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When the Institution of Civil Engineers
was granted its Royal Charter in 1828,
Thomas Tredgold defined civil engineet-
ing as ‘being the art of directing the great
sources of power in Nature for the use and
convenience of man’. This definition can
be readily adapted to computer pro-
gramming by replacing the ‘power in
Nature’ by the ‘power of the electronic
digital computer’.

The most important point of Tredgold’s
definition is the emphasis on the use and
convenience of man, and the same applies
equally well to computer programming,

However, I want to concentrate more on .

methods than on purpose and emphasise
the displinary aspects of the subject.
The word ‘discipline’ suggests a more-
or-less systematic body of knowledge
capable of transmission from one genera-
tion to the next; it also implies.an estab-
lished methoed of applying that knowledge
to solve a problem. It implies an agreed
terminology in which a project can be
described and discussed and in which
decisions can be taken and communicated.
It also implies a staddard sequence of
steps through which a project progresses
and a method of subdividing the labour
of a large task so that it can be carried
out by large teams of people of varying
skitls over a long period.
- It is in these aspects of discipline that
computer programming has hitherto
_ fallen below the standards of longer
established branches of engineering. How-
ever, in the universities and in industry
. these shortcomings have been recognised,
and solutions are being developed. The
basis for these solutions is a clearer
understanding of the stages through which
any engineering project will progress.

Specification .
It is characteristic of engineering that
the problems which it undertakes are

Tony Hoare is professor of computer
science at the Queen's University of
Belfast .

Unlike engineering,
computer
programming has
no well established
methods of attack.
Even when it has,

liscipline

Computer progra:
as an engineerin

these methods are
disregarded too
often. How can an
engineer's approach
be made to computer
programming ¢

ing

by Prof. C. A. R. HOARE, ma

never clearly defined to begin with. It is
the duty of a good engineer to elucidate
the problem, not only to himself but to
his customer, He must do this suceessfully
right at the beginning of the project. If he
fails or makes a mistake at this stage, the
true nature of the problem may come to
light only on. completion of the. project.
I fear that in computer programming we
have perpetrated many such projects.

It is equally important to clarify the
objectives—to formulate the criteria by

which the success of the project will be

judged. Not all these criteria can be
quantified but they are no less important
for that. Of course, the criteria will con-
flict with one another, so they should be
qualified by some definition of an
acceptable level of achievement, possibly
in the form of a priority ordering.

The next step is, in. the light of the
objectives and their relative priorities, to
choose, or invent if necessary, a solution
technique. A good engineer is alrcady
familiar with a wide range of useful tech-
nigqués and knows the merits and demerits
of each of them in various circumstances.
The computer programmer usually has
to invent a solution technique for each
problem he meets. Unfortunately, at
present he too often reinvents an inferior
version of a known technique, rather than
taking the trouble to find out how the
problem has been solved previously,

The consequences of the choice of
technique should then be worked out in
sufficient detail to be able to predict with
reasonable confidence the characteristics

of the final product, and it should be -

determined how well the product will
meet its defined objectives. If such con-
fidence cannot be established, the previous
steps must be repeated, until it is known
that the target objectives are at least
feasible. i

The first phase culminates in a more-or-
less precise specification of the product,
which has been agreed with a customer
or his representative. For many engineers,

architects, painters, or sculptors the
specification may be a set of plans and
drawings. It is one of the unfortunate
aspects of computer programming that
there is to intuitively acceptable method
of summarising the major external
characteristics of a computer program
by means of a 2-dimensional picture or
a 3-dimensional model.

Design :
The most general precept for carrying
out a complex task is ‘divide and con-
quer’. Each task is split into its major
subtasks, and the interfaces between the
subtasks are defined with sufficient clarity
for each subtask to be undertaken by
somebody else. Then, if the subtask is a

large one, it can again be split and

delegated to a team of designers and
implementers. All the steps of the specifi-
cation phase are repeated on each sub-
task: elucidation of the problem, clarifica-
tion of ohjectives, choice of solution
technique, evaluation of cost and
effectiveness, and agreement of speci-
fication between the designer and the
implementer.

When this process is complete, it is
usyal to re-evaluate the entire specifica-
tion to ensure that the obiectives and
schedules can be met. If not, negotiations
with the customer are re-entered.

In traditional engineering disciplines
the design process has become adequately

formalised. Each team member is familiar

with the ways in which tasks are broken
down into subtasks, the places where the
interfaces are reasonably narrow and the
manner in which they are defined in
detail to eliminate the possibility of
subsequent misunderstanding. It is here
that computer programming is very weak.

' The division of a project into subtasks

is often ill advised. The interfaces are
wide, compiicated and inefficient, and,
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~%worst of all, they are defined quite vaguely
or even inaccurately. Recent academic re-
search into systematic program-design
methods is specifically oriented toward
this problem.

Iimplementation

In theory, the implementation of a
project should be purely a matter of
routine: the application of specified
methods on a predetermined time scale
towards a known conclusion. But, in
practice, something always goes wrong.
Machines, deliveries and people break
down. New problems come to light. The
customer, given half a chance, will change
his mind. The engineer must therefore
keep control of all activity and take
corrective steps as soon as it is apparent
that they are needed. It is persistent
attention to both principle and detail
during implementation which - dis-
tinguishes the good. engineer from the
mediocre one and makes the difference
between outstanding success and failure
or near failure of a project.

Towards the end of implementation
comes assembly and commissioning,
Again, this should be a matter of routine,
with a few minor adjustments. In tradi-
tional branches of engineering this is
usuajly the case. But in computer pro-
gramming, it is notorious that this step
is more difficult, expensive, time-con-
suming and unpredlctable than any
previous step. It is the prolengation of
assembly and commissioning that most
often makes it impossible to deliver a
[arge programming product on time, at the
stated cost and to specification. But the
main reason for this difficulty lies not in
this step itself, but in the inadequacy of

the earlier phases of specification and’

design, and I is there that a solution
must be sought. .

-Use

The residual errors remammg in a
product will be detected and corrected
when the results of the project are put
into use, It is inevitable that from ex-
perience in use, certain potential im-

provements will be found which can be .
made relatively easily without disrupting -

the general structure of the product. As
time progresses, the environméni in
which the product works will change and
will necessitate more substantial adapta-
tion of the design. A well engineered
product has reserves. of strength and
flexibility which make adaptation pos-
sible. Finally, of course, a good engineer
learns from his experience and resolves
to do even better next time—and often
“succeeds in doing so.

It is in use that the deficiencies of com-
puter programming, as compared with
better established engineering disciplines,
become most disastrously obvious. First,
there are often very many residual errors
in a program when it goes into use. The
cost of their detection and correction is
great enough, bul the cost of undetected
error is incalculable, Secondly, the quality
of the delivered product is often so
abysmally low that improvemenis of a
factor of two or more must, and often
can, be made almost immediately after
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delivery, Further improvements have to
be made continuously by increasingly
severe degrees of reconstruction of the
product. Thirdly, in the face of the neces-
sary continuous stream of necessary

corrections and improvements, it is not,
often that the customer will undertake -

further disruption by attempting to adapt
the product to his changing needs, and
the hideous task of adapting his ddapta-
tions to the subsequent stream of neces-
sary changes. Finally, it is my experience
that computer programmers rarely do
better next time. Even those who are
given a similar project again almost
always suffer from overambition and, in
the end, do worse.

Electronic system

An example of the principle of ‘divide
and conquer’ in engineering is the design
of a new computing system (Fig, 1). There
are two ways of interpreting this diagram.
From the point of view of the external
physical structure, the boxes indicate
cabinets, and the lines indicate cable-
forms. But from the point of view of the
implementer, the boxes represent sub-
tasks which can be carried out by separate
teams, and the lines indicate the interfaces

‘between the subtasks. The close correla-

tion between the physical layout of the

product and the logical subdivision of .

the tasks can, and must, be deliberately
turned to advantage by the engineer.
Unfortunately it is much more difficult in
computer programming to establish and
preserve such a correlation.

. An imporiant feature of a general-
configuration diagram is that each of its
tasks can be further subdivided (Fig, 2).
The central processor is shown as con-
sisting of control, registers and function
unit. Again, this subdivision will probably
be reflected in the layout of boards within
the central-processor cabinet.

Such diagrams may appear to be so
vague as to be useless. But, in fact, the
important lities are not those shown but
the lines that are not there. For example,
the main information given by Fig. 2 is
that there is no direct connection between
the outside world and the function unit.
The absence of a connection is a major
simplification of the logical design and
implementation process and will probably
reduce the .cost of construction and in-
crease the reliability and ease of main-
tenance of the product. If the customer

demands an order-code facility which

would require the insertion of a new
direct connection of this sort, the wise
engineer will go to great lengths to
dissuade him.

The benefits of splitting a task into

subtasks, corresponding to splitting a pro-
gram into modules, have also been sought
by computer-program designers, who also
often illustrate the connections between
modules by means of a diagram. But,
when conscientiously drawn, such dia-
grams often have the appearance of Fig, 3.
This is because program designers have
failed to realise that the absence of an
interface line is far more important than
its presence. Indeed, in the general case,

the number of interfaces goes up as the’

‘Computer programmers rarely
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square of the number of modules, so the
program designer’s project will rapidly
become too complicated to control unless
he deliberately accepts the discipline of a
sparser structure of interfaces. -

Another way

There is another entirely different way
in which the task of the design of elec-
fronic equipment is split into stages—a
way which cannot be illustrated by
diagrams consisting of boxes and lines.
This method consists in a complete altera-
tion of the conceptual level and frame-
work within which the design is carried
out; namely, the transition between the
logical design and the physical design of
the equipment.

After the whole system has been, so it
seems, specified and designed in complete
detail by the logic designers, the design
process starts again at a different level of
discourse. A whole new class of design
decisions must be made on the physical
construction, cabinets, racks, boards,
components, sockets, wiring etc., The
logic must be split between boards, the
backwiring must be specified, the com-
ponents must be laid out on the boards

and the tracking bctween them must be .

drawn.
The division of the design task between

the logical and physical aspects is one of '

the major intellectual tools in the control

of complex engineering projects. Of .

course, the division is not absolute. The
logic _designers must know in principle

that their designs satisfy the constraints

imposed by physical layout, and the
layout designers sometimes “introduce
significant changes to the design, for
example, to secure uniformity of boards.
But the important point is that the mass
of detail involved in the physical layout
may be ignored at the logic-design
phase, and the logical characteristics of
the design may be ignored during. the
stage of physical layout.

This important distinction between the
logical and physical characteristics of an
engineering design can be carriéd over to
the design and implementation of com-
puter programs and forms the basis for
the solution of the major problems en-
countered when the program is put to use.

Program design

The application of the methods of the
design of electronic systems to the de-
velopment of computer programs can be
illustrated by finding all the prime
numbers less than 1000000. For effi-
ciency, division is to be avoided. A very
efficient method of finding prime numbers
due to the Greek mathematician Eratos-
thenes is therefore used. It is based on
the principle of a sieve, in which the
numbers from 2 to 1000000 are put in
order. All the nonprimes are gradually
sifted out until only prime numbers are
left (Fig. 4).

Note that in striking out the multiples
of p, we may start at p%, since all lower
multiples of p will already havc been
removed.

The basic structure of the algorlthm is
shown in Fig. 5. As in the block diagram

of the computer configuration, this flow
diagram can be interpreted in two ways.
In one view, the boxes represent parts of
the computer program, and the lines

rtepresent flow of control. Alternatively,
.the boxes represent subtasks,

and the

‘remove alf multiples of 2 .
23 5 7 9 11 13 15

remove all multiples of 3
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lines represent interfaces between the sub-
tasks. As in the diagram of the electronic
system, each of the subtasks can be further
analysed in greater detail. For example,

the removal of multiples of p fromi the -

sieve can be described by the .diagram
of Fig. 6.

In this way, the logical behaviour of
the algorithm can be specified in complete
detail in terms of addition of integers and
removal of integers from a set. We have
reached a stage analogous to the ‘com-
pletion of the logic design of a com-
puter. But, just as the logic diagram
cannot actually carry out its functions
until it has been realised as a physical
assembly of circuits, boards, and wires,
so, our. algorithm cannot actually be
executed on a computer until further
decisions on the physical representation
of the data have been taken and imple-
mented by program.

For example, Fig. 7 illustrates a
decision to represent the sieve as an
array of one million consecutive bits,
where the nth bit is one if n is in the sieve
and zero if it is not, In a computer, the
million bits will stretch over many
thousands of words of the computer
store. Assuming that the wordlength is
10bit, 10% consecutive words w1ll be
needed.

This large number of words ‘caiises
another problem. To remove an arbitrary
n from the sieve, it is necessary to set.the
nth bit of the array to zero, This requires
a knowledge of which word contains this

bit and where it is in the word. These can_

readily be computed by dividing # by the
wordlength to give thé right word
number and taking the remainder as the
bit numper within that word. Unfor-
tunately, the process involves a’ division,
which on a computer with wordlength
unequal to a power of two can beé time-

consuming-—and is againsi the rules of

Our game anyway.

" The solution. to this problem . is to '

choose an appropriate nonstandard repre-
sentation for the integers involved. To do
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this, the integer p is represented by two
words, the first of which (known as the
pword) gives a word number of the word
of the sieve in which the pth bit is found,
and the second of which gives a bit
number of the right bit within that word.
To find the value p, it is necessary to
multiply the pword by the wordlength
and add the pbit. We represent n in a
similar fashion.

p=4 pword X wordlength +pbit
n=:y; nword X wordlength -+ nbit

This representation may be regarded as
a ‘mixed radix’ number, rather like
pounds and ounces or feet and inches,

The representation has been chosen in
order to access efficiently an arbitrarily
numbered bit of the sieve. Unfortunately,
the choice has the result that the simple
operation of integer addition becomes
more complicated and can no longer be
carried out by a single machine instruc-
tion. Fig. 8 shows the steps that are
required to add p to # when both numbers
are held in the mixed-radix representa-
tfion. Fig. 9 shows the steps required for
removing » from the sieve.

Similar fragments of program must be
written to implement the other operations
required by the algorithm, Fach fragment
carries out on the physical representation
of the data the transformations which are
analogous to the required logical opera-
tions on the abstract data. At all times,
the original logic diagram (flowchart) is
used as a framework and a guide, dic-
tating not only what has to be done but
also how the various parts of the program
fit together and what the interfaces
between them must be.

In the design of logic assemblies, this
2-stage method has become quite stan-
dardised; the stages are generally dele-
gated to different teams, and the language
in which they commumnicate’ has been
formalised. In computer programming,
there is no reason why the process should
fot extend over more than two stages.
However, the formalisation and standard-
isation of the multistage design process
has not yet been achieved.

Problems

One of the major deﬁ01enc1es in

computer-programiming practice is that
when parts of a. program written ' by
different programmers are assembled they
do not work together properly. Also,
‘commissioning is expensive, time-con-
suming and unpredictable and leaves
many residual errors to plague the user
after the program is delivered.

These problems are characteristic of
any new branch of engineering. It is not
so long ago that computer hardware
suffered from similar troubles, although
it is now quite usual for a new computer
design to start working within a few days
of first switch-on. Similar troubles have
afflicted bridgebuilders, aircraft designers
and architects, often with far more expen-
sive and tragic results. But at least early
engineers had the excuse that their
troubles were due to unknown physical

ELECTRONICS & POWER 9 AUGUST 1973 319

forces such as unsuspected wind be-

haviour, filaments growing in core stores’
or metal fatigue. But computer pro-

grammers have no such excuse.

Their raw material, the computer hard-
ware, Is more structuratly simple, reliable,
controllable and predictable than the
material used by any other branch of
engineering. There is no struggle with
Nature, no groping into the unknown, no
unpredictabilities other than those which
arise from oversights. Computer pro-
grammers should be able to do better.

First, specifications must be better and
far more attention must be paid to the
quality of the final product rather than
merely to its functional specification, The
specilications should take into account
the characteristics of known algorithms
and known solution techniques and must
correspond more closely to the customer’s
requirement and less to what he says he
requires. In other words, the specification
should arise from a frue negotiation
between programmer and customer, as it
does for other better reéspected engin-
eering disciplines.

Secondly, the programmer’s knowledge
of algorithms and fechniques must be
improved. Quite often in programming
the difference between a good algorithm
and a bad one is measured in many orders

‘of magnitude. For example, if the pro-

grammer were unaware of the sieve of
Eratosthenes  and attempted to find
primes by the familiar niethod of division,

his program would have been grossly -

inefficient, no matter how carefully he
had carried out all the other steps in the
design -and implementation.

The third lesson that the programmer
can learn from the engineer is more
careful division of his task into subtasks,
corresponding to the physical structure
of his product, and more careful defini-
tion of the interfaces between his sub-
tasks. It is here that recent academic and
industrial research appeats to be showing
the way. Note that the interfaces between
moduies of a program are represented by
the lines of a block diagram which
indicate flow of control. It is the informa-
tion which passes, as it were, along these
lines that must be spec:ﬁed more rigor-
ously in order to ensure that the final
assembly of separately implemented parts
is to be successful.

Unfortunately, the information which
passes between the subtasks is not just a
collection of 350 -or 100 signals; it is
the entire state of the computér store
and external files at the time that control
passes from one part of the program to
another. The state of the whole machine
at the moment of transition must there-
fore be defined as precisely as possible. In
a few cases, this may be done by speci-
fving the contents. of every relevant
location of store, together with the status
and information content of all perlpherals
But this would be most unusual. Nor-
mally, control flows across the interface
on many occasions during the runmng
of the program, and, on each occasion,
the values of many of the variables are
different. . So the state of the machine
must be specified in a general fashion by
formulating certain assertions which

‘Computer hardware is more

structurally simple, reliable,
controllable and predictable
than the material used by any
other branch of engineering’
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¢ ¢“Program testing can only
reveal the presence of bugs,

describe properties of the machine store
and relationships between the contents
of the locations. Naur® called these
assertions ‘generalised snapshots’. A flow
chart with assertions attached to the lines
is known as an annotated flow chart
(Fig. 10).

This method can be applied to the
more detailed breakdown of the subtasks.
Indeed, a subtask may be wholly specified
by giving the assertions which are to hold

" before entry to.that. piece of program and
after exit from it (Fig. 11).

Thetext of these flow charts is expressed
in ordinary English, together with a few
standard mathematical and programming
notations to describe the actions of each
part of the program and the assertions
which annotate it. In practice, it is prefer-
able to use standard mathematical and
logical notations, both for the assertions
and for the program. This practice aids
brevity and also avoids the potential
ambiguities of ordinary English.

Two guestions now arise:

o How do we know that the assertions
on each flow line are sufficiently precise
io define exactly what we require each
part of the program to do for it to play
its proper role in the functlomng of the
whole?

® How do we know that each part meets
its stated specification?.

The traditional answer to these ques-
tions is that we cannot know until after
the complete program has been imple-
mented, assembled, and tested. But this
answer is seriously wrong, since we cannot
know even then. As Dijkstra has pointed
out, ‘program testing can only reveal the
presence of bugs, never their absence’.

Answeyr

The -correct answer is both startling
and obvious. We know that otr program
will work because we can prove it does.
Methods of reasoning which lead to valid
program proofs are at present the subject
of ‘research. But there is no doubt that
they are . in principle feasible, although
their practical application is at present
unacceptably Iaborious.

The development of more practical
proving techniques presents an exciting
prospect. It is now a matter of common
knowledge (and indeed common suffer-
ing) “that computer - programs are’ the
most . unreliably designed component of
any system or environment in which: they
" operate. But there isno‘reason in principle
why a properly proven program should

not be the most reliable of all engineering
products. T look forward to the day when

it is an-accepted practice that whenever a
program gives the wrong resulf we call
the computer maintenance engineer—
and he comes.
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