PN U oy, T R—— o B ———

Operating Systems:

their Purpose, Objectives, Functions, and Scope.

C.A.R. Hoare.

Summary : This paper proposes a definition of the purpose and
B objectives of an Operating System, which is intended to

clearly distinguish the responsibility of its designers
from that of the designers of hardware, programming
languages, utility routines, library procedures, and
other software. The definition 15 then applied to
delimit the proper functions of various Operating Systems,
working to meet various requiremenis in various

different circumstances,

This paper bas been submitted to the first International Seminar
on Operating System Techniques held at Belfast, Northern Ireland,

Aupust 30 to September 4, 1971.

1 . Hoare

1. Purpose and Objectives,

The basic purpose of a computer operating system is to’'share the
hardware which it controls among a number of users, making unpredictable
demands upon its resources; and its objectives are to do so efficiently,

reliably, and unobtrusively.
1.1 Ampllflcatlon.

N The definition of a user is left dellberately vague' it ‘may be a single
person or a team, a single program or a sulte of related programs ‘carrying out-
some task. Each user isg regarded at least on occasion as more or less isolated
from all other users, and is not supposed to be concerned or aware of what the -

- other users are doing at any ‘given time. Consequently an operatlng system SR
should protect each user from the aceldental or dellberate effects of -the -
actions of other users; thlS is accomplished by presenting to each user an
apparent or virtual machine conflguratlon (usually smaller and/or slower than *
the actual hardware available}, which “that useér may regard as his own separate
'machlne, relatively 1ndependent of the virtual machines presented to_other

Users.,

The main problems faced by an operating system:arisé'from:%heﬂisr-'

unpredictability of the demands made by its users, If all“deﬁands-were*made-'

in predlctable combinations at predictable times, the whole operatlon of the '~

A machlne could be planned 1n advance by a s1ngle prewrltten program. Indeed

any ALGOL program'u31ng block structure (or FORTRAN program u51ng“
QUIVALBNCE for a 51m11ar purpose) is "sharlng" the’ store of‘a computer

among dlfferent Mugeps! (blocks or procedures) at dlfferent times. But since-
the pattern of sharing is completely predétermined by the program, one

cannot argue that such a program is an operatlng system.

The efficiency of the sharlng achleved by an operatlng system can be R
measured in terms of the den51ty of utilisation of resources. Each item of -
hardware (e.,g. peripheral device, word in core store, channel central"” '
processor) is allocated to a user (on his request) for only a certaln_'
percentage of the time. Each such item can be glVen a comparat1Ve welghtlng
related to its capital and running cost and pos51bly also scarc1ty value'
multiplying each weight by the percentage of time in use, it is poss1ble to

obtain a figure for the demsity of utilisation of the installation as a whole,

Naturally, this figure will depend on the degree of balance between the

hardware configufation and the user workload; but even in the case of perfect
balance and a welledesigned operating system, unpredictable variations in
the behaviour of the users, and their demands for good service, are likely to

place quite a low limit on the efficiency achievable.

The reliaﬁilitx achieved by an operating system must obviously depend

" on the reliability of the underlying hardware; mnevertheless, a good operating
system should certalnly mitigate the effects of occasional hardware malfunctlon,
for example by automatically repeating unsuccessful 0perations, or restoring
corrupt data; and if automatic recovery is not possible, an operating g
system should confine the effects of error to as,few:users as possible, and J/
assist each user in making good after a breakdown, ‘To some extent, the ;,//f'
objective of .increasing the apparent reliability of the hardware also derives
from the primary purpose of sharing a computer, for the effects of hardware
failure on a shared machine would be many times'as serious as on a single
unshared computer, 1n,that it will affect many more users; and also, on a
shared computer, no single user without softwaré aésiétance would have
suff1c1ent understanding or control over the 1nstallation as a whole to enable
“him to take steps to recover from a fault in the sort of ad hoc way which is

often possible on a single standwalone computer,

Ancther objective of an operating system is to give each user the same

predlctablllty of serv1ce that he would have on hlS oun separate (slowar)

computer, to Whlch he would have immediate access whenever he w1shed. A user
should know the apparent speed and capacity of his virtual machine, and thus
be able to predict how long he will have to wait after submitting his program
and data before getting his results back, If he is disappointed in his
expectation (which he is sure sometimes to be), it does not matter whether
this is due to a hardware breakdown, or to a def1Ciency in the scheduling

i strategy of the operating system. Thus the achievement of reasonable
predictabillty of turnround for the individual user is an 1mportant corollary
of the objective of veliability; but it is difficult to achieve in view of
the unpredictabllity of the workload presented at any given time by the

other users of the system, and there is mo doubt that a user must occasionally

be disappointed in his predictions,

' Therve is one clear consequence of the view that the purpose of an
operating system is to share a computer installation among a number of users:

for the individualruser, the use of the operating system is not optional but

T A e T st

it

Hoare

compulsory. le must therelfore regard an operating system aé'a nécesssry

evil, tolerated as the only means of obtaining a share of an expensive
computer installation, when he would really prefer to have exclusive use of

a rather cheapep one, which he presumably could not afford. He is 1n the
position of having to travel by bus, because he cannot afford the prlvate

car which he would prefer, Thus as far as the user is concerned the best L
operating system is one which is most unobtrusive ‘e Wthh appears least to
stand between his requirements and the virtual machine which is to ;lﬁQ::_
satisfy them. The complex controlwlanguages and obscure output messages TLIIE
which are such a feature of modern software are certalnly w1dely recognlsedfgib;

as evils, even if it is claimed that they are necessary.f;Jli

There is another consequence of the compulsory hature‘of'thelusé‘of S
an operating system, which should be taken to heart by its designers: and D

-implementors: and that is the obligation‘upon them to achieve very highest;:[':

quality of their product. ' Any other item of software is at" least in.>
pr1n01ple optional for the usery; if the quality of a library program 1s
unacceptably low, he can write or select a better program to use instead,

But in the case of an operating system the individual ‘user has no choics' o

he cannot replace the parts which are of substandard quallty.“ It is to ‘be _
hoped that future designers of operating systems will accept the obllgatlon'”'
~of high quality; will recognlse that quality is measured by eff101ency,'“~ _
o reliability, and unobtrusiveness; and will produce software Wthh 1s‘a major {7:
of

- _improvement on current products in w1despread use, whlch dlsplay none’

vl li‘t

these qualltles in any ‘high degree.

1.2 Alternative _views.

It must be recoghised that the unsatisfactory nature of manynéurrénf S
= operating systems is not wholly due to lack of good will or éompeténcé*bﬁ’ e
= the part of designers and implementors; but pvather to the fact’ that ‘they = =
- started with a view different to that proposed here both of the purpose of _'
an 0peratlng system, and of its objectives, These alternative views will now

% be discussed,

(1) 'The Universalist view,

_ One widely accepted view is that the term "0perat1ng System!" should
cover the entire range of software support offered by a computer manufacturer., .
- Haturally, there is no point in arguing about terminology; nevertheless,

indiserdminate use of a st ‘ngle Lerm to cover so wide a & range of softhregz‘

“ 3w

RLFs3 = TS iy g TN N o e A R Rl e a8

PR -

S HRLILT AN R B S R U T e e s SR A
Hoare

is very unhelpful, and may have serious consequences in blurring the
functions and objectives of different items of software, In this paper we
choose to adopt a more precise terminology, to single out some important

particular part of a manufacturer's software range.,
(2) The Compatlblllst view,

A second view, which certainly underlies the practice of many
manufacturers' operating systems, is that the objective of an operating

system-ie to Secqre "compatibility!" for user programs so that they can be

‘transferred between Installations of widely differing speed, size, and

configuration, Naturally, it is a sensible objective of a menufecturer’s _

commercial policy that the lower machines of a range should be identical ‘f

: : —
. in their hardware structure to the virtual machines which are set up by

an operating system within the more powerful shared installations.
Furthermore there 1is an obvious role for simulators, emulators, service

routlnes and library programs, and machineeindependent languages, which

Cwill a881st in the transfer of programs from one machine to another, But

it should not: be the province of an operating system to enforce compatibility

when this is not wanted or appropriate for the user; for compatibility is

~ seldom achieved without a cost.ﬁhich‘surprises user and implementor alike,

:’(3) The Perfectionist View,

Plnally, there is a widespread view that an operating system should
present to each user a virtual machine which is in some way preferable to
the origlnal hardware, in the sense that it possesses more facilities or
is easier to program, This view arrogates to operating system designers
a number of respeonsiblilities shich are better dlscharged by others: for
example the provision of better hardware should be the responsibility of
hardware designers; useful facilities should be provided by designers of
Service‘p?ograms and library routines; and the task of making a computer
easier-to program belongs to programming language designers and implementors.
In the past, when presented with badly designed hardware and even worse
programming languages (which cannot be changed for reasons of compatibility),
there has ‘been a great temptation for the operating system designer to
attempt to remedy the situation by software, The resulting systems have
inevitably grown very large and expensive, and so far from mitigating
previbﬁsly existing defects, they have introduced many new ones of their

own, Theve are few writers of major programs who would not prefer to

“ I} e

aapind

gty

-y poL T &
T O A R e e e S M O R S e B &@e@”.

Hoare

interface'directly to the hardware rather than to an operating system,

The main reason for taking a very strict v:ew of the proper province
of an operating system is that the use of an operatlng system is compulsory
on a shared installation, Any resources of core storage backing storage
channel capacity and processor time which are used by the operatlng system
present a permanent and 1nescapable overhead on the installation and the
user; - whereas any compiler, library voutine or service program which is
invoked by a user may be selected, adapted or even Specially wrltten for -
his particular requirements, Even worse, any attempt to present & user
with a "more convenient! virtual machine than that provided by hardware L
must almost inevitably be based on assumptions about the nature of. his use
of the machine, which wlll in particular cases be unjustified. . Thus the
provzslon of additional software support as part of an operating system
nearly always leads to- loss of flexibility in application, A machine empty
of software is always the most flexible; the addition of even a feﬁ .
instructions of "compulsory" software can only reduce the range of its

application, never 1ncrea3e it,

P

Nevertheless as in all successful design, a certain scoPe for

compromlse must be recognised, and the follow1ng special cases can be made:

(i) Vhen the operating system itself needs a serv1ce, (for example

binary«~decimal conversions) such a service can often be made avallable to

oyt {"'.-' .

users at no extra overhead,

(ii) When considerations of compatibility and convenlence are very

strong, and the extra overhead quite small, a sultable conce581on can be made.

(iii) The hardware de31gners must be permitted to interpret
instructions by software if .on certain machines in a range this is more

economic than building their interpretation into hardware, ..i° yowin oo

As mentloned above it is a leg1t1mate objectlve of an operatlng
system’ to simulate a virtual machine which is more rellable than ‘the
actual hardware of the machine, and software services assoc1ated w1th thls

objective may legitimately be ascribed to an operating system, -

Hoare

2. Function and Scope.

‘This section 3urveyS the range of functions which an operating system
is properly called upon to perform in sharing a computer installation among
many users. The survey starts from the simple rudimentary forms of operating
system sultable for small machines and specialised applications, and progresses
to the larger and more compléx systems providing a service to many users with

dlffer;ng needs,
2.1 Rudimentary systems,

.It is instructive to start a survey with an Yempty" or "ull" case
where no. operatlng system is needed at all, Such cases are found in ther
appllcatlon of computers to laboratory automation or process control, where/
‘a small computer is wholly and continuously dedicated to a single task, In
an appllcatlon such as airline geat reservation a larger computer ‘is generally
used, and it shares its attentlon among a number of separately identifiable
tasks or transactions. But usually the paramount importance of reliability
and-predictable response times iﬁ these applications force the programmer to
work out fairly precisely in advance the potential "behaviour” of the
transaéfions; and to take advantage of this knowledge throughout the design
of his sharing strategy and its implementation, To date, it has proved
impossible-to design a "real time" operating system which will give real-time.
servicé on a general bureau basis, We shall therefore omit real-time

appllcatlons in the remainder of thlS survey,

Returnxng +o a more conventional environment, where users submit more
or less dlSjOlnt jobs to be run on a computer, it is obviocus that the simplest
method. of Msharing" is just by succession in tlme. Each user follows
another, and has sole use of the machine during the perlod allotted to him
(usually controlled by a booking system), The role of operating system
software is minimal: its main function is to 'reset the machine to some known
state at the beginning of each user's session; and if some suitable output
device is available, it may provide the facility.of ‘dumping the user's job
if his period expires before the job is complete; and reinstating it at the
beginning of the next session, The facility for reinstating programs may
be.used to load service programs or compilers on beﬁalf of the user, This
operating regime is suitable for small machines installed in scientific

laboratories,

Hoare

In a commercial environment a similar method is quite suitable fer
a small machine. But such an installation should not just be regarded as only
a central processor, but also as the set of removable tapes, discs, etc.,wh1ch
contain essential user files; and which are usually stored centrally 1n or
near the compufer room, Thus when each user starts his session, the flles
relevant to his job must be set up by operators, and there is a severe risk
that the incorrect data will be mounted, Thus the user may 1nadVertently '

process the wrong data; or worse still, overwrlte valuable 1nformatlon still’

required by another user,

The solution to this problem is to write a header label at the

beginning of each file, contalnlng the name of the file and the date up to .
whach the Information must be. preserved and these are checked before the
file is read or overwritten, This obviates a rellablllty problem arising out

of the sharlng of the computer, and is thus proPerly an operatlng system functlon.

Another function connected w:th reliable sharing is the error
correction and recovery procedure carried out by standard read/write routlnes.
But perhaps these should rather be regarded as part of the "hardware”, -in, that

it is a choice of the hardware designer how to minimise the cost of rellablllty

by a mixture of hardware and software technlques. L t_j'f;? _ .ﬁ.;lr__e]

2.2 Batch Monitors,

execute
Ag machines get faster, the time taken to/a typical’ sxngle job

submitted by a user reduces until it is very much less than the time taken by
the manual changeover between one job and the.next, Indeed in a 301ent1flc :
workload with a high component of program testing, a significant pr0portlon of
jobs will fail before theip first few seconds, The reduction of the 1nterjob

gap may be achieved by introducing a batch monltor to automate the transition

between one job and the next, and to replace intervention by the user or
operator. The main additional function of a batch monltor 1s to detect theend
of & job either by expiry of a time limit or exhaustion of 1nput data, the
overflow of some resource constrdlnt, or: other detectable error; and to
indicate to the operator the point where the cutput of one]Ob shou]d be
separated from that of the next, S

After vietual elimination of the interwjob‘gap,'the main limitation to
the throughput of the machine is the slow speed of the input and outpui dev1ces
(card readers, line printers, etc,); it is essential to m1n1m1se the time

;

v-7n-|

N D D T T T s T o i o o APt e e i AR e rms e+ e o

Hoare

spent waiting for these devices, particularly during periods of card loading,
paper chahge, routine maintenance, and hardware breakdown. This can be
achieved by'off—lining of information: Jjobs and data are read from a slow
device onto backing store as a continuous operation well in advance of
pfocgssiug; _and- information destined for printing is also written first to
backing store, and later transcribed to a slower device as a continuous
opefation: When off-lining is carried out simultaneously with computation on

" the same” computer, it is known as pseudo-offlining. The continuity of- the

kinpgf/outpﬁt_ensures'that the slower devices operate at full speed for as long

;éé‘théy are iﬁ service and there is work for them; and when they are out of
service, the computer can continue transferring information to and from the
backing store until they are operational again. Thus an improvement in /

eff1c1ency and rellablllty is simultaneously achieved. -

, When the information is transferred between main store and backing
_ ‘store there is usually a large average overhead on each transfer; it

h therefore pays to perform input and output in fairly large blocks, each

containing some ten to fifty‘cardé or lines of information. Thus information
"from'bards_is assembled iﬁto blocks before being written to backing store,
" and in'feéding back, the blocks are disassembled into lines again before
“ beihg presented to the user program, Similarly, lines destined for output
on the printer are assembled into blocks before being written to backing

store, and disassembled again on printing.

N If the hardware of the computer permits backing store transfers
» 81multaneous with computlng, the operating system can- further increase

efficiency by a bBuffering scheme, which allows the user program to proceed

- while a block is being output, and attempts to keep one block ahead on input.
- This blocking, unblocking and buffering is a function of the operating system,
- .since it improves the efficiency of a shared installation; and it should

':z"';*é.);-p'-_iv:'-e‘-f;;{;«. B

 be of no.concern to the individual user whether his input and output

el

information.resides for a period on backing store or not. The part of

the operating system which administers the above-mentioned aspects of an

operating system is known as an input/output control system.

S R R R I L e N

Hoare

When péeudo«offlining is used, and the central processor develops a
fault which is repaired, it is very important to be able to continue output
of the results of jobs which had been completed before the fault occurred;
and to continue processing jobs which had been previously input, preferably”
starting again the job during which the fault occurred, Such an action is
known as e‘narm start, and is one of the means by which an operating system
limits the potentially more extensive effects of hardware ‘unreliability on

the.efficiency and seprvice of a shared machine,

One major dlsadvantage of .a batch monitor is that once a long job -
has been initiated, any short jobs input later must wait until that long job
is complete, this leads to long and unpredictable delays in the turnround- '
of the majority of jobs, which are short, The inconvenience can be mitigated
if the operating system has the power to select for execution an arbltrary
job from the input queue, and thus give favour to shorter 3obs even if they
were input after a longer one, An even better service can be given if a
long job ean be interrupted and dumped to backing store to permit short 3obs

to pass by. This function of an cperating system is known as job~ dcheduling,

In a batch monitor system, programs which requlre operator actlon,
for example, the mounting and dismounting of tapes or dlSCS present parilcular
problems, since such a program will in general have to walt completlon of
operator actlon before proceedlng. Thisg problem can be mltlgated by the job -
- scheduler, whlch can ensure that the proper files are mounted before selectang
- the job for initiation. -Nevertheless, the mounting of spec1al files 1nh1b1ts
queuenjumplng" by shorter jobs; and furthermore if a hlgh pr0port10n of 3obs :'
requires such action, the efficiency of the computer 1nstallat10n w1ll be ‘
- Severely limited, h

ThlS problem can be solved by keeping the 1nformat10n requmred by
Most users on a large disc store, from which it is 1mmed1ately available on.
demand, The task of sharing @ disc store among many users falls to the filing
system which splits the disc space into areas, and allocates and deallocates
them to each user on request., Thus each user of the filing system has a
virtual machine with a "non-volatile" backing store, whlch can store

information between one run and the next, In fact one of the major problems

ST e TR ey AN SRR A T i Rl T SR L A& e ol

6f a filing system is to guarantee absolute permanence of gtored information,
in face of disc hardware failure; or even worse, breakdown of the ceutral
processor during the process of updating vital information on disc. The
required security seems to be achievable only by periodic dumping of
information from disc onto magnetic tapes, which can then be reroved from
risk by dismounting. A second requirement of a filing system—is of course

* to ensure that no user can deliberately interfere with the information
‘belonglng to another user, either by reading or by writing., The third
requirement is to pr0v1de an environment in which a library of commonly used
programs and subroutines can be stored on disc, and efficiently shared by all . iﬁ
users., Flnally, a filing system may also prov1de a communication facility ;
which permlts one user to give to selected colleagues a controlled access/ﬁg/

hlS flles.

' A further function which falls to an operating system is that of

malntalnlng a g of slgnlflcant events. The purpose of this is threefold:
(l) To a581st in dlagnos1s and recovery from error or breakdown.

“(2) To prov1de statlstlcal information on the workload and the

performance of the operatlng system, so that it can be improved.

(3) To prov1de the 1nformat10n for charging each user for the
resources he has used, The calculation of the charge and the bllllng of users

may also be regarded as an operating system function.

2.3 Multlprogrammlng Systems.

PR -

Up to “this p01nt our survey has assumed that only one user program

is belng executed at a time. However, on larger machines, a denser utilisation
of resources may be achieved if several programs are initiated together to run

' 51multaneously, in a mode of operation known as multiprogramming. If there
is more than one central processor in the system, multiprogramming is needed
to make effactive use of the extra computing power, Even if there is'only a
single processor, it may pay for it to alternate atten*ion between several
programg, and thus aveid delays while one program 1s communlcatlng with
bacalng store or with the operator, The part of the operating system .
responsible for sharing a central processor or processors between several

concurrent programs is known as the dispatcher.

When a general facility of this kind has been set up, it is

convenient to allow the operating system itself to take advantage of it,

- 10 =~

seeemen e A Sl AR Y R S E R L 35 6 e, ,4;

Hoare

and to delegate certain of its tasks (for example, pseudow~offlining) +o
programs which run in parallel with each other and with the user's programs;e
But operating system tasks differ from normal user programs in that they
require to communicate with each other while they are ruming: and each

communication may involve some form of gynchronisation, Similarly, user

programs must occasionally synchronise with each other if they are competing
for some limited resource., Some means of administration of synchron1sat10n
must be part of the responS1billty of the dispatcher. '

7 In the absence of multlprogrammlng, it is assumed that the user

program, once initiated, will have access to all resources of the computer
installation other than those occuplcd by the system itself, In many cases,t

| a proportion of these resources will not be requlned at all for a glven joby '
and in other cases, the resocurces are required only for a proportlon:of the
total running time of the job, One of the main advantages of multiprogramming -

on a large machine is that the unused rescurces can‘be-allocated to another

system, The objectlve of resource allocatlon is to glve each user. the .
resources he needs exactly when he needs them, snd thus secure a‘generalg
high density of utilisetion. In some systems, the user defines the required
resources for his job, or each job step, by means of "job 'control‘csxjds_‘)
included in his submitted job; the interpretation of these is the faskrof

& resource allocator. Of special interest is the management of core storage,
which is usually one of the most valuable and scarcest resources -in a
multiprogrammed computer installation; many ingenious schemes (paglng,
segmentation, etc,) have been devised to postpone allocatlon of core storage‘
to programs until the very moment that they first need it, and to take areas
of core storage away from programs which are not currently us1ng them and to
lend them to other programs; and also to share subroutines andrdata among

programs which may happen to be using them simultaneously,”

With the advent of multiprogramming, it again becomes economically
feasible to permit the user to cowmunicate with his own program while it is
ruming, in exactly the same way &s he would if he had a machine of his own.
The provision of.a console on the user's virtual machine involves no new
principle in the functioning of an operating system; nevertheless, the
strict requirements for good response time and acceptable cost entail that
many of the techniques used to carry out the major functions of an operating

System mwust be specially designed for this new mode of operation,

Y e HT e e A et e o e

o T T T e o AR R

Hoare

3. Conclusion,

This paper has put forward a theory of the purpose and objectives
of an 0perating system, and has shown how many of the traditional functions
of operating systems arlse from their primapy purpose of sharing a computer

installation.

_ The paper contains no new technical proposals to solve the many
problems whlch face implementors and users of operating systems at the
- present time. Nevertheless, it is hoped that the general philosophy

propounded here may prove to be of some general benefit:

(1) To the .users of an operating system, it explains the major

source of .the problems, namely the provision of a predictable service in

the face of a: highly varied and unpredlctable workloady and suggests that
dlsc1pllnes designed to reduce varlablllty and unpredictability may show

a valuable return in the form of improved service and reduced cost,

(2) To the de81gner and implementor a clear statement of purpose
. and objectives of the system as a whole and each part of it may be an
1nvaluable gu1de in taking the many thousands of decisions of principle

and’ deuall involved in any large programming SySLem.

w 12 e

