e,

Yy

7,
) W)
\ \ .
L (u{ N)
N 7
. ¥

—_— - ,
- fs
&

X .o
W\ S

Maths adds safety to computer programs

Computers control the operation of nuclear power stations and the launch of missiles, so
we all have a vested interest in keeping computer programs free of errors. But few programimers
know that mathematics holds the key to safety

Tony Hoare

IGITAL COMPUTERS must be
MATHEMATICS the most reliable mechanisms
built by the human race.

COQUNTS -
I Millions of computers throughout the
world, and thousands in space, execute
billions of instructions per second for
billions of seconds without a single
error in any of the millions of bits that
comprise each computer. Yet few of us
would trust our lives to a computer.

The fault lies not in the computer’s
hardware but in the programs which
control it. Programs faithfully
reproduce the errors, oversights, inadequacies and
misunderstandings of the programmers who compose them.
There are some large and widely used programs, operating
systems and compilers in which hundreds of new errors are
discovered each year. Even when programmers correct errors,
the rate at which users continue to discover new ones remains
constant over several decades. Indeed, some suspect that each
correction introduces more than one new error. And only a
few of the errors in these programs will ever be discovered
before the programs are superseded by new products, These
new products are, of course, equally unreliable.

Most of the errors that are found in general computer
programs are extremely subtle: their effects are not serious,
and it is easy to avoid them until the software's supplier gets

b A TR

round to correcting them. But computers are beginning to
play an increasing role in “life-critical applications”, situa-
tions where the correction of errors on discovery is not an
acceptable option—for example, in control of industrial
processes, nuclear reactors, weapons systems, oil rigs, aero
engines and railway signalling. The engineers in charge of
such projects are naturally worried about the correctness of
the programs performing these tasks, and they have suggested
several expedients for tackling the problem. Let me give some
examples of four proposed methods. e T

The first method is the simplest. [illustrate it with a story.
When Brunel’s ship the SS Great. Britainwas launched into the
River Thames, it made such a splash that several spectators on
the opposite bank were,drowned. Nowadays, engineers reduce
the force of entry intdithe water by rope tethers which are
designed to break at carefully calculated intervals.

When the first computer came into operation in the
Mathematish Centrum in Amsterdam, one of the first tasks
was to calculate the appropriate intervals and breaking strains
of these tethers, In order to ensure the correctness of the
program which did the calculations, the programmers were
invited to watch the launching from the first row of the
ceremonial viewing stand set up on the opposite bank. They
accepted and they survived.

A similar solution has been proposed for programs that
control the propeller and steering of a ship which has to keep
station in rough seas close to the leg of an oil drilling rig. The

G @ O W gifa.

Bill Sasidisson

54 o New Sclentist 18 September 1966

action of the wind and waves is so sudden that no human
helmsman could avoid collision, and the task must be
delegated to a computer program. But if we require the
programmer to demonstrate the reliability of his program by
Joiniing the crew of the ship, a question arises when he resigns
his highly paid post. Is this because of boredom, seasickness or
fear of something worse?

When the early American satellites were first controlled by
on-board computers, outside contractors wrote the programs.
On delivery, checkers visually inspected the absolute binary
code of the programs: rows and rows of raw binary digits.
They could not use any higher level programming language,
since assemblers and compilers are large programs and, there-
fore, even less trustworthy than the programs that they
compile,

To assist in the “eyeballing”, NASA constructed a massive

This kind of machine-assisted analysis is still very popular
in the checking of safety-critical software. The quoted reason
is far from reassuring: many of the programs are written with-
out any specification at all; so the only thing there to check is
the ultimate code. The basic mistake is that the checking is
done far too late: it is a fundamental principle of quality
control that what you should check is not the product but the
methods by which it is produced. It is only by improving
methods that it becomes possible to achieve reliability.

We can often test programs that control critical processes
by running them initially in a simulated environment—{for
example, inside a fast mainframe computer. Suppose that the
simulation runs many times faster than real time. Thus in one
year it may be possible to simulate say a thousand years’ oper-
ation of the process and check all the answers that the
program gives, If only a few errors are detected, it is then

Most errors in computer programs are subtle and insignificant—though a mistake in the
software that controls a nuclear reactor could be disastrous. Checking programs is none too
easy, however, and current methods have drawbacies that may become more serfous as

suite of programs—for example, to reconstruct the assembly
code from the delivered binary code, to draw flow-charts and
to analyse ail the control paths, The human checkers then
annotated these charts with assertions about scaling factors of
the arithmetic operations; with the help of machines, they
then checked that the scaling factor would not vary each time
that the program went round a loop. :

. The fundamental flaw in this approach is that, when check-
tng something, you should always check it against something
else which you either know is reliable, or which someone has
similarly checked. To check the binary code against abso-
lutely nothing except itseif is a fearsome task, and requires
inspired guesswork in order to reconstruct the documen-
tation, designs and specifications, No wonder checking iseven
more expensive than the original programming, which
progresses in the more natural direction, from abstract to
concrete, from specification through design, to the volu-
minous detail of the code.

computerised monitoring of systems becomes more widespread

unlikely that any such error will occur within the first 10 years
of live running—which may be the length of the program’s
useful lifetime. This appealing method suffers from several
devastating drawbacks, The first and least of them is that the
delay before a working program is installed is usualiy
unacceptable,

The second flaw is philosophical: it is moraily very difficult
to risk people’s lives on a program that has known bugs. Yet
to “correct” the known bugs would not only be wholly ineffec-
tive; it could be disastrous since it could introduce a
completely unknown batch of new bugs. To counter this
possibility, all the testing would have to start again from the
beginning, The third is a practical flaw. What happens if 10
errors are detected in the thousand-year test? This resuft gives
a quite unacceptable risk that an érror will oceur in the 10
years of actual use. The only remedy is to rewrite the whole

‘program and start the test again, By that time, the project will

have lost its value and relevance.

New Scientist 18 September 1986 - . - - - Lo © 55

The fourth is a logical flaw: the method depends on the
correctness of the simulated environment and on that of the
checking program. Yet if the checking program is correct, why
not use it as part or whole of the program which controls the
real process? . . . :

The: fifth drawback fortunately makes the previous four
irrelevant: it is only.in the very simple and increasingly rare
applications that it is possible to run a simulation, even on the
fastest supercomputers, at a rate faster than real time. So this
method is dpplicable only to programs with a- design life
measured in minutes or hours; it is therefore not appropriate
for most civilian applications, . o

In many _life-critical applications, the problem of the
reliability of hardware requires there to be three or more iden-
tical computers, with a voting circuit at their output which
ensures-that.every action has the agreement of at least two of

- k)

Only a computer can react quickly enough to prevent a ship from
colliding with an oil drilling rig. But how reliable are its programs?

them. The likelihood that two or more computers would go
wrong simultaneously is very much smaller than the risk that
just one would. Since the hardware is available, it is possible
to apply the same technique to software. You get three or
more independent teams of programmers to write three or
more independent programs, and load a different one into
each computer. If- one of the -programs goes wrong occa-
sionally, the other programs, which are unlikely to go wrong
on the same occasion, outvote it, . , .

In hardware, such a method will deal with transient errors,
such as might arise from an occasional cosmic ray impinging
on the silicon chip. It does not deal with persistent faults,
which must be cured by manual (or automatic) replacement
of components. Unfortunately, in software there is no reason
to suppose that errors are transient; a single erroneous
subscript can cause the program to be overwritten, so that it
never works again. To guard against this possibility, it is neces-
sary to design the hardware to clear the store and reload the
program between each cycle of operation. So this technique
applies only to programs whose operation is a series of inde-
pendent cycles, with no long-term storage. Such a program
cannot accumulate past readings, to integrate or to smooth
them. Thus the technique is applicable only to simple control
processes, . . . - : .o

A second weakness in this method is that there is no reason
to suppose that errors in programs produced by independent
programmers will be independent, Quite the reverse.
Programmers are often educated in the same “culture”; they
find the same things difficult, and they are subject to the same
kinds of misunderstandings and oversights—for example,
forgetting to test for an extreme case, or omitting to provide
for zero iterations of a loop. S

But there is one new circumstance that will make diversity
impractical on large systems. In real-time applications, the
response of a computer depends on details of the timing of the
signals which it responds to—for example, the arrival of an
interrupt, Thus two correct programs which receive signals at
slightly different times can give different results, both of them

correct. Unfortupately, a simple voting circuit in the hard-
ware cannot know this, and it will invoke unnecessary alarms,
In spite of vigorous efforts to prevent it, this is what actually
occurred on the first attempfed launch of the American space
shuttle. The Columbia was a victim of the first highly spec-
tacuiar public failure of a computer program. The cause of the
failure was the very technique designed to ensure reliability,

There is more insidious danger in using diversity for long-
running programs.. When a software error occurs, the
hardware-comparison circuif will signal an alarm; but the
operators will attribute this alert to a software error, and will
ignore it. As a result, when it really is the hardware that goes
wrong, it will be impossible for the operators to distinguish it
from an error inthe sofiware, and they will continue to ignore
it. Thus intermittent and faulty hardware will not be replaced
in good time. This infection of hardware by the unreliability
of the software has actually been observed on a computer for
which the ALGOL compiler used -the hardware parity
violation circuits to detect the programming error of an unini-
tialised variable. In a short while, as a result of lack of mainte-
nance, the hardware of the main store of every computer
which used that compiler became unreliable.

Mathematics holds the solution

These are the four methods that people have proposed and
used in practice for the construction of safety-critical soft-
ware. As far as I know, they have been almost completely
successful so far, and no large-scale loss of human life has ever
been attributed to a programming error. Nevertheless, each
method suffers from several drawbacks that may become
more serious with the imminent increase in the scale-and
sophistication of systems whose safety. is monitored by
computer programs. | therefore suggest that we should
explore an additional method, which promises to increase the
reliability of programs. The same method has assisted the
reliability of designs in other branches of engineering, namely

the use of mathematics to calculate the parameters and check

the soundness of a design before passing it for construction
and installation. S L

Alan Turing first made this suggestion some 40 years ago; it
was.put into practice, on occasion, by the other great pioneer
of computing, John von Neuman. Shigeru Igarashi and Bob
Floyd revived the idea-some 20 years ago, providing the
groundwork for a wide and deep research movement aimed at
developing the relevant mathematical techniques. Wirth,
Dijkstra, Jones, Gries and many others, (including. me) have
made significant contributions. Yet, as far as I know, no one
has ever checked a single safety-critical program using the
available mathematical methods, What is more, I have met
several programmers and managers at various levels of a
safety-critical project who have never even Aeard of the posi-
bility that you can establish the total correctness of computer
programs by the normal .mathematical techniques of
modelling, calculation and proof. -~ . - . =

Such total ignorance would seem wilful, and perhaps it is,
People -working on safety-critical -projects carry a heavy
responsibility. If they ever get.to hear of a method which
might lead to an improvement i reliability, they are obliged
to investigate it in depth. This would give them no time to
complete their current projects’ on schedule and within
budget. I think that this is the reason why no industry and no
profession has ever voluntarily and spontaneously developed
or adopted an effective and relevant code of safe practice,
Even voluntary codes are established only in the face of some
kind of external pressure or threat, arising from. public
disquiet, fostered by journals and newspapers and taken up by
politicians. : R

A mathematical proof is, technically, a completely reliable
method of ensuring the correctness of programs, but this
method could never be effective in practice unless it is accom-
panied by the appropriate attitudes and managerial tech-
niques. These techniques are in fact based on the same ideas

s P N Siorist 18 Seprember. 1985

that have been used effectively in the past,

It is not practical or desirable to punish errors in
programming by instant death. Nevertheless, programmers
must stop regarding error as an inevitable feature of their daily
lives. Like surgeons or airline pilots, they must feel a personal
commitment to adopt techniques that eliminate error and to
feel the appropriate shame. and resolution to improve when
they fail. In a safety-critical project, every failure should be
investigated by an impartial enquiry, with powers to name the
programmer responsible, and forbid that person any further
employment on safety-critical work. In cases of proven negli-
gence, criminal sanctions should not be ruled out, In other
engineering disciplines, these measures have led to marked
improvement in personal and professional responsibility, and
in public safety. There is no reason why programmers should
be granted further immunity, ' T

Mathematical calculations and proofs are in.many ways
very like programs. They are long and intricate texts in which
the slightest blunder. leads fo invalidity, In principle, a
programmier could learn to write completely formal proofs,
and a computer could be programmed to check these proofs.
This principle has inspired some excellent research and devel-
opment of proof-checking programs. But the labour of
constructing proofs with sufficient formality for a machine to
check them has turned out to be excessive. .

For the time being, the most effective method of checking
proofs is to submit them to the gaze of another programmer
or mathematician, The checker then joins the programmer in
taking responsibility for the correctness of the program, The

principle that the work of an engineer should be inspected and.

signed off by another more experienced and competent
engineer lies at the heart of the codes of safe practice in all
branches of engineering, The checking of proofs has much in
common with the eyeballing of code, but it is in principle
more effective, since it is.easier to detect a hole in a well-
presented proof than it is to find an oversight in a program.
This is because a proof checker only needs to check the valid-
ity of each line of the proof, comparing it only with one or two
previous lines, For a program, the checker has to check each
line in the context of every other line of code in the
program—a task which is quite impossibie for large programs.

Testing for realism

However carefully an engineer has specified, designed and
implemented a product, it would be extremely foolish to put
the item into service without subjecting it to thorough tests
that are as realistic as possible., Such tests are necessary to
check the adequacy of the original specification, and the
general assumptions on which it is based, We need these tests
in order to check our understanding of the relations between
the hardware, the software and their working environment.
Evaluation of this kind also checks the adequacy of the
methods by which the system was specified, designed and
constructed. -

The vast majority of all tests should succeed—otherwise
there is something so seriously wrong with the product that it
would be best to throw it away. But inevitably there will be an
occasional failure even in programs which were thought to be
proved correct, On these occasions the proper response is first
to find the cause of the error: for example, carelessness,
misunderstanding or use of inadequate methods, Second, you
must assess whether that same cause might have led to other
errors in other parts of the program. All such -doubtful areas
must be checked again. Only then should the detected error be
corrected. and the correction itself undergo more rigorous
checks against the possibility that it" will introduce further
errors. These common-sense principles are standard practices
in many branches of engineering, vet their application to
programming has been slow to gain recognition. .

Most computer programs today are written in high-level
programming fanguages which have to be translated into the
language of the machine before they can be executed, The

program which docs the translation is itself large, complex
and subject to error, This has inhibited the use of high-level
languages for safety-critical programming. This is a mistake,
Some compilers for simple high-level languages have proved
reliable in widespread use and the chance that they will make
a mistake in compiling a particular safety-critical program is
very small, The chance that such a mistake would escape
detection in routine testing is far smaller still. In the last resort,
a visual check of the machine code against the original high-
level program is still a possibility—easier and safer than writ-
ing the original program. -

The principle of diversity is fundamental to improving the
reliability of programs. The people who check proofs should
be independent of those who construct them. Those who
design test regimes should be independent of those who design
the objects undergoing the tests. Finally, for uitimate
confidence, it would be ideal to have two independent proofs,
preferably using different methods of proof. It is by indepen-
dent experiment that the laws of physics are confirmed; and
even mathematicians are happier with findamental theorems
that have been proved more than once. _

. The principle of diversity when applied to proof will be
more effective than when applied to programs, and will
probably be no more expensive. It does not suffer from any of
the problems or dangers which arise from the use of hardware
error checks as a protection against software bugs.

Mathematics is a traditionally unpopular subject, among
programmers as in the general population. Even pro-
grammers with a university degree in pure and applied math-
ematics have no idea how to apply their mathematical skills to
the practice of their profession. Fortunately, the mathe-
matical aspects of programming are now beginning to find
their way into university curricula. I look forward to the day
when these topics find their way into specialist teaching in
secondary schools, My prediction is that the mathematical
study of programming will contribute to wider appreciation,
understanding and love of mathematics; for mathematics is
constantly rejuvenated by discovery of new applications. By
that time, the professional use of mathematics in safety-
critical programming will ensure that computer programs are
the most reliable component of any system in which they are
embedded.

To achieve this desirable goal, I believe it is necessary to
raise the alarm publicly about the inadequacy of some of the
methods that are currently proposed and in use. But it is
important not to exaggerate the risk or to provoke over-
reaction. Critical processes controlled by computer programs
are probably far more reliable than those controlled by oider
analogue devices and certainly more reliable than manual
methods. This is mainly due to the greatly increased reliability
of the hardware of computers, Indeed, at present, the fear of
errors in programming is the main reason for delay in the
introduction of computerised control in safety-critical appli-
cations, This delay itself represents a risk to public safety. The
introduction of mathematical methods to prove programs
correct will therefore bring double benefit—it will improve
the reliability of existing applications, and it will give people
confidence to extend these benefits to new applications. []

Professor C. A. R. Hoare, FRS, Is professor of computation in the

rogramming research group, Oxford University Computing
borz_nory.

References .

Roland C. Backhouse, Program Construction and Verification,

Prentice Hall {1988). An introductory text for assertional methods of
program development and proof. These methods form the basis of a
standard of rigour and accuracy for safety-critical programs.

Software, Vital Key to UK Competitiveness, Report of ACARD,
HMSO, 1986, £6-00. This report amphasises the imporiance of
improved methods in the construction of software for all purposes. It
suggests that mathematical methods introduced for safety-critical
programs will bring improvements throughout tha software industry.

