additional recommendations suggested by C.A.R. Hoare - 4th July

1IEE, BCS, BSI and NPL should be funded to produce a series of high quality
software standards, independent of commercial pressure. Funds should be
sufficient to hire consultants from Universities and Industry; and to place
contracts for trial implementatiomns. ’

IEE and BCS should be funded to design a professional certificate of qualification

in fault-free programming. This should be a direct and objective test of the

candidate's ability to apply known methods for avoidance of exxor on safety~
critical projects.

In schools, a shift towards more structured languages and programming systems
should be accelerated, if necessary by purchase of more modern hardware and
software.

The simpler mathematics of programming should be introduced into the computing
syllabus at the secondary school level.

Government procurement contracts should require a guarantee that all software
faults detected in the first two years after delivery should be corrected by
the supplier under guarantee, without pfejudice to further claims to
consequential damages for these or for subsequent errors.

on software products and contracts, disclaimer of responsibility for errors
and inadequacy of the product should be declared illegal. Suppliers should
be recommended to take out insurance against direct and consequential damages
arising arising from programmer negligence.

A series of 'summer schools' should be funded to assist propagation of improved
methods among academics, teachers and industrial programmers.

A‘

Quality
7Draft
C.A.R. Hoare, 4th July, 1985

The end

- our objective is to penetrate the world software market by establishing a
. pre-eminent .reputation.for the quality.of British software. The criteria for
quality of software, like those of other engineering products are numerous, but
fairly standard. The following list of seventeen criteria was compiled twenty
years ago. Most points apply equally to marketed software and in-house program
development.

1.

Clear definition of purpose.

Software must be designed from the start to meet a clearly defined purpose,
and every decision must be justified by appeal to that purpose.

Simplicity of use.

The major barrier to wider and more successful use of computers is often
the complexity of the user interface: this results in long periods of
training/acclimatisation, loss of confidence and reliability.

Ruggedness.

As well as being simple to use, software must be difficult to misuse. User
error must be treated gently, and never lead to unpredictable effects;

Early availability.

The first tolerable product on the market place often gains an unassailable
lead, which later products of higher quality cannot shake. Delays in
delivery of process control and commercial software are often more expensive
than all other software costs put together.

Reliability

Computer hardware is incredibly reliable; the software is a notorious let-down.
In some applications the results of software unreliability could be disastrous.

Extensibility in the light of éxperience.

The way to capture a market is to deliver a good product this year, a better

one next, and an unbeatable one the year after, Well~designed and well~structured
programs offer this opportunity - though this fact should never dilute the
engineer's prime responsibility to get it right first time.

adaptability and easy extension to different configurations.

The range of variety in hardware configurations grows wider with the advance
of technology. To open up wider markets, and reduce the need for user
retraining, software must incorporate abstractions capable of adapting to many
concrete configurations, both those existing at time of first delivery and
those developed later.

Suitability to each configuration in the range.

The user of a particular configuration does not wish to sacrifice the particular
powers of the hardware to the dictates of uniformity or compatibility.

Cont/....2

9. Brevity
Programs and data should not be extravagant in the use of store. The cost
of store is going up (relative to processing power), and demands on it are
increasing, However cheap store is, twice as much store is twice as expensive. It
is the duty of an engineer to be economical in the management of all resources.
compact programs tend to be faster, more yeliable and cheaper to produce and
maintain

10. Efficiency (speed)
Fast response time (even below one second} in complex application areas,
{especially with interactive graphics) is a vital guality. Computer processing
power is increasing, and the cost is reducing; but this does not nearly match
the rate of increase in user expectations. Increasing efficiency on a fixed
hardware configuration can give a significant competitive advantage since it
permits the customer to lengthen the interval between successive hardware
upgrades.

11. Operating ease.
This is a crucial factor in modern interactive applications. The design of
the man-machine interface needs ever increasing attention.

12. Adaptability to a wide range of applications
Por general purpose software, languages, operating systems and utilities,
a wide range of application is especially important. Technical means are
required to avoid loss of guality by excessive.generality.

13. Coherence and consistency with other programs.
A program which is part of a suite of programs with a coherent design
philosophy is much more attractive; and leads to a wider and more stable
market base.

14. Minimum cost to develop
The supplier who has reduced production costs and lead times will have a
significant competitive advantage, as well as better profits.

15. conformity to national and international standards. '
Unfortunately, in the last twenty years, the quality of standards in software
has seriously declined. They are arbitrary, obscure, complicated, expensive,
unreliable, late,.... and often they fail most signally to meet the primary
objective of standardisation, namely trouble-free interconnection of products
from different suppliers.

lée. EBarly and valid sales documentation
Under this heading should come all other criteria of successful marketing.

17. Clear, accurate, and precise user documents

This is so important that a user's manual should be written before a project
is approved for implementation. Unnecessary design complexity is often
revealed while it can still be remedied. In writing a user manual, the
designer clarifies his view of the needs and background of his user
population, and thereby improves the quality of all his subseguent design
decisions.

Contd/....3

B.

The means

Twenty years ago -achievement of software quality was more a matter of luck

than good judgement. Fortunately, during the last twenty years much research and
development has taken place in programming methodology, and much of the best of it
in Britain. The results of this research are now available to be exploited in
Britain or elsewhere.

1.

Mathematical methods of programming

The major breakthrough in the last ten years has been the introduction of
mathematical modelling and proof in all stages of program specification, design
and implementation. At the analysis stage, it is used to explore specification
and design options for software before any commitment is made in implementation.
A wide range of design options can be formulated and discussed with colleagues
and clients without the fog of misunderstanding and ambiguity which in the

past has often characterised the early design process.

Formulation of a mathematical model or specification of a software design

helps us in achieving many of the other criteria of quality. Relevance to
purpose can be assessed at the earliest stages. By abstracting from details

of implementation, the user interface is simplified; adaptability to different
configurations can be planned; and a clear logical structure is laid out for user
manuals, with clear definitions of the minimal set of necessary technical texms,
By sound specifications, constructed in advance of implementation, it is
possible to plan foxr extensibility and coherence of a suite of programs, which
cannot all be written at one time., By examination and elimination of unnecessary
special cases, the software can be made more rugged, shorter, more reliable

and cheaper to develop. In particular, mathematics can check the ruggedness

of a design by ensuring that every user action can be immediately reversed.

By careful specification of the interfaces between modules of a large program,
there is the prospect of proving the correctness of the design before
implementation of the modules s:arts. This could significantly reduce the

high cost of program changes during development, and eliminate expensive and
unpredictable delays due to correction of errors discovered during system
integration tests. Finally, the mathematical method of development of designs
can be carried right down to the level of code, thereby achieving a reliability
comparable with that of mathematical proof., Mathematical proof methods must

be used first on programs critical to human safety; but as experience and
confidence grows, they will be profitably applied on all commercial projects,
where reduction of errors will reduce costs and increase customer satisfaction.

In the longer term if mathematical methods are applied to the foxmulation of
standards, it may help to tackle some of the appalling problems arising in
this area too. It would not be technically difficult to establish reputation

_that British Standards are technically superior to international ones.

The introduction of mathematical methods generates considerable enthusiasm
among programmers who have suffered from the problems which can be. solved
thereby; there is a danger that the methods may be tried even in cases where
they are not yet sufficiently well developed, or where their use is not
cost—-effective. Furthermore, there are many excellent products that have been
designed and implemented without any explicit appeal to mathematics; such
products allow little scope for improvement. Nevertheless, these risks must
be faced in the interests of razising the general standards of quality
throughout the British software industry.

Contd/....4

Improved Toocls

in the last twenty years, improved tools have significantly reduced the
cost of software production. The most important programming toecl is a
programming language: modern high-level programming languages offer
considerable security and reliability by compile-time checks; they provide
an opportunity to construct programs which are readable by a programmer's

colleagues and successors; and this contributes to reliability, and
adaptability; modern compilers give an opportunity for fast turnround of
prototype or experimental programs; and they considerably reduce development
costs. The introduction of individual program development workstations is

a considerable aid to small projects, provided that it is not used as &
substitute for careful analysis and design prior to implementation., For
larger projects, the concept of & program support environment offers
assistance to management in the control of costs and timescales; and inclusion
of configuration control is indispensible where adaptations are needed for

a wide range of configurations. The integration of all these developments
togethexr with the relevant matheratical methods is being pursued in the
Alvey Software Engineering Programme.

