Cemputer Bullvtin December 1875

&

Software engineering

C. A. R. HOARE, The Queen’s University of Belfust

If words could cure the ills of our profession of -
programming, what a healthy and highly respected
profession it 'would now be! We have had ‘modular
programming’; the craze for ‘structured programming’
has hardly yet reached the height of its commercial
profitability; and already we have a newcomer to°the
charts—the theme we have ali so long been waiting
for—yes, it’s ‘SOFTWARF, ENGINEERING", The
experienced programmer will greet the gladsome tidings
with a stifled yawn, and turn to more urgent and
important tasks. But perhaps there is something he
could learn from these catch phrases on their passage
from popularity to oblivion. Certainly, the latest
combination of the new but already tarnished word
‘software’ with the old and respected profession of
engineering 1s such a startling contradiction that it
should give us pause. Let us compare the ideals of the
professional engineer with those adopted by some
programiners of the present day. -

One outstanding characteristic of the professional
man, be he a doctor, architect or engineer, is that he
understands the real needs of his client or employer,
often very much better than the client himself} and he
has the ability and status to persuade the client to
recagnise his own interests and to abandon his less

- useful flights of fancy. Then he has the professional skill

to recommend from a'range of known and trusted
techniques those methods that in the given
circumstance will achieve the required effect at
minimurn cost and inconvenience to the client. And
finally, he has the professional integrity to resign his
post or commission if his recommendations are not
accepted.] fear that there is a sad contrast with some
programimers, whose only wish is that their client
should ‘make up his mind what he wants’, and who will
welcome his most elaborate fancies as a challenge to
their programming ingenuity. How many of them are
ignorant of, or prefer to ignoré, the known techniques
used successfully by.others, and embark on some
spatcheocked implementation of their own defective
invention? And I know only one programmer who -
resigned on the spot when his advice was not taken by
his less technically competent manager., '

A second characteristic of the good engineer'is his

© vigilance in seeking every opportunity to reduce the

costs and increase the reliability of his product. He
realises that the conflict between these two objectives
can be resolved only by preserving the utmost simplicity
of.concept, specification, design, and implementation. -
Above ali, he insists that he shall have a complete
uvnderstanding and control over every aspect of his
project—and the more difficult his project, the more
fivenly will he insist on the simplicity without which he
cannot understand what he is doing. Here again, we
find exactly the opposite characteristic in some of vur
best programmers, whe deliberately avoid simplified
salutions; they obtain satisfaction from the
sophistication of their designs and methods, and derive
excitement from engaging in projects of a complexity
stightly beyond their ability to understand and control.
They may well succeed once; but on the next cceasion

- they may discover that there is no way of distinguishing

(in advance) between what is slightly and what is
totally beyond their comprehension. -

A great advantage of the present day engineer is that
his designs are based on sound mathematical theories

- and computational techniques, discovered over the

years by his brilliant predecessors, and now enshrined
in textbooks and undergraduate teaching, in
mathematical tables, and in standard codes of practice.
But in spite of the soundness of his theory, he still has
many causes for worry that his abstractions {and his
product} may break down——a faulty casting, a defective
batch of components; a lazy workman, or an
unpredictable natural hazard. The computer
programmer has little worry of this kind: his working
material is the hardware of the computer itself, and its
reliability can usually be taken for granted. Certainly,
by far.the most significant cause of failure in software
are the errors and oversights of the programmer
himself. But here perhaps he is not wholly to blame,
since he has no widely accepted mathematical or
theoretical foundation for his work. This is a most
urgent topic of research at our universities and
elsewhere, and it is to be hoped that the results will be
most widely and most rapidly propagated. ‘

A final point of contrast lies in the working tools of the
profession. An engineer naturally demands of his tools
the highest quality and precision, reliability,
convenience, and cheapness in use, In many
professions, the tools are guite simple; in others they are
more complex. But in either case the engineer has
developed an intuitive understanding and ingtained
mastery of their proper uses; and this frees him to
devote his whole intellectual effort to the understanding -
and solution of his clients> problems. The basic tools of
the programmer are the programming languages and
compilers, job control languages and operating systems,
utilities and other software supplied in profusion by the
manufacturer of his computer. But what a sorry
comparison with the tools of other professions! That
they are unreliable, that they are profligate of computer
time and storage, that they are inconvenient in
operation—these are facts that have been long
recognised and widely suffered. Perhaps the worst
symptom (and also a large part of the cause of the
trouble) is their extraordinary and still increasing:
complexity, which totally beggars the comprehension of
both user and designer. Among manufacturers’ software

- one can find what must be the worst engineered

products of the computer age. No wonder it was given
away free—and a very sxpensive gift it was, to the
recipient!

‘But still we have some experienced prégrammers and
managers who actually welcome the stuff, praise it,
want more of'it, and even pay for it. Here perhaps the
fatal attraction is the very complexity, which would
revolt the instincts of any engineer, but which, to the
clever programmer, masquerades as power and
sophistication. He may have even less creditable
mwotives: the use of unreliable tools both increases and

excuses the unveliability of his programs; the use of

3
3
3
ﬁ
:
:
]

On §-9 April 1976, the British Computer Society is holding its
Serst symposium on software engineering. In this article, the
chairman of the symposium presents his views on the subject,
which are not necessarily shared by the speakers he has invited to
address the symposium.

inefficient tools both increases and excuses the
inefficiency of his programs; and the complexity of his
tools can protect him from close scrutiny or control of
his client or employer. And finally, after a few years
experience of some particular product, the programmer

" finds that even his partial understanding of it can

command a high salary; and he has the strongest _
motive for refusing to learn something new, and for .
rejecting the idea that it might possibly be an
improvement. And his manager who committed himself
to that product many years ago has an even strongcr
persenal and financial interest in its perpetuation.

The attermpt to build a discipline of software
engineering on such shoddy foundations must surely be
doomed, like trying to base chemical cngmeermg on the
phloglston theory, or astronomy on the assumpuon of a
flat earth. But the study of manufacturers’ software is
an excellent way to sharpen our understanding of the.
principles of software engineering, both because of its
consistent violation of those principles, and because it
makes a serious and creditable attempt to define the
working-tools of the software engineer. That is why the
forthcoming BCS symposium on software engineering
will concentrate on this aspect of the subject.

The symposium will take an optimistic, practical and
forwardlooking approach. There are many ways in
which existing tools can be used more effectively—by
adoption of supplementary software packages, by
instrumentation and tuning, by program editors and
preprocessors, by structured programming aids,
training manuals and courses, and by standards of
programming practice, On the first day of the
symposium, a series of expert speakers will survey the
range of methods which are immediately available for -

_practical use. On the second day, we shall look slightly

further ahead, and dCSCI'le some of the possibilities of

COMPUTING THEN AND NOW continued

changes tomorrow. Each display has been built with years of -

thumping and banging in mind and the designers will have
failed if it has 10 be replaced too soon. -

Maintenahce of working exhibits is a major pre-occupation
of many of the Science Muscum staff. Small fingers and fertile
minds are guaranteed to find a way round all but the most
rugged of working models. Even the demonstration terminal
in the gallery, driven by the Imperial College computer,
coines close to losing its temper at times. After three irrelevant
replies it comes up with a very tart ‘PLEASE STOP MUCKING
ABOUT'. Lessons have been learnt from other galleries. Strict
standards have been enforced on such trivia as the radii of
corners and the size and fitting of transpavency light boxes, -
Slide displays and spoken commentary tapes are driven by
standard components for case of replacement. Push buttons

2 Tony Hoare

further improvement that are now being opened up by
fundamental and applied research. Even if the practical
difficulties of change delay the widespread application
of results of new research, it is important that .
programmers and managers should understand now
what they are; so that they are never again led astray by
the specious promise of sophistication and complexity.
In this short sermon on the theme of software.

engineering, I have made many allegations agazost tha :

quality of software, and against the competence,
intelligence, and integrity of programmers. But I have
not given a single example to support my-case, nor have
I named a single name. Let me do so now: I name the

_guilty man: I name myself. Within myself I have -

discovered all the faults which I have ascribed to"
progra'mmers in general. If my remarks carry any
conviction, it can only be bccause my readcr has made
a similar dxscovery TR o

List of speakers S

'Prof'essor A, J T. Cohn, Umversny of Strathciyde

Dr D. Hartley, Computer Laboratory, Cambrxdge -
University :

Professor C. A. R. Hoarc Thc Queen s Unwersﬂy of
Belfast :

M. Jackson, Mlchacl _]ackson Systcms Litd

Dr J. Larmouth, Computcr Laboratory, (}ambrldgc
University - ‘

D. R. McGregor, Unwer51ty of Strathclyde

R. M. McKeag, The Qucen s Umversuy of Belfast

J. Nicholls, IBM .2 270 :

Dr K Roberts, UK Atormc Encrgy Research Group, o

Culham
Professor N. erth ETH Zunch

are strengthened for long li'ﬁ_: in spite of continuous and heavy .

handling. Most important, many of the working displays are
electronic to a standard design philosophy on printed circuit
boards. They should be reliable, but if they do require
modification the same clectronics man can fix any of the units,
H you do not see your personal contribution on display just
as you submitted it, the project team would like to apologise,

- and say that nevertheless it was appr eciated. Expressing a

major concept in a 300 word label is not casy, and the writers

draw on many expert sources to acliieve the finished result., .
What are the highlights? I hesitate to advise you, if only

becausc you may well be one of the 80 per-cent of visitors who

do not follow the planned sequence, nor read the descriptions

conceived with such care. All visitors are most welcome.

We are confident that you will find interest and come agzin.

7 Comguler Bulletln December 1975

