Natural Transformations and Data Refinement

C.A.R. Hoare and He, Jifeng
Oxford- University Computing Laboratory

Summary: Natural transformations play the role of retrieve functions in
program development by data refinement [6]. A sufficient condition of validity
of data refinement for a given programming language is that its constructors
should be covariant endofunctors or (more generally) natural transformations

between them.

Keywords : Data refinement, natural transformation, covariant functor

1. Introduction

Data refinement is one of the best known methods for the development of
correct, efficient and even large programs. Much research in this area has
produced various kinds of refinement rules [2,3,5,6,8] .1t starts with a finite
graph D, whose nodes are the names of types and whose arrows are the names
of operations between them. These are first given an abstract interpretation A,
which is used to construct a correct program. The types and operations are
then given a concrete interpretation C, which may be more complex and more
efficiently executed than A. The replacement of A by C is valid if there exists
for each type name t a “retrieve” function nt, mapping its concrete
interpretation Ct to its abstract interprefation At. For each operation name p,
the effect of applying its concrete interpretation Cp followed by the retrieve
function must be the same as applying the retrieve function followed by the
corresponding abstract operation Ap.

In category theory, the abstract and concrete interpretations are functors from
the graph D to some concrete category I of sets and functions, and the retrieve
function is nothing but a natural transformation between these functors. This is
usually expressed by the commuting diagram

Ap
As At
F 7
ns nt
Cp
Cs Ct

29 Jul 88

The validity of this replacement of A by C in a concrete program is critically
dependent on the properties of the programming language in which the
program is expressed. It turns out that the properties that are required of the
language are familiar categorical concepts, namely that the sequential (or
functional) composition of the language should be a categorical composition,
and that its other constructors should be either covariant endofunctors or
bifunctors or natural transformations between them.

2. Programming Language Semantics

The method of data refinement can be generalised to prove correctness of an
implementation of an entire programming language. For this purpose, it is
convenient to take an algebraic approach to its semantics. '

The features of a programming language fall into two classes [10]:an inner
language consisting of primitive types and operations between them; and an
outer language of constructors by which structured types are constructed from
primitive ones, and structured programs from basic operations. The syntax and
semantics of the inner language and the outer language can be treated
independently by different techniques; this will allow a similar useful
decomposition in the proof of correctness of an implementation.

The syntax and type constraints of the inner language are presented as a
graph D, as described in the previous section. Its semantics can be given as a
functor A from D to a concrete category M. An implementation C can be
defined as a second such functor; and a natural transformation n is found
between C and A. It is our hope and objective that the correctness of the whole
implementation of the whole language will follow antomatically from naturality
of n in the category of graphs. . But this hope depends on certain properties of
the outer language, as described below,

The syntax and type constraints of the outer language are specified as a
heterogeneous signature 2, containing symbols for all the constructors of the
language, and sorts for all its types. The set of sorts may themselves be defined
by means of the type constructors of the language. An algebraic semantics for
the language is given by a set of equations E governing the constructors in Z.
This defines a category (or variety) V. Its objects are small categories that are
closed with respect to syntactically consistent application of the constructors of
2, and satisfy the equations in E; and its arrows , say h:B—C, are =-
homomorphisms preserving all the constructors of £ in the sense that

h{o{xy, .., %,)})=o(hxy, .., hx)

for all 0€Z and x; in the carrier of B, Let U be the forgetful functor from V
to the category of graphs, and let F be its free adjoint, 8 the adjunction and &
the counit.

A
D > UM
FA
FD > F{Un)
€1
BA

Given a choice of graph D, the algebraic semantics of the language is just the
corresponding free algebra FD in the variety ¥. Given next a choice of functor
A, the corresponding denotational semantics is uniquely defined as 6A; its
denotational property is guaranteed by the fact that it is an arrow in V.

3. Correctness of Implementation

Now let € be a concrete implementation of the inner language. The induced
implementation of the whole language is BC. In order to prove the correctness
of the implementation, we need to find a natural transformation 6n from 8C to
BA:

Bn: BC — BA

But far better to rely on some general theorem that guarantees the existence of
On, without going to the trouble of finding it in each case. Clearly a sufficient
condition for this theorem is that the domain of the adjunction ® can be
extended to all natural transformations n in a manner which preserves the
commutativity of the diagram

b

D * n UM in GRAPH

A4

\<"\ en €n inV
8n BA ’Lei.;l '

- In this diagram, the counit ey is an Iidentity natural transformation
(effectively a functor), so 8n can be simply defined as the horizontal
composition of Fn and g4. In this case we say that the variety V respects
natural transformations. By extension we apply the adjective “respectful” to
the adjunction 9, the free functor F, the forgetful functor U, the constructors of
the signature £ and/or the equations E.

We have assumed throughout that our programming language contains some
form of functional or sequential comiposition. This means that composition
(here denoted by ;) will be a sort-indexed family of the operators of £ (or be
definable in terms of them). In order to establish validity of data refinement,
our first requirement is that composition should satisfy the familiar categorical
axioms; these should therefore be included in (or be derivable from) the
equations E. This means that the objects of the category V are themselves
categories, with additional structure representing the additional features of the
language. ‘

We can therefore investigate the categorical properties of the other
constructors of 2. A constructor is said to be an endofunctor if E implies the
equations and type constraints which define a covariant functor, ie., it
distributes through composition. A constructor is defined to be a natural
transformation between two such endofunctors if its naturality is derivable from
E. Functors can be conventionally equated with their identity natural
transformations. The achievement reported in this letter is the proof that all
such natural transformations are respectful of natural transformation. This is a
result of such reflexive elegance that we were surprised not to find it in
standard texts on Category Theory.

4. Programming Languages
[t is also an extremely useful result, because it ensures the validity of data

refinement for all programs expressed in a programming language whose
constructors are natural transformations. Many of the constructors of a typed

programming language enjoy this property, for example

0. The constuctor of cartesian products {records in PASCAL) is a bifunctor.

1. The projections which access the components of a tuple are natural
transformations, and so is the duplicating operation A which maps every y onto
(U’ Q) .

2. The constructor of discriminated unions (variant record in PASCAL) is a
bifunctor.

3. The conditional or case statement of PASCAL can be defined in terms of
natural transformations, namely the injections of the coproduct and the
merging operator V, which maps both (0, y) and (1, y) to y.

4. The zero morphisins represent the undefined operator abort of Dijkstra’s
language [1]. They too are natural transformations.

However, there are certain constructors which are not natural.

0. Recursion cannot be modelled as a natural transformation.)
1. The iunction-space constructor in a higher order language is a bifunctor, but
it is contravariant in its first argument.

2. Non-determinism cannot be modelled as a natural transformation.

- 3. In a nondeterministic language, the duplicating constructor A is not a
nafural fransformation. :

4. In a strict language like PASCAL, the field selectors are not natural.

5. In a lazy functional programming language like Miranda, the non-
terminating function L is not natural.

The solution to some of these problems is to restrict the class of retrieve
functions to total surjections or even bijections (natural isomorphisms). A
more general solution is to introduce a partial ordering (like a Scott Domain
[9]) into the theory. The results of this remain to be reported.

5. Proof outline

In this section, we shall use the letters c,d for objects, p, q, j, k, 1 for
arrows, We shall use “p to denote the source of p, and p” the target. We
shall equate an object with its identity arrow, even in the case of a graph.

The first programiming language constructor which we shall consider is
composition (functional or sequential); and to begin with, we assume that this
to be the only constructor of the language L. So the program texts of L
constitute the smallest set which contains the names from D; and whenever it

contains k and 1 with k"=°1 it also contains (k;1}. We assume that the
language L obeys the normal laws of programming, namely that composition is
assoclative, and has a left and right unit (identity or SKIP}. Formally

Jitks1)=(jik);1
11

7="1;1=]

These laws are summarised by saying that the language L is a category. In
fact, we can define L. formally as the free (or path) category FD over graph D
within the category of all categories. This means that (as long as D remains
uninterpreted) two programs in L are equal if and only if they can be proved
equal by the algebraic laws for a category. But for our purposes, a much more
important property of FD is the following:

Let A be any graph morphism from D to M (or more strictly UM,
where U is the forgetful functor from the variety ¥ to the category
of graphs). Then there is an unique functor 8A, whose domain is
FD, and which agrees with A on D, i.e.,

BA(k;1)=90Ak;BA1 for k. 1€FD

BAp = Ap for peD

The fact that 9A is uniquely defined by the above equations is guaranteed by
the syntax of L, which states that every program is a finite nonempty sequence
of primitive operations seperated by semicolons. From the fact that BA
distributes through semicolon, it follows that for any program text k in L, 8Ak
is just the function in I which is obtained by interpreting each primitive name p
of D within text k as the mathematical operation 8Ap, and taking semicolon to
mean functional composition. In other words, 8A (or indeed, any other
functor) provides a semantics for the language which is denotational, in the
sense that the meaning of the whole is given in terms of the meaning of its
parts.

Now we can prove the important theorem which states that data refinement
by natural transformation is a valid development method for programs written
in the language L.

Theorem 1.

If Cpinp =n“p;Ap forallp inD then 8Ck;nk”=n"k;8Ak for allk in FD
Proof. by induction on the structure of k.
Base case: follows from the assumption because 8Cp=Cp and 8Ap=Ap for all p
in D.

Induction step:
6C(p;q)in{p;iq)”

= (8Cp);(6Ca)ing’ { 8C is a functor, (p;q) =q"}

= (8Cp);n°q; (BAq) {induction hypothesis}
=n"p;(8Ap); (8Aq) {same again, p”="q}
=n"(p;iq):6A(p;iq) { 8A is a functor, “(p;q)="p} 0

In the following we shall enrich our programming language with more and
more constructors. So it seems advisable to generalise the previous result to
deal with an arbitray set Z of constructors, one of which is composition. We
will adopt a consistent notation in the later proofs. Let 8 be the adjunction
associated with the forgetful functor U from a variety to the category of graphs,
and let F be its left adjoint. Let n:C-»A be a natural transformation from
functor C to functor A. We now need to define 8n as the extension of n to
objects of FD, in such a way that we can later prove it to satisfy 8n:0C->6A,
The definition of 8n proceeds, in the same way as the definition of 8C and A,
by induction on the constructor structure of the elements of FD,

Bn(p) =np” for all objects p in D
Bn{fp) =f(On(p”)) for f in 2, p in FD whenever fp is an object.

The validify of this definition is not obvious. Firstly, an element of FD may
have distinct representations fp and gq. This can only be because the equation

fp=gq

is provable from the equations of the Z-variety. Consequently, this equation
will still be frue when every variable denoting an element p of D is replaced by
On{p”). But that is exactly the same effect as applying 8n to both fp and gq.
‘So it makes no difference which of the two representations is used to define 9n.
Secondly, the right hand side of the defining equations may violate type
consistency. We will solve this problem by confining attention to functors f,
which are always defined on every elements of FD. Note that natural
fransformations do not introduce any new objects into a category; that can be
done only by the functors that they relate. So it is not necessary to extend 8n
in these cases.

Theorem 2.
Endofunctors respect natural transformation.
Proof: let Z contain only composition and endofunctors. We use induction on

the structure of elements of FD.
Base case: assume p€D, so also p”&D

8Cp;Bnp”

=Cp;np~ {8C extends C, On extends n}
=n"p;iAp {n:C=A, by assumption}

= 8n"p;BAp {BA extends A, On extends n}

Induction step: let f€Z, and consider fp€FD
. 8C(fp);6n({fp)”)

= f(6Cp);Bn(fp”) {6C is Z-homomorphism, and f is a functor}
= f{6Cp) ;£ (Bnp”) { definition of 8n for constructor f}

- =f(68Cp;Bnp”) {f is a functor}
= f{8n"p;6Ap) {induction hypothesis}
=0n(“(fp)):BA(fp) {by a mirror argument} 0

The next theorem extends the previors result to 2 containing both
endofunctors and natural transformations between them.

Theorem 3.

Natural transformations respect natural transformations.
Proof: let f and g be endofunctors in £ and let m in Z be a natural
transformation between them. The main part of the proof is the same as that of
Theorem 2. We need consider additionally those elements of FD which can be
expressed in the form md, where d is an object of FD.

8C{md) ;8n{md)”

=B8C{md) ;6n(gd) {md: fd—gd} -

=m{B8Cd) ;g(Bnd) {6C is a =-homomorphism, and meZ, def of 8n}
=m{“(6nd)) ;g(Bnd) {by induction hypothesis: Ond: 8Cd—6Ad}

= £ (0nd) ;m{(Bnd)”) {m: f=>g, by assumption}

=0n (md);0A{md) {by a mirror argument} o

A very similar proof a,ppliés to covariant endofunctors of higher arity. The
crucial property of such functors is that they admit distribution by 8n to all
their arguments. So do arbitrary combinations of such endofunctors. So do
certain other functors such as the identity functor, or the selector functors of
higher arity which select a single one of their arguments, ¢.g.

if 15*pq =p, 2"9pq =g, forallp,q
then 6n(15*pg) =6np = 154(Bnp) (8nq)
and 8n(2"9pq) = 6nq = 2"¥(Bnp) (Bnq)

DATA REFINEMENT IN A CATEGORICAL SETTING.

C.A.R. HOARE, June 1987.

Data refinement is one of the most effective formal methods forthe
step-wise development of large programs and systems. The system design
is expressed as a program text, which is first interpreted as operating on
data of abstract type. The simple mathematical properties of abstract data
are helpful in deriving the design from its specification. At the next step,
the abstract data are represented compactly by bit-patterns (say) in the
store of a computer, and the required operations upon them are
implemented by efficient subroutines. The same program text developed in
the previous step is then given this new concrete interpretation, so that it
can be exscuted directly by a computer. In the case of a large system, the
transition between design and code is split into many steps, each of which
provides the starting point for the following step.

The correctness of the more concrete interpretation is established by a
collection of abstraction functions, which map each concrete type to the
corresponding abstract type. Each abstraction function must be proved to
commute with each primitive operation of the appropriate data type, in the
following sense:

To apply the abstraction function after any concrete operation
gives the same (or better) result as applying it before the
corresponding abstract operation.

This fact is proved only for the primitive operations invoked by the

program; as a consequence, it is valid for any program written using those
primitives, provided that the programming language has been designed with
sufficient care. This paper investigates the conditions under which data
refinement is a valid method for program development.

Summary (only for category theorists)

The relevance of category theory to data refinement is suggested by the
uniform view which both of them take towards data types and operations on
values of each type. The advantage of the categorical setting lies in its
purely algebraic proofs, which do not need to mention the individual data

values of each type.

The programs in a strictly typed programming language form a category L,
in which composition is just the familiar sequential composition of
programming, denoted by semicolon. An abstract interpretation of the
language L is given by a functor G, which maps each program of L into
some mathematical category M. The functorial property of G ensures
that it respects the original type structure as well as the syntactic

structure of the program. A concrete interpretation is given similarly by a
different functor F, which maps L into some (usually) different part of the
same category M. Now the abstraction function of data refinement is
nothing other than a natural transformation between these two functors.

Among the elements of a programming language L we can single outa
subset L, containing just the primitive data types and the built-in

operations upon them. The combinators of the language (for example,
sequential composition) are called generators, because every program in L
can be generated by a finite number of applications of the generators to the
primitive elements of L, . A generator "g" in L is afunction from L to

L, written in quotes to emphasise its syntactic nature. It is assumed to
have a mathematical meaning ¢, which is a function from M to M. Any
interpretation of the fanguage L must respect this meaning, in the usual
sense of denotational semantics. So we require that all functors F from L
to M must commute with every "g" in the sense that

F("g'p) = g(Fp) forall p in L

A beneficial consequence of this requirement is that the whole meaning of
a functor can be defined by just giving its value when applied to elements
of Ly . ltsvalue on any generated element of L can then be computed by

primitive recursion on the structure of the generation tree.

Similarly, we want to prove the commuting property of a natural
transformation only for types and operations in L, and on the basis of

this simple proof, we want to be sure that the commuting property holds
for all generated programs in L. This is what is meant by the statement
that natural transformations are valid for data refinement. The purpose of
this research is to explore the design constraints on the language L which
will maintain this validity.

Let f be a partial function from the semantic category M to itself.

Suppose we wish to insert f as a new feature in our programming
language. It is mathematically trivial to choose a new notation "f* to
denote the function, and to insert it among the generators of L, subject to
the same type constraints in L as f is subjecttoin M. This will enlarge
the class of texts in the language to include those which mention "f" in a
syntactically valid and type-consistent way. If every natural
transformation valid on the original smaller language is still valid on the
extended language, we say that the extension preserves the validity of
natural transformation. If the introduction of "f" can generate new
identities (objects) in L, the definition of the natural transformation n
must be extended to these new identities as well. This is done by the usual
commuting equation

n("f'b) = f(nb) for all identities b of L.

The main result of this paper is to show that any functor from M to itself
will preserve validity of natural transformations, and that any natural
transformation between such functors will do so too. This is a theorem of
such elegance that it must be a special case of some more general theorem
known to categorists but not to me.

The importance of the result is that many of the features that we want and
find in a programming language are either functors or natural trans-
formations. However, to deal with languages which contain non-
terminating or non-deterministic programs, we will need to introduce a
slight generalisation of the natural transformation, known as a simulation.
[t is explained in the remainder of this section.

In program development, it is not necessary to insist on absolute identity

of the effects of the concrete and abstract programs. It is certainly enough
to require that the concrete program is better than the abstract one in all
relevant respects, and in all contexts of use. We therefore introduce a
partial ordering ¢ (pronounced "upward") into our categories, to denote
that the left operand is an improvement on the right operand (which must
have the same domain and codomain). Here are two of the ways in which a
program p may be uniformly as good or better than q:

(1) p terminates and gives the same resultas g (or better) in all
cases that q terminates (but perhaps p also terminates in cases that g
may fail).

(2) every result that p can give is the same as (or hetter than) some

result that q can give (but g can give a wider range of different results).
Thus p is more predictable, more controllable, and more deterministic
than q.

In the mathematical theory, ¢ is an arbitrary partial order, and may be
interpreted as any kind of improvement. To ensure that the improvement is
maintained in all contexts, we postulate that all operators, combinators,
and functors are monotonic.) '

Now the commuting equation defining naturality can be replaced by an
inequation, expressing the superiority of the concrete functor. This can be
done in two different ways, leading to two definitions.

(1) An upward simulation u is defined as a transformation
from F to G such that

ub: Fb -> Gb, for all identities b in L
Fp;ub' ¢ ub;Gp, forallp:b->b"in L.

(2) A downward simulation d is defined as a transformation
from Gto F such that

db : Gb -> Fb, for all identities b in L
db;Fp ¢ Gp;db’, foralip:b->b"in L.

Clearly, the familiar natural transformation is both upward and downward
from F to G. Another way of combining the two definitions is in the
definition of a total simulation. This is a pair (d,u), where

1. u is an upward simulation
2. d is a downward simulation
3.ds:us = Gs and Fs ¢ us;ds

A total simulation establishes a pre-order in a category, in the same way
as a natural isomorphism establishes an equivalence. The preorder is the
one used by Scott to find a solution for reflexive domain equations.

In a simple category L, all three kinds of simutation are valid, in the sense
that the simulation property needs proof only on the generating graph L .

But a simple category is a rather weak programming language, in which
only straight line programs can be written. This paper investigates a
series of generators which enrich the category L, including least upper

bounds, zero morphisms, coproducts, products or smash products, and
higher order function spaces (cartesian closure). The same enrichments are
made to the semantic category M, and all functors are assumed to respect
the additional structure. Each enrichment is treated separately, so that the
proofs apply to the widest possible variety of languages. For some of the
enriched languages, both kinds of simulation are valid, and for others, only
one is valid. Total simulation is the only valid method for all cases.

The most characteristic feature of a general-purpose programming
language is recursion, in some languages confined to a special iterative
form. The meaning of recursion can be given by allowing generations to be
applied a countable number of times, thus generating infinite expressions,
or trees. A recursively defined program unit

X = FX

is then identified with its infinite unfolding. This gives a sort of
operational semantics for recursion.

In category theoretic terms, this is the "cofinal algebra" semantics.

Equality (or ordering) between trees can be defined in terms of the ordering
of all finite "prunings”, and so can be proved by induction (and must be,
because equality is no longer decidable). Thus the inductive proofs
establishing validity of data refinement will hold (1 think) for recursive
programs too. Perhaps further research is called for here.

An interesting by-product of this research is an understanding how a
category provides an algebraic semantics for a range of programming
languages, even those which include non-termination, non-determinacy,
higher order procedures, and a limited form of concurrency.

Introduction to category theory (for computing scientists)

We define a graph to be a set G with two monadic operators (total
functions from G to G)

domain, denoted by prefix <
codomain, denoted by postfix ~

These operators bind even tighter than function application. They are

assumed to satisfy the following axioms

<(%p) = “p = (*p)”
Consequently, both operators have the same range (image), whose elements
are known as identities. They are elsewhere called nodes or objects, and

they represent the data types of a programming language. In a procedural
language, they also represent the structure of the machine state or stack

during execution. They will be denoted by early letters in the alphabet —
b, ¢, d. We also use the abbreviation

p:b->c means <p=band p”=c¢
It is easy to prove that
p is an identity
iff p>=p (orequivalently, <p = p).
A graph morphism is defined as a function from one graph to another,

provided that it preserves the graph structure; in other words, it
commutes with the domain and codomain operators

fp” = (fp)” and p = <(fp)
Clearly, a graph morphism maps identities to identities.
A category C is a graph together with a partial dyadic function known as

composition, and denoted here by infix semicolon, which binds less tightly
than function application. The following axioms must also be satisfied

p:q isdefined ifandonly if p” = <q

(;a)” = g~ and <(p;q) = <p

pi(qir)

(p;a)r

If identities are taken to be null commands (e.g., "skip"), then sequential
composition in a normal programming language clearly satisfies these
axioms. It is defined only if the type of the result of the first operand is
the same as the type expected initially by the second operand.

A partial order ¢ {pronounced "upward") is defined to be a relation which
is reflexive, transitive, and antisymmetric. A partial order on a category

holds only between elements of the same type; and composition is
maonotonic

pcq =>p>=¢” and“p="q
pcg => prreqr and rpgrq
Clearly, equality itself satisfies these axioms; and so does the converse of
¢, which will be denoted d and pronounced "downward". We will
henceforward be concerned with categories ordered by ¢, d,and =.
Conventional category theory is the special case where these three
orderings are the same.
A retraction is defined as a pair (d,u) of elements of a category, where
diu = <d = u”
ud d <u = &~
The next theorem shows that each element of a retraction uniquely
determines the other
Theorem Q. Let (d,u) and (e,v) be retractions. Then
d=e iff u=v
Proof: assume d=e

because <u cu:d,d” =<u, and composition is monotonic

<uv ¢ (uidyv = (uehv

by cancellation of identity

v g (ue)v
composition is associative
v ¢ U;(ew)
(e;v) is an identity and can be cancelled
vegu
The proof that ug v is similar.
The proof of the reverse implication is similarly simitar
end of proof.
The next theorem shows that compatible retractions can be composed

Theorem 1. If (d,u) and (e,v) are retractions, and e~ = <d, then (ed, u;v)
is a retraction.

Proof: {e;d); (u;v)
composition is associative
=e;(du) ;v
{(d,u) is a retraction
=e;<d;v
cancellation of identity, and e~ = <d
=8V
(e,v) is a retraction
=<e

The other half of the proof is similar, using inequations and monotonicity
of composition.

end of proof.
A total monotonic function F from category L to category M is said to be

a functor (abbreviated F:L->M)ifitis a graph morphism that distributes
through composition

F(pia) = Fp ; Fq
A functor from M to itself is known as an endofunctor. The next theorem
shows that functors can be composed.
Theorem 2. Let H:M->N Then the composition HoF is also a functor
from L to N.
Proof: ((HoF)p)”
by definition of composition o of functions
= (H(Fp))~
H is a functor
= H(Fp)”
F is a functor
= H(Fp”)
definition of o
= (HoF)p”
The proof for < is similar. Now coﬁsider semicolon

(HoF)(p:a)

definition of o

=H(F(p ; q))

F is a functor

10

= H(Fp; Fa)
H is a functor

= H(Fp) ; H(Fq)
definition of o (twice)

=(HoF)p ; (HoF)q
end of proof.
Let F and G be two functors from L to M, andlet t be a function from
the identities of L to the elements of M. Thentis saidtc be a
transformation from F to G if its domain agrees with F and its
codomain with G

<{tb) = Fb and (tb)> = Gb forall identities b in L

If furthermore

Fp:;tp”™ ¢ t“p;Gp forall p .in L,
then tis called an ¢c-simulation (abbreviated t:FcG). A d-simulation
d:GdF is defined similarly. A natural transformation n is defined as a
simutation that is both upward and downward from F to G.
A total simulation from F to Gis apair (d,u), where

(1) (db; ub) is a retractionin M, forall identities b of L

) u:FeG

(3) d:GdF

Either of the conditions (2) and (3) could be omitted, in the light of the
important theorem

Theorem 3. (1} => ((2) = (3))

Proof: first assume (1) and (2)
d<p; Fp
insertion of redundant identity, since <(up”) = (Fp)”
d<p; Fp ; <(up”)
(d; u) is a retraction, composition is monotonic .and
¢ (d<p; Fp); (up”; dp”)
composition is associative
=d<p; (Fp; up?); dp”
by assumption (2) and composition is monotonic
¢ dp; (uSp; Gp); dp”
composition is associative
= (d“p; u“p); (Gp; dp”)
assumption (1)
= Gp; dp”
The other half of the proof of (2) from (3) and (1) is similar,
end of proof.
This theorem greatly reduces the labour of using total simulations, because
it allows proof of the commuting property of only one of the simulations
say u. Thenif u is (for example) a total surjective function, it is known
to have a unique partner d such that (d,u) is a retraction. Soif u has
been proved to be an upward simulation, and is a total surjective function,

it is in effect also a total simulation.

A simulation is an appropriate method of connecting two functors, both
mapping a category L to a category M. We now consider two functors

11

which map in opposite directions

V:L>M

U:M->L
We define a method of connecting these two functors which will be known
as a rightward junction from V to U. ltis a function © ‘of three
arguments; the first is an identity in L, the second is an identity in M,
and the third is an element in L. The result of f is an elementof M. The

defining properties of a junction are e

0. f q:b->Uc inL

then ©becq:Vb->¢c in M

1. ©<ps™(p:q;Us)=Vp;:0p~<sq;s
If p is an identity, property 1 simplifies to
1a. ©<gs”(q;Us) =0°q%sq;s
and if s is an identity
1b. ©<pg”(p;q)=Vp;Op7q7q
forall p,gin L, and s in M
A leftward junction @~ from U to V is defined similarly:
0. fr:Vb->c in M

then @ ber:b->Uc in L

1, <ps>(Vp;r;s) = p;©p”<sr;Us forall pinL and r,s in M

If @~ isthe inverse of O, ie,

0 bc(@bcp) =p forall p in L

12

13
and ©bc(@"ber)=r forall r in M

then the bijection (©,87) is known as an adjunction in category theory.
Further V is called the left adjoint and U the right adjoint of the
adjunction.

Validity of simulation

Composition is the first and most important of the operations of category
theory, and it is present as a generator in almost all programming
languages. OQur first task is therefore to prove that it preserves the
validity of each of the three kinds of simulation. That means that a

simulation that has been proved to commute for all elements of the graph
L, will still commute on additional elements of L, ie., the sequences

obtained by repeated composition . As might be expected, the proof uses an
induction hypothesis that each operand of the composition satisfies the
commuting property.

Theorem 4. Introduction of composition maintains validity of each kind of
simulation.

Proof (for upward simulation).
Every new element is of the form p;q, where p~ = <q

F(p:a) ; u(psa)”
F is a functor, and property of composition
= Fp;Fq; uc;1>
induction on q , and compaosition is monotonic
¢ Fp;u<q;Gq
composition is defined
= Fp;up”; Gq

induction on p, and composition is monotonic

¢ usp;Gp;Gq
property of composition, and G is a functor

= uS(p;a) ; G(p:q)
end of proof.
The domain and codomain of {p;q) are the same as those of pand q
respectively. So composition cannot introduce any new identities into the
category, and the definition of a simulation does not need to be extended.
Composition of simulations
A most valuable aspect of data refinement is that it may be applied
repeatedly in many steps throughout the design of a complex system. At
each step, a simulation is proved to connect the result of the previous step
to the input of the next one. Assuming that all simulations are of the same
kind, the correctness of the stepwise process is established by composing
the whole sequence of successive simulations into a single simulation,
which connects the design of the first step to the code of the last. This
compaosition is defined in the obvious way, and is obviously associative

(u;v)b = (ub;vb) and (e;d)b = eb;db
where u:F¢cG, viGg¢gH

eeHdG, d:GdF

Thegrem 5. u;v is a simulation of the same kind as u and v
Proof: (for upward simulations u, v)

Fp ; (uv)p”
definition of compaosition of simulfations

= Fp; up”; vp”

u is upward from F to G and compositon is monotonic

14

¢ u®p; Gp; vp~
v is upward from G to H
g uSp;v<p;Hp
definition of composition of simulations
= (u; v)“p; Hp
end of proof.
The composition of total simulations is defined
((d,u); (8,v))o = ({e:d)b, (u;v)b)
Theorem 6. The composition of total simulations is a total simuiation.
Proof. By theorem 1, the composition is a retraction. By theorem 5, the

component (u;v) is an upward simulation. By theorem 0, (e;d) is uniquely

determined, and by theorem 2 it is a downward simulation.
A simple generator

We turn now to our main task of considering what functions on M can be
included into the programming language L, while preserving the validity of
data refinement. Consider a function t from the identities of M tfo the
elements of M, which has the following two properties:

O.tb:b->b

1.p;tp” =tp;p

In other words, t is a natural transformation from the identity functor to
itself.

An uninteresting example of such a transformation is the identity function
(to = b for all b). A more interesting example is the function that maps
sach data type to the abort command (on data of the same type) . Among
the many defects of abort is the possibility that in all initial conditions it

will fail to terminate. Property 1. is satisfied in Dijkstra's programming
language, because

15

16
p; abort = abort ;p

In words, a program which starts by failing to terminate is
indistinguishable from cne which ends by failing to terminate.

In a category with zero morphisms, tb could be defined as 0bb , the zero
morphism between b and b . This would satisfy the additional axiom

tb;p =tb;q foral p,q:b->b

This law is also true for abort in programming languages, and so is the
law which states that abort is the worst of all programs

pctp;p foralp.

However, our main concern is data refinement, which does not rely on these
two additional laws.

The function t can be introduced into the programming language with the
notation "t", which is designed to have the same typing property O as t.
Because of this, it cannot introduce any new identities into the language
(by Property O, ("t"b)” ="t'b => "t'b =b).
Ihgg_r_em. t preserves the validity of all kinds of simulation.
Proof. F("t"b) ; u("t"n)”
functors distribute through generators, and property 0 of "t"
= {(Fb) ; ub
u is a transformation from F to G
= t<(ub) ; ub |
property 1 of t
= ub ; t{ub)”
u is a transformation from F to G

= ub ; t{{Gb)

property 0 of "t', and G distributes through generators
= U<("t"b) ;G("t"b)
end of proof,

A language like CSP contains commands for input and output, which have
results observable before the program terminates (or fails to do so).

Consequently, the aborting command (CHAQOS) does not satisfy property 1.

However it has the weaker property that non-termination after performing
the inputs and outputs of p cannot be worse than immediate non-
termination. So for CSP, property 1 must be replaced by

p;tp” ¢ tp;p

This states that t is an upward simulation from the identity functor to
itself.

This weakening invalidates upward simulation. But downward simulation
remains valid. The proof is the same as the one given above, except that
the equation justified by property 1 is replaced by the downward
inequation. As a result, total simulation remains valid. The reason is that
the downward component is valid, and the other component is still upward
because of the retraction property.

In a functional programming language composition denotes functional
composition. If the language has a semantics based on lazy evaluation, a
function (such as a constant function) can be evaluated without evaluating
its argument. As a result, it will terminate even when applied to a
non-terminating argument. However, the wholly undefined function always
fails. On the principle that failure is worse than any kind of success,
property 1. has to be replaced by .

abort;p ¢ p; abort

In such a language, the corresponding t is a downward simulation, and it is
downward simulation that is no longer valid. In a language which combines
the possibility of non-termination, a lazy evaluation strategy, and
synchronised com-munication, neither of the above inequations will hold;
and data refinement proofs will be more difficuit.

17

18

Functional generators

The t introduced in the previous section was defined only on the identities
of L. We now consider a monotonic function f defined on all elements,

subject to the distributive properties

0. fp:<p->p”

1. fpiqir) = pifair
In other words, f is a junction from the identity endofunctor to itself.
Introduction of such an "f* preserves the validity of all kinds of
simulation. As before, the proof considers only elements of the form "f'p ,

but now it is necessary to use the induction hypothesis that d isa
simulation of the same kindon p.

Proof(for downward simulation).
G('t'p) ; d("*'p)
functors distribute through generators, and property 0 of "f*
= {(Gp) ; dp”
property 1 of f (the missing component is an identity)
= f(Gp ; dp”)
inductionon p, ahd f is monotonic
d f(d%p; Fp)
property 1 of f
= d%p; f(Fp)
property 0 of "f*, and functors distribute through generators

= d<('t'p) ; F('t'P)

end of proof (for downward simulation).

If f is a function that somehow worsens its argument, it may be better to
postpone the application of f as long as possible. Thus property 1 should
be weakened to the chained inequations

p;fq c f(p;a) ¢ fpq

This weakening invalidates upward simulation but not downward or total
simulation. The proof is the same as that given above, except that the lines
justified by property 1 are replaced by inequations.

Similar reasoning applies to a dyadic function g, defined on pairs of
elements with the same domain and the same codomain. An example of
such a function is the non-deterministic or of a language such as CSP. This
allows an implementation to make an arbitrary selection between the two
operands. The distribution law is usually written in infix form

pi{gorr)s = (pg;s) or (pir;s)

This law states that it makes no difference whether the selection is made
before execution of the first operand of a composition (e.g., at compile
time), or whether it is made (at run time) after execution of the first
operand.

Functorial generators

We now consider functions which obey a different set of distribution laws,
namely the same laws which define a functor

0. fp:fp ->fp~

1. f(pa) =fp i fg

The interesting feature of such generators is that when applied to

identities they generate new identities. - So we need to decide how to
extend the definition of simulations, when applied to these generated
arguments. This is done in the usual way by defining them to commute with
the generator "f" in L

u("f"b) = f(ub) and d("f"b) = f(dob) for all identities b in L

19

[heorem . For a totai simulation, this preserves the retraction property
Proof. d{"f"b) ; u("f"b) |
by the definition given above
= f(db) ; f(ub)
f is a functor
= f(db ; ub)
by induction - (d,u) is a total simulation
= f(Gb)
G is a functor, and distributes through generators
= G("f'b)
The other half of the proof is similar, relying on monotonicity of f.
end of proof.

Theorem _. A functorial generator preserves the validity of all kinds of
simulation.

Proof. (for upward simulation)
F(t'0) ; u('f'p)>
by distribution through generators,.and property 0 of "f*
= f(Fp) ; f(up”)
f is a functor
= f(Fp ; up”)

f is monotonic, and induction hypothesis

20

21
¢ f(u®p; Gp)
by a mirror argument
= uS('f'p) ; G('f'P)
The proof for a downward simulation is similar. ‘
end of proof.

Similar arguments apply to a functor g with two parameters (known as a
bifunctor), which is defined to satisfy the distribution laws

- - 4

0. <(gpa) =g “p=q and (gpa)” = gp~ g
1. g (p;a) (ris) = gpr; gas
A simple example of a bifunctor is one that selects one of its operands
Gpq=p for all g
Proof:
- <(Gpqg) = p = Gp<q and similar for >
G(p;alris) = pia = Gpr; Ggs
end. of proof..
A bifunctor may be converted to a single functor in any one of three ways
(1) fix its first argument to an identity
(2) fix its second argument t6 an identity
(3) identify its two arguments with each other
Proof: (1) let fq=gbg. Then
<(fq) = <(ghq) = g<b=q = gh=q = f<q etc.

f(p;q) = gb(p;q) = g(b;b)(piq) = gbp;gbg = fp;fq.

22

(3) Let fp=gpp. Then
“(fp) =<(gpp) = g=p~p = fp etc.
f(p:a) = g(p:a)(pia) = gpp:gaq = fp;fq
end of proof.
In fact, a functor in any number of variables taking values in a variety of
categories, can be defined by composing any number of functors applied to
those variables and to identities.
Simulation genherators
The arguments in the section on zera morphisms generalise to simulations
between any pair of functorial generators. For example, let t be a
generator which is an upward simulation from functorial generator f to g
Theorem . t preserves the validity of downward simulation.
Proof. d<("t"b) ; F("t'b)
"t" is a transformation from f to g
= d("f"b) ; F("t"b)
distribution through generators
= f(db) ; t(Fb)
d is a transformation from G to F
= f(db) ; t{db)”
t is upward from f to ¢
¢ t5(db) ; g(db)

by a mirror argument

= G("t"b) ; d("t"b)”
end of proof

Corollary. A natural transformation, being a simulation in both directions,
preserves validity of all types of simulation.

A similar argument applies to a simulation t between bifunctors { and g,
which have the properties

0. tbe : fbc -> gbe
1. foq ; tp>g” ¢ t5p<q; gpq

The definition of simulation is extended as usual to newly generated
elements by distribution

u("t"bc) = t{ub){uc)

and all proofs go forward as before (I hope).

Discriminated Union

A familiar and useful example of a bifunctor is the one that forms the
discriminated union (b + ¢) of two datatypes b and ¢. Thisis
sometimes known as the direct sum (in set theory), coproduct (in category
theory), and appears as a variant record in PASCAL. A data value of type
(b + ¢) is apair (tag, x), where

either (0) tag=0 and x isoftype b
or (1) tag=1 and x isoftype ¢

If p:b-b' and q:c->c', then (p +q) represents a case statement which
firsts tests the tag; if the tag is zero it executes p, orifthe tagis 1 it
executes q. The result of either execution is then tagged with the same
value as initially. This gives a result in the right type, namely (b'+¢') .
But the tags are just representation details; they should be ignored in the
mathematical theory.

23

The discriminated union provides a convenient method of modeiling the
familiar conditional construction of a programming language. For example,
the test "even", which tests whether a number is odd or even, can be
regarded as a function from the natural number type IN to the disjoint

union IN + IN. When applied to an even number, 2n, its result (0, 2n) is
the same number tagged as the first alternative of the discriminated union;
whereas an odd number is mapped into (1, 2n+1) , the same number tagged
as in the second alternative. To halve a number if it is even, or add one if

it is odd, can be achieved by the compaosition

even; (halve + succ)

But it still remains to map the result of this conditional from the
discriminated union (IN + IN) back to the single natural number type IN.
For this we need for each type b, a "merge" operator symbolised by Vb,
which maps a disjoint union (b + b) onto the type b, simply by forgetting
the tag which determines from which of the two (identical) types its
argument has originated. Thus to achieve the effect

if even(x) then x :=x/2 else x;=x+1 fi
the conditional described above should be completed as follows

even; (halve + succ) ; VIN
If p maps b to b', p may be applied after the merging operation Vb, or
it may be applied to both alternatives before the merging operation Vb' ;

the final result of each of these applications will be the same. Thus
merging satisfies the algebraic law

VSpip = (p+p);Vp”
Theorem . The merging operator.preserves all kinds of simulation.

Proof: The algebraic law states that V is a natural transformation
between the identity functor and the functor that maps p onto (p +p)
end of proof.

In a programming language, there are two extreme conditions for each pair
oftypes b and ¢

tbc (meaning true) which always selects the first alternative (of type b)

24

foc (meaning false) which always selects the second alternative (type c)

Thus if (p +q) is executed after t<p<q, the first alternative p is
invariably selected; so the effect is the same as if p had been applied
beforehand

t°p<q; (p+q) = p;tp”°g”
Similarly
f<p<q; (p+q) = q; g

These preserve validity of all kinds of simulation, because they are natural
transformations from the bifunctor which selects one of its operands to
the discriminated union bifunctor,

Here are additional laws which connect true, false and V
thb:Vb = b = fbb; Vb

They are not necessary to the valiidity of data refinement.

Cartesian product

Another familiar and useful.example of a bifunctor is the one that forms
the cartesian product (b x ¢) of two data types b and c¢. This effect is
achieved in PASCAL by a record declaration. A data value of type (b x ¢)
is an ordered pair (x,y) where x isoftype b and y isoftype ¢. If
p:b->b' and gic->¢', then (p x q) is a command which executes p on the
first component of the pair and q on the second component. The result is
just the pair of results produced and so has the type (b'x¢'). Since the
components of a pair are disjoint, p and q can be executed serially in
either order, or even concurrently. But that is an implementation detail,
and can be ignored in the theory.

A frequently required operation on pairs is the selection of the first or

second component. In PASCAL this is done by field names, and in LISP by
car and cdr. We choose to make the types of the components explicit, and
so introduce a pair of operators for each pair of data types b and ¢

25

TTbec : bxc->b
T'bec: bxec->¢
with the intention that
TT{X,y) =x
and TT'(x,y) =Y

In category theory this intention must be expressed without mentioning
individual values x and y. The required laws are mirror images to the
laws for true and false described in the previous section

(pxq); TTP7q” = T<p<q;p

(pxa);TT'p”q” = TTp<q;q

The left hand side of each equation describes the application of p to the
first component, and the application of g to the second component of a
pair; this is followed by discard of one of these results. The right hand

side describes the more efficient program which discards the unwanted
component first, and the performs only the appropriate operation. [t seems
reasonable to postulate that this optimisation does not change the meaning
- of the program.

But in many languages the equation does not hold. Suppose thatthe
calculation on the discarded alternative fails to terminate. Then the
execution of the left hand side may also fail to terminate. The right hand
side does not involve an operation on the discarded alternative, and will
therefore terminate in cases that the left hand side will not. This means
that the right hand side in general can only be better than the left hand
side, and so the optimisation mentioned in the previous paragraph is still
valid. This is expressed mathematically by inequations stating that the
selectors are downward simulations from the product bifunctor to the
bifunctor that selects one of its operands

(pxaq);TTp™q” d TT<p<q;p

(pxaq); TTp™q” d IT%p<qa:q

26

27

The stronger equations, of course, remain true for a "lazy" functional
language, in which no result is computed until it is known to be needed.
However, this apparent optimisation usually involves some run-time
overhead, which is not acceptable in a procedural language.

Selection gives a way of passing from a product type to one of its

component types. We now need a method of passing from a component type
to a product type. Mathematically, the easiest way of doing this is by the
mirror analogue of V , which will be denoted

Ab:b->bxb

When applied to an x of type b this produces the pair (x,x) consisting
just of the two copies of x. In alanguage without an updating assignment,
this can be done very cheaply by copying pointers. In a procedural
environment like that of UNIX, A corresponds to the fork by which parallel
processes are generated. This involves copying the entire machine state.
There are some things in the world that cannot be copied, for example, the
world itself, and each person who lives in it. But mathematics has no
concern with these practical details.

The meaning of A can be given (without mentioning components) by the
mirror for the law for V

A<p;(pxp) = p;Ap”

The left hand side describes the construction of a pair of identical values
followed by the application of p to each of them. The right hand side
describes the more efficient technique of applying p to the single vaiue
befare taking the copy.

But in a programming language which permits non-determinism, the effect
of these two executions is not always the same. If p is non-
deterministic, the two occurrences of p on the left hand side may produce
different results, even when starting with the same vaiue. However, equal
results of the left hand side are still possible (by chance, say) . So the left
hand side can only be inferior in the sense that it is more
non-deterministic. The right hand side is still a valid optimisation, as
expressed by the upward simulation property

PiAp” ¢ ASp;(pxp)
This means that upward simulation by itself is no longer valid in a fanguage

which permits both copying of abstract data-types and non-determinism;
and total simulation has to be used.

Contravariance

Let us consider now a function h which satisfies the following
distribution laws

hp : hp”™ -> h<p

hip;q) = hq;hp

Because distribution of h through composition reverses the order of the
operands, it is known as a contravariant functor (in contrast to the normal
covariant kind). The familiar converse of a relation is a contravariant
functor.

The introduction of such a functor as a generator into a programming
language maintains the validity of total simulation. However, the
extension of (d,u) to the newly generated elements of L needs to be
defined in a similar contravariant fashion

(d,u)("h"b) = (h(ub),h(db))

Such a definition is not possible for separate upward and downward
simulations, which are invalidated by a contravariant generator.

Theorem . The extended definition given above is still a retraction
Proof. d("h"b) ; u("h"b) |
by contravariant distribution through generators
= h{ub) ; h{db)
by contravariance of h

= h{db ; ub)

(d,u) is a retraction
= h(Gb)
functors distribute through generators
= G("h"b)
The other half of the proof is similar
end of proof
Theorem___.Contravariant functors maintain validity of total simulation
Proof: (for the upward part)
F("h"p) ; u(*h"p)”
distribution through generators (contravariant for u)
= h(fp) ; h(d<p)
contravariant distribution of h
=h(d“p; Fp)
by the induction hypothesis, d : Gd F and rﬁonotonici_ty of h
ch(Gp; dp”)
by a mirror argument
= u<("h"p) ; G("h"p)
end of proof
The arguments given above apply also to contravariant bifunctors. Buta
more interesting kind of bifunctor is one which is contravariant in one

argument (the first, say) and covariant in the other

hpg : hp~<q -> h*pg”

29

h(p;a) (ris) = har ; hps
The introduction of such a functor as a generator maintains validity of
total simulation, provided that this is extended to distribute through "h"
in a similar mixed fashion

(d,u) ("h"be) = (h(ub)(dc),h(db)(uc))
The proofs (I hope) are a mixture of those given above.
A natural transformation between such bifunctors would satisfy the laws

nbe : hbe -> jbe

hpg ; n“pa™ = np”<q; jpq

Junctional Generators

A functional generator was defined as one that admits distribution from
both sides by composition. It is therefore a special case of a junction from
the identity endofunctor to itself. It preserves validity of all kinds of
simulation. This is a property enjoyed by all junctions.

Theorem . Generators which are junctions preserve validity of all kinds of
simulation.

Proof: Let q:b->Uc
and so @bcg:Vb->c¢

note: U(dc) = d("U"c) =dg”. -
G("9"beq) ; d("©"beg)

distribute functors through generators, and property 0 of "0"
= 0(Gb)(Gc)(Gq) ; de

dc : Gec -> Fe, and property 1 of ©

30

= ©(Gb)(Fe)(Gq ; U(da))
see note above

= ©(Gb)(Fc)(Gq ; da”)
d is downward, monotonicity

¢ ©(Gb)(Fc)(db ; Fq)
property 1 of © and db:Gb->Fb

= V(db) ; 9(Fb)(Fc)(Fq)
distribution of generators

= d("V"b) ; F("0"bca)
property 0 of "©"

= d<("@"beq) : F("0"bca)
end of proof.

Higher order functions

An useful example of a bifunctor of mixed variance is the one that forms

from data types b and ¢ the exponential data type (b =>¢) . Its values
are functions from b to ¢, in that they take a single argument of type b
and deliver a single result oftype ¢. If p:b->b' and q:c->¢', then

(p => q) is a function which takes as argument a function f:b'->¢, and

has as its result the composed function (p;f;q) , or in standard notation
(qofop). This resulting function itself expects an argument of type b
and gives a result of type ¢'. In familiar lambda-notation, the exponential
can be defined as the higher order function (functional)

(p=>q) = M:(b'=>¢). (Ax:b.q(f(px)))

The mix-variant functorial property of => can be proved from this
definition, by showing the equality of the two sides of the equation when

31

applied to an arbitrary f.
Proof. ((p=>q) ; (r=>8))f
beta-substitution in the first function of the compaosition

= (r=>s) (p;fiq)
beta-substitution in the second function

= rpifiais
definition of =>

= (rp) => (q;s)
end of proof
Consider a function f:b x ¢ -> a, which takes a pair of arguments. The
curried version of f is the same as f, except that it takes its arguments
one atatime. Thus (curry f) :b-> (¢ => a) is a function which expects an
argument x of type b, and delivers as result another function from ¢ to
a . When this latter function is applied to an argument y in b, it delivers

the same result as f does when applied to the pair (x,y) . More simply, in
symbols

((curry f)x)y = #x.y)

The currying operator has an inverse cailed "uncurry”. Consider a function
g:b->{(c=>a). Then

uncurryg:bxc->a

(uncurry g)(x,y) = (gx)y

It follows that
curry{uncurry g) = @
uncurry(curry f) = f

In category theary, the currying operator is represented by a new kind of

32

33

junction C, with four arguments instead of three. its defining properties
are

0.Cbcaf:b->(c=>a) forf:bxc=>a
1. Cp=<qr((pxq) ; ;1) = p;Cp~q™<if; (g=>1)

Perhaps we should check here that the lambda-definition of curry has these
properties.

Theorem . The introduction of the currying operator maintains validity of
total simulation.

Proof.
Note 0. by property 0 of "C" and mix-variant distribution of simulation
u("C"becaf) = u(c=>a) = (dc =>ua)
Note 1.. (Fb x dc) ; u(b x ¢)
distribution laws for u and x
= (Fb;ub) x (dc;uc)
Fb = <ub and (d,u) is a retraction
= {ub x Gc)
end of notes.
Consider first the upward simulation
F("C"bcaf) ; u("C"bcaf) |
distribution, note 0, and introduction of identity Fb
= Fb ; C(Fb)(Fc)(Fa)(Ff) ; (dc => ua)
dc:Gc-> Fc, ud:Fd->Gd and property 1 of C

= C(Fb)(Gc)(Ga)((Fb x dc) ; Ff ; ua)

> =a,u: FcG and monotonicity of everything
¢ C(Fb)(Ge)(Ga)((Fb x dc) ; u(b x ¢) ; Gf)
note 1 and introduction of identity Ga
= C(Fb)(Gc)(Ga)((ub x Gb) ; Gf ; Ga)
ub : Fb-> Gb and property 1 of C
= ub; C(Gb)(Gc)(Ga)(Gf) ; (Gc => Ga)
property 0 of C and cancellation of identity
= U~("C"bcaf) ; G("C"bcaf)
Now consider the downward simulation
G("C"beaf) ; d("C"beaf)
end of proof
Cdnclusion
What d.oes it all mean? Why do the algebraic proofs work out so neatly?

What is the good of it all? | should be most grateful for answers to these
questions.,

