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1 Introduction

The goal of scientific research is $o develop an understanding of the complexity of the world which
surrounds us. There is certainly enough compiexity out there to justify a wide range of specialist
branches of science; and within each branch to require a wide range of invgstiga,tory styles and
techniques. Tor example, among the specialists in Physics, cosmologists start their speculations in
the vast distances of intergalactic space, and encompass the vast time-scales of the evolution of the
stars. They work methodically downward in scale, until they find an explanation of phenomena that
can be observed by telescopes of the present day. At the other end of the scale, particle physicists
start with the primitive components of the material world, eurrently postulated to be quarks and
gluons. They then work methodically upward in scale, to study the composition of baryons, hadrons,
and leptons, clarifying the laws which govern their assembly into atoms and molecules. Eventually,
they can explain the prope:fties of materials that we can touch and smell and taste in the world
of every day. In spite of the difference in scaie of their starting points, and in the direction and
style of their investigations, there is increasing excitement about the convergence and overlap of
theories developed by éosmbioéist's and by particle physicists. The point at which they converge is

the most significant event in the whole history of the universe, the big bang with which it all started.

The same dichotomy between top-down and bottom-up styles of investigation may be found among

mathematicians., For example, category theorists start at the top with a study of the most general




kind of mathematical structure, as exemplified by the category of sets. They then work downward to
define and classify the canonical properties that distinguish more particular example structures from
each other. Logicians on the other hand start from the bottom. They search for a minimal set of
primitive concepts and notations to serve as a foundation for all of mathematics, and a minimal col-
lection of atomic steps to define the concept of a valid proof. They then work methodically upward,
to define all the more familiar concepts of mathematics in terms of the primitives, and to justify the
larger proof steps with which mathematicians are more comfortable. Fortunately in this case too,
the top-down and the botfom-up styles of investigation have as their common goal an explanation of

the internal structure of mathematics and clarification of the relationship between its many branches.

Computer science, like other branches of science, has as its goal the understanding of highly complex
phenomena, the behaviour of computers and the software that controls them. Simple algorithms
like Euclid’s method of finding the greatest common divisor are already complex enough; a challenge
on a larger scale is to understand the potential behaviour of the million-fold inter-linked operating
systems of the world-wide computing network. As in physics or in mathematics, the investigation

of such a system may proceed in a choice of directions, from the top-down or from the bottom-up.

Whatever its scale, an investigation from the top-down starts with an attempt to understand the
system as a whole. Since software is man-made artifact, it is always relevant to ask first what is its
purpose, Why was it built? Who is it for? What are the requirements of its users, and how are
they served? The next step is to identify the major components of the system, and ask how they
are put together. How do they interact with each other? What are the protocols and conventions
governing their collaboration? How are the conventions enforced, and how does their observance

ensure successful achievement of the goals of the system as a whole?

A top-down theory of programming therefore starts by modelling external aspects of the behaviour




of a system, such as might be observed by the user of a system. A conventional name is given to
each observation or measurement, so that the intended behaviour of the system can be described
briefly and clearly, perhaps in a user manual, or perhaps even in a specification agreed with the
user prior to implementation. The set of observations is extended to include concepts needed to
describe the internal interfaces between components of the system. The goal of the theory is to
predict the behaviour of a complex assembly by calculation based on descriptions of the behaviour
of its major components. A formula is provided for each of the assembly methods available for the
purpose. The collection of formulae constitutes a denotational semantics for the notations in which
a system can be specified, designed, and eventually implemented. The programming language used
for implementation is defined by simply selecting an implementable subset of the mathematically
defined notations for describing program behaviour., The correctness of a program simply means
that all possible observations of its behaviour are included in the set defined in its specification. The
development of the theory starts from the denotational definitions and continues by formalisation
and proof of theorems that express the properties of programs written in the language, The goal is
to assemble a collection of mathematical laws, equations and inequations that will be useful in the
top-down design of programs from their specifications, and ensure that the resulting code is correct

by construction.

Investigation of a complex system from the bottom-up starts with an attempt to discover a mini-
mum collection of primitive components from which it has been made, or in principle could have
been. These are assembled into larger components by primitive combinators, selected again from a
minimal set. The notations chosen to denote these primitives and combinators constitute the syntax
of a simple programming language. Since programs are intended for execution by a machine, its
operation needs to be defined as a collection of primitive steps that will be taken in executing any
program that is presented to it. The theory may be further developed by investigation of properties

of programs that are preserved by all the possible execution steps; they are necessarily preserved




throughout execution of any program. The resulting classification of programs can be presented
as a set of axioms that can be used in proofs that a program enjoys the relevant property. The
properties are often decidable, and the axioms can be used as a type system for the programming
language, with conformity checkable by its compiler. In favourable cases, the type system allows
unique or canonical types to be inferred from an untyped program. Such inference can help in
the understanding of legacy code, possibly written without any comprehensible documentation at a
higher level of abstraction (or worse, the original documentation has not been kept up to date with

the later changes made to the code).

The benefits of a top-down presentation of a theory are entirely complementary to those of a bottom-
up presentation. One of them is directly applicable to discussion and reasoning about the design of a
program before it has been written, and the other o the testing, debugging, and modification of code
that has already been written. In both cases, successful application of the theory takes advantage
of a collection of theorems proved for this purpose. The most useful theorems are those which take
the form of algebraic laws. The advantages of both approaches can be confidently combined, if the
overlap of laws provided by both of them is sufficiently broad. The laws are a specification of the
common interface where the two approaches meet in the middle. I suggest that such a convergence
of laws developed by complementary approaches and applied to the same programming language
should be a criterion of the maturity of a theory when deciding whether it is ready for practical

implementation and use.

2 Top-down

A top-down presentation of a theory of programming starts with an account of a conceptual frame-
work appropriate for the description of the behaviour of a running program as it may he observed by
its users. For each kind of observation an identifier is chosen serve as a variable whose exact value

i

will be determined on each particular run of the program. Variables whose values are measured as a




result of experiment are very familiar in all branches of natural science; for example in mechanics, z
is often declared to denote the displacement of a particular object from the origin along a particular
axis, and % denotes the rate of change of ®. Such examples drawn from the normal practice of
scientists provide illumination and encouragement at the start as well as later in the development

of theories of programming.

There are two special times at which observation of an experiment or the run of a program are
especially inferesting, at the very beginning and at the very end. That is why the specification
language VDM introduces special superscript arrow notations: 2 to denote the initial value of the
global program variable # and Z to denote its final value on successful termination of the program.
(The Z notation uses z and 2’ for these purposes). In the conventional sequential programming
paradigm, the beginning and the end of the run of a program are the only times when it is necessary
or desirable to consider the values of the global variables accessed and updated. We certainly want
to ignore the millions of possible intermediate values, and it is a goal of the theory to validate this
simplification. Fragments of program in different contexts will update different sets of global vari-

ables. The set of typed variables relevant to a particular program fragment is known as its alphabet.

Proper understanding of a program requires prior specification of its alphabet, and agreement on
the way in which the value of each variable in it can be determined by experiment. To interpret
the meaning of a program without knowing its alphabet is as impossible as the interpretation of a
message in information theory without knowing the range of message values that might have been
sent instead. The relevant parameters of program behaviour do not have to be directly observable
from outside the computer. For example, even the values of the program variables are inaccessible
to a user; they can be controlled or observed enly with the aid of an input-output package, which
ironically may even be written in the same language as the program under analysis. Nevertheless,

the theory needs to refer directly to initial and final values of program variables. Indirect observa-




tions are needed to make successful predictions about the behaviour of larger programs, based on
knowledge of the behaviour of their components parts. Successful termination is one of the most
important properties of a program to predict, so we need a special variable (called o_l:,) which is
true just if and when termination occurs. The corresponding initial variable c;c indicates that the
program has started. Of course a negative value of c;;c will never be conclusively observed; but that
doesn’t matter, because the intention of the theorist and the programmer alike is to ensure it that
O_iﬂ is necessarily true, and to prove it. Such a proof would be vacuous if the possibility of falsity
were not modelled in the theory. In general, for serious proof of total correctness of programs, it is
essential to model realistically all the ways in which a program can go wrong, even if not directly
observable. In fact, the progress of science is marked by acceptance of such unobservable abstrac-
tions as force and mass and friction as though they were directly measurable quantities. As Einstein

pointed out, it is the theory itself which determines what is observable.

A mathematical theory for an interactive programming paradigm, assumes that each interaction
between a program and its environment can be observed, and each of them has a distinct name. For
example, in the process algebra CCS{Calculus of Communicating Systems] the event name coin may
stand for the insertion of a pound coin in the slot of a vending machine, and the event name choc
may stand for the selection and extraction of a chocolate bar by the user. The CSP[Communicating
Sequential Process] variant of process algebra allows the user to record a frace of the sequence in
which such events have occurred while the machine is running; so {coin, choe, coin) is a value of
trace observed in the middle of the second transaction of the machine; the empty trace () is the
value when the machine is first delivered. We also model the possibility of deadlock (hang-up) by
recording the set of events currently offered by the machine’s environment, but which it refuses to
accept. For example, initially the machine refuses {choc}, which it always refuses when it has run

out of chocolates. A deadlocked machine refuses all the events offered by its environment.




A top-down theory of programming is highly conducive to a top-down methodology for program
design and development. The identifiers chosen to denote the relevant observations of the ultimate
program are first used to describe the intended and permitted behaviour of a program, long before
the detailed programming begins. For example, a program can be specified not to decrease the value

of & by the statement
— —
x <

The owner of a vending machine may specify that the number of choc events in the frace must
never exceed the number of coin events. And the customer certainly requires that when the balance
of coins over chocs is positive, extraction of a chocolate will not be refused. Explicit mention of
refusals is a precise way of specifying responsiveness or liveness of a process, without appeal to the
concept of fairness. There is no need for a programming theory to restrict the language in which
such specifications are written. The whole power of mathematics is placed at the disposal of the
engineer and scientist, and should be exercised fully in the interests of utmost clarity of specification,

and utmost reliability in reasoning about it.

In an observational semantics of a programming language, the meaning of an actual computer
program is defined simply and directly as a mathematical predicate that is true just for all those
observations that could be made of any execution of the program in any environment of use. Ior
example, let 2,y, and z be the entire alphabet of global variables of a simple program. The assign-
ment statement z 1= = + 1 has its meaning completely described by the predicate that states the

value of z is incremented, and the values of all the other global program variables remain unchanged
T’i;:g +1 A ;J):"E? A ;:;

Similarly, the behaviour of the deadlock process in a process algebra can be described purely in

terms of its trace behaviour — it never engages in any event, and so the trace remains forever empty

trace = <>




Thus we can regard both specifications and programs as predicates placing constraints on the range
of values for the same alphabet of ohservational variables; the specification restricts the range of
observations to those that are permitted; and the program defines exhaustively the full range of
observations to which it could potentially give rise. As a result, we have the simplest possible
explanation of the important concept of program correctness. A program P meets a specification
S just if the predicate describing P logically implies the predicate describing 5. Since we can
identify programs and specifications with their corresponding predicates, correctness is nothing but

the familiar logical implication
P=8

For example, the specification of non-decreasing = is met by a program that increments 2, as may

be checked by a proof of the implication
zi=a+1 = z < T

This simple notion of correctness is obviously correct, and is completely general to all top-down
theories of programming. Furthermore it validates in complete generality all the normal practices of
soffware engineering methodology. For example, stepwise design develops a program in two (or more)
steps. On a particular step, the engineer produces a design D) which describes the properties of the
eventual program P in somewhat greater detail than the specification 5, but leaving further details
of the eventual program to be decided in later steps. The stepwise design method of engineering
is defined and justified by the familiar cut rule of logic, expressing the mathematical property of

transitivity of logical implication

In words this rule may be read: if the design is correct relative to the specification, and if the

prograi meets its design requirement, then the program also meets its original specification.




The stepwise approach to implementation can be greatly strengthened if each step is accompanied
by a decomposition of the design D) into separately implementable parts Dy and Dy, The correctness

of the decomposition can be checked before implementation starts by proof of the implication
DiADy= D

The descriptions Dy and D5 should formalise in sufficient detail all the ways in which the components
of the eventual product will interact with each other across the interface which separates them. This
usually requires extension of the alphabet to include interactions that are not visible to the user,
and that are not mentioned in D, or in any earlier design or specification. By making all interactions
explicit, the behaviour of an assembly of components can be described exactly by the conjunction
of the description of its components. In this case, the further implementation of the designs D
and D, can be progressed independently and even simultanecusly to deliver components P, and
P,. When the components are put together they certainly will meet the original design requirement
D. The proof principle that justifies the methods of design by parts is just the expression of the

monotonicity of conjunction with respect to implication

Pi= Dy Po= Dy
PLAP =D A I

An even more powerful principle is that which justifies the reuse of a previously written library
component, which has been fully described by the specification L. We want to implement a program
P which uses L to help achieve a specification 5. What is the most general description of a design
for P that will achieve this goal in the easiest way? The answer is just SV L, as described by the

proof rule

P=SV
PAL=

195 ol

This law is often used fo define implication as an approximate inverse (Galois connection) of con-

junction.




The identification of programs with more abstract descriptions of their behaviour offers a very
simple and general explanation of a number of important programming concepts. For example, a
non-deterministic program can be constructed from two more deterministic programs P and ¢ by
simply stating that you do not care which one of them is selected for execution on each occasion.
The strongest assertion you can make about any resulting observation is that it must have arisen
gither from P or from ¢. So the concept of non-determinism is simply and completely captured
by the disjunction PV @, describing the set union of their ohservations. And the proof rule for
correctness is just the familiar rule for disjunction, defining it as the least upper bound of the

implication ordering

PA=D P=>D
PV Pp= D

In words, if you want a non-deterministic program to be correct, you have to prove correctness of

both alternatives.

Existential quantification in the predicate calculus provides a means of concealing the value of a
variable, simultaneously removing the variable itself from the alphabet of the predicate. In pro-
gramming theory, quantification allows new variables local to a particular fragment of program to
be introduced and then climinated. In a process algebra, local declaration of event names will en-
sure that the internal interactions between components of an assembly are concealed, as it were in
a black hox, before delivery to a customer. Observations of such inferactions are denoted by some
free variable, say ¢ occurring in the formula P;; on each execution of P; this variable must have some
value, but we do not know or care what it is. The value and even the existence of the variable can

be concealed by using it as the dummy variable of the quantification 3. 5.

An important example of concealment is that which occurs when a program component P is sequen-
tially composed with the component ¢, with the effect that ¢} does not start until P has successfully

terminated. The assembly (denoted P; @) has the same initial observations as P, and the same final
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observations as ¢}, Furthermore, we know that the initial values of the variables of ¢} are the same
as the final values of the variables of P. But we definitely do not want to observe these intermediate
values on each occasion that execution of the program passes a semicolon. Concealment by existen-
tial quantification makes the definition of sequential composition the same as that of composition

in the relational calculus
(P;@) =4 2. P(%,2) A Q(o,7)

Here we have written x and its superscripted variants to stand for the whole list of global variables

in the alphabet of P and Q.

Surprisingly, sequential composition is like conjunction in admitting an approximate inverse, — a
generalisation of Dijkstra’s weakest precondition. 7 \ § is defined as the weakest specification of a
program P such that P; L is guaranteed fo meet specification §. There is also a postspecification,
similarly defined. Such inverses can be invaluable in calculating the properties of a design, even

though they are not available in the eventual target programming language.

In the explanation of stepwise composition of designs, we used conjunction to represent assembly
of components, Conjunction of program components is not an operator that is generally available
in a programming language. The reason is that it is too easy to conjoin inconsistent compomnent

descriptions, to produce a description that is logically impossible to implement, for example,
(z:=a+1) A {x:=2+2), whichequalsfalse

So a practical programming language must concentrate on operators like sequential composition,
which are carefully defined by conjunction and concealment to ensure implementability, Negation
must alsoc be avoided, because it turns true, which is implementable, to false, which is not. That is
why prespecifications cannot be allowed in a programming language. Any operator defined without

direct or indirect appeal to negation will be monotonic, and the programmer can use for the newly
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defined operator the same rules for stepwise decomposition that we have described for conjunction,
The whole process of software engineering may be described as the gradual replacement of logical
and mathematical operators of specifications and designs by the implementable operators of an ac-

tual programming language.

The simplest operator to define is the conditional, in which the choice between components P and
) depends on the truth or falsity of a hoolean expression b, which is evaluated in the initial state.

9o b can be interpreted as a predicate b, in which all variables are replaced by their initial values.

if b then P else @ =g DAP VY (—|3)/\Q

All the mathematical properties of the conditional follow directly from this definition by purely

propositional reasoning.

The most important feature of a programming language is that which permits the same portion of
program to be executed repeatedly as many times as desired; and the most general way of specifying
repetition is by recursion, Let X be the name of a parameterless procedure, and let F(X) be the
body of the procedure, written in the given programming language, and containing recursive calls
on X itself. Since F is monotonic, and since predicates can be regarded as a complete lattice, we
can use Tarski’s fixed point theorem to define the meaning of each call of X as the weakest possible

solution of the implication X = F{X).

A non-terminating recursion can all too easily be specified as a procedure whose body consists of
nothing but a recursive call upon itself. Our choice of the weakest fixed point says that such a
program has the meaning true, a predicate satisfied by all observations whatsoever. The program-

mer’s error has been punished in the most fitting way: no matter what the specification was (unless
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