e

-.Tony-Hoare

/I I 7 f c\{j@,ﬁ (\Luruﬁ LTy am:m

-1-

Stories From a Life in Interesting Times

My life has been one of contrasts: contrast between my education in the humanities and my
subsequent profession in technology; contrast between my industrial employment and my
academic career of teaching and research; and contrast between the study of natural spoken
languages, and the attificial languages used for communication with computers.

My education followed ancient traditions; it exposed me to the ideas and example of the great
thinkers and writers of classical times, the founders of the intellectual and philosophical
culture of Western Europe. My studies ranged widely over many subjects: Latin, Greek,
Philosophy, Russian, Statistics and Linguistics. In contrast, my professional career has
followed a new branch of science, the science of Computing. I learned it first from experience
in industry where I participated in the design of computer architectures, programming
languages, compilers and operating systems; and I have experienced both success and failure
as manager of software engineering projects.

I then moved to academic life, and served as a professor of Computing in Belfast and later in
Oxford. In both universities I set up graduate and undergraduate degree courses in the subject,
pursued a path of pure research in the theory of programming, and maintained close contacts
and collaboration with the computer industry. Now I have moved back into employment in a
major software Company, to promote the exploitation of academic reseaich results for the
benefit of all users and producers of computer programs,

Today in this fine hall, it is a great privilege to reflect on the ways in which my education and
experience have shaped me and prepared me for a career in advanced technology. I want to
pay tribute to those who have most influenced my philosophy of life, the intellectual leaders
of the present day as well as the more distant past. Many of them have already stood on this
proud platform as recipients of the Kyoto prize in eatlier years. My {hanks are joined to theirs
in gratitude for the honour of the award.

Canterbury: Classics

 start my story in 1947, when I entered the King’s School at Canterbury for my secondary
education. For the next five years I lived and learned in the beautiful precincts of Canterbury
cathedral, in sight of its tall and elegant tower, and in earshot of its ringing bells.

In my first year, I followed ten subjects, including English language and literature, History,
French language, the classical languages Latin and Greek, and a double dose of Mathematics,
clementary and advanced. This left no time to study any science subject at all, except as a
hobby -- one lesson per week, I very much enjoyed the mathematics, but in our second year
we had to choose just two subjects for continued study. In those days, it was expected that any
boy who was good at classics would continue with ancient Latin and Greek, diluted only with
a little Scripture or French as a subsidiary subject.

Every week our homework would include a translation of a passage from a classical author
into English, and (more difficult) a composition in Latin or Greek of a paragraph of English
prose. Of course, I had to learn the grammar of those languages. It was rather more

complicated than English, because occurrence of every noun and every adjective was
classified as one of three genders and one of five or six cases in either singular or plural.
There were four or five regular patterns for calculating the form of the word, but there were
also many irregular forms that had to be learnt individually. In every sentence in Latin or
—Greek, every adjective has to agree with the noun it qualifies in number, gender and case. 1~
always checked my work carefully according to the rules, but still I kept making mistakes, --
howlers, they were called, perhaps because my teachers found the errors so easy to detect. In
later life when I came to study the design and implementation of artificial languages for
communication and control of computers, I was very keen that their grammatical rules should
be as simple and regular as possible; and I ensured that the computer itself, like my teachers,
could rapidly detect and reliably report on any violation of the rules in its input program.

Translations and compositions were for me an enjoyable exercise. The challenge is to
understand purpose, the content, the progression of thought and the style of a text in one
language, and then to reconstruct the same message in a different language whose sentences
have different structure and whose words have different connotations. I learnt the simple rules
of rhetoric: of balance and of contrast, of progression and of variation, of thesis and of
antithesis. This last sentence itself is balanced and contrasted in illustration of the very rules
that it describes, a progression of three contrasts. I had to rewrite it carefully many times. As
always the best results are obtained from trying many alternative formulations before
choosing the best. And that is exactly what I have enjoyed doing in all my later scientific
writing and teaching. The challenge is to explain my ideas and those of others as clearly and
as memorably as possible, and to present my arguments and counter-arguments quite faitly,
but still in the strongest possible light. I have tried to pass on the same skills to my graduate
students, for writing up the results of their own research.

In spite of my official studies of the classics I fortunately did not wholly abandon my interests
in mathematics, taking a special interest in probabilities as a means of explaining uncertain
knowledge. In a children’s book of tricks and puzzles, I encountered a well-known paradox of
probability theory: that in a class of only twenty-three persons there was a good chance that
two of them would share the same birthday. By selecting at random from the published
register of names and birthdays of all boys in the school, I verified that indeed this was
usually the case. In trying to work out why, I discovered the binomial coefficient. Then I
wanted to generalise the result to larger collections of people, with more of them sharing the
same birthday. Eventually, I worked out that there should be a day on which no less than six
members of the whole school would share a birthday. I could have checked this on the entire
school register, but gave up after I found a birthday shared by five pupils.

Eventually in the school library I discovered a book called Mathematics for the Million by
Lancelot Hogben. In it I learned that the binomial coefficient had previously been discovered
by Newton, which was encouraging. Of course, reading books enabled me to make much
faster progress in understanding mathematics in general, and probabilities in particular. I am
glad that I pursued mathematics as a hobby, as something that one actually does to solve
interesting problems, rather than as a fixed body of knowledge that one just learns to
reproduce in examinations. If I had chosen Mathematics instead of Classics as my main
examined subject, I might well have fallen out of love with it; certainly I would not have
learnt any of the branches of mathematics that I now consider interesting and relevant for
programming theory and computer science.

-3-

My other interests outside school were also mainly intellectual, I am afraid, because my social
skills were rather defective, and my capabilities for physical exercise and for ball games were
rudimentary. Fencing I took up briefly; and in one year I was a keen player of rugby football,

a game at which recklessness and sheer bodywelght could make quite a stzong 1mplessmn on

~a smallerbut faster opponent,

Whenever I could obtain dispensation from organised games, I used to spend my afternoons
in the school library. I turned to the shelves containing works of philosophy, and read a
number of the dialogues of Plato in the English translation by Benjamin Jowett. I also came
across a thick volume of the History of Western Philosophy, by Bertrand Russell, from which
1 read large sections, starting with early Greek Philosophy and proceeding to nearly modern
times. That awakened in me an interest in philosophy, which remains to the present day.
Among other philosophical works of Russell, I took an especial interest in his Introduction to
Mathematical Philosophy, a shorter version of his joint work with Whitehead reported in the
three volumes of Principia Mathematica. Its achievement was to reduce all of mathematical
reasoning to simple logical forms, and all mathematical concepts from all familiar branches of
mathematics, to the single, uniform and apparently simple concept of a set.

Many years later as a Professor at Oxford University, I wanted to extend mathematical
reasoning to prove the correctness of computer programs, and to do so without commitment to
any particular branch of established Mathematics. In a collaboration lead by Jean-Raymond
Abrial, we showed that set theory, which Russell proved adequate for so many mathematical
purposes, was also well adapted to the specification of programs, and for proofs of the
correctness of their design and implementation. First steps towards industrialisation of this
discovery were taken in collaboration with the computer Company IBM,

Oxford: Philosophy

In 1952 I entered Merton College to study at Oxford University. The reason for the choice
was family tradition. My father also studied there, the same subjects as me. In my first two
years, I continued with Latin and Greek, adding the composition of verse to my
accomplishments. My reading also got faster, because I had to take in almost the whole of the
works of Homer and Virgil, and selected works of Cicero, Juvenal, Horace and Euripides.

In my spare time, I continued to pursuc my philosophical interests, particulatly in logic and
the foundations of mathematics. In my first term I joined with a few classical and
mathematical friends in a small study group, which used to meet for coffee in the late
evenings after completing our official assignments and just before bed. We all bought copies
of the textbook Mathematical Logic by Willard Van Orman Quine, Kyoto Prize winner for
Philosophy in 1996. I still have my copy. From this book we learnt that a mathematical proof
is nothing but a text, a sequence of lines rather like a record of the moves in a game of chess.
The correctness of a proof can be checked, just like the correctness of a game or the grammar
of a Latin sentence, by examining just one line or move or word at a time. That is best done
without understanding anything about the subject matter of the proof, the strategy of the
game, or the meaning of the sentence. In the case of a proof, each line must either be a copy
of an axiom, or a special case of a previous line, or it must follow from two previous lines by
a rule known by its Latin name as modus ponens. This formal view of the structure of a
logical proof is now the basis of all attempts to get computers to assist in the application of
mathematics, or the construction or checking of mathematical proofs. Of course, it is not
possible to prove the correctness of the axioms, the lines that do not have to be justified at all.

They just have to be accepted as ‘self-evident’; or less pretentiously, as the rules of the game
that the mathematician has chosen to play; effectively, they define the primitive concepts of
the branch of mathematics which is developed from them.

Twenty-five years later, T returned to this view of proofs-in the first published article of my
academic life on an Axiomatic Basis for Computer Programming. T was inspired by the ideal
of my friend, the great computer scientist Edsger W. Dijkstra, that the design of a computer
program should be accompanied, even driven, by the obligation to demonstrate its
correctness. Following Robert Floyd’s suggestion, I extended this obligation to the designer
of a computer programming language, which should to assist the programmer in the
construction of the necessary proofs. So a good way to describe the meaning of a good
programming language is just to describe the axioms on which the proofs are based. The
simplicity of the axioms, and their ease of application, are an objective criterion for the
quality of the programming language design. This insight was later to help Niklaus Wirth in
the design of the well-known teaching language PASCAL.

My other spare time activities as an undergraduate were less unusual. I played chess for my
College in the second team, and I acted in a couple of plays produced by the College dramatic
society, English versions of the Miser by Moliere, and the Birds by Aristophanes. It was
excellent training for a future University lecturer; to project my voice to be heard at the back
of a medieval hall, with a high wooden roof; or to be heard above the rustle of the wind in the
trees in an open-air production. Ilearnt to turn to advantage the nervous butterflies that flutter
in the stomach just before stepping onto the stage. Nowadays, I'm afraid they are stopped by a
drug that helps the heart beat regulatly.

I widen my dramatic interests by joining the University Experimental Theatre Club, where 1
turned from acting to the production of plays. I enjoyed the selection and coaching of the
actors, and the organization of the occasions, the staging and the publicity. My productions
included a musical rendering of my own translation of a comedy, The Captives, by the Latin
playwright Plautus, and a reading of Plato’s dialogue The Symposium. I learnt how to
delegate responsibility, and when not to; I learnt how to listen to the concerns of others, and
when to take action on them. Again, an excellent training for the administrative tasks that
crowd upon senior academics at University.

My course of studies at Oxford was called Literac Humaniories, and it followed an ancient
tradition. After two years, we started two new subjects, ancient history and philosophy, which
we studied from the original authors: Thucydides and Tacitus, Plato and Aristotle. We also
studied more modern European philosophers, Descartes, Hume, and Kant. It was on my
philosophy course that I was first introduced to the workings of a computer, in the shape of
the famous Turing Machine, invented by Alan Turing in 1937. Among contemporary
philosophers, we encountered Karl Popper (Laureate of the Kyoto prize in 1992) as the author
of the doctrine that the meaning of a scientific hypothesis lies in the experiments carefully
designed to falsify it. His teaching inspired the construction of my later theories of distributed
computing networks; I defined the meaning of program quite directly as the set of
observations that reveal all the ways in which the program might go wrong.

London: Russian

In 1956, on completion of my degree in ancient history and philosophy, I applied to obtain a
scholarship to support me for doctoral research in Philosophy. In this it was perhaps fortunate

-5-

that I was unsuccessful. Otherwise I might still have been a quite second-rate philosopher,
without the excuse of being a computer scientist as well. As it is, I have no proper Doctorate
that I worked for, only Honorary Degrees, for which I am therefore especially grateful.

At that time, young men-in Britain-underwent a two-year period of compulsory-national-
military service (it was abolished shortly after). Because of my qualification in Latin and
Greek, I was easily accepted to learn the Russian language in the Royal Navy (I was told that
family connections also helped: my uncle was a naval Captain). We went through the standard
military drills, we learnt to fire guns on the firing range, and we went for a few day trips on a
destroyer and a minesweeper, just enough to make us feel very sick; but we never spent even
a single night at sea, and certainly never came anywhere near to military action.

The main instruction in Russian was given on dry land, in an offshoot of the London
University School of Slavonic Studies. We had a very thorough grounding in the formal rules
of Russian grammar, which was at least as complicated as Latin or Greek, with nouns and
adjectives declining through six cases, though fortunately there were only two genders. We
were warned that grammatical mistakes were the quickest way to earn expulsion from the
school, loss of our officer rank, and return back to the hardship and drills of conventional
military life. So I repeated the care that I had exercised in Latin and Greek compositions to
check every gender and every case against all the rules I had learned; but I still suffered from
frequent oversights, as I had in my classical Latin and Greek transiations.

The main difference from classical languages was that we learnt Russian as a spoken
language, and in speaking there is no time to calculate and apply the grammatical rules at all.
It was therefore quite a surprise to me to find myself after a while speaking correct Russian
most of the time without even thinking of the grammar, in just the same way that young
children learn to speak the language. Even the incredibly complex rules governing Russian
numerals soon came quite naturally to me. I did not know how to explain the phenomenon,
and 1 still don’t.

Oxford: Statistics

On completion of my Russian course, I definitely decided that I had been a student long
enough, and I was going to work in Industry. But I did not wish to move into accountancy, or
into an administrative or managerial career, which were the normal prospects for a graduate in
the humanities. T wanted a scientific or a technical job; and to obtain and keep such a job, I
felt I needed a relevant technical qualification, I found that I could obtain one by a single
year's graduate study back in Oxford, on a course leading to a Certificate in Statistics. I had
some difficulty in persuading the statisticians at Oxford that I had sufficient competence in
mathematics to undertake their course. Later, when I came to accept students on graduate
courses in Computing, I always showed special sympathy for those applicants coming from
background in the humanities, especially languages.

At Oxford, there is a tradition that students of any subject could attend lectures in any other
subject, and I was soon attending a course on the philosophy of Mathematics given by Hao
Wang, who had just written a program on an early IBM 704 computer to check all the proofs
in the first nine chapters of Russell and Whitehead’s Principia Mathematica, It was a
remarkable programming achievement in 1957, fulfilling in practice the speculations of
Turing, the objectives of the early logicians, and the dreams of the seventeenth century
German Philosopher Leibniz. It was at these lectures in Oxford that I first met a Japanese

student, Hide Ishiguro, who has since forged a distinguished career as a philosopher in the
United States and in Japan. I am delighted that she is with us on this occasion.

T also attended my first and only computer programming course. The instructor was the
numerical analyst Leslie Fox, who was to be my Head of Department twenty years later, when
I came back to Oxford as a Professor. He taught us the only available, rather primitive, high-
level programming language called Mercury Autocode. As my first program I coded an
approximate method of solving the probabilistic value of a two-person zero-sum game like the
children’s game papers-scissor-stone. This was because I was reading a book on the Theory of
Games by von Neuman and Morgenstern. I was very excited as [saw my program read in; it
was translated and run for a few seconds, and produced as output the six numbers that I had
planned. But I never discovered whether the numbers were correct, because I omitted to

insert in the program a check that would have easily told me. Such checks are nowadays
known as assertions. I later came to recommend them as the basis on which one could prove
that the program is cotrect.

Moscow: Linguistics

During the last term of my Statistics course at Oxford, I saw on my College notice board an
advertisement issued by the British Council, the official body which fosters cultural and
educational links between Britain and other countries of the world. They had just negotiated
an agreement with the Soviet Union for an exchange of twenty University students per yeat,
at graduate level; and they invited applications against a time limit — which expired the very
next day. On the spur of the moment I decided to take the chance. If I could organize an
application in twenty-four hours, T would submit it; and as chance would have it, I succeeded.

The main attraction was the adventure, In 1960, the Soviet Union was still largely
inaccessible to foreigners, and I would be among the first group of foreign students to go
there, with the opportunity to experience and examine a dramatically opposed political
system. The Russian culture had evolved quite separately and in isolation from the Greek and
Latin influences which reentered Europe at the time of the Renaissance. I also wanted the
chance to exercise and increase my skills in the Russian language. And finally, I wanted to
study more of the theoretical foundations of probability theoty, in which I knew that the great
Russian mathematician Andrei Nicolaevich Kolmogorov had been a pioneer. It was in his
Department in Moscow State University that I was registered to study.

At first it was hard. It requires a lot of concentration to listen to a lecture in a foreign language
for a whole hour, and lectures in Moscow were two hours long. Even the benches we had to
sit on were hard. Gradually, I acclimatized to the lectures in Russian, I spent a whole day
trying to buy a seat-cushion in Moscow, but failed; so I got my parents to send me one by
post. Having solved both these problems, I got down to the real problem - the mathematics
itself was the hardest of all, especially for a newcomer to start studying abstract measure
theory at graduate level. Fortunately, I found in the University library an excellent book by
Halmos. It introduced a range of techniques from set theory, lattice theory and analysis of
approximations and limits that T was to encounter again later in my study of domain theory, as
applied to the study of computer programming languages.

While I was in Moscow, L received a letter which set my life in the direction it has followed
ever since. It was from the National Physical Laboratory, the primary British government
research laboratory, located in Teddington near London. I was invited to join the Laboratory

-7-

as Senior Scientific Officer to help on a new project to program a computer for automatic
translation from the Russian language into English.

That gave me sufficient excuse to relax my mathematical studies, and start to learn a bit about

- the current Russian efforts in machine translation, from English into Russian, of course. 1.~ —

read the early issues of the Russian Journal Mashinnii Pererod (Machine Translation), and I
met and talked to several of the authors. In fact, that was where I published the very first
scientific article I ever wrote. It was written in Russian, typed on a Russian typewriter
borrowed from a friend. But I never saw any Soviet computer — they were at that time too
secret to show to foreigners.

My study of machine translation took me to the Lenin Library in Moscow, the only Library
that stocked the relevant work on syntax analysis by Noam Chomsky, Kyoto Laureate for
Cognitive Science in the year 1988. His theories of the syntax of language are a precise
expression of the rules to be used by a computer in checking the grammar of sentences. His
most important idea was that of recursive definition, that is, a definition that contains a copy
of the actual word being defined. For example, in a grammar for a sentence in English, a
‘subordinate clause’ is defined as containing a verb and possibly some nouns and even some

~ other subordinate clauses, Although this violates normal Aristotelian rules for definitions,
“when used with care it conveys a very precise meaning. In the programming world,

Chomsky’s ideas were first taken up by John Backus and used by Peter Naur in the design of
the international algorithmic language ALGOL 60. Since then, they have had an enormous
impact on the design of other programming languages, on computational linguistics, and on
computing science in general.

One of the first tasks of machine translation is to find the dictionary entry for each word of a
sentence in the source language. The dictionary was stored in alphabetical order on a long
magnetic tape, which could take several minutes for the computer to read or even just to scan
from end to end. It would be very inefficient to do the whole scan separately for each word in
the sentence. A more efficient idea is fitst to sort the words of the sentence also into
alphabetical order, so that all of them can be looked up on a single scan of the tape, picking up
each dictionary entry as it passes under the head of the tape reader. It was to solve this
problem on a machine with a very small main memory that I discovered the sorting algorithm
Quicksort.

Towards the end of my visit to Moscow, I received another unexpected letter, this time from
my uncle, who had retired from the Royal Navy and was then the general manager of the
Scientific Instrument Manufacturers’ Association of Great Britain, He was organizing an
Exhibition in the center of Moscow at which the manufacturers could display and sell their
products. I was invited to act as an interpreter for the exhibitors and lecturers from England,
enabling them to communicate with the Russian public and with the scientists and potential
purchasers visiting the exhibition,

One of the exhibitors was Elliott Brothers Ltd., whose Computing Division at Borehamwood
manufactured scientific mini-computers. At Moscow they demonstrated their latest computer,
called the Elliott 803, and I spent most of my time on that exhibition stand. At the end of the
exhibition, the Managing Director of the Computing Division offered me a free lift back to
England in the empty van which had brought the computer to Moscow: my knowledge of the
Russian language, the people, and the bureaucracy would be of great service to the driver on
the trip. I was also invited to consider an offer of permanent employment.

Borehamwood: Computing

On return to England, my first job interview was with the National Physical Laboratory.

There Tsaw the famous pilot ACE computer designed originally inconsultation with-Afan——————]
Turing. Its cabinets filled a vast hall; its function unit was made from thermionic valves, its
few dozen immediate access registers were stored as acoustic delays in tanks filled with the
metal mercury, and its main storage was on magnetic drums. Its electric power had to be
produced by its own motor generator. And it cost millions of dollars, in today’s monetary
values. On further discussion of the proposed terms of my appointment, it turned out that the
offer of the rank of Senior Scientific Officer was a mistake. In fact, I would not be a Scientific
Officer at all. I would be in a technician grade, as an Experimental Officer. And when they
discovered that I did not have a scientific degree, they explained that I could only be
employed on a temporary basis, and I could never hope for a permanent pensionable post in
the Scientific Civil Service. I am told that the Laboratory was surprised when I declined this
far-from-enticing career prospect. But the real reason for declining was that I had lost faith in
the ability of computers to translate natural languages.

Instead, I took my first job at Elliott Brothers as a programmer, writing library programs in
decimal machine code for the 803 computer that I had first seen in Moscow. I really enjoyed
the challenge of writing and rewriting the frequently executed parts of the program, so that
they would be as fast as possible and use efficiently the very limited memory. My only worry
at the time was that my boss was only four years older than me, and his boss too was still a
young man. I thought that I had obviously missed the first great wave of expansion of
computing, and it would be a long time before I had any prospect of promotion. How was I to
know that I would live in such interesting times? That during my working lifetime, I would
see the speed of computers growing by about a million times? That they would become a
thousand times cheaper and consume a thousand times less power? That they would be a
million times smaller but contain a thousand times more internal storage capacity. That their
number would grow to hundreds of millions, spread throughout the world. This astronomical
increase in cost-effectiveness of computer hardware has led to a proportionate increase in the
demand for programmers with the skills to put the increased power to effective use. And yet
the principles of programming, which I first learned by experience forty years ago in industry,
and which were the subject of all my later teaching and research in Universities, are just as
relevant today as they ever were, and even more so.

In my spare time from programming at Elliott’s, I continued to think about the sorting
algorithm that I had discovered in Moscow, to answer the question how fast it was. [wrote
down a set of simultaneous difference equations governing the average number of
comparisons and exchanges required. One Sunday, [was lazing on my sofa, playing idly
around with the formulae. T stopped abruptly when I found that I had proved yet again the
obvious fact that zero equals zero. That is what quite often happens to an amateur
mathematician; and the best advice is to go back and check carefully all the previous working,.
When I did this, I found to my surprise that T had made no mistake: indeed I had found the
very formula that solved the equations, and gave the average speed of the sorting program. It
was quite as fast as 1 had hoped. That encouraged me to write up an account of my method in
a scientific articte entitled Quicksort, published in the British Computer Journal in 1962,

Ten years later, I visited Stanford University at the invitation of Don Knuth, winner of the
Kyoto prize for Information Science in 1996. He told me he had been encouraged by my

-G

analysis of the average case complexity of Quicksort, and he and his students later applied
their much more powerful analytic techniques to reveal much more about the statistical
distribution of the sorting times of this algorithm.

——WhenThad been-in-my-jobfor six menths; I was-given-the task of designing: afiew high-level

programming language for the new and faster members of the Company’s range of
computers. By great good fortune, there came into my hands a copy of Peter Naut’s Report on
the International Algorithmic Language ALGOL 60; and we decided to implement a subset of
that. By an even greater good fortune, I had as my colleague the programmer, Jill Pym, who
had moved on to this project after implementing the autocode for Elliott’s previous computer.
Shortly afterwards we were married, and happily we still are.

In the early days in 1961, writing a translator for a programming language was not obviously
simpler than that of translating a natural language. Fortunately my Company had a library
with a good collection of journals, which I used to browse in nearly every week. There 1
found the issue of the Communications of the ACM of April 1960, the issue that is devoted to
the implementation of programming languages. The article that most impressed me was one
on Recursive Functions of Symbolic Expressions, written by John McCarthy, Laureate of the
Kyoto prize for Computer Science and Artificial Intelligence in 1988. He gave a marvelously
clear description of the first version of the purely functional programming language, LISP. It
incorporated the technique of recursive programming, whereby a subroutine of a program can
be defined with the help of a recursive call upon its own definition, I was amazed at the very
simple LISP program that McCarthy wrote to define by interpretation any other LISP program
submitted to it as data. It was much simpler than the elaborate constructions devised by Alan
Turing to perform the same task for his machine. I was equally impressed at the first example
in the programming manual for version 1.5 of LISP. It was a remarkably simple expression of
the very algorithm that Hao Wang had used earlier to check the theorems in the first nine
chapters of Russell and Whitehead’s Principia Mathematica.

Ten years later, T worked the summer of a visit to Stanford University in John McCarthy’s
artificial intelligence laboratory. McCarthy’s ideas on functional programming, on data
structures, on axioms and on non-determinism have been the historical trigger of many later
developments of the theory of these subjects.

After a thorough study of the relevant articles by McCarthy and others, 1 discovered the key
that enabled me to design and write the Elliott ALGOL translator, It was the concept of
recursion itself, which I had first encountered in the work of Chomsky, and met again in LISP
and ALGOL 60 itself. I took full advantage of it in programming the published version of my
sorting algorithm. It was of even greater advantage in designing the structure of our translator
for ALGOL itself. I designed it as a subroutine that translated just a single statement of the
program, one that could contain many other smaller statements within it. So whenever the
translator encountered one of these smaller statements, it just called itself recursively to
translate that inner statement, before resuming translation of the rest of the program. This
technique is known as recursive descent, and I still recommend it for analysis of any well-
structured programming language.

Our project for the implementation of ALGOL 60 made good progress. After a year or 8o, I
began to suspect it would soon be ready for delivery, and I reported this to my managers.
Shortly after, the senior manager of the Computing Division had to fly off to New York, to try
to recover the sale of an Elliott computer to a customer who had cancelled an order at the last

-10- .

minute in favour of an IBM computer. The customer was so impressed by the prospect of an
ALGOL compiler on the Elliott 803, that he changed his mind back again in our favour, That
gave our little project a great deal of internal kudos, and also something we never had before,
-- a deadline for delivery! I am glad to report we met it; though as usual, a lot of later work
— - was needed to make the compiler more usable iman efficient operating environment. |

After the unexpected success of our ALGOL compiler, the Company turned to a more
ambitious project, to design and implement even more powerful and efficient operating
environments for our newer and faster computers. Although I was responsible for their
design, and for leading a team of around fifty programmers to implement it, after three years
we had to admit that we had failed, and would not be able to deliver any part of our promises
to our customers. That failure has been more influential on my subsequent career than any of
my more modest successes. It has been the goal of all my subsequent research to make the
writing of operating systems as easy as writing programming language translators.

But first we had to recover from the failure, and I was made responsible for that too. It took
two years, after which the Company turned its attention to the design of yet larger and faster
machines, needed to keep up with advances in hardware technology and machine architecture.
To help in this, I was removed from my position as Technical Manager in the Development
Division, and appointed as Chief Scientist in the Computing Research Division. With a small
team of colleagues we conducted research into architectural innovations such as cache
memories and paging systems, now known as virtual memory. But we realized that the critical
factor in the sale of any new computer was going to be its software, and in particular its
operating system. The Company had still never delivered one, and still I was not quite sure
even what an operating system was. So I went to visit the Cambridge University
Mathematical Laboratory, to study the Titan computer and the Titan Operating System. This
software had been written (in collaboration with the computer manufacturer) by the
University staff and lecturers. The project was led by Roger Needham, under the direction of
Maurice Wilkes, winner of the 1992 Kyoto Prize for Information Technology. I profited from
work at Cambridge on cache memories, as well as insights into the structure and functions of
an operating system as a whole.

In 1967, Elliott Brothers was taken over by a larger rival Company, and our project to design
a new computer was cancelled. The next year we were merged into an even larger Company.
I must have been looking at job advertisements, or I would not have seen the vacancy for a
Chair in Computing Science at the Queen’s University of Belfast. To my surprise, I applied
for it; and to my even greater surprise, my application was accepted.

Conclusion

This was the start of my University career. 1 chose as the theme of my life-long research the
fundamental problem of correctness of computer programs. I was not worried that the
research would be called basic, pure, and long term. Indeed, I predicted that it would only
begin to be applied in industry after I had retired from a University career. And so it has been.
Last year I reached the appointed age for retitement, and I have taken a position in Cambridge
as Senior Researcher in the research division of the world’s leading software development
company Microsoft. Maurice Wilkes is now a close neighbour to my new home in
Cambridge, and Roger Needham is my immediate boss at work, Now I have an unparalleled
opportunity to see at first hand how some of my early research results, together with those of

211 -

many other academic research scientists, are winning through into industrial practice. My
remaining ambition is to assist in this process to the best of my abilities.

It has been a great pleasure to share with you these stories from a life in interesting times, I

hope they have shown that i spite of unusual changes of direction, T have taken advantage-of

the teaching of great philosophers and logicians, the discoveries of early computing pioneers,
together with experience derived from my own success and failure in industry, and they have
led me to the exploration of fundamental theories for a new and important branch of
technology. If there is any lesson for younger membeis of the audience to be derived from
my strange adventures, it is this: do not follow in my footsteps or in the footsteps of anybody
else. Rather make a path of your own choosing, in directions which interest you most at the
time. If you feel most comfortable with the established curriculum or the conventional career,
I wish you the best of success in it. But if your interests or opportunities lead you in unusual
directions, do not be afraid to stray from the general norm. Do not be aftaid of change, no
matter how dramatic the contrasts you encounter; if you think hard how to generalize your
earlier learning and experiences, you will profit from them in the most unexpected ways.
Everyone in this wide world has a different background and different interests and a different
petsonality. It is this unbounded variety that we all need to foster and develop, to ensure the
continued progress of human knowledge, the continuous renewal of our various cultures, and
the ultimate prosperity and happiness of our human race.

