A STRUCTURED PAGING SYSTEM

g. A. R. Hoare

Summary. This paper attempts to extend the methods of
structured programming to the design and description of parallel
algorithms, in perticular a paging system. It is ergued that the
proposed algorithm, though rather simple, may well be adequate

in & variety of hardware and operating system environments.

1. Introduction.

The vrinciples and practices of structured programming have
been expounded and illustrated by relatively small examples (Dahl,
Dijkstra, Hoere, 1972). Systematic methods for the construction of
parallel slgorithms have slso been suggested {Dijkstre, 1968, a,b).
This paper attempts to apply structured programming methods to a

progrem intended to perate in a perallel environment, namely a

paging system for the implementation of virtual store. The design
decisions are motivated by considerationsg of cost and effectiveness,
and it is argued that the resulting design, though rether simple,
may well be adeguate in a variety of hardware and operating system

environments.

The notations used in the paper are based on those of PASCAL
{Wirth 1971) and SIMULA 67 {Dahl, 1972). However, the reader is

warned not to expect that sny automatie compiler will bhe written to

translate these notations into machine code -~ that must almost

certainly be done by hand.

The purpose of a paging systen is taken to be the sharing of
main and backing store of a computer among a number of users making
unpredictable demands upon them; and to do so in such = way that
each user will not be concerned whether his information isstored at
any gilven time on main or backing store. TFor the sake of definiteness,
the backing store is taken here to be s gsectored drum:; but the
system could readily be adapted for other devices. Our'@esign does
not raly on any particular paging hardware, and it should be
implementable in any reasonable comdbination of hardware and software.
Furthernore, it does nof presuppose any particular struecture of
virtual store (iinear, two-dimensional, "ecactus”, etc.) provided to

the user program.

2. The Hardware.
A paging system 18 essentislly concerned with the physicsl

sto gekdzxﬁge of a particular computer instellation, and if it is
SV dbuned € . .
to q;afghmman ny installations, some degree of abstraction must be

used in referring to the hardware. For example, symbolic constants

must be used to refer %o installation parameters such as

M - the nuwber of pages that will it in main store
D - the number of pages that will fit on the drunm

L « the number of words on a page

We can now define certain ranges Tor variablesg, using the PASCAL

range definitions, for example:

type mainpageframe 0..M-1:
type drumpagefreme = O0,.D0-1:

EZ Ee ..i.i_i}ﬂ Oaa:f.l’”l;

A page may now be regarded as en array of words, where a word

#

hag to be defined in & machine dependent fashion:

type . word =
type page = array line of word;
LYRE array Q%

Furthermore, the physical main and backing store may be regarded

ahstractly as srrays of pages:

mainstore:array mainpageframne of page;

et

drumstore:array drumpagelrame of page;

Individual pages of these stores will be denoted by singlie

gsub seript:
mainstore [m], drumstore [d]

and individual words of mainstore by double subsecript

mainstorelnm,i].

Of course, the individual word drumstoreld,i] can never actually
be referred to in cour program3 ginece a drum pyovides access only

to complete pages.

3. Dynamic Storage Allocation

It is evident that a peging system is concerned with the dynamie
allocation and desllocation of pageframes to processes, We shall
therefore require a dynamic storage allocation system for page-
frames. In this section we describe an sllocator for mainpageframes;
an allocator for drumpageframes is sufficiently similar that it need
not be separately described. The most important dats item in any
resource sllocator is the .pool of currently free items of resource,
This can be declared:

pool : poverset mainpageframe;
We then use operations
m:=gnyone of(pool); pooli=pool-[nl;
to aequire a free pageframe m, and an operation:
pool:=pool vinl;
to return m to the free pool.

Hovever, in a parallel programming environment there are two

additional problems, namely exclusion and synchronisation.

3.1, Mutual Exclusion.

Buppose that one program calls the Function anyone of{pool)
Just after another one has completed the same Ffunction. Tt will
then obtain the same value., This will'frustraté the whole pﬁrpose
of the allocator, which is to prevent duplicate use of the same
pageframe by tvwo different user programs. A group of operations
which nust not be executed reentrantly by several programs is

known as g crltlcai region.

The solution wve adopt ié to introduce a progksm structure-
data, together with one or wmore procedures operating on *that data.
Thus a monitor is very like an objeet in SIMULA 67 (Dahl, 1972),
with the additional understandingihat the bodies of the
procedures local to the object will not be executed in parallel or.

interleaved with each other.

If the only access to variables local to a monitor is through
calls of procedures loecal to that sanme monitor, the uger programmer

can be protected against most Torms of timedepen dent coding error.

In implementation, the necessary exclusion can be assured by
sssociating & Boolean mutual exclusion semaphore (Dijkstra, 1968)
with esech monitor and by surrounding each call on & procedure of
the monitor by a P and V on this semaphore. Alternatively, in
suitable cases, the required effect can by achieved by inhibiting
interrupts during execution of the procedure bodies. Since details
of implementation are very hardvare-dependent, we shall introduce a

high-level notation for declaration of monitors:

monitor mnfree;
begin pool : powerset mainpageframe;
begin .. body of amcquire .. end;
procedure release(m:mainpagefrane);
begin .. body of release .. end;
pool:= all mainpageframes;

end mfree;

Calls on the two procedures will be written using the PASCAL and

SIMULA 67 notation for components of a structure:

n:=mfree.acquire;

nfree.release(m).,

The monitor concept degcribed here corresponds to the secretary

mentioned at the end of (Dijkstra, 1973).

3.2, Synchroniéation.

Any resource allocator has to face the problem of exhaustion
of its resource. In & single-programming environment, any further
request for that resource will be refused, and often lead to ‘
inmediate termination of the program; but if there are many processes,

it is more reasonable merely to postpone the reguest until some

W%

other process kindly releases an item of the resource. OFf eourse,
if this never happens, we have deadlock; but this will be averted
by a preemptive technigue to be described later. What is required
is some method whereby one process, on debtecting that it cannot
proceed, cen walt until some other process brings about the

condition that will enable it to proceed.

Methods of obtaining sueh synchronisation asre rather machine-
dependent, so again we shall introduce a high-level notation, which
can probably be implemented on many machines with reascnable
efficiency. For each condition on which a progrem may have to wait,

we introduce a variable of type "condition™, for example:

nonenpty:condition.

There ars only two operations defined on a condition variable,
and they are walting and signelling. When a procesas needs to walt
until some condition becomes true, it "waits on" the corresponding

condition variable, for example:
nonenmpty.wvait.

When some other process has made the condition true, it should

issue s signal instyrmnetion on thatvariable:

nonempty.signal.

If thers are no processes vaiting on the coﬁdition9 the instruetion
has no effecty otherwvige it terminates the wait of the longest
wvaiting process, and only that process. (The convention that at
most one process shell proceed after a signal differs from the
familiar "event” type signalling (Brinch Hansen, 1972); but it
appears, at leﬁst in the cases considered here, to be both more

convenient and more efficient).

It is important to clarify the relationship bebtween synchronisa~
tion and mutual exelusion. VWhen a walt instruction is given from
within & monitor, the mutual exclusion for that monitor is assumed
to be released, sinece otherwise it would be impossible for any
other process to enbter a procedure of that monitor to make the
condition true. Furthermore, when a wait ends as a result of a
signal, the waiting program resumes Iimmediately in place of the
signalling program, and the signalling program resumes only when the

previously waiting program releases exclusion again. Thus
exclusion is not released between the signal and the resumption of
the waiting process; since if it were there would be a risk that
gome other process might enter the monritor during the interval and

make the condition false again.

Using the monitor concept for mutual execlusion and the condition
variable for synchronisation, the programming of a simple allocator

for main page frames can be given:

monitor mfree;

begiggpool : ggyersqﬁ mainpageframe;
| ‘€

nonéempty:condition;
S

function acquire : mainpageframe;
begin m:mainpageframe;
if pool = empty then nonempty.wait;
m:=anyone of { pool };
~ poel := pool - [m];
scguire:=n
end acqguire;
procedure release (m:mainpageframe);
begin pool:=pool viml;
~ L
non%empty.slgnal
e

end;

pool:=all mainpageframes; note initial value of pool;

end mfree.

0f course, the implementation of such a gsimple resource
allocator presents little interest in itself. It has been treated
here at such length merely in order to introduce snd illustrate the
use of monitors and condition variables, which are the basic program
structuring methods which we shall require for the rest of the

paging system design.

Y, Drum transfers.

It is evident that a paging system will also be concerned with
input and output of psges between main and backing store. This
will usually de effected by special hardware (o channel) which
operatas in parallel with all userx programs, except possibly for the
one which is waiting for completion of transfer. We sghall therefore
require a scheduler to prevent interference between transfer
instructions given by separate programs, and to secure the necessary
synchronisation between the progrems and the asynchronous channel.
As before we shall use monitors and ;onditions; and to begin with
we shall assume that the drum ig capable of only one transfer per

revolution.

The monitor for drum transfers will obviously have to store
details of any outstanding transfer command; that is, its directlon,
and the relevant main and drum page frames. If there is no out-

standing commend, we nse the convention that the direction is fnall™:

o

L
direction: {pf,out ,null);

mimainpage frame;

d:drumpagefrane.

The operations provided by the monitor to the user are

input{dest :mainpageframne; source:drumpageframe);
and output(source:mainpageframe; dest:drumpageframe}.

These operations merely record the outstanding command; its

execution is accomplished by an operation
execute,

which will be written here as part of the wmonitor, but will in
practice be implemented by the hardware of the drum chanmel, and

perhaps by its intimate interrupt routines.

There are two possible veasons Tor waiting by a user program;
firstly, when there is slresdy an outstanding command and therefore

a new one cannot be recorded, and secondly when its command has

heen recorded but has not yvet been finished. Thus we introduce

two condition variables
free, Tinished:condition

The drum itself never waits; 1f there is nothing for it to do,

it idles for one revolution.

The programming of the monitor is now simple.

monitor drummer;
begin direction:{in,out,null);
me:mainpagefrane;
d:drumpagefrane;

free,finishad:icondition:

procedure input(dest:mainpageframe; source:drumpageframe);
begin if dirvection # null then free.wait;
directioni=ing
m:=dest;
d:=gource;
fPinished.wait; ¥%£&'S%§“$g

end input;

procedure output .. very similar ...;

procedure exescute;

begin

case direction of

inimainstore([m}:=drumstoreld],
out:drumstoreldls=mainstorelnl,

null:do nothing for one revéblution;

direction:snull; Ffinished.signal

end’ executej;

direction:=null

erd drunmnmer

The activity of the hardware of the drum channel may be described
as a process:
process drum hardware;

while true do drummer.execute;

Suppose now that seversl drume are available, and capable
of simultanpeous transfers. It is very important to have a separste
monitor for each drum chennel, so that simulteneity of transfers
is not inhibited by the exelusion of the monitor. Sinee the monitors
are identical it would be unfortunate to have to write out the whele
text several times; instead we borrovw the idea of a SIMULA €7 class
(Dahl, 1972) and declare each separate monitor as a different

object of the class, each with its own workspace

class drummer;

monitor begin ... as before

end;
¥We then declare several "instances” of this class:
drum 1, drum 2:drum,

Thus a class declaration is very similar to a PASCAL record type
declaration with the addition of procedures as well as data

components.

On most modern drums the number S of pages (sectors) that
can in principle he transferred =in a 31ngle ravolution is
considerably greater than one. Such a sectored drum may be treated
in the same way as 5 se@araﬁe drums, each capable of one trangfery
per revolution. We therefore introduce a whole array of menitors,

one for each sector:
sector drum : array 0..8-1 of drummer,

The action of the drum chennel hardware may be described as an

sutonomous process:

10

process sector drum hardware;
while true do

for 8 = 0 to £8-1 do sectordrumisl.execute.

Let "sectorof” be a function giving the sector of 2 drum page frame.

Since the user i1g not interested in the sector structure of the drum,

we provide the simple procedures:

procedure input (dest:mainpageframe; source:drumpageframe);
secbordrun[seectorof(source)l.input{dest,source);

procedure output ... very similar

For convenience, we use the same identifiers "input” and "oubtput"”

for procedures local to the monitors, and for global procedures,

which are not iunside a monitor, snd which can therefore be shared

in reentrant fashion by 8ll user prograns.

Using these procedures, the programmer may maintain the
$11iueion that all drum transfer instructions relating to different
page frames are carried out in parallel with each other, since
any necessary exclusion and synchronisation is carried out behind
the scenesg.

The scheduler desecribed in this section, like that of the previous
section, displays little sophistication. Nevertheless, it
iliustrates again the use of monitors and conditions, and introduces
the important new concept of a elass of monitors, of which separate
instances can be declared separately; and it shows how this
concept can be used to set up an array of monitors, where each
monitor can operate independently and im parallel with the others.
This structure will be used again the design of the paging systen,
where operations on individual pages must appear to takéﬂplace in
parallel with each other.

The efficient uge of a sectored drum requires that the drumpage-
frames in use'ﬁe reasonably evenly distributed over the sectors.

One method of achieving this is that the monitor which allocates

drumpageframes should have a separate pool for each sector:

pool : array 0..8-1 of powerset 0.7-1,
where T is the number of tracks on the drum,{i.e. T = D#S8). The
allocetor should also maintain a cyclic pointer

g8 ¢ 0..8-1,

which points to the sector on which the wmost recent drumpagefrane

11

was allocated. The next allocation should be on the nearest possible
following sector. If output instructions closely follow acquisition
(which they will), this will ensure that any rapid sequence of
outputs will be timeshared to the maximum possible extent.

The design of a monitor for allocation of drum page frames

should be undertaken as an exercise by the interested reader.

5. Virtual Etore.

A virtusl store, like the actual stores, can be regarded as

an array which maps virtual page frames onto virtual pages.

virtualstore:array virtual pageframe of virtual page;
where virtual page is a class to be defined in the next section.

The concept of a virtual page frame may be simply defined as a range.

type virtual page frame = 0..V-1;

where V is & constant several times larger than D. This will give
a single-~-dimensional structure of virtual store. In some operating
systems, B two-dimensional structure is preferred, in which case

the virtual page frame can be described as a record:

type virtual page frame = record s:segmentno;p:page no end.

In this case the virtual store array may well be implemented as a

tree structure, so that no space is wasted on storing unused pages
at the end of segments., But the paging system designed in this
paper will be egually valid for both these cases, and pe}haps

nany others.

Ag far as the user program is concerned, the most important

operations are

1. & Ffunction feteh (i:virtual address):word, which

delivers the content of the ith“location" of virtual

store.

2, a procedure agsign (i:virtuel address; wiwvord)
.th

which stores the value w in the 1 Tipeation” of

virtual store.

12
A

A virtual asddress is defined as a paif:
type virtual address = record p:virtual page frame;
2:1ine

end.

These two proecedures can be implemented using the same structure as
input and output on & sectored drum, by celling on ppocedures of the

same pame lecal to the relevant virtual page.

e et o s

feteh:= virtualstoreli.pl.fetch(i.g);

procedure assign{i:virtual address; wiword);

virtualstoreli.pl.assign(i.2,w).

Note that these procedures are not protected b y mutual exclusion, so that
Wpén one program is held up waiting for a page transfer, the other programs

can\ continue to operate on other pages.

6. Virtual peges.

In this section we implement the virtusl page class which was
introduced in the previous section. This class must obviously provide
the user program with the procedures fetch and assign; in sddition it

contains:
(1) procedure bring in;

This has no effect on the appavent content of the page, but merely ensures
that it is located in main store, where its individual words can be

accessed.

(2) procedurelthrow out;

This also has no effect on the apparent content of the page; but it

ensures that the peage no longer occupies a main page Frame.

The data lecal to each virtusl page must incliude an indication

13

of whether the content of the page is currently held in main or drum
store; and we also admit a third possibility, that the content of the
page is equal to an "all clear" value, in which case no actual storage
is allocated to it. This is the value to which each page is
initislised. The required indication is given in a variable loecal to

each virtual page
where:{in,out,clear).,

The physical location of the content of each page will be recorded

in one of the two local variables:

minmainpageframe;

d:drumpageframe;

In programming a paging system, it is essential to ensure that
no two virtual papges ever point to the same actual page frame, and in
particular, that they never point to a free pageframe; in other
words, every operation of the virtual page must preserve the truth
of:

#

(1) where = inJm'€ mfree.pool

(2) where = out)) d ¢ dfree.pool,

and Ffurther, the only operations omn m and d are acquiring and

releasing them to their respedtive pools.

cless virtual page;
monitor begin where:(in,out,clear);
mi:mainpageframe;

d:drumpageframne;

- - Fru
® in .’ me mfree.pool

note whare
procedure bring in; note ensure

begin m:=mfree.acquire;

if where ="glear

1h

= put >4 &dfree.ponl;

& where

=

in

e

8 wheare

theg.mains%are[mj:mailclear

&
else {input{m,d}; dfree.release(d)};
wheres=in;
end;
| heve 4
R < saE IR MRS
throwoub o Le BARG UATES et A }

progcedure
if where = in then
begin d:=dfree.scquire;
output(m,d);
mfree.release(m);
where =out

end throwvout;

function fetch(f:line):word; note
begin bring in;
fetch:=mainstorelnm, s

procedure assign (L:1line; wiword);
begin bring ing
mainstorefm,e]:=v

end

.
m,

note

where:i=¢clear

end virtusl page.

2] value

n@mﬁbﬁwﬁ
virtual-pagel ¢]

1

do A
. G U
note wintuald-pageltl:isx

.
LI

3

11l clear;

of each viritual psge is

15
T Automatiec Discard,

The most charscteristic feature of a paging system is that
pages can throw themselves out auntomatically to drum, and release
the main page frame they occupy, independently of the programs which
may or may not be uging them. Of course the rate at which pages throw
themselves out must be regunlated in such a way that the output and
subsequent input do not overload the drum channel. Since the
rate of input cannot persistently exceed the rate of output, it is
sufficient to control the ldtter. 1In order to emsure that the sverage
output rate does not exceed one page per drum revolution, it is
gsufficient %0 ensure that each page remainsg in mainstore for an average
of M drum revolutions after it has been input, where M is the number

of pages in mainstore.

Since each page is capable of independent sctivity, it is
necessary to associate & process with each page, which is responsible
for throwing the page out after it has been in store for long

enough. This process will be ealled

process automatic discard;

It is invoked when the page is first brought into mainstore, and is
then supposed to proceed "in parellel” with the user program.
However, the first thing the process does is to wait fer M drum
revolutions; and it is assumed that exelusion is'releasgd during

this wait, 2o that other user programs may invoke the other operations
on the page during the interval. Of course, at the end of the wait,
the exclusion is seized again while the page is ectually being

thrown out.

The process is easily.coded;
2£2£g§§ automatic discard;
begin wait about M drum revolutions;
throw ount

end

16

It remains to desipgn an efficient implementation of the
wait; and we should try to ensure that it is impossible for pages
to get into synchronisation, and attempt to throw themselves out
simultaneously. Our solution assumes the existence of a procedure

which will wait at least one drum revolution.

With each main page frame we associate a condition on which
the automatic discarder waits whenever it needs to delay for M
revolutions

k]

delay: array mainpageframe of condition.

We also introduce a process known as the cyclic discarder
which is responsible for signalling each condition at an interval
of approximately M drum revolutions. This cen be accomplished

by & simple loop:

process cyclic discarder;
vhile true do
for m = 0 to M-1 do
begin delaylnml.signal;
wait at least one drum revolution.
end;
An important point to note is that the ecyclic discarder
has been carefully designed so that it is never held up. If, for
example, it sttempted to make a direct entry to throw out, it might
be held up by normal exclusion during a bring in operatign on the
same page. If that bring in were itself held up waiting for a

free mainpageframe, a deadly embrace would result.

8. Load controel.
The major defect of the system described above is that it
reascts badly to an overload of the mainstore, whiech occcurs when
the rate at whieh preograms wish to acquire page frames is consistently
greater than the rate at which they are being released. In these

circumstances, some or all of the programs running may spend nearly

17

211 their time waiting to scquire & main page frame; and by the
time they get it, they may well find that one of their own pages
has been automatically discarded, and & new main pege frame nust be

acquired again immediately.

The only effective sclution in these circumstances is to reduce
the reguirement for free page frameg or to increase the supply. Both
may be accomplished by suspending one of the programs currently under
execution, since this program will no longer be able to acquire pages,
and the pages which it currently possesses will be thrown out in
due course by the automati; discarder, If there is only one progran
under execution, and it is spending most of its time waiting fox
main page frames, it too ¢should be discontinued, since here the

only solution is toc redesign the program or to buy more mainstore.

After a program has been suspended, it would obviously be
foolish to suspend another program until all its pages have been
discarded. This suggests that the susﬁension should be carried out
(when necessary) at the end of each scan of the store by the cyelic

discarder.

When a program has been suspended, it is necessary to decide
when it is to be resumed. The simplest procedure.is to resume a
progran at regular intervals, irrespective of whether there is room
for it in mainstore, and to suspend some other program if there
turns out not to be. The rate of resumption should be adjusted to
ensure that the overhead involved in the suspension/resumption cyele

is seceptable,

The one remaining question is which program to select for
suspension or resumption? The simplest answer seems the best:
SBuspend the progran which has been longest unsuspended, and resume
the prozram whieh has been longest suspended. The one exbeption
is that e program which is waiting for a response from a multiple access
terminal should not be suspended during its wait, nor for a reasonable
time afterwards. DBut the details of this will not be further

treated hare.

The eyclie disearder takes the form:

18

process cyclic discarder;
begin for 1 = 0..19 do

begin for m = O to M-1 do

begin delaylml.signal;
wait at least one drum revolution

end;
if size {mfree) <3 then suspend a progranm

end;

resume longestmsuspended progran

end cyclic discarder.

An alternative to loadshedding is to allow the

rate of automstic discard to ineresse when there are no free main
page frames. This unfortunately leads to a phenomenon known as
thrashing, in which pages are discarded ag fast as the programs

using them can dbring them back. Thisg 2ll too common elementary
mistake in control engineering is avolded by ensuring that the
maximum rete of discard remeins less than the minimuﬁ rate of recall.
After 8ll the ink that has been spilled on this suﬁjeét, it is very
diffiecult to realise that the mistake and its solution are so

simple.

8. Refinements.

This section discusses a number of detailed refinenents,
which either improve efficieney, or adapt the algorithm for nore

direet implementation o? hardvare. ' : n

.1, On some ocecasions, the programmer is no longer interésted
in the current content of & page, for example, if it contains an
array local to a block which he is about to exit. In this case, it
is possible immediately to release both the main and drum page frames,
and return the apparent content of the page to its initial clear
state. This is asccomplished by a c¢all on a procedure local to each

virtual page:

19

E
procedure clear; @ﬁ L Giji\f?E

begin case where of

inibegin wﬁﬁfe *clﬁarE delay[ml:=null;mfree.release(m)end,
out:begin here: ”cle;?@ afree.release(d)end,

clear do nothlng,f

»’“”"‘ L R S N R e e R
P i i

end.

iyt

Note the instruction delaylmi:=null is intended to cancel the wait

of the automatie discarder;
9.2, Prefetching.

On certain occasiong & user programn knows that it will shortly
require several pages to be in mainstore, for example, a complete

array or a complete compiler. If these pages are brought in only

when first referenced, each page will involve a delay of up to a full i
drum revolution., However, if the program gives advance warning of |
itg reguirement, perhsps the whole set of pageé could be brought in
within one or two revolutions. To achieve this, the programnmer

shonld be eble to issue a series of "prefeteh" instructions, and

have them executed "in parallel” with each other, and perhaps even

with continuation of his own program. Prefetching may also be used

to speed initiasl program loading, or the resumption of a progranm
suspended by loadshed. y
This facility can be implemented simply b%ddeclaring a rprocess

with a body consisting of a single instruction

process prefetch;
bring in

Hote that the operation bringin does not contain a wait,
and therefore exelusion of the virtual page is set until the operation
is complete -~ which will be quite soon if the page is already in.
If the user program attemplts to access the page before the process
has been completed, it will be held up in the normal way by the
exclusion mechanism of the monitor. This means that there is n?§
risk whatsocever that the invocation of & proecess local to a monitor

can lead to time-~dependent errors in a user program.

20

The coding of the prefetch process may not be as simple as it
looks, since it is not acceptable that it should need sny workspace
local to the virtual page. It may therefore be necessary to associate
local administrative workspace of this process with the mainpagefranme,
rather than the virtual page; in which case the mainpageframe must be

acqguired before process can proceed in parallel.

9.3, Unchanged.
When a page is used to store code, it ie very likely that +the
content of the page remains unchanged for long periods. The same will
be true of certain data pagaglas well. This means that when fhe tine
comes to throw out the page, the copy which already exists on the drum is
still valid, and the output instruction can be avoided, provided that
the relevant drumpageframe hag not been @@%ﬁrﬁwﬁwﬁﬁ%&?r@@w ?Qiﬁ&@&i

We therefore introduce for emch virtual -page a variable
unchanged: Boolean

which is set true after input of each page and set Ffalse by the first
agssignment to thet page. Each operation of the paging system must

preserve the truth of

where = in & unchanged Dmainstoreln] = drumstoreladl
& acdfree ‘

9.4%. Loeking.

When a page is engaged in an autonomous peripheral transfer,
it is wsually necessary to ensure that the page is not thrown out
until the transfer is complete. Similarly, considérations of
efficiency sometimes dictate that a copy of the absolute mainstore
address be made, for example in an associative slave store; and the
page must not be thrown out while this address is in use. Ve |

therefore provide s function

function lock(v:virtual page frame):main page frame;

which "locks" the virtual page into meinstore, and delivers its

address as result. The effect may be reversed by calling

procedure unlock({v:ivirtusl page frame).

k4

If a virtual page is being shared among several programs,
and more than one of them lock it, it is essentisal that the page
remains locked until they have all unlocked it. It is therefore
necessary to introduce for each maiopageframe a count of the number

of times it has been locked:
lockeount:array meinpageframe of integer;
whieh is incremented by locking and decremented by unlocking.
8.5. Usebit.

When a pege automatically discards itself, it will frequently
happen that this page will be accessed again almost immediately;
and in this case an unnecessary delay of up to two revolutions has
been intruded upon at least one user program. An obvious symptom
that a page is going to be used again in the nesr fubure is that it hasy
been used in the recent past. We therefore agssociate with each
virtusl page s

usebit:Boolean

vhich is set to true by bringin in every feteh or assign instruction,
and is set false by the automatic discard rrocess at reguler intervals.
Thus the page will be thrown out only if it remains unaccessed

throughout the interval.

process automatic discardff;
begin delaylm].wait; Voo]

while usebhit v lockcoungiﬁnﬁg
begin usebit:=falge;
delaylml.wait

and ;
'%hrow out.
end;
8ince at least %wo delays are invelved before s page auto-

matieally discards itself, the rate at wvhich the cyclie discarder

scans the store should be increased by & factor of two.

22

9.6. Explicit discard.

On occasions a programmer knows that he will not reguire
to access a page again for a long period, for example it could he s
completed peage of an input or output file, or a piece of program that
hasg been finished with. In this cese it is kind to inform the
peging system of this fect, so that the page mnag be sooner ithrown
out. This may be done by calling:

' \ iE . g
procedure discarﬁnowé@ﬁ%@ﬁ%ﬁ%&é@ﬁ%ﬁ@ﬁ

But if there is any risk at all that the page is being shared by some
other program, or that it may after all be regquired back on mainstore

sooner than expected, it would be better to use a milder suggestion:

procedure disc&rdsaon%ﬁ?ﬁ%

The implementation of these is trivial

disecardnow:

if where = in then

begin usebit:=false
gg%%%ﬁm3nslgnal

end

digscardsoon:

if wvhkere = in then usebit:=false

The explicit diseard can also be used by the 1oadshe&ding
mechanism, and before esch interaction of a multiple ac?e?s program,

provided that the pages in private use by each program ¥s known.

10. The conmplete program.

This section describes the complete paging system, with
all ites refinements. The reamder may study it to check compatibiiity
of the refinements, or to confirm his understanding. Alternatively,

he may consult it for reference or even omit it altogether.

cliags virtual page;

monitor begin where:(in,out,clear);

mimainpagefranme;
d:drunpagefrane;

unchanged,usebit:Boolean;

]

note where in? mémfree & content = wmainstoraln]
it ¥

i

where out v where=in & unchanged dédfree & content=drumstoreld],

otherwise content = all clear.

procedure bringin; note ensures where = in, conteant unchanged;

begin usebit:=true;
if where # in then
begin m:=mfree.scguire;

if where=.clear then begin mainstorelml:=all clear:

unehanged:=flalse

and

[visfimioiiliel

else begin invput(m,d);

unchanged:=true
end; |
vhere:=hn;
automatic discard
end

“end bringin;

2k

procedure throw out; note ensures where ¥ in, content unchanged:
if where = In then

begin if <y unchanged then begin d:=dfree.scquire;

output(m,a)
end;
mfree.release(m);
where:sout

end throwout;

process auntomatic diseard; ggig no change;
begin delaylmi.wait;
' repeat usebit:=false;
delay[ml.wait
until .lovkcount[mj >0 & -7 usebit;

throwout

end sutomatic discard:

procedure clear; note content:=all clear;

begin csge where of
" in: begin delay{ml:=null;
| if unchenged then dfree.release(d);
mfreeerelease{m)

end,

out: dfree.release(d);

end elear; .

b &

25

funetion feteh {(R:line):iwerd; note = content{2],

begin bringin; fetch:=mainstorelm,llend:

procedure assign(f:1ine; wiwerd); note contentl2]:=vw;

begin bringin; mainstorelm,t]:i=y;
if unchanged then begin dfree.relesse(d);

. nnchanged:»false
end

process prefeteh;

bringin ¢
' 7

function lock:mainpageframe;

53 begin bringin; lockecountiml:=lockeountin] +1; loek:=m end

Eaeatie Prothsaban

procedure unlock; |
lockecountimli=lockeountinl ~1;

procedure discard now;
if vhere = in then
hegin usebit:wfalse;
delayin).signal

procedure discard socon; usebit:=false;

wherei=c¢clear

end virtusl page:

11. Evaluation.

The quality of an operating system algorithm depends on its
efficiency, reliability, and convenience. In this section we attempt
to evaluate the system designed here, even without knowing details of
hardware, operating system or workload. If guch evaluation is not
posgible, this will revesl in what respects the system designed isa

machine-dependent, or is not truly general-purpose.

1l.l. Efficienecy.

The most important aspect of the efficiency of a paging systenm
ig the minimisation of the amount of space occupied in mainstore by the
dats and code of the system itself. OFf course, s great deal depends
here on the skill of the eodﬁ%%, particularly in implementing the
monitor/conditionﬁproéess features, but the general gimplicity of the
algorithm and the small amount of data invelved suggest thet the code
will be short. It is also important that the data particular to a
virtual page should fit into s single word, since the virtual store
array, whiech must be locked in mainstore, may contain many entries.
This seems to be achievable for most likely value of M and D. If it
is not, d can be stored elsewhere during the periods in which the page
is in mainstore. The main difficulty is likely to be the exclusion
semaphore "which protects each virtunal page, since only a few bits

can be spared for this.

A second aspect of efficiency is that the total time spent
in the paging system is minimised. Here a8 great deal depends on
the hardware design of an associstive store which will enable the
software of the paging system to be bypassed in all cages except where
a drum transfer is involved. BSince the rate of drum transfers is guite
low, the time taken to execute code of the paging system is not
eritical, end since such operation involves a programmed loop,
efficiency will be proportional to compactness of code. A& further
hopeful point is that the careful structuring of the éystem as &
vhole means that it is direetly implementable on a genuinely multi-
processing computer, even if each processor has its own assgociative

store.

27

A third aspect of efficiency is the maximisation of the
density of utilisation of main store. Of course, this depends mainly
on the cooperation of the user programmers; dbut the system should be
able to work adequately even without it. At least 1t must be free
from persistently inadequate behaviour, such as "thrashing” or
indefinite waiting for free pages. The cyvelic discarder and losd-
shedding mechanism ensures that the system cennot spend more than a
very small (and controllable) proportion of its time doing this.
Although the algorithm will never make the "righi" decision, it will

never persistently meke the wrong one.

11.%2. Relisbility.

An operating system module should be able to present the
appearance of a machine more reliable than the bare hardware of =
compvbter. The only way in which this paging system contributes to the
gimulation of reliability is that it ecan run on machines on which there
are known bad patches in mainstore or on drum; this is accomplished
by appropriste initialisation of the pools of mfree and dfree.

Additional aspects of reliability whiech sheould be trested are:~

Ll

(1} If 2 location of drum of mainstore becomes unreasdable,
the relevant user progranm should bhe auvtomatically restarted,

and the relevant page withdrawn from use.

(2) Periodie dumps of pages to backing store (perhaps dise)
should take place on shitsble occasions, g0 that if the
central processor fails, all user programs can be restarted
when it is mended,.

{3) Periodic dumps of pages from backing store onto a
‘removablé“ﬁedium should take place on suitable occasions, so
that if all or part of the backing store fails, users can

recover their permanently stored material.

These functions should be carried out by other parts of the
operating system (e.g., a filing system); it may be that their
successful implementation will depend on making a few adapiations to
the paging system designed here, for example, to control explicitly

the backing store pageframe allocated to a paje.

28

A further aspect of reliability is, of course, that the
gsoftware be free from error, particularly from time-dgpendent error.
1t is hoped that the clear structuring of this paging system will

contribute towards this objective.

11.3. Convenience.

A paging system is in itself s very convenient tool for the
user programmer; it has eonly two entry points, with only one or two
perameters; end will administer overlays without any explicit inter-
vention from the user prograk. Nevertheless, it cennot pretend to
plan overlays, and since drum access is some five orders of magnitude
slover than main store access, it is obvicus that some degree of
cooperation from the user (or his language implementor) would be
desirable. A good paging system should mske this cooperation easy

and natural.

(1) The mest effective form of cooperation is that the

programmer should place inm physically contiguous locations of virtusl

store all the material thet he is pgoing to refer to during each phase
of his program, where & phase ir an interval measured preferably in
seconds., This will minimise the number of psges that he needs in
mainstore at & time. Programming languages of the future will have
to be designed to assist in this planning.

{(2) The second most important aspect of cooperation is that
the unser should clear those pages which he has finished using., This

can be done sutomatically in & "steck" language like ALGOL 60.

{Q}Thlrdly, if the drum is being usef for input and output files,
pages Whlch have been wholly read or written should be expllcltly

discarded. This can be done auntomatically by a filing system.

(#) The pféfeteh instruetion is = rather dangerous one,
since its inconsiderate use c¢an clog the maingtore and drum channel;
its use should be confined to the operating system itself and to
"yaal time" applicetions programs; and an ordinary user should not
be able to prefetch more than a few pages at a tinme.
£§Q 0f course, for pages being stored on disc or other
slower backing store, the expMeit cooperstion of the programmer will be

‘more necessary toe avold too frequent head movement.

29

@%) Finally, the paging system is here desaribed with
sufficient simplicity that it can aetually be understood by its more
serious users; and when n ecraftaman understands his tools he is likely

to use them more successfully.

Conclusion.

A final evaluation of the quality of the system cannot hbe
made until several implementations have proved successful in practice,
But I hope that the way in which it has been designed, deseribed and
evalusted, will motivate others %o undertake sueh implementation;
at lesst their program documentation problems will have been largely

golved,

Since nothing is new abont this algorithm (except possibly
its structure), acknowledgement is due to M. Melliar Smith for the
elegance of the ecyelie discarder, E.W. Dijkstra for central
concepts of structure, exclusion, and synchronisation, and to these,
together with R.M. McKeag, J. Bezivin, and P. Brineh Hansen, For
ideas, discussion, inspiration, and criticism on points too numerocus

for me sven to remember.

30

Heferences

BRINCE HANSEW, P. (1972). Structured Multiprogramming, Comn.
ACM., 15, T, G5T7h-5T78.

DAHL, 0-J., DIJKSTRA, E.W., 8tructured Programming, Academic Press,
HOARE, C.A.R. (1972). 1972,

DAHL, 0-J. (1972). Hierarchiecal Program Structures. (in
. the above).

DIJKSTRA, E.¥W. (1968a). Cooperating Sequential Processes, in
' Programming Languages, ed., F. Genuys,
Academic Press 1968,

DIJKSTRA, E.¥W. {1968b). A constructive appreoach to the problem
of progrem correctness. BIT 8,

1Th-186 (1968).

DITKSTRA, E.W. (1972). Hierarchieal Ordering of Seqguential
Procesges, in Operatineg Systens
Techniguea, ed. C.A.H., Hoare and
E.H.Perrott, Academic Press.

WIRTH, N. {). The programming language PASCAL,
Acte Informatica. | Lt

}

