop, Bath 1996; Euro-Par,
Passau 1997; POPL99 San Antonio Texas; Formal Methods International Congress 1999, ECOOP, Lisbon 1999; ACSW
Canberra 2000; IFIP World Computer Congress, Beijing 2000; ICFEM, York 2000; BAAS Festival of Science 2000; IFM,
Schloss Dagstuhl, 2000.

Seminar speaker at Universities and other establishments in: London, Coleraine, Dublin, Glasgow, Edinburgh,
Newcastle, Warwick, Swansea, Sheffield, Bath, Cardiff, Moscow, Kiev, Novosibirsk, Rehovet, Leningrad, Stanford,
Berkeley, Caltech, Denver, Los Angeles, Rennes, Paris, Lisbon, Imperial College, Reading, Oxford, Cambridge. ;

Prizes: :
ACM Programming Systems and Languages Award, 1973 |
Kyoto Prize, 2000 '

Distinctions:

Distinguished Fellow of British Computer Society, 1978; Doctor of Science honoris causa., University of Southern
California, 1979; ACM Turing Award, 1980; AFIP Harry Goode Memorial Award, 1981; Elected Fellow of the Royal
Society, 1982; IEE Faraday Medal, 1985; Honorary Doctor of Science, Warwick University, 1985, Pennsylvania University,
1986, Queen's University of Belfast, 1987; Foreign Member, Accademia dei Lincei, 1988; Honorary Doctor of the
University of York, 1989, University of Essex, 1991; Member, Academia Furopaea, 1989; IEE Computer Pioneer Award,
1991; Lee Kuan Yew Dlstmgulshed Visitor, Singapore 1992; Honorary Doctor of Science, University of Bath, 1993;
Honorary Member of the Oxford Innovation Society, 1993; Comresponding Member of the Bavarian Academy of Sciences,
1997; Honorary Doctor of Oxford Brookes University, 2000; Knight Batchelor 2000

Books

[1] Structured Programming. (With E-W. Dijkstra, and 0-J. Dahl) Academic Press 1972.
[2] Communicating Sequential Processes. Prentice Hall International 1985.

[3] Essays in Computing Science. Prentice Hall International 1989,

[4] Unifying Theories of Programming. (With He Jifeng) Prentice Hall International, 1998.
Festschrift

A Classical Mind. Prentice Hall International 1994.

